Mips16InstrInfo.td revision 50354a3f4a5c9e3689d502a935430f2a57a44af2
1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 :
18  ComplexPattern<iPTR, 3, "SelectAddr16", [frameindex], [SDNPWantParent]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16, CPU16Regs);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16_ea : Operand<i32> {
29  let PrintMethod = "printMemOperandEA";
30  let MIOperandInfo = (ops CPU16Regs, simm16);
31  let EncoderMethod = "getMemEncoding";
32}
33
34//
35//
36// I8 instruction format
37//
38
39class FI816_ins_base<bits<3> _func, string asmstr,
40                     string asmstr2, InstrItinClass itin>:
41  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
42        [], itin>;
43
44
45class FI816_SP_ins<bits<3> _func, string asmstr,
46                   InstrItinClass itin>:
47  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
48
49//
50// RI instruction format
51//
52
53
54class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
55                     InstrItinClass itin>:
56  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
57        !strconcat(asmstr, asmstr2), [], itin>;
58
59class FRI16_ins<bits<5> op, string asmstr,
60                InstrItinClass itin>:
61  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
62
63class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
64                     InstrItinClass itin>:
65  FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
66        !strconcat(asmstr, asmstr2), [], itin>;
67
68class FRI16R_ins<bits<5> op, string asmstr,
69                InstrItinClass itin>:
70  FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
71
72class F2RI16_ins<bits<5> _op, string asmstr,
73                     InstrItinClass itin>:
74  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
75        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
76  let Constraints = "$rx_ = $rx";
77}
78
79class FRI16_B_ins<bits<5> _op, string asmstr,
80                  InstrItinClass itin>:
81  FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
82        !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
83//
84// Compare a register and immediate and place result in CC
85// Implicit use of T8
86//
87// EXT-CCRR Instruction format
88//
89class FEXT_CCRXI16_ins<string asmstr>:
90  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
91               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
92  let isCodeGenOnly=1;
93}
94
95// JAL and JALX instruction format
96//
97class FJAL16_ins<bits<1> _X, string asmstr,
98                 InstrItinClass itin>:
99  FJAL16<_X, (outs), (ins simm20:$imm),
100         !strconcat(asmstr, "\t$imm\n\tnop"),[],
101         itin>  {
102  let isCodeGenOnly=1;
103}
104//
105// EXT-I instruction format
106//
107class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
108  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
109           !strconcat(asmstr, "\t$imm16"),[], itin>;
110
111//
112// EXT-I8 instruction format
113//
114
115class FEXT_I816_ins_base<bits<3> _func, string asmstr,
116                         string asmstr2, InstrItinClass itin>:
117  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
118            [], itin>;
119
120class FEXT_I816_ins<bits<3> _func, string asmstr,
121                    InstrItinClass itin>:
122  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
123
124class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
125                       InstrItinClass itin>:
126      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
127
128//
129// Assembler formats in alphabetical order.
130// Natural and pseudos are mixed together.
131//
132// Compare two registers and place result in CC
133// Implicit use of T8
134//
135// CC-RR Instruction format
136//
137class FCCRR16_ins<string asmstr> :
138  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
139               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
140  let isCodeGenOnly=1;
141}
142
143//
144// EXT-RI instruction format
145//
146
147class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
148                         InstrItinClass itin>:
149  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
150                  !strconcat(asmstr, asmstr2), [], itin>;
151
152class FEXT_RI16_ins<bits<5> _op, string asmstr,
153                    InstrItinClass itin>:
154  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
155
156class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
157                         InstrItinClass itin>:
158  FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
159                  !strconcat(asmstr, asmstr2), [], itin>;
160
161class FEXT_RI16R_ins<bits<5> _op, string asmstr,
162                    InstrItinClass itin>:
163  FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
164
165class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
166  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
167
168class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
169                      InstrItinClass itin>:
170  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
171            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
172
173class FEXT_2RI16_ins<bits<5> _op, string asmstr,
174                     InstrItinClass itin>:
175  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
176            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
177  let Constraints = "$rx_ = $rx";
178}
179
180
181// this has an explicit sp argument that we ignore to work around a problem
182// in the compiler
183class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
184                                InstrItinClass itin>:
185  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
186            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
187
188//
189// EXT-RRI instruction format
190//
191
192class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
193                         InstrItinClass itin>:
194  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
195             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
196
197class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
198                          InstrItinClass itin>:
199  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
200             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
201
202//
203//
204// EXT-RRI-A instruction format
205//
206
207class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
208                           InstrItinClass itin>:
209  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
210               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
211
212//
213// EXT-SHIFT instruction format
214//
215class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
216  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, shamt:$sa),
217               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
218
219//
220// EXT-T8I8
221//
222class FEXT_T8I816_ins<string asmstr, string asmstr2>:
223  MipsPseudo16<(outs),
224               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
225               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
226               !strconcat(asmstr, "\t$imm"))),[]> {
227  let isCodeGenOnly=1;
228}
229
230//
231// EXT-T8I8I
232//
233class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
234  MipsPseudo16<(outs),
235               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
236               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
237               !strconcat(asmstr, "\t$targ"))), []> {
238  let isCodeGenOnly=1;
239}
240//
241
242
243//
244// I8_MOVR32 instruction format (used only by the MOVR32 instructio
245//
246class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
247       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins CPURegs:$r32),
248       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
249
250//
251// I8_MOV32R instruction format (used only by MOV32R instruction)
252//
253
254class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
255  FI8_MOV32R16<(outs CPURegs:$r32), (ins CPU16Regs:$rz),
256               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
257
258//
259// This are pseudo formats for multiply
260// This first one can be changed to non pseudo now.
