Mips16InstrInfo.td revision 51c9043f3bc215bb3026486e5e1ef5989a8d8d8b
1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 :
18  ComplexPattern<iPTR, 3, "selectAddr16", [frameindex], [SDNPWantParent]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16, CPU16RegsPlusSP);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16_ea : Operand<i32> {
29  let PrintMethod = "printMemOperandEA";
30  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
31  let EncoderMethod = "getMemEncoding";
32}
33
34//
35//
36// I8 instruction format
37//
38
39class FI816_ins_base<bits<3> _func, string asmstr,
40                     string asmstr2, InstrItinClass itin>:
41  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
42        [], itin>;
43
44
45class FI816_SP_ins<bits<3> _func, string asmstr,
46                   InstrItinClass itin>:
47  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
48
49//
50// RI instruction format
51//
52
53
54class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
55                     InstrItinClass itin>:
56  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
57        !strconcat(asmstr, asmstr2), [], itin>;
58
59class FRI16_ins<bits<5> op, string asmstr,
60                InstrItinClass itin>:
61  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
62
63class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
64                     InstrItinClass itin>:
65  FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
66        !strconcat(asmstr, asmstr2), [], itin>;
67
68class FRI16R_ins<bits<5> op, string asmstr,
69                InstrItinClass itin>:
70  FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
71
72class F2RI16_ins<bits<5> _op, string asmstr,
73                     InstrItinClass itin>:
74  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
75        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
76  let Constraints = "$rx_ = $rx";
77}
78
79class FRI16_B_ins<bits<5> _op, string asmstr,
80                  InstrItinClass itin>:
81  FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
82        !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
83//
84// Compare a register and immediate and place result in CC
85// Implicit use of T8
86//
87// EXT-CCRR Instruction format
88//
89class FEXT_CCRXI16_ins<string asmstr>:
90  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
91               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
92  let isCodeGenOnly=1;
93  let usesCustomInserter = 1;
94}
95
96// JAL and JALX instruction format
97//
98class FJAL16_ins<bits<1> _X, string asmstr,
99                 InstrItinClass itin>:
100  FJAL16<_X, (outs), (ins simm20:$imm),
101         !strconcat(asmstr, "\t$imm\n\tnop"),[],
102         itin>  {
103  let isCodeGenOnly=1;
104}
105//
106// EXT-I instruction format
107//
108class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
109  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
110           !strconcat(asmstr, "\t$imm16"),[], itin>;
111
112//
113// EXT-I8 instruction format
114//
115
116class FEXT_I816_ins_base<bits<3> _func, string asmstr,
117                         string asmstr2, InstrItinClass itin>:
118  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
119            [], itin>;
120
121class FEXT_I816_ins<bits<3> _func, string asmstr,
122                    InstrItinClass itin>:
123  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
124
125class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
126                       InstrItinClass itin>:
127      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
128
129//
130// Assembler formats in alphabetical order.
131// Natural and pseudos are mixed together.
132//
133// Compare two registers and place result in CC
134// Implicit use of T8
135//
136// CC-RR Instruction format
137//
138class FCCRR16_ins<string asmstr> :
139  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
140               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
141  let isCodeGenOnly=1;
142  let usesCustomInserter = 1;
143}
144
145//
146// EXT-RI instruction format
147//
148
149class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
150                         InstrItinClass itin>:
151  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
152                  !strconcat(asmstr, asmstr2), [], itin>;
153
154class FEXT_RI16_ins<bits<5> _op, string asmstr,
155                    InstrItinClass itin>:
156  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
157
158class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
159                         InstrItinClass itin>:
160  FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
161                  !strconcat(asmstr, asmstr2), [], itin>;
162
163class FEXT_RI16R_ins<bits<5> _op, string asmstr,
164                    InstrItinClass itin>:
165  FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
166
167class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
168  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
169
170class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
171                      InstrItinClass itin>:
172  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
173            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
174
175class FEXT_2RI16_ins<bits<5> _op, string asmstr,
176                     InstrItinClass itin>:
177  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
178            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
179  let Constraints = "$rx_ = $rx";
180}
181
182
183// this has an explicit sp argument that we ignore to work around a problem
184// in the compiler
185class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
186                                InstrItinClass itin>:
187  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
188            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
189
190class FEXT_RI16_SP_Store_explicit_ins<bits<5> _op, string asmstr,
191                                InstrItinClass itin>:
192  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, CPUSPReg:$ry, simm16:$imm),
193            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
194
195//
196// EXT-RRI instruction format
197//
198
199class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
200                         InstrItinClass itin>:
201  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
202             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
203
204class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
205                          InstrItinClass itin>:
206  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
207             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
208
209//
210//
211// EXT-RRI-A instruction format
212//
213
214class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
215                           InstrItinClass itin>:
216  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
217               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
218
219//
220// EXT-SHIFT instruction format
221//
222class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
223  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, shamt:$sa),
224               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
225
226//
227// EXT-T8I8
228//
229class FEXT_T8I816_ins<string asmstr, string asmstr2>:
230  MipsPseudo16<(outs),
231               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
232               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
233               !strconcat(asmstr, "\t$imm"))),[]> {
234  let isCodeGenOnly=1;
235  let usesCustomInserter = 1;
236}
237
238//
239// EXT-T8I8I
240//
241class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
242  MipsPseudo16<(outs),
243               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
244               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
245               !strconcat(asmstr, "\t$targ"))), []> {
246  let isCodeGenOnly=1;
247  let usesCustomInserter = 1;
248}
249//
250
251
252//
253// I8_MOVR32 instruction format (used only by the MOVR32 instructio
254//
255class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
256       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
257       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
258
259//
260// I8_MOV32R instruction format (used only by MOV32R instruction)
261//
262
263class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
264  FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
265               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
266
267//
268// This are pseudo formats for multiply
269// This first one can be changed to non pseudo now.
