Mips16ISelLowering.cpp revision b359bda93d410623bbbc96dc9968d94447169a79
1//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Subclass of MipsTargetLowering specialized for mips16.
11//
12//===----------------------------------------------------------------------===//
13#define DEBUG_TYPE "mips-lower"
14#include "Mips16ISelLowering.h"
15#include "MipsRegisterInfo.h"
16#include "MipsTargetMachine.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "llvm/CodeGen/MachineInstrBuilder.h"
19#include "llvm/Support/CommandLine.h"
20#include "llvm/Target/TargetInstrInfo.h"
21
22using namespace llvm;
23
24static cl::opt<bool> DontExpandCondPseudos16(
25  "mips16-dont-expand-cond-pseudo",
26  cl::init(false),
27  cl::desc("Dont expand conditional move related "
28           "pseudos for Mips 16"),
29  cl::Hidden);
30
31namespace {
32struct Mips16Libcall {
33  RTLIB::Libcall Libcall;
34  const char *Name;
35
36  bool operator<(const Mips16Libcall &RHS) const {
37    return std::strcmp(Name, RHS.Name) < 0;
38  }
39};
40
41struct Mips16IntrinsicHelperType{
42  const char* Name;
43  const char* Helper;
44
45  bool operator<(const Mips16IntrinsicHelperType &RHS) const {
46    return std::strcmp(Name, RHS.Name) < 0;
47  }
48  bool operator==(const Mips16IntrinsicHelperType &RHS) const {
49    return std::strcmp(Name, RHS.Name) == 0;
50  }
51};
52}
53
54// Libcalls for which no helper is generated. Sorted by name for binary search.
55static const Mips16Libcall HardFloatLibCalls[] = {
56  { RTLIB::ADD_F64, "__mips16_adddf3" },
57  { RTLIB::ADD_F32, "__mips16_addsf3" },
58  { RTLIB::DIV_F64, "__mips16_divdf3" },
59  { RTLIB::DIV_F32, "__mips16_divsf3" },
60  { RTLIB::OEQ_F64, "__mips16_eqdf2" },
61  { RTLIB::OEQ_F32, "__mips16_eqsf2" },
62  { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
63  { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
64  { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
65  { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
66  { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
67  { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
68  { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
69  { RTLIB::OGE_F64, "__mips16_gedf2" },
70  { RTLIB::OGE_F32, "__mips16_gesf2" },
71  { RTLIB::OGT_F64, "__mips16_gtdf2" },
72  { RTLIB::OGT_F32, "__mips16_gtsf2" },
73  { RTLIB::OLE_F64, "__mips16_ledf2" },
74  { RTLIB::OLE_F32, "__mips16_lesf2" },
75  { RTLIB::OLT_F64, "__mips16_ltdf2" },
76  { RTLIB::OLT_F32, "__mips16_ltsf2" },
77  { RTLIB::MUL_F64, "__mips16_muldf3" },
78  { RTLIB::MUL_F32, "__mips16_mulsf3" },
79  { RTLIB::UNE_F64, "__mips16_nedf2" },
80  { RTLIB::UNE_F32, "__mips16_nesf2" },
81  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
82  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
83  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
84  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
85  { RTLIB::SUB_F64, "__mips16_subdf3" },
86  { RTLIB::SUB_F32, "__mips16_subsf3" },
87  { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
88  { RTLIB::UO_F64, "__mips16_unorddf2" },
89  { RTLIB::UO_F32, "__mips16_unordsf2" }
90};
91
92static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
93  {"__fixunsdfsi", "__mips16_call_stub_2" },
94  {"ceil",  "__mips16_call_stub_df_2"},
95  {"ceilf", "__mips16_call_stub_sf_1"},
96  {"copysign",  "__mips16_call_stub_df_10"},
97  {"copysignf", "__mips16_call_stub_sf_5"},
98  {"cos",  "__mips16_call_stub_df_2"},
99  {"cosf", "__mips16_call_stub_sf_1"},
100  {"exp2",  "__mips16_call_stub_df_2"},
101  {"exp2f", "__mips16_call_stub_sf_1"},
102  {"floor",  "__mips16_call_stub_df_2"},
103  {"floorf", "__mips16_call_stub_sf_1"},
104  {"log2",  "__mips16_call_stub_df_2"},
105  {"log2f", "__mips16_call_stub_sf_1"},
106  {"nearbyint",  "__mips16_call_stub_df_2"},
107  {"nearbyintf", "__mips16_call_stub_sf_1"},
108  {"rint",  "__mips16_call_stub_df_2"},
109  {"rintf", "__mips16_call_stub_sf_1"},
110  {"sin",  "__mips16_call_stub_df_2"},
111  {"sinf", "__mips16_call_stub_sf_1"},
112  {"sqrt",  "__mips16_call_stub_df_2"},
113  {"sqrtf", "__mips16_call_stub_sf_1"},
114  {"trunc",  "__mips16_call_stub_df_2"},