261//
262// MULT
263//
264class FMULT16_ins<string asmstr, InstrItinClass itin> :
265  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
266               !strconcat(asmstr, "\t$rx, $ry"), []>;
267
268//
269// MULT-LO
270//
271class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
272  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
273               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
274  let isCodeGenOnly=1;
275}
276
277//
278// RR-type instruction format
279//
280
281class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
282  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
283        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
284}
285
286class FRRTR16_ins<string asmstr> :
287  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
288               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
289
290//
291// maybe refactor but need a $zero as a dummy first parameter
292//
293class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
294  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
295        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
296
297class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
298  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
299        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
300
301
302class FRR16_M_ins<bits<5> f, string asmstr,
303                  InstrItinClass itin> :
304  FRR16<f, (outs CPU16Regs:$rx), (ins),
305        !strconcat(asmstr, "\t$rx"), [], itin>;
306
307class FRxRxRy16_ins<bits<5> f, string asmstr,
308                    InstrItinClass itin> :
309  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
310            !strconcat(asmstr, "\t$rz, $ry"),
311            [], itin> {
312  let Constraints = "$rx = $rz";
313}
314
315let rx=0 in
316class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
317                              string asmstr, InstrItinClass itin>:
318  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
319              [], itin> ;
320
321
322class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
323                      string asmstr, InstrItinClass itin>:
324  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
325              !strconcat(asmstr, "\t $rx"), [], itin> ;
326
327//
328// RRR-type instruction format
329//
330
331class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
332  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
333         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
334
335//
336// These Sel patterns support the generation of conditional move
337// pseudo instructions.
338//
339// The nomenclature uses the components making up the pseudo and may
340// be a bit counter intuitive when compared with the end result we seek.
341// For example using a bqez in the example directly below results in the
342// conditional move being done if the tested register is not zero.
343// I considered in easier to check by keeping the pseudo consistent with
344// it's components but it could have been done differently.
345//
346// The simplest case is when can test and operand directly and do the
347// conditional move based on a simple mips16 conditional
348//  branch instruction.
349// for example:
350// if $op == beqz or bnez:
351//
352// $op1 $rt, .+4
353// move $rd, $rs
354//
355// if $op == beqz, then if $rt != 0, then the conditional assignment
356// $rd = $rs is done.
357
358// if $op == bnez, then if $rt == 0, then the conditional assignment
359// $rd = $rs is done.
360//
361// So this pseudo class only has one operand, i.e. op
362//
363class Sel<string op>:
364  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
365               CPU16Regs:$rt),
366               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
367  //let isCodeGenOnly=1;
368  let Constraints = "$rd = $rd_";
369  let usesCustomInserter = 1;
370}
371
372//
373// The next two instruction classes allow for an operand which tests
374// two operands and returns a value in register T8 and
375//then does a conditional branch based on the value of T8
376//
377
378// op2 can be cmpi or slti/sltiu
379// op1 can bteqz or btnez
380// the operands for op2 are a register and a signed constant
381//
382// $op2 $t, $imm  ;test register t and branch conditionally
383// $op1 .+4       ;op1 is a conditional branch
384// move $rd, $rs
385//
386//
387class SeliT<string op1, string op2>:
388  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
389                                       CPU16Regs:$rl, simm16:$imm),
390               !strconcat(op2,
391               !strconcat("\t$rl, $imm\n\t",
392               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
393  let isCodeGenOnly=1;
394  let Constraints = "$rd = $rd_";
395  let usesCustomInserter = 1;
396}
397
398//
399// op2 can be cmp or slt/sltu
400// op1 can be bteqz or btnez
401// the operands for op2 are two registers
402// op1 is a conditional branch
403//
404//
405// $op2 $rl, $rr  ;test registers rl,rr
406// $op1 .+4       ;op2 is a conditional branch
407// move $rd, $rs
408//
409//
410class SelT<string op1, string op2>:
411  MipsPseudo16<(outs CPU16Regs:$rd_),
412               (ins CPU16Regs:$rd, CPU16Regs:$rs,
413                CPU16Regs:$rl, CPU16Regs:$rr),
414               !strconcat(op2,
415               !strconcat("\t$rl, $rr\n\t",
416               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
417  let isCodeGenOnly=1;
418  let Constraints = "$rd = $rd_";
419  let usesCustomInserter = 1;
420}
421
422//
423// 32 bit constant
424//
425def imm32: Operand<i32>;
426
427def Constant32:
428  MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
429
430def LwConstant32:
431  MipsPseudo16<(outs), (ins CPU16Regs:$rx, imm32:$imm),
432    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
433
434
435//
436// Some general instruction class info
437//
438//
439
440class ArithLogic16Defs<bit isCom=0> {
441  bits<5> shamt = 0;
442  bit isCommutable = isCom;
443  bit isReMaterializable = 1;
444  bit neverHasSideEffects = 1;
445}
446
447class branch16 {
448  bit isBranch = 1;
449  bit isTerminator = 1;
450  bit isBarrier = 1;
451}
452
453class cbranch16 {
454  bit isBranch = 1;
455  bit isTerminator = 1;
456}
457
458class MayLoad {
459  bit mayLoad = 1;
460}
461
462class MayStore {
463  bit mayStore = 1;
464}
465//
466
467
468// Format: ADDIU rx, immediate MIPS16e
469// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
470// To add a constant to a 32-bit integer.
471//
472def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
473
474def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIAlu>,
475  ArithLogic16Defs<0> {
476  let AddedComplexity = 5;
477}
478def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
479  ArithLogic16Defs<0> {
480  let isCodeGenOnly = 1;
481}
482
483def AddiuRxRyOffMemX16:
484  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
485
486//
487
488// Format: ADDIU rx, pc, immediate MIPS16e
489// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
490// To add a constant to the program counter.