270//
271// MULT
272//
273class FMULT16_ins<string asmstr, InstrItinClass itin> :
274  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
275               !strconcat(asmstr, "\t$rx, $ry"), []>;
276
277//
278// MULT-LO
279//
280class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
281  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
282               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
283  let isCodeGenOnly=1;
284}
285
286//
287// RR-type instruction format
288//
289
290class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
291  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
292        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
293}
294
295class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
296  FRRBreak16<(outs), (ins), asmstr, [], itin> {
297  let Code=0;
298}
299
300class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
301  FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
302        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
303}
304
305class FRRTR16_ins<string asmstr> :
306  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
307               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
308
309//
310// maybe refactor but need a $zero as a dummy first parameter
311//
312class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
313  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
314        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
315
316class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
317  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
318        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
319
320
321class FRR16_M_ins<bits<5> f, string asmstr,
322                  InstrItinClass itin> :
323  FRR16<f, (outs CPU16Regs:$rx), (ins),
324        !strconcat(asmstr, "\t$rx"), [], itin>;
325
326class FRxRxRy16_ins<bits<5> f, string asmstr,
327                    InstrItinClass itin> :
328  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
329            !strconcat(asmstr, "\t$rz, $ry"),
330            [], itin> {
331  let Constraints = "$rx = $rz";
332}
333
334let rx=0 in
335class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
336                              string asmstr, InstrItinClass itin>:
337  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
338              [], itin> ;
339
340
341class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
342                      string asmstr, InstrItinClass itin>:
343  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
344              !strconcat(asmstr, "\t $rx"), [], itin> ;
345
346//
347// RRR-type instruction format
348//
349
350class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
351  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
352         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
353
354//
355// These Sel patterns support the generation of conditional move
356// pseudo instructions.
357//
358// The nomenclature uses the components making up the pseudo and may
359// be a bit counter intuitive when compared with the end result we seek.
360// For example using a bqez in the example directly below results in the
361// conditional move being done if the tested register is not zero.
362// I considered in easier to check by keeping the pseudo consistent with
363// it's components but it could have been done differently.
364//
365// The simplest case is when can test and operand directly and do the
366// conditional move based on a simple mips16 conditional
367//  branch instruction.
368// for example:
369// if $op == beqz or bnez:
370//
371// $op1 $rt, .+4
372// move $rd, $rs
373//
374// if $op == beqz, then if $rt != 0, then the conditional assignment
375// $rd = $rs is done.
376
377// if $op == bnez, then if $rt == 0, then the conditional assignment
378// $rd = $rs is done.