115  {"truncf", "__mips16_call_stub_sf_1"},
116};
117
118Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM)
119  : MipsTargetLowering(TM) {
120  //
121  // set up as if mips32 and then revert so we can test the mechanism
122  // for switching
123  addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
124  addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
125  computeRegisterProperties();
126  clearRegisterClasses();
127
128  // Set up the register classes
129  addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
130
131  if (Subtarget->inMips16HardFloat())
132    setMips16HardFloatLibCalls();
133
134  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
135  setOperationAction(ISD::ATOMIC_CMP_SWAP,    MVT::i32,   Expand);
136  setOperationAction(ISD::ATOMIC_SWAP,        MVT::i32,   Expand);
137  setOperationAction(ISD::ATOMIC_LOAD_ADD,    MVT::i32,   Expand);
138  setOperationAction(ISD::ATOMIC_LOAD_SUB,    MVT::i32,   Expand);
139  setOperationAction(ISD::ATOMIC_LOAD_AND,    MVT::i32,   Expand);
140  setOperationAction(ISD::ATOMIC_LOAD_OR,     MVT::i32,   Expand);
141  setOperationAction(ISD::ATOMIC_LOAD_XOR,    MVT::i32,   Expand);
142  setOperationAction(ISD::ATOMIC_LOAD_NAND,   MVT::i32,   Expand);
143  setOperationAction(ISD::ATOMIC_LOAD_MIN,    MVT::i32,   Expand);
144  setOperationAction(ISD::ATOMIC_LOAD_MAX,    MVT::i32,   Expand);
145  setOperationAction(ISD::ATOMIC_LOAD_UMIN,   MVT::i32,   Expand);
146  setOperationAction(ISD::ATOMIC_LOAD_UMAX,   MVT::i32,   Expand);
147
148  setOperationAction(ISD::ROTR, MVT::i32,  Expand);
149  setOperationAction(ISD::ROTR, MVT::i64,  Expand);
150  setOperationAction(ISD::BSWAP, MVT::i32, Expand);
151  setOperationAction(ISD::BSWAP, MVT::i64, Expand);
152
153  computeRegisterProperties();
154}
155
156const MipsTargetLowering *
157llvm::createMips16TargetLowering(MipsTargetMachine &TM) {
158  return new Mips16TargetLowering(TM);
159}
160
161bool
162Mips16TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
163  return false;
164}
165
166MachineBasicBlock *
167Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
168                                                  MachineBasicBlock *BB) const {
169  switch (MI->getOpcode()) {
170  default:
171    return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
172  case Mips::SelBeqZ:
173    return emitSel16(Mips::BeqzRxImm16, MI, BB);
174  case Mips::SelBneZ:
175    return emitSel16(Mips::BnezRxImm16, MI, BB);
176  case Mips::SelTBteqZCmpi:
177    return emitSeliT16(Mips::BteqzX16, Mips::CmpiRxImmX16, MI, BB);
178  case Mips::SelTBteqZSlti:
179    return emitSeliT16(Mips::BteqzX16, Mips::SltiRxImmX16, MI, BB);
180  case Mips::SelTBteqZSltiu:
181    return emitSeliT16(Mips::BteqzX16, Mips::SltiuRxImmX16, MI, BB);
182  case Mips::SelTBtneZCmpi:
183    return emitSeliT16(Mips::BtnezX16, Mips::CmpiRxImmX16, MI, BB);
184  case Mips::SelTBtneZSlti:
185    return emitSeliT16(Mips::BtnezX16, Mips::SltiRxImmX16, MI, BB);
186  case Mips::SelTBtneZSltiu:
187    return emitSeliT16(Mips::BtnezX16, Mips::SltiuRxImmX16, MI, BB);
188  case Mips::SelTBteqZCmp:
189    return emitSelT16(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
190  case Mips::SelTBteqZSlt:
191    return emitSelT16(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
192  case Mips::SelTBteqZSltu:
193    return emitSelT16(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
194  case Mips::SelTBtneZCmp:
195    return emitSelT16(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
196  case Mips::SelTBtneZSlt:
197    return emitSelT16(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
198  case Mips::SelTBtneZSltu:
199    return emitSelT16(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
200  case Mips::BteqzT8CmpX16:
201    return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
202  case Mips::BteqzT8SltX16:
203    return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
204  case Mips::BteqzT8SltuX16:
205    // TBD: figure out a way to get this or remove the instruction
206    // altogether.
207    return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
208  case Mips::BtnezT8CmpX16:
209    return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
210  case Mips::BtnezT8SltX16:
211    return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
212  case Mips::BtnezT8SltuX16:
213    // TBD: figure out a way to get this or remove the instruction
214    // altogether.
215    return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
216  case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
217    Mips::BteqzX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
218  case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
219    Mips::BteqzX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
220  case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
221    Mips::BteqzX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
222  case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
223    Mips::BtnezX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
224  case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
225    Mips::BtnezX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
226  case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
227    Mips::BtnezX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
228    break;
229  case Mips::SltCCRxRy16:
230    return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
231    break;
232  case Mips::SltiCCRxImmX16:
233    return emitFEXT_CCRXI16_ins
234      (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
235  case Mips::SltiuCCRxImmX16:
236    return emitFEXT_CCRXI16_ins
237      (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
238  case Mips::SltuCCRxRy16:
239    return emitFEXT_CCRX16_ins
240      (Mips::SltuRxRy16, MI, BB);
241  }
242}
243
244bool Mips16TargetLowering::
245isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
246                                  unsigned NextStackOffset,
247                                  const MipsFunctionInfo& FI) const {
248  // No tail call optimization for mips16.
249  return false;
250}
251
252void Mips16TargetLowering::setMips16HardFloatLibCalls() {
253  for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
254    assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
255           "Array not sorted!");
256    if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
257      setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
258  }
259
260  setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
261  setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
262}
263
264//
265// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
266// cleaner way to do all of this but it will have to wait until the traditional
267// gcc mechanism is completed.
268//
269// For Pic, in order for Mips16 code to call Mips32 code which according the abi
270// have either arguments or returned values placed in floating point registers,
271// we use a set of helper functions. (This includes functions which return type
272//  complex which on Mips are returned in a pair of floating point registers).
273//
274// This is an encoding that we inherited from gcc.
275// In Mips traditional O32, N32 ABI, floating point numbers are passed in
276// floating point argument registers 1,2 only when the first and optionally
277// the second arguments are float (sf) or double (df).
278// For Mips16 we are only concerned with the situations where floating point
279// arguments are being passed in floating point registers by the ABI, because
280// Mips16 mode code cannot execute floating point instructions to load those
281// values and hence helper functions are needed.
282// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
283// the helper function suffixs for these are:
284//                        0,  1,    5,        9,         2,   6,        10
285// this suffix can then be calculated as follows:
286// for a given argument Arg:
287//     Arg1x, Arg2x = 1 :  Arg is sf
288//                    2 :  Arg is df
289//                    0:   Arg is neither sf or df
290// So this stub is the string for number Arg1x + Arg2x*4.
291// However not all numbers between 0 and 10 are possible, we check anyway and
292// assert if the impossible exists.