491//
492def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
493
494//
495// Format: ADDIU sp, immediate MIPS16e
496// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
497// To add a constant to the stack pointer.
498//
499def AddiuSpImm16
500  : FI816_SP_ins<0b011, "addiu", IIAlu> {
501  let Defs = [SP];
502  let Uses = [SP];
503  let AddedComplexity = 5;
504}
505
506def AddiuSpImmX16
507  : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
508  let Defs = [SP];
509  let Uses = [SP];
510}
511
512//
513// Format: ADDU rz, rx, ry MIPS16e
514// Purpose: Add Unsigned Word (3-Operand)
515// To add 32-bit integers.
516//
517
518def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
519
520//
521// Format: AND rx, ry MIPS16e
522// Purpose: AND
523// To do a bitwise logical AND.
524
525def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
526
527
528//
529// Format: BEQZ rx, offset MIPS16e
530// Purpose: Branch on Equal to Zero
531// To test a GPR then do a PC-relative conditional branch.
532//
533def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
534
535
536//
537// Format: BEQZ rx, offset MIPS16e
538// Purpose: Branch on Equal to Zero (Extended)
539// To test a GPR then do a PC-relative conditional branch.
540//
541def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
542
543// Format: B offset MIPS16e
544// Purpose: Unconditional Branch
545// To do an unconditional PC-relative branch.
546//
547def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
548
549//
550// Format: BNEZ rx, offset MIPS16e
551// Purpose: Branch on Not Equal to Zero
552// To test a GPR then do a PC-relative conditional branch.
553//
554def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
555
556//
557// Format: BNEZ rx, offset MIPS16e
558// Purpose: Branch on Not Equal to Zero (Extended)
559// To test a GPR then do a PC-relative conditional branch.
560//
561def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
562
563//
564// Format: BTEQZ offset MIPS16e
565// Purpose: Branch on T Equal to Zero (Extended)
566// To test special register T then do a PC-relative conditional branch.
567//
568def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
569  let Uses = [T8];
570}
571
572def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
573
574def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
575  cbranch16;
576
577def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
578
579def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
580
581def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
582
583def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
584  cbranch16;
585
586//
587// Format: BTNEZ offset MIPS16e
588// Purpose: Branch on T Not Equal to Zero (Extended)
589// To test special register T then do a PC-relative conditional branch.
590//
591def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16 {
592  let Uses = [T8];
593}
594
595def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
596
597def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
598
599def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
600
601def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
602
603def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
604
605def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
606  cbranch16;
607
608//
609// Format: CMP rx, ry MIPS16e
610// Purpose: Compare
611// To compare the contents of two GPRs.
612//
613def CmpRxRy16: FRR16_ins<0b01010, "cmp", IIAlu> {
614  let Defs = [T8];
615}
616
617//
618// Format: CMPI rx, immediate MIPS16e
619// Purpose: Compare Immediate
620// To compare a constant with the contents of a GPR.
621//
622def CmpiRxImm16: FRI16_ins<0b01110, "cmpi", IIAlu> {
623  let Defs = [T8];
624}
625
626//
627// Format: CMPI rx, immediate MIPS16e
628// Purpose: Compare Immediate (Extended)
629// To compare a constant with the contents of a GPR.
630//
631def CmpiRxImmX16: FEXT_RI16_ins<0b01110, "cmpi", IIAlu> {
632  let Defs = [T8];
633}
634
635
636//
637// Format: DIV rx, ry MIPS16e
638// Purpose: Divide Word
639// To divide 32-bit signed integers.
640//
641def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
642  let Defs = [HI, LO];
643}
644
645//
646// Format: DIVU rx, ry MIPS16e
647// Purpose: Divide Unsigned Word
648// To divide 32-bit unsigned integers.
649//
650def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
651  let Defs = [HI, LO];
652}
653//
654// Format: JAL target MIPS16e
655// Purpose: Jump and Link
656// To execute a procedure call within the current 256 MB-aligned
657// region and preserve the current ISA.
658//
659
660def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
661  let isBranch = 1;
662  let hasDelaySlot = 0;  // not true, but we add the nop for now
663  let isTerminator=1;
664  let isBarrier=1;
665}
666
667//
668// Format: JR ra MIPS16e
669// Purpose: Jump Register Through Register ra
670// To execute a branch to the instruction address in the return
671// address register.
672//
673
674def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
675  let isBranch = 1;
676  let isIndirectBranch = 1;
677  let hasDelaySlot = 1;
678  let isTerminator=1;
679  let isBarrier=1;
680}
681
682def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIAlu> {
683  let isBranch = 1;
684  let isIndirectBranch = 1;
685  let isTerminator=1;
686  let isBarrier=1;
687}
688
689def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
690  let isBranch = 1;
691  let isIndirectBranch = 1;
692  let isTerminator=1;
693  let isBarrier=1;
694}
695//
696// Format: LB ry, offset(rx) MIPS16e
697// Purpose: Load Byte (Extended)
698// To load a byte from memory as a signed value.
699//
700def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad{
701  let isCodeGenOnly = 1;
702}
703
704//
705// Format: LBU ry, offset(rx) MIPS16e
706// Purpose: Load Byte Unsigned (Extended)
707// To load a byte from memory as a unsigned value.
708//
709def LbuRxRyOffMemX16:
710  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad {
711  let isCodeGenOnly = 1;
712}
713
714//
715// Format: LH ry, offset(rx) MIPS16e
716// Purpose: Load Halfword signed (Extended)
717// To load a halfword from memory as a signed value.
