Mips16InstrInfo.td revision 225f35a87ceb12adc29c4232749f3d44d86a1765
1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 :
18  ComplexPattern<iPTR, 3, "selectAddr16", [frameindex], [SDNPWantParent]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16, CPU16RegsPlusSP);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16_ea : Operand<i32> {
29  let PrintMethod = "printMemOperandEA";
30  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
31  let EncoderMethod = "getMemEncoding";
32}
33
34//
35//
36// I8 instruction format
37//
38
39class FI816_ins_base<bits<3> _func, string asmstr,
40                     string asmstr2, InstrItinClass itin>:
41  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
42        [], itin>;
43
44
45class FI816_SP_ins<bits<3> _func, string asmstr,
46                   InstrItinClass itin>:
47  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
48
49//
50// RI instruction format
51//
52
53
54class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
55                     InstrItinClass itin>:
56  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
57        !strconcat(asmstr, asmstr2), [], itin>;
58
59class FRI16_ins<bits<5> op, string asmstr,
60                InstrItinClass itin>:
61  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
62
63class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
64                     InstrItinClass itin>:
65  FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
66        !strconcat(asmstr, asmstr2), [], itin>;
67
68class FRI16R_ins<bits<5> op, string asmstr,
69                InstrItinClass itin>:
70  FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
71
72class F2RI16_ins<bits<5> _op, string asmstr,
73                     InstrItinClass itin>:
74  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
75        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
76  let Constraints = "$rx_ = $rx";
77}
78
79class FRI16_B_ins<bits<5> _op, string asmstr,
80                  InstrItinClass itin>:
81  FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
82        !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
83//
84// Compare a register and immediate and place result in CC
85// Implicit use of T8
86//
87// EXT-CCRR Instruction format
88//
89class FEXT_CCRXI16_ins<string asmstr>:
90  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
91               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
92  let isCodeGenOnly=1;
93  let usesCustomInserter = 1;
94}
95
96// JAL and JALX instruction format
97//
98class FJAL16_ins<bits<1> _X, string asmstr,
99                 InstrItinClass itin>:
100  FJAL16<_X, (outs), (ins simm20:$imm),
101         !strconcat(asmstr, "\t$imm\n\tnop"),[],
102         itin>  {
103  let isCodeGenOnly=1;
104}
105//
106// EXT-I instruction format
107//
108class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
109  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
110           !strconcat(asmstr, "\t$imm16"),[], itin>;
111
112//
113// EXT-I8 instruction format
114//
115
116class FEXT_I816_ins_base<bits<3> _func, string asmstr,
117                         string asmstr2, InstrItinClass itin>:
118  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
119            [], itin>;
120
121class FEXT_I816_ins<bits<3> _func, string asmstr,
122                    InstrItinClass itin>:
123  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
124
125class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
126                       InstrItinClass itin>:
127      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
128
129//
130// Assembler formats in alphabetical order.
131// Natural and pseudos are mixed together.
132//
133// Compare two registers and place result in CC
134// Implicit use of T8
135//
136// CC-RR Instruction format
137//
138class FCCRR16_ins<string asmstr> :
139  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
140               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
141  let isCodeGenOnly=1;
142  let usesCustomInserter = 1;
143}
144
145//
146// EXT-RI instruction format
147//
148
149class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
150                         InstrItinClass itin>:
151  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
152                  !strconcat(asmstr, asmstr2), [], itin>;
153
154class FEXT_RI16_ins<bits<5> _op, string asmstr,
155                    InstrItinClass itin>:
156  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
157
158class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
159                         InstrItinClass itin>:
160  FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
161                  !strconcat(asmstr, asmstr2), [], itin>;
162
163class FEXT_RI16R_ins<bits<5> _op, string asmstr,
164                    InstrItinClass itin>:
165  FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
166
167class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
168  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
169
170class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
171                      InstrItinClass itin>:
172  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
173            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
174
175class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr,
176                        InstrItinClass itin>:
177  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm),
178            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
179
180class FEXT_2RI16_ins<bits<5> _op, string asmstr,
181                     InstrItinClass itin>:
182  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
183            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
184  let Constraints = "$rx_ = $rx";
185}
186
187
188// this has an explicit sp argument that we ignore to work around a problem
189// in the compiler
190class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
191                                InstrItinClass itin>:
192  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
193            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
194
195class FEXT_RI16_SP_Store_explicit_ins<bits<5> _op, string asmstr,
196                                InstrItinClass itin>:
197  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, CPUSPReg:$ry, simm16:$imm),
198            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
199
200//
201// EXT-RRI instruction format
202//
203
204class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
205                         InstrItinClass itin>:
206  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
207             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
208
209class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
210                          InstrItinClass itin>:
211  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
212             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
213
214//
215//
216// EXT-RRI-A instruction format
217//
218
219class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
220                           InstrItinClass itin>:
221  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
222               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
223
224//
225// EXT-SHIFT instruction format
226//
227class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
228  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa),
229               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
230
231//
232// EXT-T8I8
233//
234class FEXT_T8I816_ins<string asmstr, string asmstr2>:
235  MipsPseudo16<(outs),
236               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
237               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
238               !strconcat(asmstr, "\t$imm"))),[]> {
239  let isCodeGenOnly=1;
240  let usesCustomInserter = 1;
241}
242
243//
244// EXT-T8I8I
245//
246class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
247  MipsPseudo16<(outs),
248               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
249               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
250               !strconcat(asmstr, "\t$targ"))), []> {
251  let isCodeGenOnly=1;
252  let usesCustomInserter = 1;
253}
254//
255
256
257//
258// I8_MOVR32 instruction format (used only by the MOVR32 instructio
259//
260class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
261       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
262       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
263
264//
265// I8_MOV32R instruction format (used only by MOV32R instruction)
266//
267
268class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
269  FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
270               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
271
272//
273// This are pseudo formats for multiply
274// This first one can be changed to non pseudo now.
