Mips16InstrInfo.td revision 1858786285139b87961d9ca08de91dcd59364afb
1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 :
18  ComplexPattern<iPTR, 3, "selectAddr16", [frameindex], [SDNPWantParent]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16, CPU16RegsPlusSP);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16_ea : Operand<i32> {
29  let PrintMethod = "printMemOperandEA";
30  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
31  let EncoderMethod = "getMemEncoding";
32}
33
34//
35//
36// I8 instruction format
37//
38
39class FI816_ins_base<bits<3> _func, string asmstr,
40                     string asmstr2, InstrItinClass itin>:
41  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
42        [], itin>;
43
44
45class FI816_SP_ins<bits<3> _func, string asmstr,
46                   InstrItinClass itin>:
47  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
48
49//
50// RI instruction format
51//
52
53
54class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
55                     InstrItinClass itin>:
56  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
57        !strconcat(asmstr, asmstr2), [], itin>;
58
59class FRI16_ins<bits<5> op, string asmstr,
60                InstrItinClass itin>:
61  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
62
63class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
64                     InstrItinClass itin>:
65  FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
66        !strconcat(asmstr, asmstr2), [], itin>;
67
68class FRI16R_ins<bits<5> op, string asmstr,
69                InstrItinClass itin>:
70  FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
71
72class F2RI16_ins<bits<5> _op, string asmstr,
73                     InstrItinClass itin>:
74  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
75        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
76  let Constraints = "$rx_ = $rx";
77}
78
79class FRI16_B_ins<bits<5> _op, string asmstr,
80                  InstrItinClass itin>:
81  FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
82        !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
83//
84// Compare a register and immediate and place result in CC
85// Implicit use of T8
86//
87// EXT-CCRR Instruction format
88//
89class FEXT_CCRXI16_ins<string asmstr>:
90  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
91               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
92  let isCodeGenOnly=1;
93  let usesCustomInserter = 1;
94}
95
96// JAL and JALX instruction format
97//
98class FJAL16_ins<bits<1> _X, string asmstr,
99                 InstrItinClass itin>:
100  FJAL16<_X, (outs), (ins simm20:$imm),
101         !strconcat(asmstr, "\t$imm\n\tnop"),[],
102         itin>  {
103  let isCodeGenOnly=1;
104}
105//
106// EXT-I instruction format
107//
108class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
109  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
110           !strconcat(asmstr, "\t$imm16"),[], itin>;
111
112//
113// EXT-I8 instruction format
114//
115
116class FEXT_I816_ins_base<bits<3> _func, string asmstr,
117                         string asmstr2, InstrItinClass itin>:
118  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
119            [], itin>;
120
121class FEXT_I816_ins<bits<3> _func, string asmstr,
122                    InstrItinClass itin>:
123  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
124
125class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
126                       InstrItinClass itin>:
127      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
128
129//
130// Assembler formats in alphabetical order.
131// Natural and pseudos are mixed together.
132//
133// Compare two registers and place result in CC
134// Implicit use of T8
135//
136// CC-RR Instruction format
137//
138class FCCRR16_ins<string asmstr> :
139  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
140               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
141  let isCodeGenOnly=1;
142  let usesCustomInserter = 1;
143}
144
145//
146// EXT-RI instruction format
147//
148
149class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
150                         InstrItinClass itin>:
151  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
152                  !strconcat(asmstr, asmstr2), [], itin>;
153
154class FEXT_RI16_ins<bits<5> _op, string asmstr,
155                    InstrItinClass itin>:
156  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
157
158class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
159                         InstrItinClass itin>:
160  FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
161                  !strconcat(asmstr, asmstr2), [], itin>;
162
163class FEXT_RI16R_ins<bits<5> _op, string asmstr,
164                    InstrItinClass itin>:
165  FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
166
167class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
168  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
169
170class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
171                      InstrItinClass itin>:
172  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
173            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
174
175class FEXT_2RI16_ins<bits<5> _op, string asmstr,
176                     InstrItinClass itin>:
177  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
178            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
179  let Constraints = "$rx_ = $rx";
180}
181
182
183// this has an explicit sp argument that we ignore to work around a problem
184// in the compiler
185class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
186                                InstrItinClass itin>:
187  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
188            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
189
190class FEXT_RI16_SP_Store_explicit_ins<bits<5> _op, string asmstr,
191                                InstrItinClass itin>:
192  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, CPUSPReg:$ry, simm16:$imm),
193            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
194
195//
196// EXT-RRI instruction format
197//
198
199class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
200                         InstrItinClass itin>:
201  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
202             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
203
204class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
205                          InstrItinClass itin>:
206  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
207             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
208
209//
210//
211// EXT-RRI-A instruction format
212//
213
214class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
215                           InstrItinClass itin>:
216  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
217               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
218
219//
220// EXT-SHIFT instruction format
221//
222class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
223  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, shamt:$sa),
224               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
225
226//
227// EXT-T8I8
228//
229class FEXT_T8I816_ins<string asmstr, string asmstr2>:
230  MipsPseudo16<(outs),
231               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
232               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
233               !strconcat(asmstr, "\t$imm"))),[]> {
234  let isCodeGenOnly=1;
235  let usesCustomInserter = 1;
236}
237
238//
239// EXT-T8I8I
240//
241class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
242  MipsPseudo16<(outs),
243               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
244               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
245               !strconcat(asmstr, "\t$targ"))), []> {
246  let isCodeGenOnly=1;
247  let usesCustomInserter = 1;
248}
249//
250
251
252//
253// I8_MOVR32 instruction format (used only by the MOVR32 instructio
254//
255class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
256       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
257       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
258
259//
260// I8_MOV32R instruction format (used only by MOV32R instruction)
261//
262
263class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
264  FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
265               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
266
267//
268// This are pseudo formats for multiply
269// This first one can be changed to non pseudo now.