718//
719def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad{
720  let isCodeGenOnly = 1;
721}
722
723//
724// Format: LHU ry, offset(rx) MIPS16e
725// Purpose: Load Halfword unsigned (Extended)
726// To load a halfword from memory as an unsigned value.
727//
728def LhuRxRyOffMemX16:
729  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad {
730  let isCodeGenOnly = 1;
731}
732
733//
734// Format: LI rx, immediate MIPS16e
735// Purpose: Load Immediate
736// To load a constant into a GPR.
737//
738def LiRxImm16: FRI16_ins<0b01101, "li", IIAlu>;
739
740//
741// Format: LI rx, immediate MIPS16e
742// Purpose: Load Immediate (Extended)
743// To load a constant into a GPR.
744//
745def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
746
747//
748// Format: LW ry, offset(rx) MIPS16e
749// Purpose: Load Word (Extended)
750// To load a word from memory as a signed value.
751//
752def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad{
753  let isCodeGenOnly = 1;
754}
755
756// Format: LW rx, offset(sp) MIPS16e
757// Purpose: Load Word (SP-Relative, Extended)
758// To load an SP-relative word from memory as a signed value.
759//
760def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10110, "lw", IILoad>, MayLoad{
761  let Uses = [SP];
762}
763
764//
765// Format: MOVE r32, rz MIPS16e
766// Purpose: Move
767// To move the contents of a GPR to a GPR.
768//
769def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
770
771//
772// Format: MOVE ry, r32 MIPS16e
773//Purpose: Move
774// To move the contents of a GPR to a GPR.
775//
776def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
777
778//
779// Format: MFHI rx MIPS16e
780// Purpose: Move From HI Register
781// To copy the special purpose HI register to a GPR.
782//
783def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
784  let Uses = [HI];
785  let neverHasSideEffects = 1;
786}
787
788//
789// Format: MFLO rx MIPS16e
790// Purpose: Move From LO Register
791// To copy the special purpose LO register to a GPR.
792//
793def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
794  let Uses = [LO];
795  let neverHasSideEffects = 1;
796}
797
798//
799// Pseudo Instruction for mult
800//
801def MultRxRy16:  FMULT16_ins<"mult",  IIAlu> {
802  let isCommutable = 1;
803  let neverHasSideEffects = 1;
804  let Defs = [HI, LO];
805}
806
807def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
808  let isCommutable = 1;
809  let neverHasSideEffects = 1;
810  let Defs = [HI, LO];
811}
812
813//
814// Format: MULT rx, ry MIPS16e
815// Purpose: Multiply Word
816// To multiply 32-bit signed integers.
817//
818def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
819  let isCommutable = 1;
820  let neverHasSideEffects = 1;
821  let Defs = [HI, LO];
822}
823
824//
825// Format: MULTU rx, ry MIPS16e
826// Purpose: Multiply Unsigned Word
827// To multiply 32-bit unsigned integers.
828//
829def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
830  let isCommutable = 1;
831  let neverHasSideEffects = 1;
832  let Defs = [HI, LO];
833}
834
835//
836// Format: NEG rx, ry MIPS16e
837// Purpose: Negate
838// To negate an integer value.
839//
840def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
841
842//
843// Format: NOT rx, ry MIPS16e
844// Purpose: Not
845// To complement an integer value
846//
847def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
848
849//
850// Format: OR rx, ry MIPS16e
851// Purpose: Or
852// To do a bitwise logical OR.
853//
854def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
855
856//
857// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
858// (All args are optional) MIPS16e
859// Purpose: Restore Registers and Deallocate Stack Frame
860// To deallocate a stack frame before exit from a subroutine,
861// restoring return address and static registers, and adjusting
862// stack
863//
864
865// fixed form for restoring RA and the frame
866// for direct object emitter, encoding needs to be adjusted for the
867// frame size
868//
869let ra=1, s=0,s0=1,s1=1 in
870def RestoreRaF16:
871  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
872             "restore\t$$ra,  $$s0, $$s1, $frame_size", [], IILoad >, MayLoad {
873  let isCodeGenOnly = 1;
874  let Defs = [S0, S1, RA, SP];
875  let Uses = [SP];
876}
877
878// Use Restore to increment SP since SP is not a Mip 16 register, this
879// is an easy way to do that which does not require a register.
880//
881let ra=0, s=0,s0=0,s1=0 in
882def RestoreIncSpF16:
883  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
884             "restore\t$frame_size", [], IILoad >, MayLoad {
885  let isCodeGenOnly = 1;
886  let Defs = [SP];
887  let Uses = [SP];
888}
889
890//
891// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
892// MIPS16e
893// Purpose: Save Registers and Set Up Stack Frame
894// To set up a stack frame on entry to a subroutine,
895// saving return address and static registers, and adjusting stack
896//
897let ra=1, s=1,s0=1,s1=1 in
898def SaveRaF16:
899  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
900             "save\t$$ra, $$s0, $$s1, $frame_size", [], IIStore >, MayStore {
901  let isCodeGenOnly = 1;
902  let Uses = [RA, SP, S0, S1];
903  let Defs = [SP];
904}
905
906//
907// Use Save to decrement the SP by a constant since SP is not
908// a Mips16 register.
909//
910let ra=0, s=0,s0=0,s1=0 in
911def SaveDecSpF16:
912  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
913             "save\t$frame_size", [], IIStore >, MayStore {
914  let isCodeGenOnly = 1;
915  let Uses = [SP];
916  let Defs = [SP];
917}
918//
919// Format: SB ry, offset(rx) MIPS16e
920// Purpose: Store Byte (Extended)
921// To store a byte to memory.