275//
276// MULT
277//
278class FMULT16_ins<string asmstr, InstrItinClass itin> :
279  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
280               !strconcat(asmstr, "\t$rx, $ry"), []>;
281
282//
283// MULT-LO
284//
285class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
286  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
287               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
288  let isCodeGenOnly=1;
289}
290
291//
292// RR-type instruction format
293//
294
295class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
296  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
297        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
298}
299
300class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
301  FRRBreak16<(outs), (ins), asmstr, [], itin> {
302  let Code=0;
303}
304
305class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
306  FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
307        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
308}
309
310class FRRTR16_ins<string asmstr> :
311  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
312               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
313
314//
315// maybe refactor but need a $zero as a dummy first parameter
316//
317class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
318  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
319        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
320
321class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
322  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
323        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
324
325
326class FRR16_M_ins<bits<5> f, string asmstr,
327                  InstrItinClass itin> :
328  FRR16<f, (outs CPU16Regs:$rx), (ins),
329        !strconcat(asmstr, "\t$rx"), [], itin>;
330
331class FRxRxRy16_ins<bits<5> f, string asmstr,
332                    InstrItinClass itin> :
333  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
334            !strconcat(asmstr, "\t$rz, $ry"),
335            [], itin> {
336  let Constraints = "$rx = $rz";
337}
338
339let rx=0 in
340class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
341                              string asmstr, InstrItinClass itin>:
342  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
343              [], itin> ;
344
345
346class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
347                      string asmstr, InstrItinClass itin>:
348  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
349              !strconcat(asmstr, "\t $rx"), [], itin> ;
350
351class FRR_SF16_ins
352  <bits<5> _funct, bits<3> _subfunc,
353    string asmstr, InstrItinClass itin>:
354  FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_),
355           !strconcat(asmstr, "\t $rx"),
356           [], itin> {
357  let Constraints = "$rx_ = $rx";
358  }
359//
360// RRR-type instruction format
361//
362
363class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
364  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
365         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
366
367//
368// These Sel patterns support the generation of conditional move
369// pseudo instructions.
370//
371// The nomenclature uses the components making up the pseudo and may
372// be a bit counter intuitive when compared with the end result we seek.
373// For example using a bqez in the example directly below results in the
374// conditional move being done if the tested register is not zero.
375// I considered in easier to check by keeping the pseudo consistent with
376// it's components but it could have been done differently.
377//
378// The simplest case is when can test and operand directly and do the
379// conditional move based on a simple mips16 conditional
380//  branch instruction.
381// for example:
382// if $op == beqz or bnez:
383//
384// $op1 $rt, .+4
385// move $rd, $rs
386//
387// if $op == beqz, then if $rt != 0, then the conditional assignment
388// $rd = $rs is done.
389
390// if $op == bnez, then if $rt == 0, then the conditional assignment
391// $rd = $rs is done.
392//
393// So this pseudo class only has one operand, i.e. op
394//
395class Sel<string op>:
396  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
397               CPU16Regs:$rt),
398               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
399  //let isCodeGenOnly=1;
400  let Constraints = "$rd = $rd_";
401  let usesCustomInserter = 1;
402}
403
404//
405// The next two instruction classes allow for an operand which tests
406// two operands and returns a value in register T8 and
407//then does a conditional branch based on the value of T8
408//
409
410// op2 can be cmpi or slti/sltiu
411// op1 can bteqz or btnez
412// the operands for op2 are a register and a signed constant
413//
414// $op2 $t, $imm  ;test register t and branch conditionally
415// $op1 .+4       ;op1 is a conditional branch
416// move $rd, $rs
417//
418//
419class SeliT<string op1, string op2>:
420  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
421                                       CPU16Regs:$rl, simm16:$imm),
422               !strconcat(op2,
423               !strconcat("\t$rl, $imm\n\t",
424               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
425  let isCodeGenOnly=1;
426  let Constraints = "$rd = $rd_";
427  let usesCustomInserter = 1;
428}
429
430//
431// op2 can be cmp or slt/sltu
432// op1 can be bteqz or btnez
433// the operands for op2 are two registers
434// op1 is a conditional branch
435//
436//
437// $op2 $rl, $rr  ;test registers rl,rr
438// $op1 .+4       ;op2 is a conditional branch
439// move $rd, $rs
440//
441//
442class SelT<string op1, string op2>:
443  MipsPseudo16<(outs CPU16Regs:$rd_),
444               (ins CPU16Regs:$rd, CPU16Regs:$rs,
445                CPU16Regs:$rl, CPU16Regs:$rr),
446               !strconcat(op2,
447               !strconcat("\t$rl, $rr\n\t",
448               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
449  let isCodeGenOnly=1;
450  let Constraints = "$rd = $rd_";
451  let usesCustomInserter = 1;
452}
453
454//
455// 32 bit constant
456//
457def imm32: Operand<i32>;
458
459def Constant32:
460  MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
461
462def LwConstant32:
463  MipsPseudo16<(outs CPU16Regs:$rx), (ins imm32:$imm, imm32:$constid),
464    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
465
466
467//
468// Some general instruction class info
469//
470//
471
472class ArithLogic16Defs<bit isCom=0> {
473  bits<5> shamt = 0;
474  bit isCommutable = isCom;
475  bit isReMaterializable = 1;
476  bit neverHasSideEffects = 1;
477}
478
479class branch16 {
480  bit isBranch = 1;
481  bit isTerminator = 1;
482  bit isBarrier = 1;
483}
484
485class cbranch16 {
486  bit isBranch = 1;
487  bit isTerminator = 1;
488}
489
490class MayLoad {
491  bit mayLoad = 1;
492}
493
494class MayStore {
495  bit mayStore = 1;
496}
497//
498
499
500// Format: ADDIU rx, immediate MIPS16e
501// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
502// To add a constant to a 32-bit integer.