293//
294
295unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
296  (ArgListTy &Args) const {
297  unsigned int resultNum = 0;
298  if (Args.size() >= 1) {
299    Type *t = Args[0].Ty;
300    if (t->isFloatTy()) {
301      resultNum = 1;
302    }
303    else if (t->isDoubleTy()) {
304      resultNum = 2;
305    }
306  }
307  if (resultNum) {
308    if (Args.size() >=2) {
309      Type *t = Args[1].Ty;
310      if (t->isFloatTy()) {
311        resultNum += 4;
312      }
313      else if (t->isDoubleTy()) {
314        resultNum += 8;
315      }
316    }
317  }
318  return resultNum;
319}
320
321//
322// prefixs are attached to stub numbers depending on the return type .
323// return type: float  sf_
324//              double df_
325//              single complex sc_
326//              double complext dc_
327//              others  NO PREFIX
328//
329//
330// The full name of a helper function is__mips16_call_stub +
331//    return type dependent prefix + stub number
332//
333//
334// This is something that probably should be in a different source file and
335// perhaps done differently but my main purpose is to not waste runtime
336// on something that we can enumerate in the source. Another possibility is
337// to have a python script to generate these mapping tables. This will do
338// for now. There are a whole series of helper function mapping arrays, one
339// for each return type class as outlined above. There there are 11 possible
340//  entries. Ones with 0 are ones which should never be selected
341//
342// All the arrays are similar except for ones which return neither
343// sf, df, sc, dc, in which only care about ones which have sf or df as a
344// first parameter.
345//
346#define P_ "__mips16_call_stub_"
347#define MAX_STUB_NUMBER 10
348#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
349#define T P "0" , T1
350#define P P_
351static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
352  {0, T1 };
353#undef P
354#define P P_ "sf_"
355static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
356  { T };
357#undef P
358#define P P_ "df_"
359static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
360  { T };
361#undef P
362#define P P_ "sc_"
363static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
364  { T };
365#undef P
366#define P P_ "dc_"
367static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
368  { T };
369#undef P
370#undef P_
371
372
373const char* Mips16TargetLowering::
374  getMips16HelperFunction
375    (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
376  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
377#ifndef NDEBUG
378  const unsigned int maxStubNum = 10;
379  assert(stubNum <= maxStubNum);
380  const bool validStubNum[maxStubNum+1] =
381    {true, true, true, false, false, true, true, false, false, true, true};
382  assert(validStubNum[stubNum]);
383#endif
384  const char *result;
385  if (RetTy->isFloatTy()) {
386    result = sfMips16Helper[stubNum];
387  }
388  else if (RetTy ->isDoubleTy()) {
389    result = dfMips16Helper[stubNum];
390  }
391  else if (RetTy->isStructTy()) {
392    // check if it's complex
393    if (RetTy->getNumContainedTypes() == 2) {
394      if ((RetTy->getContainedType(0)->isFloatTy()) &&
395          (RetTy->getContainedType(1)->isFloatTy())) {
396        result = scMips16Helper[stubNum];
397      }
398      else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
399               (RetTy->getContainedType(1)->isDoubleTy())) {
400        result = dcMips16Helper[stubNum];
401      }
402      else {
403        llvm_unreachable("Uncovered condition");
404      }
405    }
406    else {
407      llvm_unreachable("Uncovered condition");
408    }
409  }
410  else {
411    if (stubNum == 0) {
412      needHelper = false;
413      return "";
414    }
415    result = vMips16Helper[stubNum];
416  }
417  needHelper = true;
418  return result;
419}
420
421void Mips16TargetLowering::
422getOpndList(SmallVectorImpl<SDValue> &Ops,
423            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
424            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
425            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
426  SelectionDAG &DAG = CLI.DAG;
427  MachineFunction &MF = DAG.getMachineFunction();
428  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
429  const char* Mips16HelperFunction = 0;
430  bool NeedMips16Helper = false;
431
432  if (getTargetMachine().Options.UseSoftFloat &&
433      Subtarget->inMips16HardFloat()) {
434    //
435    // currently we don't have symbols tagged with the mips16 or mips32
436    // qualifier so we will assume that we don't know what kind it is.