922//
923def SbRxRyOffMemX16:
924  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore;
925
926//
927// The Sel(T) instructions are pseudos
928// T means that they use T8 implicitly.
929//
930//
931// Format: SelBeqZ rd, rs, rt
932// Purpose: if rt==0, do nothing
933//          else rs = rt
934//
935def SelBeqZ: Sel<"beqz">;
936
937//
938// Format:  SelTBteqZCmp rd, rs, rl, rr
939// Purpose: b = Cmp rl, rr.
940//          If b==0 then do nothing.
941//          if b!=0 then rd = rs
942//
943def SelTBteqZCmp: SelT<"bteqz", "cmp">;
944
945//
946// Format:  SelTBteqZCmpi rd, rs, rl, rr
947// Purpose: b = Cmpi rl, imm.
948//          If b==0 then do nothing.
949//          if b!=0 then rd = rs
950//
951def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
952
953//
954// Format:  SelTBteqZSlt rd, rs, rl, rr
955// Purpose: b = Slt rl, rr.
956//          If b==0 then do nothing.
957//          if b!=0 then rd = rs
958//
959def SelTBteqZSlt: SelT<"bteqz", "slt">;
960
961//
962// Format:  SelTBteqZSlti rd, rs, rl, rr
963// Purpose: b = Slti rl, imm.
964//          If b==0 then do nothing.
965//          if b!=0 then rd = rs
966//
967def SelTBteqZSlti: SeliT<"bteqz", "slti">;
968
969//
970// Format:  SelTBteqZSltu rd, rs, rl, rr
971// Purpose: b = Sltu rl, rr.
972//          If b==0 then do nothing.
973//          if b!=0 then rd = rs
974//
975def SelTBteqZSltu: SelT<"bteqz", "sltu">;
976
977//
978// Format:  SelTBteqZSltiu rd, rs, rl, rr
979// Purpose: b = Sltiu rl, imm.
980//          If b==0 then do nothing.
981//          if b!=0 then rd = rs
982//
983def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
984
985//
986// Format: SelBnez rd, rs, rt
987// Purpose: if rt!=0, do nothing
988//          else rs = rt
989//
990def SelBneZ: Sel<"bnez">;
991
992//
993// Format:  SelTBtneZCmp rd, rs, rl, rr
994// Purpose: b = Cmp rl, rr.
995//          If b!=0 then do nothing.
996//          if b0=0 then rd = rs
997//
998def SelTBtneZCmp: SelT<"btnez", "cmp">;
999
1000//
1001// Format:  SelTBtnezCmpi rd, rs, rl, rr
1002// Purpose: b = Cmpi rl, imm.
1003//          If b!=0 then do nothing.
1004//          if b==0 then rd = rs
1005//
1006def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1007
1008//
1009// Format:  SelTBtneZSlt rd, rs, rl, rr
1010// Purpose: b = Slt rl, rr.
1011//          If b!=0 then do nothing.
1012//          if b==0 then rd = rs
1013//
1014def SelTBtneZSlt: SelT<"btnez", "slt">;
1015
1016//
1017// Format:  SelTBtneZSlti rd, rs, rl, rr
1018// Purpose: b = Slti rl, imm.
1019//          If b!=0 then do nothing.
1020//          if b==0 then rd = rs
1021//
1022def SelTBtneZSlti: SeliT<"btnez", "slti">;
1023
1024//
1025// Format:  SelTBtneZSltu rd, rs, rl, rr
1026// Purpose: b = Sltu rl, rr.
1027//          If b!=0 then do nothing.
1028//          if b==0 then rd = rs
1029//
1030def SelTBtneZSltu: SelT<"btnez", "sltu">;
1031
1032//
1033// Format:  SelTBtneZSltiu rd, rs, rl, rr
1034// Purpose: b = Slti rl, imm.
1035//          If b!=0 then do nothing.
1036//          if b==0 then rd = rs
1037//
1038def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1039//
1040//
1041// Format: SH ry, offset(rx) MIPS16e
1042// Purpose: Store Halfword (Extended)
1043// To store a halfword to memory.
1044//
1045def ShRxRyOffMemX16:
1046  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore;
1047
1048//
1049// Format: SLL rx, ry, sa MIPS16e
1050// Purpose: Shift Word Left Logical (Extended)
1051// To execute a left-shift of a word by a fixed number of bits—0 to 31 bits.
1052//
1053def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
1054
1055//
1056// Format: SLLV ry, rx MIPS16e
1057// Purpose: Shift Word Left Logical Variable
1058// To execute a left-shift of a word by a variable number of bits.
1059//
1060def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
1061
1062// Format: SLTI rx, immediate MIPS16e
1063// Purpose: Set on Less Than Immediate
1064// To record the result of a less-than comparison with a constant.
1065//
1066//
1067def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIAlu> {
1068  let Defs = [T8];
1069}
1070
1071//
1072// Format: SLTI rx, immediate MIPS16e
1073// Purpose: Set on Less Than Immediate (Extended)
1074// To record the result of a less-than comparison with a constant.
1075//
1076//
1077def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIAlu> {
1078  let Defs = [T8];
1079}
1080
1081def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1082
1083// Format: SLTIU rx, immediate MIPS16e
1084// Purpose: Set on Less Than Immediate Unsigned
1085// To record the result of a less-than comparison with a constant.
1086//
1087//
1088def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIAlu> {
1089  let Defs = [T8];
1090}
1091
1092//
1093// Format: SLTI rx, immediate MIPS16e
1094// Purpose: Set on Less Than Immediate Unsigned (Extended)
1095// To record the result of a less-than comparison with a constant.