503//
504def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
505
506def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIAlu>,
507  ArithLogic16Defs<0> {
508  let AddedComplexity = 5;
509}
510def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
511  ArithLogic16Defs<0> {
512  let isCodeGenOnly = 1;
513}
514
515def AddiuRxRyOffMemX16:
516  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
517
518//
519
520// Format: ADDIU rx, pc, immediate MIPS16e
521// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
522// To add a constant to the program counter.
523//
524def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
525
526//
527// Format: ADDIU sp, immediate MIPS16e
528// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
529// To add a constant to the stack pointer.
530//
531def AddiuSpImm16
532  : FI816_SP_ins<0b011, "addiu", IIAlu> {
533  let Defs = [SP];
534  let Uses = [SP];
535  let AddedComplexity = 5;
536}
537
538def AddiuSpImmX16
539  : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
540  let Defs = [SP];
541  let Uses = [SP];
542}
543
544//
545// Format: ADDU rz, rx, ry MIPS16e
546// Purpose: Add Unsigned Word (3-Operand)
547// To add 32-bit integers.
548//
549
550def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
551
552//
553// Format: AND rx, ry MIPS16e
554// Purpose: AND
555// To do a bitwise logical AND.
556
557def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
558
559
560//
561// Format: BEQZ rx, offset MIPS16e
562// Purpose: Branch on Equal to Zero
563// To test a GPR then do a PC-relative conditional branch.
564//
565def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
566
567
568//
569// Format: BEQZ rx, offset MIPS16e
570// Purpose: Branch on Equal to Zero (Extended)
571// To test a GPR then do a PC-relative conditional branch.
572//
573def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
574
575// Format: B offset MIPS16e
576// Purpose: Unconditional Branch
577// To do an unconditional PC-relative branch.
578//
579def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
580
581//
582// Format: BNEZ rx, offset MIPS16e
583// Purpose: Branch on Not Equal to Zero
584// To test a GPR then do a PC-relative conditional branch.
585//
586def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
587
588//
589// Format: BNEZ rx, offset MIPS16e
590// Purpose: Branch on Not Equal to Zero (Extended)
591// To test a GPR then do a PC-relative conditional branch.
592//
593def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
594
595
596//
597//Format: BREAK immediate
598// Purpose: Breakpoint
599// To cause a Breakpoint exception.
600
601def Break16: FRRBreakNull16_ins<"break 0", NoItinerary>; 
602//
603// Format: BTEQZ offset MIPS16e
604// Purpose: Branch on T Equal to Zero (Extended)
605// To test special register T then do a PC-relative conditional branch.
606//
607def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
608  let Uses = [T8];
609}
610
611def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
612
613def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
614  cbranch16;
615
616def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
617
618def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
619
620def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
621
622def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
623  cbranch16;
624
625//
626// Format: BTNEZ offset MIPS16e
627// Purpose: Branch on T Not Equal to Zero (Extended)
628// To test special register T then do a PC-relative conditional branch.
629//
630def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16 {
631  let Uses = [T8];
632}
633
634def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
635
636def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
637
638def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
639
640def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
641
642def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
643
644def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
645  cbranch16;
646
647//
648// Format: CMP rx, ry MIPS16e
649// Purpose: Compare
650// To compare the contents of two GPRs.
651//
652def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIAlu> {
653  let Defs = [T8];
654}
655
656//
657// Format: CMPI rx, immediate MIPS16e
658// Purpose: Compare Immediate
659// To compare a constant with the contents of a GPR.
660//
661def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIAlu> {
662  let Defs = [T8];
663}
664
665//
666// Format: CMPI rx, immediate MIPS16e
667// Purpose: Compare Immediate (Extended)
668// To compare a constant with the contents of a GPR.
669//
670def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIAlu> {
671  let Defs = [T8];
672}
673
674
675//
676// Format: DIV rx, ry MIPS16e
677// Purpose: Divide Word
678// To divide 32-bit signed integers.
679//
680def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
681  let Defs = [HI0, LO0];
682}
683
684//
685// Format: DIVU rx, ry MIPS16e
686// Purpose: Divide Unsigned Word
687// To divide 32-bit unsigned integers.
688//
689def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
690  let Defs = [HI0, LO0];
691}
692//
693// Format: JAL target MIPS16e
694// Purpose: Jump and Link
695// To execute a procedure call within the current 256 MB-aligned
696// region and preserve the current ISA.
697//
698
699def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
700  let hasDelaySlot = 0;  // not true, but we add the nop for now
701  let isCall=1;
702}
703
704//
705// Format: JR ra MIPS16e
706// Purpose: Jump Register Through Register ra
707// To execute a branch to the instruction address in the return
708// address register.
709//
710
711def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
712  let isBranch = 1;
713  let isIndirectBranch = 1;
714  let hasDelaySlot = 1;
715  let isTerminator=1;
716  let isBarrier=1;
717}
718
719def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIAlu> {
720  let isBranch = 1;
721  let isIndirectBranch = 1;
722  let isTerminator=1;
723  let isBarrier=1;
724}
725
726def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
727  let isBranch = 1;
728  let isIndirectBranch = 1;
729  let isTerminator=1;
730  let isBarrier=1;
731}
732//
733// Format: LB ry, offset(rx) MIPS16e
734// Purpose: Load Byte (Extended)
735// To load a byte from memory as a signed value.
736//
737def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad{
738  let isCodeGenOnly = 1;
739}
740
741//
742// Format: LBU ry, offset(rx) MIPS16e
743// Purpose: Load Byte Unsigned (Extended)
744// To load a byte from memory as a unsigned value.
745//
746def LbuRxRyOffMemX16:
747  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad {
748  let isCodeGenOnly = 1;
749}
750
751//
752// Format: LH ry, offset(rx) MIPS16e
753// Purpose: Load Halfword signed (Extended)
754// To load a halfword from memory as a signed value.
755//
756def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad{
757  let isCodeGenOnly = 1;
758}
759
760//
761// Format: LHU ry, offset(rx) MIPS16e
762// Purpose: Load Halfword unsigned (Extended)
763// To load a halfword from memory as an unsigned value.