270//
271// MULT
272//
273class FMULT16_ins<string asmstr, InstrItinClass itin> :
274  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
275               !strconcat(asmstr, "\t$rx, $ry"), []>;
276
277//
278// MULT-LO
279//
280class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
281  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
282               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
283  let isCodeGenOnly=1;
284}
285
286//
287// RR-type instruction format
288//
289
290class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
291  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
292        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
293}
294
295class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
296  FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
297        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
298}
299
300class FRRTR16_ins<string asmstr> :
301  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
302               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
303
304//
305// maybe refactor but need a $zero as a dummy first parameter
306//
307class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
308  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
309        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
310
311class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
312  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
313        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
314
315
316class FRR16_M_ins<bits<5> f, string asmstr,
317                  InstrItinClass itin> :
318  FRR16<f, (outs CPU16Regs:$rx), (ins),
319        !strconcat(asmstr, "\t$rx"), [], itin>;
320
321class FRxRxRy16_ins<bits<5> f, string asmstr,
322                    InstrItinClass itin> :
323  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
324            !strconcat(asmstr, "\t$rz, $ry"),
325            [], itin> {
326  let Constraints = "$rx = $rz";
327}
328
329let rx=0 in
330class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
331                              string asmstr, InstrItinClass itin>:
332  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
333              [], itin> ;
334
335
336class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
337                      string asmstr, InstrItinClass itin>:
338  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
339              !strconcat(asmstr, "\t $rx"), [], itin> ;
340
341//
342// RRR-type instruction format
343//
344
345class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
346  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
347         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
348
349//
350// These Sel patterns support the generation of conditional move
351// pseudo instructions.
352//
353// The nomenclature uses the components making up the pseudo and may
354// be a bit counter intuitive when compared with the end result we seek.
355// For example using a bqez in the example directly below results in the
356// conditional move being done if the tested register is not zero.
357// I considered in easier to check by keeping the pseudo consistent with
358// it's components but it could have been done differently.
359//
360// The simplest case is when can test and operand directly and do the
361// conditional move based on a simple mips16 conditional
362//  branch instruction.
363// for example:
364// if $op == beqz or bnez:
365//
366// $op1 $rt, .+4
367// move $rd, $rs
368//
369// if $op == beqz, then if $rt != 0, then the conditional assignment
370// $rd = $rs is done.
371
372// if $op == bnez, then if $rt == 0, then the conditional assignment
373// $rd = $rs is done.
374//
375// So this pseudo class only has one operand, i.e. op
376//
377class Sel<string op>:
378  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
379               CPU16Regs:$rt),
380               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
381  //let isCodeGenOnly=1;
382  let Constraints = "$rd = $rd_";
383  let usesCustomInserter = 1;
384}
385
386//
387// The next two instruction classes allow for an operand which tests
388// two operands and returns a value in register T8 and
389//then does a conditional branch based on the value of T8
390//
391
392// op2 can be cmpi or slti/sltiu
393// op1 can bteqz or btnez
394// the operands for op2 are a register and a signed constant
395//
396// $op2 $t, $imm  ;test register t and branch conditionally
397// $op1 .+4       ;op1 is a conditional branch
398// move $rd, $rs
399//
400//
401class SeliT<string op1, string op2>:
402  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
403                                       CPU16Regs:$rl, simm16:$imm),
404               !strconcat(op2,
405               !strconcat("\t$rl, $imm\n\t",
406               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
407  let isCodeGenOnly=1;
408  let Constraints = "$rd = $rd_";
409  let usesCustomInserter = 1;
410}
411
412//
413// op2 can be cmp or slt/sltu
414// op1 can be bteqz or btnez
415// the operands for op2 are two registers
416// op1 is a conditional branch
417//
418//
419// $op2 $rl, $rr  ;test registers rl,rr
420// $op1 .+4       ;op2 is a conditional branch
421// move $rd, $rs
422//
423//
424class SelT<string op1, string op2>:
425  MipsPseudo16<(outs CPU16Regs:$rd_),
426               (ins CPU16Regs:$rd, CPU16Regs:$rs,
427                CPU16Regs:$rl, CPU16Regs:$rr),
428               !strconcat(op2,
429               !strconcat("\t$rl, $rr\n\t",
430               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
431  let isCodeGenOnly=1;
432  let Constraints = "$rd = $rd_";
433  let usesCustomInserter = 1;
434}
435
436//
437// 32 bit constant
438//
439def imm32: Operand<i32>;
440
441def Constant32:
442  MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
443
444def LwConstant32:
445  MipsPseudo16<(outs CPU16Regs:$rx), (ins imm32:$imm),
446    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
447
448
449//
450// Some general instruction class info
451//
452//
453
454class ArithLogic16Defs<bit isCom=0> {
455  bits<5> shamt = 0;
456  bit isCommutable = isCom;
457  bit isReMaterializable = 1;
458  bit neverHasSideEffects = 1;
459}
460
461class branch16 {
462  bit isBranch = 1;
463  bit isTerminator = 1;
464  bit isBarrier = 1;
465}
466
467class cbranch16 {
468  bit isBranch = 1;
469  bit isTerminator = 1;
470}
471
472class MayLoad {
473  bit mayLoad = 1;
474}
475
476class MayStore {
477  bit mayStore = 1;
478}
479//
480
481
482// Format: ADDIU rx, immediate MIPS16e
483// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
484// To add a constant to a 32-bit integer.