1096//
1097//
1098def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIAlu> {
1099  let Defs = [T8];
1100}
1101//
1102// Format: SLTIU rx, immediate MIPS16e
1103// Purpose: Set on Less Than Immediate Unsigned (Extended)
1104// To record the result of a less-than comparison with a constant.
1105//
1106def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1107
1108//
1109// Format: SLT rx, ry MIPS16e
1110// Purpose: Set on Less Than
1111// To record the result of a less-than comparison.
1112//
1113def SltRxRy16: FRR16_ins<0b00010, "slt", IIAlu>{
1114  let Defs = [T8];
1115}
1116
1117def SltCCRxRy16: FCCRR16_ins<"slt">;
1118
1119// Format: SLTU rx, ry MIPS16e
1120// Purpose: Set on Less Than Unsigned
1121// To record the result of an unsigned less-than comparison.
1122//
1123def SltuRxRy16: FRR16_ins<0b00011, "sltu", IIAlu>{
1124  let Defs = [T8];
1125}
1126
1127def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1128  let isCodeGenOnly=1;
1129  let Defs = [T8];
1130}
1131
1132
1133def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1134//
1135// Format: SRAV ry, rx MIPS16e
1136// Purpose: Shift Word Right Arithmetic Variable
1137// To execute an arithmetic right-shift of a word by a variable
1138// number of bits.
1139//
1140def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
1141
1142
1143//
1144// Format: SRA rx, ry, sa MIPS16e
1145// Purpose: Shift Word Right Arithmetic (Extended)
1146// To execute an arithmetic right-shift of a word by a fixed
1147// number of bits—1 to 8 bits.
1148//
1149def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
1150
1151
1152//
1153// Format: SRLV ry, rx MIPS16e
1154// Purpose: Shift Word Right Logical Variable
1155// To execute a logical right-shift of a word by a variable
1156// number of bits.
1157//
1158def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
1159
1160
1161//
1162// Format: SRL rx, ry, sa MIPS16e
1163// Purpose: Shift Word Right Logical (Extended)
1164// To execute a logical right-shift of a word by a fixed
1165// number of bits—1 to 31 bits.
1166//
1167def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
1168
1169//
1170// Format: SUBU rz, rx, ry MIPS16e
1171// Purpose: Subtract Unsigned Word
1172// To subtract 32-bit integers
1173//
1174def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
1175
1176//
1177// Format: SW ry, offset(rx) MIPS16e
1178// Purpose: Store Word (Extended)
1179// To store a word to memory.
1180//
1181def SwRxRyOffMemX16:
1182  FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore;
1183
1184//
1185// Format: SW rx, offset(sp) MIPS16e
1186// Purpose: Store Word rx (SP-Relative)
1187// To store an SP-relative word to memory.
1188//
1189def SwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b11010, "sw", IIStore>, MayStore;
1190
1191//
1192//
1193// Format: XOR rx, ry MIPS16e
1194// Purpose: Xor
1195// To do a bitwise logical XOR.
1196//
1197def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
1198
1199class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1200  let Predicates = [InMips16Mode];
1201}
1202
1203// Unary Arith/Logic
1204//
1205class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1206  Mips16Pat<(OpNode CPU16Regs:$r),
1207            (I CPU16Regs:$r)>;
1208
1209def: ArithLogicU_pat<not, NotRxRy16>;
1210def: ArithLogicU_pat<ineg, NegRxRy16>;
1211
1212class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1213  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1214            (I CPU16Regs:$l, CPU16Regs:$r)>;
1215
1216def: ArithLogic16_pat<add, AdduRxRyRz16>;
1217def: ArithLogic16_pat<and, AndRxRxRy16>;
1218def: ArithLogic16_pat<mul, MultRxRyRz16>;
1219def: ArithLogic16_pat<or, OrRxRxRy16>;
1220def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1221def: ArithLogic16_pat<xor, XorRxRxRy16>;
1222
1223// Arithmetic and logical instructions with 2 register operands.
1224
1225class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1226  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1227            (I CPU16Regs:$in, imm_type:$imm)>;
1228
1229def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1230def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1231def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1232def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1233def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1234
1235class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1236  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1237            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1238
1239def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1240def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1241def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1242
1243class LoadM16_pat<PatFrag OpNode, Instruction I> :
1244  Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
1245
1246def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
1247def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
1248def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
1249def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
1250def: LoadM16_pat<load, LwRxRyOffMemX16>;
1251
1252class StoreM16_pat<PatFrag OpNode, Instruction I> :
1253  Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
1254            (I CPU16Regs:$r, addr16:$addr)>;
1255
1256def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
1257def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
1258def: StoreM16_pat<store, SwRxRyOffMemX16>;
1259
1260// Unconditional branch
1261class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1262  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1263    let Predicates = [InMips16Mode];
1264  }
1265
1266def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1267                (Jal16 tglobaladdr:$dst)>;
1268
1269def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1270                (Jal16 texternalsym:$dst)>;
1271
1272// Indirect branch
1273def: Mips16Pat<
1274  (brind CPU16Regs:$rs),
1275  (JrcRx16 CPU16Regs:$rs)>;
1276
1277// Jump and Link (Call)
1278let isCall=1, hasDelaySlot=0 in
1279def JumpLinkReg16:
1280  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1281              "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>;
1282
1283// Mips16 pseudos
1284let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1285  hasExtraSrcRegAllocReq = 1 in
1286def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1287
1288
1289// setcc patterns
1290
1291class SetCC_R16<PatFrag cond_op, Instruction I>:
1292  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1293            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1294
1295class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1296  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1297            (I CPU16Regs:$rx, imm_type:$imm16)>;
1298
1299
1300def: Mips16Pat<(i32  addr16:$addr),
1301               (AddiuRxRyOffMemX16  addr16:$addr)>;
1302
1303
1304// Large (>16 bit) immediate loads
1305def : Mips16Pat<(i32 imm:$imm),
1306                (OrRxRxRy16 (SllX16 (LiRxImmX16 (HI16 imm:$imm)), 16),
1307                (LiRxImmX16 (LO16 imm:$imm)))>;
1308
1309// Carry MipsPatterns
1310def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
1311                (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1312def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
1313                (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1314def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
1315                (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
1316
1317//
1318// Some branch conditional patterns are not generated by llvm at this time.