379//
380// So this pseudo class only has one operand, i.e. op
381//
382class Sel<string op>:
383  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
384               CPU16Regs:$rt),
385               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
386  //let isCodeGenOnly=1;
387  let Constraints = "$rd = $rd_";
388  let usesCustomInserter = 1;
389}
390
391//
392// The next two instruction classes allow for an operand which tests
393// two operands and returns a value in register T8 and
394//then does a conditional branch based on the value of T8
395//
396
397// op2 can be cmpi or slti/sltiu
398// op1 can bteqz or btnez
399// the operands for op2 are a register and a signed constant
400//
401// $op2 $t, $imm  ;test register t and branch conditionally
402// $op1 .+4       ;op1 is a conditional branch
403// move $rd, $rs
404//
405//
406class SeliT<string op1, string op2>:
407  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
408                                       CPU16Regs:$rl, simm16:$imm),
409               !strconcat(op2,
410               !strconcat("\t$rl, $imm\n\t",
411               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
412  let isCodeGenOnly=1;
413  let Constraints = "$rd = $rd_";
414  let usesCustomInserter = 1;
415}
416
417//
418// op2 can be cmp or slt/sltu
419// op1 can be bteqz or btnez
420// the operands for op2 are two registers
421// op1 is a conditional branch
422//
423//
424// $op2 $rl, $rr  ;test registers rl,rr
425// $op1 .+4       ;op2 is a conditional branch
426// move $rd, $rs
427//
428//
429class SelT<string op1, string op2>:
430  MipsPseudo16<(outs CPU16Regs:$rd_),
431               (ins CPU16Regs:$rd, CPU16Regs:$rs,
432                CPU16Regs:$rl, CPU16Regs:$rr),
433               !strconcat(op2,
434               !strconcat("\t$rl, $rr\n\t",
435               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
436  let isCodeGenOnly=1;
437  let Constraints = "$rd = $rd_";
438  let usesCustomInserter = 1;
439}
440
441//
442// 32 bit constant
443//
444def imm32: Operand<i32>;
445
446def Constant32:
447  MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
448
449def LwConstant32:
450  MipsPseudo16<(outs CPU16Regs:$rx), (ins imm32:$imm),
451    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
452
453
454//
455// Some general instruction class info
456//
457//
458
459class ArithLogic16Defs<bit isCom=0> {
460  bits<5> shamt = 0;
461  bit isCommutable = isCom;
462  bit isReMaterializable = 1;
463  bit neverHasSideEffects = 1;
464}
465
466class branch16 {
467  bit isBranch = 1;
468  bit isTerminator = 1;
469  bit isBarrier = 1;
470}
471
472class cbranch16 {
473  bit isBranch = 1;
474  bit isTerminator = 1;
475}
476
477class MayLoad {
478  bit mayLoad = 1;
479}
480
481class MayStore {
482  bit mayStore = 1;
483}
484//
485
486
487// Format: ADDIU rx, immediate MIPS16e
488// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
489// To add a constant to a 32-bit integer.
490//
491def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
492
493def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIAlu>,
494  ArithLogic16Defs<0> {
495  let AddedComplexity = 5;
496}
497def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
498  ArithLogic16Defs<0> {
499  let isCodeGenOnly = 1;
500}
501
502def AddiuRxRyOffMemX16:
503  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
504
505//
506
507// Format: ADDIU rx, pc, immediate MIPS16e
508// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
509// To add a constant to the program counter.
510//
511def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
512
513//
514// Format: ADDIU sp, immediate MIPS16e
515// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
516// To add a constant to the stack pointer.
517//
518def AddiuSpImm16
519  : FI816_SP_ins<0b011, "addiu", IIAlu> {
520  let Defs = [SP];
521  let Uses = [SP];
522  let AddedComplexity = 5;
523}
524
525def AddiuSpImmX16
526  : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
527  let Defs = [SP];
528  let Uses = [SP];
529}
530
531//
532// Format: ADDU rz, rx, ry MIPS16e
533// Purpose: Add Unsigned Word (3-Operand)
534// To add 32-bit integers.
535//
536
537def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
538
539//
540// Format: AND rx, ry MIPS16e
541// Purpose: AND
542// To do a bitwise logical AND.
543
544def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
545
546
547//
548// Format: BEQZ rx, offset MIPS16e
549// Purpose: Branch on Equal to Zero
550// To test a GPR then do a PC-relative conditional branch.
551//
552def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
553
554
555//
556// Format: BEQZ rx, offset MIPS16e
557// Purpose: Branch on Equal to Zero (Extended)
558// To test a GPR then do a PC-relative conditional branch.
559//
560def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
561
562// Format: B offset MIPS16e
563// Purpose: Unconditional Branch
564// To do an unconditional PC-relative branch.
565//
566def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
567
568//
569// Format: BNEZ rx, offset MIPS16e
570// Purpose: Branch on Not Equal to Zero
571// To test a GPR then do a PC-relative conditional branch.
572//
573def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
574
575//
576// Format: BNEZ rx, offset MIPS16e
577// Purpose: Branch on Not Equal to Zero (Extended)
578// To test a GPR then do a PC-relative conditional branch.