485//
486def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
487
488def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIAlu>,
489  ArithLogic16Defs<0> {
490  let AddedComplexity = 5;
491}
492def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
493  ArithLogic16Defs<0> {
494  let isCodeGenOnly = 1;
495}
496
497def AddiuRxRyOffMemX16:
498  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
499
500//
501
502// Format: ADDIU rx, pc, immediate MIPS16e
503// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
504// To add a constant to the program counter.
505//
506def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
507
508//
509// Format: ADDIU sp, immediate MIPS16e
510// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
511// To add a constant to the stack pointer.
512//
513def AddiuSpImm16
514  : FI816_SP_ins<0b011, "addiu", IIAlu> {
515  let Defs = [SP];
516  let Uses = [SP];
517  let AddedComplexity = 5;
518}
519
520def AddiuSpImmX16
521  : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
522  let Defs = [SP];
523  let Uses = [SP];
524}
525
526//
527// Format: ADDU rz, rx, ry MIPS16e
528// Purpose: Add Unsigned Word (3-Operand)
529// To add 32-bit integers.
530//
531
532def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
533
534//
535// Format: AND rx, ry MIPS16e
536// Purpose: AND
537// To do a bitwise logical AND.
538
539def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
540
541
542//
543// Format: BEQZ rx, offset MIPS16e
544// Purpose: Branch on Equal to Zero
545// To test a GPR then do a PC-relative conditional branch.
546//
547def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
548
549
550//
551// Format: BEQZ rx, offset MIPS16e
552// Purpose: Branch on Equal to Zero (Extended)
553// To test a GPR then do a PC-relative conditional branch.
554//
555def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
556
557// Format: B offset MIPS16e
558// Purpose: Unconditional Branch
559// To do an unconditional PC-relative branch.
560//
561def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
562
563//
564// Format: BNEZ rx, offset MIPS16e
565// Purpose: Branch on Not Equal to Zero
566// To test a GPR then do a PC-relative conditional branch.
567//
568def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
569
570//
571// Format: BNEZ rx, offset MIPS16e
572// Purpose: Branch on Not Equal to Zero (Extended)
573// To test a GPR then do a PC-relative conditional branch.
574//
575def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
576
577//
578// Format: BTEQZ offset MIPS16e
579// Purpose: Branch on T Equal to Zero (Extended)
580// To test special register T then do a PC-relative conditional branch.
581//
582def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
583  let Uses = [T8];
584}
585
586def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
587
588def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
589  cbranch16;
590
591def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
592
593def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
594
595def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
596
597def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
598  cbranch16;
599
600//
601// Format: BTNEZ offset MIPS16e
602// Purpose: Branch on T Not Equal to Zero (Extended)
603// To test special register T then do a PC-relative conditional branch.
604//
605def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16 {
606  let Uses = [T8];
607}
608
609def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
610
611def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
612
613def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
614
615def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
616
617def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
618
619def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
620  cbranch16;
621
622//
623// Format: CMP rx, ry MIPS16e
624// Purpose: Compare
625// To compare the contents of two GPRs.
626//
627def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIAlu> {
628  let Defs = [T8];
629}
630
631//
632// Format: CMPI rx, immediate MIPS16e
633// Purpose: Compare Immediate
634// To compare a constant with the contents of a GPR.
635//
636def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIAlu> {
637  let Defs = [T8];
638}
639
640//
641// Format: CMPI rx, immediate MIPS16e
642// Purpose: Compare Immediate (Extended)
643// To compare a constant with the contents of a GPR.
644//
645def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIAlu> {
646  let Defs = [T8];
647}
648
649
650//
651// Format: DIV rx, ry MIPS16e
652// Purpose: Divide Word
653// To divide 32-bit signed integers.
654//
655def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
656  let Defs = [HI, LO];
657}
658
659//
660// Format: DIVU rx, ry MIPS16e
661// Purpose: Divide Unsigned Word
662// To divide 32-bit unsigned integers.
663//
664def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
665  let Defs = [HI, LO];
666}
667//
668// Format: JAL target MIPS16e
669// Purpose: Jump and Link
670// To execute a procedure call within the current 256 MB-aligned
671// region and preserve the current ISA.
672//
673
674def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
675  let isBranch = 1;
676  let hasDelaySlot = 0;  // not true, but we add the nop for now
677  let isTerminator=1;
678  let isBarrier=1;
679  let isCall=1;
680}
681
682//
683// Format: JR ra MIPS16e
684// Purpose: Jump Register Through Register ra
685// To execute a branch to the instruction address in the return
686// address register.
687//
688
689def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
690  let isBranch = 1;
691  let isIndirectBranch = 1;
692  let hasDelaySlot = 1;
693  let isTerminator=1;
694  let isBarrier=1;
695}
696
697def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIAlu> {
698  let isBranch = 1;
699  let isIndirectBranch = 1;
700  let isTerminator=1;
701  let isBarrier=1;
702}
703
704def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
705  let isBranch = 1;
706  let isIndirectBranch = 1;
707  let isTerminator=1;
708  let isBarrier=1;
709}
710//
711// Format: LB ry, offset(rx) MIPS16e
712// Purpose: Load Byte (Extended)
713// To load a byte from memory as a signed value.
714//
715def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad{
716  let isCodeGenOnly = 1;
717}
718
719//
720// Format: LBU ry, offset(rx) MIPS16e
721// Purpose: Load Byte Unsigned (Extended)
722// To load a byte from memory as a unsigned value.
723//
724def LbuRxRyOffMemX16:
725  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad {
726  let isCodeGenOnly = 1;
727}
728
729//
730// Format: LH ry, offset(rx) MIPS16e
731// Purpose: Load Halfword signed (Extended)
732// To load a halfword from memory as a signed value.