437    // and generate the helper
438    //
439    bool LookupHelper = true;
440    if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
441      Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
442
443      if (std::binary_search(HardFloatLibCalls, array_endof(HardFloatLibCalls),
444                             Find))
445        LookupHelper = false;
446      else {
447        Mips16IntrinsicHelperType IntrinsicFind = {S->getSymbol(), ""};
448        // one more look at list of intrinsics
449        if (std::binary_search(Mips16IntrinsicHelper,
450            array_endof(Mips16IntrinsicHelper),
451                                     IntrinsicFind)) {
452          const Mips16IntrinsicHelperType *h =(std::find(Mips16IntrinsicHelper,
453              array_endof(Mips16IntrinsicHelper),
454                                       IntrinsicFind));
455          Mips16HelperFunction = h->Helper;
456          NeedMips16Helper = true;
457          LookupHelper = false;
458        }
459
460      }
461    } else if (GlobalAddressSDNode *G =
462                   dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
463      Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
464                             G->getGlobal()->getName().data() };
465
466      if (std::binary_search(HardFloatLibCalls, array_endof(HardFloatLibCalls),
467                             Find))
468        LookupHelper = false;
469    }
470    if (LookupHelper) Mips16HelperFunction =
471      getMips16HelperFunction(CLI.RetTy, CLI.Args, NeedMips16Helper);
472
473  }
474
475  SDValue JumpTarget = Callee;
476
477  // T9 should contain the address of the callee function if
478  // -reloction-model=pic or it is an indirect call.
479  if (IsPICCall || !GlobalOrExternal) {
480    unsigned V0Reg = Mips::V0;
481    if (NeedMips16Helper) {
482      RegsToPass.push_front(std::make_pair(V0Reg, Callee));
483      JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy());
484      ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
485      JumpTarget = getAddrGlobal(S, JumpTarget.getValueType(), DAG,
486                                 MipsII::MO_GOT, Chain,
487                                 FuncInfo->callPtrInfo(S->getSymbol()));
488    } else
489      RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
490  }
491
492  Ops.push_back(JumpTarget);
493
494  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
495                                  InternalLinkage, CLI, Callee, Chain);
496}
497
498MachineBasicBlock *Mips16TargetLowering::
499emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const {
500  if (DontExpandCondPseudos16)
501    return BB;
502  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
503  DebugLoc DL = MI->getDebugLoc();
504  // To "insert" a SELECT_CC instruction, we actually have to insert the
505  // diamond control-flow pattern.  The incoming instruction knows the
506  // destination vreg to set, the condition code register to branch on, the
507  // true/false values to select between, and a branch opcode to use.
508  const BasicBlock *LLVM_BB = BB->getBasicBlock();
509  MachineFunction::iterator It = BB;
510  ++It;
511
512  //  thisMBB:
513  //  ...
514  //   TrueVal = ...
515  //   setcc r1, r2, r3
516  //   bNE   r1, r0, copy1MBB
517  //   fallthrough --> copy0MBB
518  MachineBasicBlock *thisMBB  = BB;
519  MachineFunction *F = BB->getParent();
520  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
521  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
522  F->insert(It, copy0MBB);
523  F->insert(It, sinkMBB);
524
525  // Transfer the remainder of BB and its successor edges to sinkMBB.
526  sinkMBB->splice(sinkMBB->begin(), BB,
527                  llvm::next(MachineBasicBlock::iterator(MI)),
528                  BB->end());
529  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
530
531  // Next, add the true and fallthrough blocks as its successors.
532  BB->addSuccessor(copy0MBB);
533  BB->addSuccessor(sinkMBB);
534
535  BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
536    .addMBB(sinkMBB);
537
538  //  copy0MBB:
539  //   %FalseValue = ...
540  //   # fallthrough to sinkMBB
541  BB = copy0MBB;
542
543  // Update machine-CFG edges
544  BB->addSuccessor(sinkMBB);
545
546  //  sinkMBB:
547  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
548  //  ...