764//
765def LhuRxRyOffMemX16:
766  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad {
767  let isCodeGenOnly = 1;
768}
769
770//
771// Format: LI rx, immediate MIPS16e
772// Purpose: Load Immediate
773// To load a constant into a GPR.
774//
775def LiRxImm16: FRI16_ins<0b01101, "li", IIAlu>;
776
777//
778// Format: LI rx, immediate MIPS16e
779// Purpose: Load Immediate (Extended)
780// To load a constant into a GPR.
781//
782def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
783
784def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIAlu> {
785  let isCodeGenOnly = 1;
786}
787
788//
789// Format: LW ry, offset(rx) MIPS16e
790// Purpose: Load Word (Extended)
791// To load a word from memory as a signed value.
792//
793def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad{
794  let isCodeGenOnly = 1;
795}
796
797// Format: LW rx, offset(sp) MIPS16e
798// Purpose: Load Word (SP-Relative, Extended)
799// To load an SP-relative word from memory as a signed value.
800//
801def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10010, "lw", IILoad>, MayLoad{
802  let Uses = [SP];
803}
804
805def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", IILoad>, MayLoad;
806//
807// Format: MOVE r32, rz MIPS16e
808// Purpose: Move
809// To move the contents of a GPR to a GPR.
810//
811def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
812
813//
814// Format: MOVE ry, r32 MIPS16e
815//Purpose: Move
816// To move the contents of a GPR to a GPR.
817//
818def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
819
820//
821// Format: MFHI rx MIPS16e
822// Purpose: Move From HI Register
823// To copy the special purpose HI register to a GPR.
824//
825def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
826  let Uses = [HI0];
827  let neverHasSideEffects = 1;
828}
829
830//
831// Format: MFLO rx MIPS16e
832// Purpose: Move From LO Register
833// To copy the special purpose LO register to a GPR.
834//
835def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
836  let Uses = [LO0];
837  let neverHasSideEffects = 1;
838}
839
840//
841// Pseudo Instruction for mult
842//
843def MultRxRy16:  FMULT16_ins<"mult",  IIAlu> {
844  let isCommutable = 1;
845  let neverHasSideEffects = 1;
846  let Defs = [HI0, LO0];
847}
848
849def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
850  let isCommutable = 1;
851  let neverHasSideEffects = 1;
852  let Defs = [HI0, LO0];
853}
854
855//
856// Format: MULT rx, ry MIPS16e
857// Purpose: Multiply Word
858// To multiply 32-bit signed integers.
859//
860def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
861  let isCommutable = 1;
862  let neverHasSideEffects = 1;
863  let Defs = [HI0, LO0];
864}
865
866//
867// Format: MULTU rx, ry MIPS16e
868// Purpose: Multiply Unsigned Word
869// To multiply 32-bit unsigned integers.
870//
871def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
872  let isCommutable = 1;
873  let neverHasSideEffects = 1;
874  let Defs = [HI0, LO0];
875}
876
877//
878// Format: NEG rx, ry MIPS16e
879// Purpose: Negate
880// To negate an integer value.
881//
882def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
883
884//
885// Format: NOT rx, ry MIPS16e
886// Purpose: Not
887// To complement an integer value
888//
889def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
890
891//
892// Format: OR rx, ry MIPS16e
893// Purpose: Or
894// To do a bitwise logical OR.
895//
896def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
897
898//
899// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
900// (All args are optional) MIPS16e
901// Purpose: Restore Registers and Deallocate Stack Frame
902// To deallocate a stack frame before exit from a subroutine,
903// restoring return address and static registers, and adjusting
904// stack
905//
906
907// fixed form for restoring RA and the frame
908// for direct object emitter, encoding needs to be adjusted for the
909// frame size
910//
911let ra=1, s=0,s0=1,s1=1 in
912def RestoreRaF16:
913  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
914             "restore\t$$ra,  $$s0, $$s1, $$s2, $frame_size", [], IILoad >, MayLoad {
915  let isCodeGenOnly = 1;
916  let Defs = [S0, S1, S2, RA, SP];
917  let Uses = [SP];
918}
919
920// Use Restore to increment SP since SP is not a Mip 16 register, this
921// is an easy way to do that which does not require a register.
922//
923let ra=0, s=0,s0=0,s1=0 in
924def RestoreIncSpF16:
925  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
926             "restore\t$frame_size", [], IILoad >, MayLoad {
927  let isCodeGenOnly = 1;
928  let Defs = [SP];
929  let Uses = [SP];
930}
931
932//
933// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
934// MIPS16e
935// Purpose: Save Registers and Set Up Stack Frame
936// To set up a stack frame on entry to a subroutine,
937// saving return address and static registers, and adjusting stack
938//
939let ra=1, s=1,s0=1,s1=1 in
940def SaveRaF16:
941  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
942             "save\t$$ra, $$s0, $$s1, $$s2, $frame_size", [], IIStore >, MayStore {
943  let isCodeGenOnly = 1;
944  let Uses = [RA, SP, S0, S1, S2];
945  let Defs = [SP];
946}
947
948//
949// Use Save to decrement the SP by a constant since SP is not
950// a Mips16 register.
951//
952let ra=0, s=0,s0=0,s1=0 in
953def SaveDecSpF16:
954  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
955             "save\t$frame_size", [], IIStore >, MayStore {
956  let isCodeGenOnly = 1;
957  let Uses = [SP];
958  let Defs = [SP];
959}
960//
961// Format: SB ry, offset(rx) MIPS16e
962// Purpose: Store Byte (Extended)
963// To store a byte to memory.
964//
965def SbRxRyOffMemX16:
966  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore;
967
968//
969// Format: SEB rx MIPS16e
970// Purpose: Sign-Extend Byte
971// Sign-extend least significant byte in register rx.