1319// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1320// comparison they are used and for unsigned a different pattern is used.
1321// I am pushing upstream from the full mips16 port and it seemed that I needed
1322// these earlier and the mips32 port has these but now I cannot create test
1323// cases that use these patterns. While I sort this all out I will leave these
1324// extra patterns commented out and if I can be sure they are really not used,
1325// I will delete the code. I don't want to check the code in uncommented without
1326// a valid test case. In some cases, the compiler is generating patterns with
1327// setcc instead and earlier I had implemented setcc first so may have masked
1328// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1329// figure out how to enable the brcond patterns or else possibly new
1330// combinations of of brcond and setcc.
1331//
1332//
1333// bcond-seteq
1334//
1335def: Mips16Pat
1336  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1337   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1338  >;
1339
1340
1341def: Mips16Pat
1342  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1343   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1344  >;
1345
1346def: Mips16Pat
1347  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1348   (BeqzRxImmX16 CPU16Regs:$rx, bb:$targ16)
1349  >;
1350
1351//
1352// bcond-setgt (do we need to have this pair of setlt, setgt??)
1353//
1354def: Mips16Pat
1355  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1356   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1357  >;
1358
1359//
1360// bcond-setge
1361//
1362def: Mips16Pat
1363  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1364   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1365  >;
1366
1367//
1368// never called because compiler transforms a >= k to a > (k-1)
1369def: Mips16Pat
1370  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1371   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1372  >;
1373
1374//
1375// bcond-setlt
1376//
1377def: Mips16Pat
1378  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1379   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1380  >;
1381
1382def: Mips16Pat
1383  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1384   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1385  >;
1386
1387//
1388// bcond-setle
1389//
1390def: Mips16Pat
1391  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1392   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1393  >;
1394
1395//
1396// bcond-setne
1397//
1398def: Mips16Pat
1399  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1400   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1401  >;
1402
1403def: Mips16Pat
1404  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1405   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1406  >;
1407
1408def: Mips16Pat
1409  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1410   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1411  >;
1412
1413//
1414// This needs to be there but I forget which code will generate it
1415//
1416def: Mips16Pat
1417  <(brcond CPU16Regs:$rx, bb:$targ16),
1418   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1419  >;
1420
1421//
1422
1423//
1424// bcond-setugt
1425//
1426//def: Mips16Pat
1427//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1428//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1429//  >;
1430
1431//
1432// bcond-setuge
1433//
1434//def: Mips16Pat
1435//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1436//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1437//  >;
1438
1439
1440//
1441// bcond-setult
1442//
1443//def: Mips16Pat
1444//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1445//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1446//  >;
1447
1448def: UncondBranch16_pat<br, BimmX16>;
1449
1450// Small immediates
1451def: Mips16Pat<(i32 immSExt16:$in),
1452               (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
1453
1454def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1455
1456//
1457// MipsDivRem
1458//
1459def: Mips16Pat
1460  <(MipsDivRem CPU16Regs:$rx, CPU16Regs:$ry),
1461   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1462
1463//
1464// MipsDivRemU
1465//
1466def: Mips16Pat
1467  <(MipsDivRemU CPU16Regs:$rx, CPU16Regs:$ry),
1468   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1469
1470//  signed a,b
1471//  x = (a>=b)?x:y
1472//
1473//  if !(a < b) x = y
1474//
1475def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1476                 CPU16Regs:$x, CPU16Regs:$y),
1477                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1478                 CPU16Regs:$a, CPU16Regs:$b)>;
1479
1480//  signed a,b
1481//  x = (a>b)?x:y
1482//
1483//  if  (b < a) x = y
1484//
1485def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1486                 CPU16Regs:$x, CPU16Regs:$y),
1487                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1488                 CPU16Regs:$b, CPU16Regs:$a)>;
1489
1490// unsigned a,b
1491// x = (a>=b)?x:y
1492//
1493// if !(a < b) x = y;
1494//
1495def : Mips16Pat<
1496  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1497   CPU16Regs:$x, CPU16Regs:$y),
1498  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1499   CPU16Regs:$a, CPU16Regs:$b)>;
1500
1501//  unsigned a,b
1502//  x = (a>b)?x:y
1503//
1504//  if (b < a) x = y
1505//
1506def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1507                 CPU16Regs:$x, CPU16Regs:$y),
1508                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1509                 CPU16Regs:$b, CPU16Regs:$a)>;
1510
1511// signed
1512// x = (a >= k)?x:y
1513// due to an llvm optimization, i don't think that this will ever
1514// be used. This is transformed into x = (a > k-1)?x:y
1515//
1516//
1517
1518//def : Mips16Pat<
1519//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1520//   CPU16Regs:$T, CPU16Regs:$F),
1521//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1522//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1523
1524//def : Mips16Pat<
1525//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1526//   CPU16Regs:$T, CPU16Regs:$F),
1527//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1528//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1529
1530// signed
1531// x = (a < k)?x:y
1532//
1533// if !(a < k) x = y;
1534//
1535def : Mips16Pat<
1536  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1537   CPU16Regs:$x, CPU16Regs:$y),
1538  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1539   CPU16Regs:$a, immSExt16:$b)>;
1540
1541
1542//
1543//
1544// signed
1545// x = (a <= b)? x : y
1546//
1547// if  (b < a) x = y
1548//
1549def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1550                 CPU16Regs:$x, CPU16Regs:$y),