733//
734def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad{
735  let isCodeGenOnly = 1;
736}
737
738//
739// Format: LHU ry, offset(rx) MIPS16e
740// Purpose: Load Halfword unsigned (Extended)
741// To load a halfword from memory as an unsigned value.
742//
743def LhuRxRyOffMemX16:
744  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad {
745  let isCodeGenOnly = 1;
746}
747
748//
749// Format: LI rx, immediate MIPS16e
750// Purpose: Load Immediate
751// To load a constant into a GPR.
752//
753def LiRxImm16: FRI16_ins<0b01101, "li", IIAlu>;
754
755//
756// Format: LI rx, immediate MIPS16e
757// Purpose: Load Immediate (Extended)
758// To load a constant into a GPR.
759//
760def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
761
762//
763// Format: LW ry, offset(rx) MIPS16e
764// Purpose: Load Word (Extended)
765// To load a word from memory as a signed value.
766//
767def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad{
768  let isCodeGenOnly = 1;
769}
770
771// Format: LW rx, offset(sp) MIPS16e
772// Purpose: Load Word (SP-Relative, Extended)
773// To load an SP-relative word from memory as a signed value.
774//
775def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10110, "lw", IILoad>, MayLoad{
776  let Uses = [SP];
777}
778
779//
780// Format: MOVE r32, rz MIPS16e
781// Purpose: Move
782// To move the contents of a GPR to a GPR.
783//
784def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
785
786//
787// Format: MOVE ry, r32 MIPS16e
788//Purpose: Move
789// To move the contents of a GPR to a GPR.
790//
791def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
792
793//
794// Format: MFHI rx MIPS16e
795// Purpose: Move From HI Register
796// To copy the special purpose HI register to a GPR.
797//
798def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
799  let Uses = [HI];
800  let neverHasSideEffects = 1;
801}
802
803//
804// Format: MFLO rx MIPS16e
805// Purpose: Move From LO Register
806// To copy the special purpose LO register to a GPR.
807//
808def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
809  let Uses = [LO];
810  let neverHasSideEffects = 1;
811}
812
813//
814// Pseudo Instruction for mult
815//
816def MultRxRy16:  FMULT16_ins<"mult",  IIAlu> {
817  let isCommutable = 1;
818  let neverHasSideEffects = 1;
819  let Defs = [HI, LO];
820}
821
822def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
823  let isCommutable = 1;
824  let neverHasSideEffects = 1;
825  let Defs = [HI, LO];
826}
827
828//
829// Format: MULT rx, ry MIPS16e
830// Purpose: Multiply Word
831// To multiply 32-bit signed integers.
832//
833def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
834  let isCommutable = 1;
835  let neverHasSideEffects = 1;
836  let Defs = [HI, LO];
837}
838
839//
840// Format: MULTU rx, ry MIPS16e
841// Purpose: Multiply Unsigned Word
842// To multiply 32-bit unsigned integers.
843//
844def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
845  let isCommutable = 1;
846  let neverHasSideEffects = 1;
847  let Defs = [HI, LO];
848}
849
850//
851// Format: NEG rx, ry MIPS16e
852// Purpose: Negate
853// To negate an integer value.
854//
855def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
856
857//
858// Format: NOT rx, ry MIPS16e
859// Purpose: Not
860// To complement an integer value
861//
862def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
863
864//
865// Format: OR rx, ry MIPS16e
866// Purpose: Or
867// To do a bitwise logical OR.
868//
869def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
870
871//
872// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
873// (All args are optional) MIPS16e
874// Purpose: Restore Registers and Deallocate Stack Frame
875// To deallocate a stack frame before exit from a subroutine,
876// restoring return address and static registers, and adjusting
877// stack
878//
879
880// fixed form for restoring RA and the frame
881// for direct object emitter, encoding needs to be adjusted for the
882// frame size
883//
884let ra=1, s=0,s0=1,s1=1 in
885def RestoreRaF16:
886  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
887             "restore\t$$ra,  $$s0, $$s1, $$s2, $frame_size", [], IILoad >, MayLoad {
888  let isCodeGenOnly = 1;
889  let Defs = [S0, S1, S2, RA, SP];
890  let Uses = [SP];
891}
892
893// Use Restore to increment SP since SP is not a Mip 16 register, this
894// is an easy way to do that which does not require a register.
895//
896let ra=0, s=0,s0=0,s1=0 in
897def RestoreIncSpF16:
898  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
899             "restore\t$frame_size", [], IILoad >, MayLoad {
900  let isCodeGenOnly = 1;
901  let Defs = [SP];
902  let Uses = [SP];
903}
904
905//
906// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
907// MIPS16e
908// Purpose: Save Registers and Set Up Stack Frame
909// To set up a stack frame on entry to a subroutine,
910// saving return address and static registers, and adjusting stack
911//
912let ra=1, s=1,s0=1,s1=1 in
913def SaveRaF16:
914  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
915             "save\t$$ra, $$s0, $$s1, $$s2, $frame_size", [], IIStore >, MayStore {
916  let isCodeGenOnly = 1;
917  let Uses = [RA, SP, S0, S1, S2];
918  let Defs = [SP];
919}
920
921//
922// Use Save to decrement the SP by a constant since SP is not
923// a Mips16 register.
924//
925let ra=0, s=0,s0=0,s1=0 in
926def SaveDecSpF16:
927  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
928             "save\t$frame_size", [], IIStore >, MayStore {
929  let isCodeGenOnly = 1;
930  let Uses = [SP];
931  let Defs = [SP];
932}
933//
934// Format: SB ry, offset(rx) MIPS16e
935// Purpose: Store Byte (Extended)
936// To store a byte to memory.