972//
973def SebRx16
974  : FRR_SF16_ins<0b10001, 0b100, "seb", IIAlu>;
975
976//
977// Format: SEH rx MIPS16e
978// Purpose: Sign-Extend Halfword
979// Sign-extend least significant word in register rx.
980//
981def SehRx16
982  : FRR_SF16_ins<0b10001, 0b101, "seh", IIAlu>;
983
984//
985// The Sel(T) instructions are pseudos
986// T means that they use T8 implicitly.
987//
988//
989// Format: SelBeqZ rd, rs, rt
990// Purpose: if rt==0, do nothing
991//          else rs = rt
992//
993def SelBeqZ: Sel<"beqz">;
994
995//
996// Format:  SelTBteqZCmp rd, rs, rl, rr
997// Purpose: b = Cmp rl, rr.
998//          If b==0 then do nothing.
999//          if b!=0 then rd = rs
1000//
1001def SelTBteqZCmp: SelT<"bteqz", "cmp">;
1002
1003//
1004// Format:  SelTBteqZCmpi rd, rs, rl, rr
1005// Purpose: b = Cmpi rl, imm.
1006//          If b==0 then do nothing.
1007//          if b!=0 then rd = rs
1008//
1009def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
1010
1011//
1012// Format:  SelTBteqZSlt rd, rs, rl, rr
1013// Purpose: b = Slt rl, rr.
1014//          If b==0 then do nothing.
1015//          if b!=0 then rd = rs
1016//
1017def SelTBteqZSlt: SelT<"bteqz", "slt">;
1018
1019//
1020// Format:  SelTBteqZSlti rd, rs, rl, rr
1021// Purpose: b = Slti rl, imm.
1022//          If b==0 then do nothing.
1023//          if b!=0 then rd = rs
1024//
1025def SelTBteqZSlti: SeliT<"bteqz", "slti">;
1026
1027//
1028// Format:  SelTBteqZSltu rd, rs, rl, rr
1029// Purpose: b = Sltu rl, rr.
1030//          If b==0 then do nothing.
1031//          if b!=0 then rd = rs
1032//
1033def SelTBteqZSltu: SelT<"bteqz", "sltu">;
1034
1035//
1036// Format:  SelTBteqZSltiu rd, rs, rl, rr
1037// Purpose: b = Sltiu rl, imm.
1038//          If b==0 then do nothing.
1039//          if b!=0 then rd = rs
1040//
1041def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
1042
1043//
1044// Format: SelBnez rd, rs, rt
1045// Purpose: if rt!=0, do nothing
1046//          else rs = rt
1047//
1048def SelBneZ: Sel<"bnez">;
1049
1050//
1051// Format:  SelTBtneZCmp rd, rs, rl, rr
1052// Purpose: b = Cmp rl, rr.
1053//          If b!=0 then do nothing.
1054//          if b0=0 then rd = rs
1055//
1056def SelTBtneZCmp: SelT<"btnez", "cmp">;
1057
1058//
1059// Format:  SelTBtnezCmpi rd, rs, rl, rr
1060// Purpose: b = Cmpi rl, imm.
1061//          If b!=0 then do nothing.
1062//          if b==0 then rd = rs
1063//
1064def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1065
1066//
1067// Format:  SelTBtneZSlt rd, rs, rl, rr
1068// Purpose: b = Slt rl, rr.
1069//          If b!=0 then do nothing.
1070//          if b==0 then rd = rs
1071//
1072def SelTBtneZSlt: SelT<"btnez", "slt">;
1073
1074//
1075// Format:  SelTBtneZSlti rd, rs, rl, rr
1076// Purpose: b = Slti rl, imm.
1077//          If b!=0 then do nothing.
1078//          if b==0 then rd = rs
1079//
1080def SelTBtneZSlti: SeliT<"btnez", "slti">;
1081
1082//
1083// Format:  SelTBtneZSltu rd, rs, rl, rr
1084// Purpose: b = Sltu rl, rr.
1085//          If b!=0 then do nothing.
1086//          if b==0 then rd = rs
1087//
1088def SelTBtneZSltu: SelT<"btnez", "sltu">;
1089
1090//
1091// Format:  SelTBtneZSltiu rd, rs, rl, rr
1092// Purpose: b = Slti rl, imm.
1093//          If b!=0 then do nothing.
1094//          if b==0 then rd = rs
1095//
1096def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1097//
1098//
1099// Format: SH ry, offset(rx) MIPS16e
1100// Purpose: Store Halfword (Extended)
1101// To store a halfword to memory.
1102//
1103def ShRxRyOffMemX16:
1104  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore;
1105
1106//
1107// Format: SLL rx, ry, sa MIPS16e
1108// Purpose: Shift Word Left Logical (Extended)
1109// To execute a left-shift of a word by a fixed number of bits-0 to 31 bits.
1110//
1111def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
1112
1113//
1114// Format: SLLV ry, rx MIPS16e
1115// Purpose: Shift Word Left Logical Variable
1116// To execute a left-shift of a word by a variable number of bits.
1117//
1118def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
1119
1120// Format: SLTI rx, immediate MIPS16e
1121// Purpose: Set on Less Than Immediate
1122// To record the result of a less-than comparison with a constant.
1123//
1124//
1125def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIAlu> {
1126  let Defs = [T8];
1127}
1128
1129//
1130// Format: SLTI rx, immediate MIPS16e
1131// Purpose: Set on Less Than Immediate (Extended)
1132// To record the result of a less-than comparison with a constant.
1133//
1134//
1135def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIAlu> {
1136  let Defs = [T8];
1137}
1138
1139def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1140
1141// Format: SLTIU rx, immediate MIPS16e
1142// Purpose: Set on Less Than Immediate Unsigned
1143// To record the result of a less-than comparison with a constant.
1144//
1145//
1146def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIAlu> {
1147  let Defs = [T8];
1148}
1149
1150//
1151// Format: SLTI rx, immediate MIPS16e
1152// Purpose: Set on Less Than Immediate Unsigned (Extended)
1153// To record the result of a less-than comparison with a constant.