549  BB = sinkMBB;
550
551  BuildMI(*BB, BB->begin(), DL,
552          TII->get(Mips::PHI), MI->getOperand(0).getReg())
553    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
554    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
555
556  MI->eraseFromParent();   // The pseudo instruction is gone now.
557  return BB;
558}
559
560MachineBasicBlock *Mips16TargetLowering::emitSelT16
561  (unsigned Opc1, unsigned Opc2,
562   MachineInstr *MI, MachineBasicBlock *BB) const {
563  if (DontExpandCondPseudos16)
564    return BB;
565  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
566  DebugLoc DL = MI->getDebugLoc();
567  // To "insert" a SELECT_CC instruction, we actually have to insert the
568  // diamond control-flow pattern.  The incoming instruction knows the
569  // destination vreg to set, the condition code register to branch on, the
570  // true/false values to select between, and a branch opcode to use.
571  const BasicBlock *LLVM_BB = BB->getBasicBlock();
572  MachineFunction::iterator It = BB;
573  ++It;
574
575  //  thisMBB:
576  //  ...
577  //   TrueVal = ...
578  //   setcc r1, r2, r3
579  //   bNE   r1, r0, copy1MBB
580  //   fallthrough --> copy0MBB
581  MachineBasicBlock *thisMBB  = BB;
582  MachineFunction *F = BB->getParent();
583  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
584  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
585  F->insert(It, copy0MBB);
586  F->insert(It, sinkMBB);
587
588  // Transfer the remainder of BB and its successor edges to sinkMBB.
589  sinkMBB->splice(sinkMBB->begin(), BB,
590                  llvm::next(MachineBasicBlock::iterator(MI)),
591                  BB->end());
592  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
593
594  // Next, add the true and fallthrough blocks as its successors.
595  BB->addSuccessor(copy0MBB);
596  BB->addSuccessor(sinkMBB);
597
598  BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
599    .addReg(MI->getOperand(4).getReg());
600  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
601
602  //  copy0MBB:
603  //   %FalseValue = ...
604  //   # fallthrough to sinkMBB
605  BB = copy0MBB;
606
607  // Update machine-CFG edges
608  BB->addSuccessor(sinkMBB);
609
610  //  sinkMBB:
611  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
612  //  ...
613  BB = sinkMBB;
614
615  BuildMI(*BB, BB->begin(), DL,
616          TII->get(Mips::PHI), MI->getOperand(0).getReg())
617    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
618    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
619
620  MI->eraseFromParent();   // The pseudo instruction is gone now.
621  return BB;
622
623}
624
625MachineBasicBlock *Mips16TargetLowering::emitSeliT16
626  (unsigned Opc1, unsigned Opc2,
627   MachineInstr *MI, MachineBasicBlock *BB) const {
628  if (DontExpandCondPseudos16)
629    return BB;
630  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
631  DebugLoc DL = MI->getDebugLoc();
632  // To "insert" a SELECT_CC instruction, we actually have to insert the
633  // diamond control-flow pattern.  The incoming instruction knows the
634  // destination vreg to set, the condition code register to branch on, the
635  // true/false values to select between, and a branch opcode to use.
636  const BasicBlock *LLVM_BB = BB->getBasicBlock();
637  MachineFunction::iterator It = BB;
638  ++It;
639
640  //  thisMBB:
641  //  ...
642  //   TrueVal = ...
643  //   setcc r1, r2, r3
644  //   bNE   r1, r0, copy1MBB
645  //   fallthrough --> copy0MBB
646  MachineBasicBlock *thisMBB  = BB;
647  MachineFunction *F = BB->getParent();
648  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
649  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
650  F->insert(It, copy0MBB);
651  F->insert(It, sinkMBB);
652
653  // Transfer the remainder of BB and its successor edges to sinkMBB.
654  sinkMBB->splice(sinkMBB->begin(), BB,
655                  llvm::next(MachineBasicBlock::iterator(MI)),
656                  BB->end());
657  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
658
659  // Next, add the true and fallthrough blocks as its successors.