937//
938def SbRxRyOffMemX16:
939  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore;
940
941//
942// The Sel(T) instructions are pseudos
943// T means that they use T8 implicitly.
944//
945//
946// Format: SelBeqZ rd, rs, rt
947// Purpose: if rt==0, do nothing
948//          else rs = rt
949//
950def SelBeqZ: Sel<"beqz">;
951
952//
953// Format:  SelTBteqZCmp rd, rs, rl, rr
954// Purpose: b = Cmp rl, rr.
955//          If b==0 then do nothing.
956//          if b!=0 then rd = rs
957//
958def SelTBteqZCmp: SelT<"bteqz", "cmp">;
959
960//
961// Format:  SelTBteqZCmpi rd, rs, rl, rr
962// Purpose: b = Cmpi rl, imm.
963//          If b==0 then do nothing.
964//          if b!=0 then rd = rs
965//
966def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
967
968//
969// Format:  SelTBteqZSlt rd, rs, rl, rr
970// Purpose: b = Slt rl, rr.
971//          If b==0 then do nothing.
972//          if b!=0 then rd = rs
973//
974def SelTBteqZSlt: SelT<"bteqz", "slt">;
975
976//
977// Format:  SelTBteqZSlti rd, rs, rl, rr
978// Purpose: b = Slti rl, imm.
979//          If b==0 then do nothing.
980//          if b!=0 then rd = rs
981//
982def SelTBteqZSlti: SeliT<"bteqz", "slti">;
983
984//
985// Format:  SelTBteqZSltu rd, rs, rl, rr
986// Purpose: b = Sltu rl, rr.
987//          If b==0 then do nothing.
988//          if b!=0 then rd = rs
989//
990def SelTBteqZSltu: SelT<"bteqz", "sltu">;
991
992//
993// Format:  SelTBteqZSltiu rd, rs, rl, rr
994// Purpose: b = Sltiu rl, imm.
995//          If b==0 then do nothing.
996//          if b!=0 then rd = rs
997//
998def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
999
1000//
1001// Format: SelBnez rd, rs, rt
1002// Purpose: if rt!=0, do nothing
1003//          else rs = rt
1004//
1005def SelBneZ: Sel<"bnez">;
1006
1007//
1008// Format:  SelTBtneZCmp rd, rs, rl, rr
1009// Purpose: b = Cmp rl, rr.
1010//          If b!=0 then do nothing.
1011//          if b0=0 then rd = rs
1012//
1013def SelTBtneZCmp: SelT<"btnez", "cmp">;
1014
1015//
1016// Format:  SelTBtnezCmpi rd, rs, rl, rr
1017// Purpose: b = Cmpi rl, imm.
1018//          If b!=0 then do nothing.
1019//          if b==0 then rd = rs
1020//
1021def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1022
1023//
1024// Format:  SelTBtneZSlt rd, rs, rl, rr
1025// Purpose: b = Slt rl, rr.
1026//          If b!=0 then do nothing.
1027//          if b==0 then rd = rs
1028//
1029def SelTBtneZSlt: SelT<"btnez", "slt">;
1030
1031//
1032// Format:  SelTBtneZSlti rd, rs, rl, rr
1033// Purpose: b = Slti rl, imm.
1034//          If b!=0 then do nothing.
1035//          if b==0 then rd = rs
1036//
1037def SelTBtneZSlti: SeliT<"btnez", "slti">;
1038
1039//
1040// Format:  SelTBtneZSltu rd, rs, rl, rr
1041// Purpose: b = Sltu rl, rr.
1042//          If b!=0 then do nothing.
1043//          if b==0 then rd = rs
1044//
1045def SelTBtneZSltu: SelT<"btnez", "sltu">;
1046
1047//
1048// Format:  SelTBtneZSltiu rd, rs, rl, rr
1049// Purpose: b = Slti rl, imm.
1050//          If b!=0 then do nothing.
1051//          if b==0 then rd = rs
1052//
1053def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1054//
1055//
1056// Format: SH ry, offset(rx) MIPS16e
1057// Purpose: Store Halfword (Extended)
1058// To store a halfword to memory.
1059//
1060def ShRxRyOffMemX16:
1061  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore;
1062
1063//
1064// Format: SLL rx, ry, sa MIPS16e
1065// Purpose: Shift Word Left Logical (Extended)
1066// To execute a left-shift of a word by a fixed number of bits—0 to 31 bits.
1067//
1068def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
1069
1070//
1071// Format: SLLV ry, rx MIPS16e
1072// Purpose: Shift Word Left Logical Variable
1073// To execute a left-shift of a word by a variable number of bits.
1074//
1075def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
1076
1077// Format: SLTI rx, immediate MIPS16e
1078// Purpose: Set on Less Than Immediate
1079// To record the result of a less-than comparison with a constant.
1080//
1081//
1082def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIAlu> {
1083  let Defs = [T8];
1084}
1085
1086//
1087// Format: SLTI rx, immediate MIPS16e
1088// Purpose: Set on Less Than Immediate (Extended)
1089// To record the result of a less-than comparison with a constant.
1090//
1091//
1092def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIAlu> {
1093  let Defs = [T8];
1094}
1095
1096def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1097
1098// Format: SLTIU rx, immediate MIPS16e
1099// Purpose: Set on Less Than Immediate Unsigned
1100// To record the result of a less-than comparison with a constant.
1101//
1102//
1103def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIAlu> {
1104  let Defs = [T8];
1105}
1106
1107//
1108// Format: SLTI rx, immediate MIPS16e
1109// Purpose: Set on Less Than Immediate Unsigned (Extended)
1110// To record the result of a less-than comparison with a constant.