1154//
1155//
1156def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIAlu> {
1157  let Defs = [T8];
1158}
1159//
1160// Format: SLTIU rx, immediate MIPS16e
1161// Purpose: Set on Less Than Immediate Unsigned (Extended)
1162// To record the result of a less-than comparison with a constant.
1163//
1164def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1165
1166//
1167// Format: SLT rx, ry MIPS16e
1168// Purpose: Set on Less Than
1169// To record the result of a less-than comparison.
1170//
1171def SltRxRy16: FRR16R_ins<0b00010, "slt", IIAlu>{
1172  let Defs = [T8];
1173}
1174
1175def SltCCRxRy16: FCCRR16_ins<"slt">;
1176
1177// Format: SLTU rx, ry MIPS16e
1178// Purpose: Set on Less Than Unsigned
1179// To record the result of an unsigned less-than comparison.
1180//
1181def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIAlu>{
1182  let Defs = [T8];
1183}
1184
1185def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1186  let isCodeGenOnly=1;
1187  let Defs = [T8];
1188}
1189
1190
1191def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1192//
1193// Format: SRAV ry, rx MIPS16e
1194// Purpose: Shift Word Right Arithmetic Variable
1195// To execute an arithmetic right-shift of a word by a variable
1196// number of bits.
1197//
1198def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
1199
1200
1201//
1202// Format: SRA rx, ry, sa MIPS16e
1203// Purpose: Shift Word Right Arithmetic (Extended)
1204// To execute an arithmetic right-shift of a word by a fixed
1205// number of bits-1 to 8 bits.
1206//
1207def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
1208
1209
1210//
1211// Format: SRLV ry, rx MIPS16e
1212// Purpose: Shift Word Right Logical Variable
1213// To execute a logical right-shift of a word by a variable
1214// number of bits.
1215//
1216def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
1217
1218
1219//
1220// Format: SRL rx, ry, sa MIPS16e
1221// Purpose: Shift Word Right Logical (Extended)
1222// To execute a logical right-shift of a word by a fixed
1223// number of bits-1 to 31 bits.
1224//
1225def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
1226
1227//
1228// Format: SUBU rz, rx, ry MIPS16e
1229// Purpose: Subtract Unsigned Word
1230// To subtract 32-bit integers
1231//
1232def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
1233
1234//
1235// Format: SW ry, offset(rx) MIPS16e
1236// Purpose: Store Word (Extended)
1237// To store a word to memory.
1238//
1239def SwRxRyOffMemX16:
1240  FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore;
1241
1242//
1243// Format: SW rx, offset(sp) MIPS16e
1244// Purpose: Store Word rx (SP-Relative)
1245// To store an SP-relative word to memory.
1246//
1247def SwRxSpImmX16: FEXT_RI16_SP_Store_explicit_ins
1248  <0b11010, "sw", IIStore>, MayStore;
1249
1250//
1251//
1252// Format: XOR rx, ry MIPS16e
1253// Purpose: Xor
1254// To do a bitwise logical XOR.
1255//
1256def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
1257
1258class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1259  let Predicates = [InMips16Mode];
1260}
1261
1262// Unary Arith/Logic
1263//
1264class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1265  Mips16Pat<(OpNode CPU16Regs:$r),
1266            (I CPU16Regs:$r)>;
1267
1268def: ArithLogicU_pat<not, NotRxRy16>;
1269def: ArithLogicU_pat<ineg, NegRxRy16>;
1270
1271class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1272  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1273            (I CPU16Regs:$l, CPU16Regs:$r)>;
1274
1275def: ArithLogic16_pat<add, AdduRxRyRz16>;
1276def: ArithLogic16_pat<and, AndRxRxRy16>;
1277def: ArithLogic16_pat<mul, MultRxRyRz16>;
1278def: ArithLogic16_pat<or, OrRxRxRy16>;
1279def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1280def: ArithLogic16_pat<xor, XorRxRxRy16>;
1281
1282// Arithmetic and logical instructions with 2 register operands.
1283
1284class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1285  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1286            (I CPU16Regs:$in, imm_type:$imm)>;
1287
1288def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1289def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1290def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1291def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1292def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1293
1294class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1295  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1296            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1297
1298def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1299def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1300def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1301
1302class LoadM16_pat<PatFrag OpNode, Instruction I> :
1303  Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
1304
1305def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
1306def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
1307def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
1308def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
1309def: LoadM16_pat<load, LwRxRyOffMemX16>;
1310
1311class StoreM16_pat<PatFrag OpNode, Instruction I> :
1312  Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
1313            (I CPU16Regs:$r, addr16:$addr)>;
1314
1315def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
1316def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
1317def: StoreM16_pat<store, SwRxRyOffMemX16>;
1318
1319// Unconditional branch
1320class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1321  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1322    let Predicates = [InMips16Mode];
1323  }
1324
1325def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1326                (Jal16 tglobaladdr:$dst)>;
1327
1328def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1329                (Jal16 texternalsym:$dst)>;
1330
1331// Indirect branch
1332def: Mips16Pat<
1333  (brind CPU16Regs:$rs),
1334  (JrcRx16 CPU16Regs:$rs)>;
1335
1336// Jump and Link (Call)
1337let isCall=1, hasDelaySlot=0 in
1338def JumpLinkReg16:
1339  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1340              "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>;
1341
1342// Mips16 pseudos
1343let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1344  hasExtraSrcRegAllocReq = 1 in
1345def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1346
1347
1348// setcc patterns
1349
1350class SetCC_R16<PatFrag cond_op, Instruction I>:
1351  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1352            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1353
1354class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1355  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1356            (I CPU16Regs:$rx, imm_type:$imm16)>;
1357
1358
1359def: Mips16Pat<(i32  addr16:$addr),
1360               (AddiuRxRyOffMemX16  addr16:$addr)>;
1361
1362
1363// Large (>16 bit) immediate loads
1364def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>;
1365
1366// Carry MipsPatterns
1367def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
1368                (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1369def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
1370                (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1371def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
1372                (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
1373
1374//
1375// Some branch conditional patterns are not generated by llvm at this time.