1551                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1552                 CPU16Regs:$b, CPU16Regs:$a)>;
1553
1554//
1555// unnsigned
1556// x = (a <= b)? x : y
1557//
1558// if  (b < a) x = y
1559//
1560def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1561                 CPU16Regs:$x, CPU16Regs:$y),
1562                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1563                 CPU16Regs:$b, CPU16Regs:$a)>;
1564
1565//
1566// signed/unsigned
1567// x = (a == b)? x : y
1568//
1569// if (a != b) x = y
1570//
1571def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1572                 CPU16Regs:$x, CPU16Regs:$y),
1573                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1574                 CPU16Regs:$b, CPU16Regs:$a)>;
1575
1576//
1577// signed/unsigned
1578// x = (a == 0)? x : y
1579//
1580// if (a != 0) x = y
1581//
1582def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1583                 CPU16Regs:$x, CPU16Regs:$y),
1584                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1585                 CPU16Regs:$a)>;
1586
1587
1588//
1589// signed/unsigned
1590// x = (a == k)? x : y
1591//
1592// if (a != k) x = y
1593//
1594def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1595                 CPU16Regs:$x, CPU16Regs:$y),
1596                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1597                 CPU16Regs:$a, immZExt16:$k)>;
1598
1599
1600//
1601// signed/unsigned
1602// x = (a != b)? x : y
1603//
1604// if (a == b) x = y
1605//
1606//
1607def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1608                 CPU16Regs:$x, CPU16Regs:$y),
1609                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1610                 CPU16Regs:$b, CPU16Regs:$a)>;
1611
1612//
1613// signed/unsigned
1614// x = (a != 0)? x : y
1615//
1616// if (a == 0) x = y
1617//
1618def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1619                 CPU16Regs:$x, CPU16Regs:$y),
1620                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1621                 CPU16Regs:$a)>;
1622
1623// signed/unsigned
1624// x = (a)? x : y
1625//
1626// if (!a) x = y
1627//
1628def : Mips16Pat<(select  CPU16Regs:$a,
1629                 CPU16Regs:$x, CPU16Regs:$y),
1630      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1631       CPU16Regs:$a)>;
1632
1633
1634//
1635// signed/unsigned
1636// x = (a != k)? x : y
1637//
1638// if (a == k) x = y
1639//
1640def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1641                 CPU16Regs:$x, CPU16Regs:$y),
1642                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1643                 CPU16Regs:$a, immZExt16:$k)>;
1644
1645//
1646// When writing C code to test setxx these patterns,
1647// some will be transformed into
1648// other things. So we test using C code but using -O3 and -O0
1649//
1650// seteq
1651//
1652def : Mips16Pat
1653  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1654   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1655
1656def : Mips16Pat
1657  <(seteq CPU16Regs:$lhs, 0),
1658   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1659
1660
1661//
1662// setge
1663//
1664
1665def: Mips16Pat
1666  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1667   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1668   (LiRxImmX16 1))>;
1669
1670//
1671// For constants, llvm transforms this to:
1672// x > (k -1) and then reverses the operands to use setlt. So this pattern
1673// is not used now by the compiler. (Presumably checking that k-1 does not
1674// overflow). The compiler never uses this at a the current time, due to
1675// other optimizations.
1676//
1677//def: Mips16Pat
1678//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1679//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1680//   (LiRxImmX16 1))>;
1681
1682// This catches the x >= -32768 case by transforming it to  x > -32769
1683//
1684def: Mips16Pat
1685  <(setgt CPU16Regs:$lhs, -32769),
1686   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1687   (LiRxImmX16 1))>;
1688
1689//
1690// setgt
1691//
1692//
1693
1694def: Mips16Pat
1695  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1696   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1697
1698//
1699// setle
1700//
1701def: Mips16Pat
1702  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1703   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1704
1705//
1706// setlt
1707//
1708def: SetCC_R16<setlt, SltCCRxRy16>;
1709
1710def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1711
1712//
1713// setne
1714//
1715def : Mips16Pat
1716  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1717   (SltuCCRxRy16 (LiRxImmX16 0),
1718   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1719
1720
1721//
1722// setuge
1723//
1724def: Mips16Pat
1725  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1726   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1727   (LiRxImmX16 1))>;
1728
1729// this pattern will never be used because the compiler will transform
1730// x >= k to x > (k - 1) and then use SLT
1731//
1732//def: Mips16Pat
1733//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1734//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1735//   (LiRxImmX16 1))>;
1736
1737//
1738// setugt
1739//
1740def: Mips16Pat
1741  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1742   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1743
1744//
1745// setule
1746//
1747def: Mips16Pat
1748  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1749   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1750
1751//
1752// setult
1753//
1754def: SetCC_R16<setult, SltuCCRxRy16>;
1755
1756def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1757
1758def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1759               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1760
1761// hi/lo relocs
1762
1763def : Mips16Pat<(MipsHi tglobaladdr:$in),
1764                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1765def : Mips16Pat<(MipsHi tjumptable:$in),
1766                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1767def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
1768                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1769
1770// wrapper_pic
1771class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1772  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1773            (ADDiuOp RC:$gp, node:$in)>;
1774
1775
1776def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1777def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1778
1779def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1780                (LbuRxRyOffMemX16  addr16:$src)>;
1781def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1782                (LhuRxRyOffMemX16  addr16:$src)>;
1783