1111//
1112//
1113def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIAlu> {
1114  let Defs = [T8];
1115}
1116//
1117// Format: SLTIU rx, immediate MIPS16e
1118// Purpose: Set on Less Than Immediate Unsigned (Extended)
1119// To record the result of a less-than comparison with a constant.
1120//
1121def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1122
1123//
1124// Format: SLT rx, ry MIPS16e
1125// Purpose: Set on Less Than
1126// To record the result of a less-than comparison.
1127//
1128def SltRxRy16: FRR16R_ins<0b00010, "slt", IIAlu>{
1129  let Defs = [T8];
1130}
1131
1132def SltCCRxRy16: FCCRR16_ins<"slt">;
1133
1134// Format: SLTU rx, ry MIPS16e
1135// Purpose: Set on Less Than Unsigned
1136// To record the result of an unsigned less-than comparison.
1137//
1138def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIAlu>{
1139  let Defs = [T8];
1140}
1141
1142def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1143  let isCodeGenOnly=1;
1144  let Defs = [T8];
1145}
1146
1147
1148def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1149//
1150// Format: SRAV ry, rx MIPS16e
1151// Purpose: Shift Word Right Arithmetic Variable
1152// To execute an arithmetic right-shift of a word by a variable
1153// number of bits.
1154//
1155def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
1156
1157
1158//
1159// Format: SRA rx, ry, sa MIPS16e
1160// Purpose: Shift Word Right Arithmetic (Extended)
1161// To execute an arithmetic right-shift of a word by a fixed
1162// number of bits—1 to 8 bits.
1163//
1164def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
1165
1166
1167//
1168// Format: SRLV ry, rx MIPS16e
1169// Purpose: Shift Word Right Logical Variable
1170// To execute a logical right-shift of a word by a variable
1171// number of bits.
1172//
1173def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
1174
1175
1176//
1177// Format: SRL rx, ry, sa MIPS16e
1178// Purpose: Shift Word Right Logical (Extended)
1179// To execute a logical right-shift of a word by a fixed
1180// number of bits—1 to 31 bits.
1181//
1182def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
1183
1184//
1185// Format: SUBU rz, rx, ry MIPS16e
1186// Purpose: Subtract Unsigned Word
1187// To subtract 32-bit integers
1188//
1189def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
1190
1191//
1192// Format: SW ry, offset(rx) MIPS16e
1193// Purpose: Store Word (Extended)
1194// To store a word to memory.
1195//
1196def SwRxRyOffMemX16:
1197  FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore;
1198
1199//
1200// Format: SW rx, offset(sp) MIPS16e
1201// Purpose: Store Word rx (SP-Relative)
1202// To store an SP-relative word to memory.
1203//
1204def SwRxSpImmX16: FEXT_RI16_SP_Store_explicit_ins
1205  <0b11010, "sw", IIStore>, MayStore;
1206
1207//
1208//
1209// Format: XOR rx, ry MIPS16e
1210// Purpose: Xor
1211// To do a bitwise logical XOR.
1212//
1213def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
1214
1215class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1216  let Predicates = [InMips16Mode];
1217}
1218
1219// Unary Arith/Logic
1220//
1221class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1222  Mips16Pat<(OpNode CPU16Regs:$r),
1223            (I CPU16Regs:$r)>;
1224
1225def: ArithLogicU_pat<not, NotRxRy16>;
1226def: ArithLogicU_pat<ineg, NegRxRy16>;
1227
1228class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1229  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1230            (I CPU16Regs:$l, CPU16Regs:$r)>;
1231
1232def: ArithLogic16_pat<add, AdduRxRyRz16>;
1233def: ArithLogic16_pat<and, AndRxRxRy16>;
1234def: ArithLogic16_pat<mul, MultRxRyRz16>;
1235def: ArithLogic16_pat<or, OrRxRxRy16>;
1236def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1237def: ArithLogic16_pat<xor, XorRxRxRy16>;
1238
1239// Arithmetic and logical instructions with 2 register operands.
1240
1241class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1242  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1243            (I CPU16Regs:$in, imm_type:$imm)>;
1244
1245def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1246def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1247def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1248def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1249def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1250
1251class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1252  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1253            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1254
1255def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1256def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1257def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1258
1259class LoadM16_pat<PatFrag OpNode, Instruction I> :
1260  Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
1261
1262def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
1263def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
1264def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
1265def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
1266def: LoadM16_pat<load, LwRxRyOffMemX16>;
1267
1268class StoreM16_pat<PatFrag OpNode, Instruction I> :
1269  Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
1270            (I CPU16Regs:$r, addr16:$addr)>;
1271
1272def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
1273def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
1274def: StoreM16_pat<store, SwRxRyOffMemX16>;
1275
1276// Unconditional branch
1277class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1278  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1279    let Predicates = [InMips16Mode];
1280  }
1281
1282def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1283                (Jal16 tglobaladdr:$dst)>;
1284
1285def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1286                (Jal16 texternalsym:$dst)>;
1287
1288// Indirect branch
1289def: Mips16Pat<
1290  (brind CPU16Regs:$rs),
1291  (JrcRx16 CPU16Regs:$rs)>;
1292
1293// Jump and Link (Call)
1294let isCall=1, hasDelaySlot=0 in
1295def JumpLinkReg16:
1296  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1297              "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>;
1298
1299// Mips16 pseudos
1300let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1301  hasExtraSrcRegAllocReq = 1 in
1302def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1303
1304
1305// setcc patterns
1306
1307class SetCC_R16<PatFrag cond_op, Instruction I>:
1308  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1309            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1310
1311class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1312  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1313            (I CPU16Regs:$rx, imm_type:$imm16)>;
1314
1315
1316def: Mips16Pat<(i32  addr16:$addr),
1317               (AddiuRxRyOffMemX16  addr16:$addr)>;
1318
1319
1320// Large (>16 bit) immediate loads
1321def : Mips16Pat<(i32 imm:$imm),
1322                (OrRxRxRy16 (SllX16 (LiRxImmX16 (HI16 imm:$imm)), 16),
1323                (LiRxImmX16 (LO16 imm:$imm)))>;
1324
1325// Carry MipsPatterns
1326def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
1327                (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1328def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
1329                (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1330def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
1331                (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
1332
1333//
1334// Some branch conditional patterns are not generated by llvm at this time.