1376// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1377// comparison they are used and for unsigned a different pattern is used.
1378// I am pushing upstream from the full mips16 port and it seemed that I needed
1379// these earlier and the mips32 port has these but now I cannot create test
1380// cases that use these patterns. While I sort this all out I will leave these
1381// extra patterns commented out and if I can be sure they are really not used,
1382// I will delete the code. I don't want to check the code in uncommented without
1383// a valid test case. In some cases, the compiler is generating patterns with
1384// setcc instead and earlier I had implemented setcc first so may have masked
1385// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1386// figure out how to enable the brcond patterns or else possibly new
1387// combinations of of brcond and setcc.
1388//
1389//
1390// bcond-seteq
1391//
1392def: Mips16Pat
1393  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1394   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1395  >;
1396
1397
1398def: Mips16Pat
1399  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1400   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1401  >;
1402
1403def: Mips16Pat
1404  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1405   (BeqzRxImmX16 CPU16Regs:$rx, bb:$targ16)
1406  >;
1407
1408//
1409// bcond-setgt (do we need to have this pair of setlt, setgt??)
1410//
1411def: Mips16Pat
1412  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1413   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1414  >;
1415
1416//
1417// bcond-setge
1418//
1419def: Mips16Pat
1420  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1421   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1422  >;
1423
1424//
1425// never called because compiler transforms a >= k to a > (k-1)
1426def: Mips16Pat
1427  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1428   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1429  >;
1430
1431//
1432// bcond-setlt
1433//
1434def: Mips16Pat
1435  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1436   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1437  >;
1438
1439def: Mips16Pat
1440  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1441   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1442  >;
1443
1444//
1445// bcond-setle
1446//
1447def: Mips16Pat
1448  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1449   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1450  >;
1451
1452//
1453// bcond-setne
1454//
1455def: Mips16Pat
1456  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1457   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1458  >;
1459
1460def: Mips16Pat
1461  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1462   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1463  >;
1464
1465def: Mips16Pat
1466  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1467   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1468  >;
1469
1470//
1471// This needs to be there but I forget which code will generate it
1472//
1473def: Mips16Pat
1474  <(brcond CPU16Regs:$rx, bb:$targ16),
1475   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1476  >;
1477
1478//
1479
1480//
1481// bcond-setugt
1482//
1483//def: Mips16Pat
1484//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1485//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1486//  >;
1487
1488//
1489// bcond-setuge
1490//
1491//def: Mips16Pat
1492//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1493//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1494//  >;
1495
1496
1497//
1498// bcond-setult
1499//
1500//def: Mips16Pat
1501//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1502//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1503//  >;
1504
1505def: UncondBranch16_pat<br, BimmX16>;
1506
1507// Small immediates
1508def: Mips16Pat<(i32 immSExt16:$in),
1509               (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
1510
1511def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1512
1513//
1514// MipsDivRem
1515//
1516def: Mips16Pat
1517  <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
1518   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1519
1520//
1521// MipsDivRemU
1522//
1523def: Mips16Pat
1524  <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
1525   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1526
1527//  signed a,b
1528//  x = (a>=b)?x:y
1529//
1530//  if !(a < b) x = y
1531//
1532def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1533                 CPU16Regs:$x, CPU16Regs:$y),
1534                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1535                 CPU16Regs:$a, CPU16Regs:$b)>;
1536
1537//  signed a,b
1538//  x = (a>b)?x:y
1539//
1540//  if  (b < a) x = y
1541//
1542def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1543                 CPU16Regs:$x, CPU16Regs:$y),
1544                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1545                 CPU16Regs:$b, CPU16Regs:$a)>;
1546
1547// unsigned a,b
1548// x = (a>=b)?x:y
1549//
1550// if !(a < b) x = y;
1551//
1552def : Mips16Pat<
1553  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1554   CPU16Regs:$x, CPU16Regs:$y),
1555  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1556   CPU16Regs:$a, CPU16Regs:$b)>;
1557
1558//  unsigned a,b
1559//  x = (a>b)?x:y
1560//
1561//  if (b < a) x = y
1562//
1563def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1564                 CPU16Regs:$x, CPU16Regs:$y),
1565                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1566                 CPU16Regs:$b, CPU16Regs:$a)>;
1567
1568// signed
1569// x = (a >= k)?x:y
1570// due to an llvm optimization, i don't think that this will ever
1571// be used. This is transformed into x = (a > k-1)?x:y
1572//
1573//
1574
1575//def : Mips16Pat<
1576//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1577//   CPU16Regs:$T, CPU16Regs:$F),
1578//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1579//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1580
1581//def : Mips16Pat<
1582//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1583//   CPU16Regs:$T, CPU16Regs:$F),
1584//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1585//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1586
1587// signed
1588// x = (a < k)?x:y
1589//
1590// if !(a < k) x = y;
1591//
1592def : Mips16Pat<
1593  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1594   CPU16Regs:$x, CPU16Regs:$y),
1595  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1596   CPU16Regs:$a, immSExt16:$b)>;
1597
1598
1599//
1600//
1601// signed
1602// x = (a <= b)? x : y
1603//
1604// if  (b < a) x = y
1605//
1606def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1607                 CPU16Regs:$x, CPU16Regs:$y),
1608                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1609                 CPU16Regs:$b, CPU16Regs:$a)>;
1610
1611//
1612// unnsigned
1613// x = (a <= b)? x : y
1614//
1615// if  (b < a) x = y
1616//
1617def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1618                 CPU16Regs:$x, CPU16Regs:$y),
1619                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1620                 CPU16Regs:$b, CPU16Regs:$a)>;
1621
1622//
1623// signed/unsigned
1624// x = (a == b)? x : y
1625//
1626// if (a != b) x = y
1627//
1628def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1629                 CPU16Regs:$x, CPU16Regs:$y),