660  BB->addSuccessor(copy0MBB);
661  BB->addSuccessor(sinkMBB);
662
663  BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
664    .addImm(MI->getOperand(4).getImm());
665  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
666
667  //  copy0MBB:
668  //   %FalseValue = ...
669  //   # fallthrough to sinkMBB
670  BB = copy0MBB;
671
672  // Update machine-CFG edges
673  BB->addSuccessor(sinkMBB);
674
675  //  sinkMBB:
676  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
677  //  ...
678  BB = sinkMBB;
679
680  BuildMI(*BB, BB->begin(), DL,
681          TII->get(Mips::PHI), MI->getOperand(0).getReg())
682    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
683    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
684
685  MI->eraseFromParent();   // The pseudo instruction is gone now.
686  return BB;
687
688}
689
690MachineBasicBlock
691  *Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
692                                             MachineInstr *MI,
693                                             MachineBasicBlock *BB) const {
694  if (DontExpandCondPseudos16)
695    return BB;
696  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
697  unsigned regX = MI->getOperand(0).getReg();
698  unsigned regY = MI->getOperand(1).getReg();
699  MachineBasicBlock *target = MI->getOperand(2).getMBB();
700  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
701    .addReg(regY);
702  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
703  MI->eraseFromParent();   // The pseudo instruction is gone now.
704  return BB;
705}
706
707MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
708  unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
709  MachineInstr *MI,  MachineBasicBlock *BB) const {
710  if (DontExpandCondPseudos16)
711    return BB;
712  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
713  unsigned regX = MI->getOperand(0).getReg();
714  int64_t imm = MI->getOperand(1).getImm();
715  MachineBasicBlock *target = MI->getOperand(2).getMBB();
716  unsigned CmpOpc;
717  if (isUInt<8>(imm))
718    CmpOpc = CmpiOpc;
719  else if ((!ImmSigned && isUInt<16>(imm)) ||
720           (ImmSigned && isInt<16>(imm)))
721    CmpOpc = CmpiXOpc;
722  else
723    llvm_unreachable("immediate field not usable");
724  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
725    .addImm(imm);
726  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
727  MI->eraseFromParent();   // The pseudo instruction is gone now.
728  return BB;
729}
730
731static unsigned Mips16WhichOp8uOr16simm
732  (unsigned shortOp, unsigned longOp, int64_t Imm) {
733  if (isUInt<8>(Imm))
734    return shortOp;
735  else if (isInt<16>(Imm))
736    return longOp;
737  else
738    llvm_unreachable("immediate field not usable");
739}
740
741MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins(
742  unsigned SltOpc,
743  MachineInstr *MI,  MachineBasicBlock *BB) const {
744  if (DontExpandCondPseudos16)
745    return BB;
746  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
747  unsigned CC = MI->getOperand(0).getReg();
748  unsigned regX = MI->getOperand(1).getReg();
749  unsigned regY = MI->getOperand(2).getReg();
750  BuildMI(*BB, MI, MI->getDebugLoc(),
751		  TII->get(SltOpc)).addReg(regX).addReg(regY);
752  BuildMI(*BB, MI, MI->getDebugLoc(),
753          TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
754  MI->eraseFromParent();   // The pseudo instruction is gone now.
755  return BB;
756}
757
758MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins(
759  unsigned SltiOpc, unsigned SltiXOpc,
760  MachineInstr *MI,  MachineBasicBlock *BB )const {
761  if (DontExpandCondPseudos16)
762    return BB;
763  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
764  unsigned CC = MI->getOperand(0).getReg();
765  unsigned regX = MI->getOperand(1).getReg();
766  int64_t Imm = MI->getOperand(2).getImm();
767  unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
768  BuildMI(*BB, MI, MI->getDebugLoc(),
769          TII->get(SltOpc)).addReg(regX).addImm(Imm);
770  BuildMI(*BB, MI, MI->getDebugLoc(),
771          TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
772  MI->eraseFromParent();   // The pseudo instruction is gone now.
773  return BB;
774
775}
776