1335// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1336// comparison they are used and for unsigned a different pattern is used.
1337// I am pushing upstream from the full mips16 port and it seemed that I needed
1338// these earlier and the mips32 port has these but now I cannot create test
1339// cases that use these patterns. While I sort this all out I will leave these
1340// extra patterns commented out and if I can be sure they are really not used,
1341// I will delete the code. I don't want to check the code in uncommented without
1342// a valid test case. In some cases, the compiler is generating patterns with
1343// setcc instead and earlier I had implemented setcc first so may have masked
1344// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1345// figure out how to enable the brcond patterns or else possibly new
1346// combinations of of brcond and setcc.
1347//
1348//
1349// bcond-seteq
1350//
1351def: Mips16Pat
1352  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1353   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1354  >;
1355
1356
1357def: Mips16Pat
1358  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1359   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1360  >;
1361
1362def: Mips16Pat
1363  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1364   (BeqzRxImmX16 CPU16Regs:$rx, bb:$targ16)
1365  >;
1366
1367//
1368// bcond-setgt (do we need to have this pair of setlt, setgt??)
1369//
1370def: Mips16Pat
1371  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1372   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1373  >;
1374
1375//
1376// bcond-setge
1377//
1378def: Mips16Pat
1379  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1380   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1381  >;
1382
1383//
1384// never called because compiler transforms a >= k to a > (k-1)
1385def: Mips16Pat
1386  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1387   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1388  >;
1389
1390//
1391// bcond-setlt
1392//
1393def: Mips16Pat
1394  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1395   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1396  >;
1397
1398def: Mips16Pat
1399  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1400   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1401  >;
1402
1403//
1404// bcond-setle
1405//
1406def: Mips16Pat
1407  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1408   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1409  >;
1410
1411//
1412// bcond-setne
1413//
1414def: Mips16Pat
1415  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1416   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1417  >;
1418
1419def: Mips16Pat
1420  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1421   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1422  >;
1423
1424def: Mips16Pat
1425  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1426   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1427  >;
1428
1429//
1430// This needs to be there but I forget which code will generate it
1431//
1432def: Mips16Pat
1433  <(brcond CPU16Regs:$rx, bb:$targ16),
1434   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1435  >;
1436
1437//
1438
1439//
1440// bcond-setugt
1441//
1442//def: Mips16Pat
1443//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1444//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1445//  >;
1446
1447//
1448// bcond-setuge
1449//
1450//def: Mips16Pat
1451//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1452//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1453//  >;
1454
1455
1456//
1457// bcond-setult
1458//
1459//def: Mips16Pat
1460//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1461//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1462//  >;
1463
1464def: UncondBranch16_pat<br, BimmX16>;
1465
1466// Small immediates
1467def: Mips16Pat<(i32 immSExt16:$in),
1468               (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
1469
1470def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1471
1472//
1473// MipsDivRem
1474//
1475def: Mips16Pat
1476  <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
1477   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1478
1479//
1480// MipsDivRemU
1481//
1482def: Mips16Pat
1483  <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
1484   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1485
1486//  signed a,b
1487//  x = (a>=b)?x:y
1488//
1489//  if !(a < b) x = y
1490//
1491def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1492                 CPU16Regs:$x, CPU16Regs:$y),
1493                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1494                 CPU16Regs:$a, CPU16Regs:$b)>;
1495
1496//  signed a,b
1497//  x = (a>b)?x:y
1498//
1499//  if  (b < a) x = y
1500//
1501def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1502                 CPU16Regs:$x, CPU16Regs:$y),
1503                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1504                 CPU16Regs:$b, CPU16Regs:$a)>;
1505
1506// unsigned a,b
1507// x = (a>=b)?x:y
1508//
1509// if !(a < b) x = y;
1510//
1511def : Mips16Pat<
1512  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1513   CPU16Regs:$x, CPU16Regs:$y),
1514  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1515   CPU16Regs:$a, CPU16Regs:$b)>;
1516
1517//  unsigned a,b
1518//  x = (a>b)?x:y
1519//
1520//  if (b < a) x = y
1521//
1522def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1523                 CPU16Regs:$x, CPU16Regs:$y),
1524                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1525                 CPU16Regs:$b, CPU16Regs:$a)>;
1526
1527// signed
1528// x = (a >= k)?x:y
1529// due to an llvm optimization, i don't think that this will ever
1530// be used. This is transformed into x = (a > k-1)?x:y
1531//
1532//
1533
1534//def : Mips16Pat<
1535//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1536//   CPU16Regs:$T, CPU16Regs:$F),
1537//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1538//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1539
1540//def : Mips16Pat<
1541//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1542//   CPU16Regs:$T, CPU16Regs:$F),
1543//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1544//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1545
1546// signed
1547// x = (a < k)?x:y
1548//
1549// if !(a < k) x = y;
1550//
1551def : Mips16Pat<
1552  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1553   CPU16Regs:$x, CPU16Regs:$y),
1554  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1555   CPU16Regs:$a, immSExt16:$b)>;
1556
1557
1558//
1559//
1560// signed
1561// x = (a <= b)? x : y
1562//
1563// if  (b < a) x = y
1564//
1565def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1566                 CPU16Regs:$x, CPU16Regs:$y),