1630                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1631                 CPU16Regs:$b, CPU16Regs:$a)>;
1632
1633//
1634// signed/unsigned
1635// x = (a == 0)? x : y
1636//
1637// if (a != 0) x = y
1638//
1639def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1640                 CPU16Regs:$x, CPU16Regs:$y),
1641                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1642                 CPU16Regs:$a)>;
1643
1644
1645//
1646// signed/unsigned
1647// x = (a == k)? x : y
1648//
1649// if (a != k) x = y
1650//
1651def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1652                 CPU16Regs:$x, CPU16Regs:$y),
1653                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1654                 CPU16Regs:$a, immZExt16:$k)>;
1655
1656
1657//
1658// signed/unsigned
1659// x = (a != b)? x : y
1660//
1661// if (a == b) x = y
1662//
1663//
1664def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1665                 CPU16Regs:$x, CPU16Regs:$y),
1666                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1667                 CPU16Regs:$b, CPU16Regs:$a)>;
1668
1669//
1670// signed/unsigned
1671// x = (a != 0)? x : y
1672//
1673// if (a == 0) x = y
1674//
1675def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1676                 CPU16Regs:$x, CPU16Regs:$y),
1677                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1678                 CPU16Regs:$a)>;
1679
1680// signed/unsigned
1681// x = (a)? x : y
1682//
1683// if (!a) x = y
1684//
1685def : Mips16Pat<(select  CPU16Regs:$a,
1686                 CPU16Regs:$x, CPU16Regs:$y),
1687      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1688       CPU16Regs:$a)>;
1689
1690
1691//
1692// signed/unsigned
1693// x = (a != k)? x : y
1694//
1695// if (a == k) x = y
1696//
1697def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1698                 CPU16Regs:$x, CPU16Regs:$y),
1699                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1700                 CPU16Regs:$a, immZExt16:$k)>;
1701
1702//
1703// When writing C code to test setxx these patterns,
1704// some will be transformed into
1705// other things. So we test using C code but using -O3 and -O0
1706//
1707// seteq
1708//
1709def : Mips16Pat
1710  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1711   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1712
1713def : Mips16Pat
1714  <(seteq CPU16Regs:$lhs, 0),
1715   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1716
1717
1718//
1719// setge
1720//
1721
1722def: Mips16Pat
1723  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1724   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1725   (LiRxImmX16 1))>;
1726
1727//
1728// For constants, llvm transforms this to:
1729// x > (k -1) and then reverses the operands to use setlt. So this pattern
1730// is not used now by the compiler. (Presumably checking that k-1 does not
1731// overflow). The compiler never uses this at a the current time, due to
1732// other optimizations.
1733//
1734//def: Mips16Pat
1735//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1736//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1737//   (LiRxImmX16 1))>;
1738
1739// This catches the x >= -32768 case by transforming it to  x > -32769
1740//
1741def: Mips16Pat
1742  <(setgt CPU16Regs:$lhs, -32769),
1743   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1744   (LiRxImmX16 1))>;
1745
1746//
1747// setgt
1748//
1749//
1750
1751def: Mips16Pat
1752  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1753   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1754
1755//
1756// setle
1757//
1758def: Mips16Pat
1759  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1760   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1761
1762//
1763// setlt
1764//
1765def: SetCC_R16<setlt, SltCCRxRy16>;
1766
1767def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1768
1769//
1770// setne
1771//
1772def : Mips16Pat
1773  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1774   (SltuCCRxRy16 (LiRxImmX16 0),
1775   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1776
1777
1778//
1779// setuge
1780//
1781def: Mips16Pat
1782  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1783   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1784   (LiRxImmX16 1))>;
1785
1786// this pattern will never be used because the compiler will transform
1787// x >= k to x > (k - 1) and then use SLT
1788//
1789//def: Mips16Pat
1790//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1791//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1792//   (LiRxImmX16 1))>;
1793
1794//
1795// setugt
1796//
1797def: Mips16Pat
1798  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1799   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1800
1801//
1802// setule
1803//
1804def: Mips16Pat
1805  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1806   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1807
1808//
1809// setult
1810//
1811def: SetCC_R16<setult, SltuCCRxRy16>;
1812
1813def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1814
1815def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1816               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1817
1818// hi/lo relocs
1819def : Mips16Pat<(MipsHi tblockaddress:$in),
1820                (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>;
1821def : Mips16Pat<(MipsHi tglobaladdr:$in),
1822                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1823def : Mips16Pat<(MipsHi tjumptable:$in),
1824                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1825def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
1826                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1827
1828def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>;
1829
1830// wrapper_pic
1831class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1832  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1833            (ADDiuOp RC:$gp, node:$in)>;
1834
1835
1836def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1837def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1838
1839def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1840                (LbuRxRyOffMemX16  addr16:$src)>;
1841def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1842                (LhuRxRyOffMemX16  addr16:$src)>;
1843
1844def: Mips16Pat<(trap), (Break16)>;
1845
1846def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8),
1847                (SebRx16 CPU16Regs:$val)>;
1848
1849def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16),
1850                (SehRx16 CPU16Regs:$val)>;
1851
1852def GotPrologue16:   
1853  MipsPseudo16<
1854    (outs CPU16Regs:$rh, CPU16Regs:$rl),
1855    (ins simm16:$immHi, simm16:$immLo),
1856    ".align 2\n\tli\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ;
1857
1858// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
1859def cpinst_operand : Operand<i32> {
1860  // let PrintMethod = "printCPInstOperand";
1861}
1862
1863// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
1864// the function.  The first operand is the ID# for this instruction, the second
1865// is the index into the MachineConstantPool that this is, the third is the
1866// size in bytes of this constant pool entry.
1867//
1868let neverHasSideEffects = 1, isNotDuplicable = 1 in
1869def CONSTPOOL_ENTRY :
1870MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1871                      i32imm:$size), "foo", []>;
1872