1567                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1568                 CPU16Regs:$b, CPU16Regs:$a)>;
1569
1570//
1571// unnsigned
1572// x = (a <= b)? x : y
1573//
1574// if  (b < a) x = y
1575//
1576def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1577                 CPU16Regs:$x, CPU16Regs:$y),
1578                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1579                 CPU16Regs:$b, CPU16Regs:$a)>;
1580
1581//
1582// signed/unsigned
1583// x = (a == b)? x : y
1584//
1585// if (a != b) x = y
1586//
1587def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1588                 CPU16Regs:$x, CPU16Regs:$y),
1589                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1590                 CPU16Regs:$b, CPU16Regs:$a)>;
1591
1592//
1593// signed/unsigned
1594// x = (a == 0)? x : y
1595//
1596// if (a != 0) x = y
1597//
1598def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1599                 CPU16Regs:$x, CPU16Regs:$y),
1600                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1601                 CPU16Regs:$a)>;
1602
1603
1604//
1605// signed/unsigned
1606// x = (a == k)? x : y
1607//
1608// if (a != k) x = y
1609//
1610def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1611                 CPU16Regs:$x, CPU16Regs:$y),
1612                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1613                 CPU16Regs:$a, immZExt16:$k)>;
1614
1615
1616//
1617// signed/unsigned
1618// x = (a != b)? x : y
1619//
1620// if (a == b) x = y
1621//
1622//
1623def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1624                 CPU16Regs:$x, CPU16Regs:$y),
1625                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1626                 CPU16Regs:$b, CPU16Regs:$a)>;
1627
1628//
1629// signed/unsigned
1630// x = (a != 0)? x : y
1631//
1632// if (a == 0) x = y
1633//
1634def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1635                 CPU16Regs:$x, CPU16Regs:$y),
1636                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1637                 CPU16Regs:$a)>;
1638
1639// signed/unsigned
1640// x = (a)? x : y
1641//
1642// if (!a) x = y
1643//
1644def : Mips16Pat<(select  CPU16Regs:$a,
1645                 CPU16Regs:$x, CPU16Regs:$y),
1646      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1647       CPU16Regs:$a)>;
1648
1649
1650//
1651// signed/unsigned
1652// x = (a != k)? x : y
1653//
1654// if (a == k) x = y
1655//
1656def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1657                 CPU16Regs:$x, CPU16Regs:$y),
1658                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1659                 CPU16Regs:$a, immZExt16:$k)>;
1660
1661//
1662// When writing C code to test setxx these patterns,
1663// some will be transformed into
1664// other things. So we test using C code but using -O3 and -O0
1665//
1666// seteq
1667//
1668def : Mips16Pat
1669  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1670   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1671
1672def : Mips16Pat
1673  <(seteq CPU16Regs:$lhs, 0),
1674   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1675
1676
1677//
1678// setge
1679//
1680
1681def: Mips16Pat
1682  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1683   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1684   (LiRxImmX16 1))>;
1685
1686//
1687// For constants, llvm transforms this to:
1688// x > (k -1) and then reverses the operands to use setlt. So this pattern
1689// is not used now by the compiler. (Presumably checking that k-1 does not
1690// overflow). The compiler never uses this at a the current time, due to
1691// other optimizations.
1692//
1693//def: Mips16Pat
1694//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1695//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1696//   (LiRxImmX16 1))>;
1697
1698// This catches the x >= -32768 case by transforming it to  x > -32769
1699//
1700def: Mips16Pat
1701  <(setgt CPU16Regs:$lhs, -32769),
1702   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1703   (LiRxImmX16 1))>;
1704
1705//
1706// setgt
1707//
1708//
1709
1710def: Mips16Pat
1711  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1712   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1713
1714//
1715// setle
1716//
1717def: Mips16Pat
1718  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1719   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1720
1721//
1722// setlt
1723//
1724def: SetCC_R16<setlt, SltCCRxRy16>;
1725
1726def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1727
1728//
1729// setne
1730//
1731def : Mips16Pat
1732  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1733   (SltuCCRxRy16 (LiRxImmX16 0),
1734   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1735
1736
1737//
1738// setuge
1739//
1740def: Mips16Pat
1741  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1742   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1743   (LiRxImmX16 1))>;
1744
1745// this pattern will never be used because the compiler will transform
1746// x >= k to x > (k - 1) and then use SLT
1747//
1748//def: Mips16Pat
1749//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1750//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1751//   (LiRxImmX16 1))>;
1752
1753//
1754// setugt
1755//
1756def: Mips16Pat
1757  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1758   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1759
1760//
1761// setule
1762//
1763def: Mips16Pat
1764  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1765   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1766
1767//
1768// setult
1769//
1770def: SetCC_R16<setult, SltuCCRxRy16>;
1771
1772def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1773
1774def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1775               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1776
1777// hi/lo relocs
1778
1779def : Mips16Pat<(MipsHi tglobaladdr:$in),
1780                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1781def : Mips16Pat<(MipsHi tjumptable:$in),
1782                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1783def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
1784                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1785
1786// wrapper_pic
1787class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1788  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1789            (ADDiuOp RC:$gp, node:$in)>;
1790
1791
1792def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1793def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1794
1795def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1796                (LbuRxRyOffMemX16  addr16:$src)>;
1797def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1798                (LhuRxRyOffMemX16  addr16:$src)>;
1799