579//
580def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
581
582
583//
584//Format: BREAK immediate
585// Purpose: Breakpoint
586// To cause a Breakpoint exception.
587
588def Break16: FRRBreakNull16_ins<"break 0", NoItinerary>; 
589//
590// Format: BTEQZ offset MIPS16e
591// Purpose: Branch on T Equal to Zero (Extended)
592// To test special register T then do a PC-relative conditional branch.
593//
594def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
595  let Uses = [T8];
596}
597
598def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
599
600def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
601  cbranch16;
602
603def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
604
605def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
606
607def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
608
609def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
610  cbranch16;
611
612//
613// Format: BTNEZ offset MIPS16e
614// Purpose: Branch on T Not Equal to Zero (Extended)
615// To test special register T then do a PC-relative conditional branch.
616//
617def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16 {
618  let Uses = [T8];
619}
620
621def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
622
623def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
624
625def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
626
627def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
628
629def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
630
631def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
632  cbranch16;
633
634//
635// Format: CMP rx, ry MIPS16e
636// Purpose: Compare
637// To compare the contents of two GPRs.
638//
639def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIAlu> {
640  let Defs = [T8];
641}
642
643//
644// Format: CMPI rx, immediate MIPS16e
645// Purpose: Compare Immediate
646// To compare a constant with the contents of a GPR.
647//
648def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIAlu> {
649  let Defs = [T8];
650}
651
652//
653// Format: CMPI rx, immediate MIPS16e
654// Purpose: Compare Immediate (Extended)
655// To compare a constant with the contents of a GPR.
656//
657def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIAlu> {
658  let Defs = [T8];
659}
660
661
662//
663// Format: DIV rx, ry MIPS16e
664// Purpose: Divide Word
665// To divide 32-bit signed integers.
666//
667def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
668  let Defs = [HI, LO];
669}
670
671//
672// Format: DIVU rx, ry MIPS16e
673// Purpose: Divide Unsigned Word
674// To divide 32-bit unsigned integers.
675//
676def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
677  let Defs = [HI, LO];
678}
679//
680// Format: JAL target MIPS16e
681// Purpose: Jump and Link
682// To execute a procedure call within the current 256 MB-aligned
683// region and preserve the current ISA.
684//
685
686def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
687  let isBranch = 1;
688  let hasDelaySlot = 0;  // not true, but we add the nop for now
689  let isTerminator=1;
690  let isBarrier=1;
691  let isCall=1;
692}
693
694//
695// Format: JR ra MIPS16e
696// Purpose: Jump Register Through Register ra
697// To execute a branch to the instruction address in the return
698// address register.
699//
700
701def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
702  let isBranch = 1;
703  let isIndirectBranch = 1;
704  let hasDelaySlot = 1;
705  let isTerminator=1;
706  let isBarrier=1;
707}
708
709def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIAlu> {
710  let isBranch = 1;
711  let isIndirectBranch = 1;
712  let isTerminator=1;
713  let isBarrier=1;
714}
715
716def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
717  let isBranch = 1;
718  let isIndirectBranch = 1;
719  let isTerminator=1;
720  let isBarrier=1;
721}
722//
723// Format: LB ry, offset(rx) MIPS16e
724// Purpose: Load Byte (Extended)
725// To load a byte from memory as a signed value.
726//
727def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad{
728  let isCodeGenOnly = 1;
729}
730
731//
732// Format: LBU ry, offset(rx) MIPS16e
733// Purpose: Load Byte Unsigned (Extended)
734// To load a byte from memory as a unsigned value.
735//
736def LbuRxRyOffMemX16:
737  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad {
738  let isCodeGenOnly = 1;
739}
740
741//
742// Format: LH ry, offset(rx) MIPS16e
743// Purpose: Load Halfword signed (Extended)
744// To load a halfword from memory as a signed value.
745//
746def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad{
747  let isCodeGenOnly = 1;
748}
749
750//
751// Format: LHU ry, offset(rx) MIPS16e
752// Purpose: Load Halfword unsigned (Extended)
753// To load a halfword from memory as an unsigned value.
754//
755def LhuRxRyOffMemX16:
756  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad {
757  let isCodeGenOnly = 1;
758}
759
760//
761// Format: LI rx, immediate MIPS16e
762// Purpose: Load Immediate
763// To load a constant into a GPR.
764//
765def LiRxImm16: FRI16_ins<0b01101, "li", IIAlu>;
766
767//
768// Format: LI rx, immediate MIPS16e
769// Purpose: Load Immediate (Extended)
770// To load a constant into a GPR.
771//
772def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
773
774//
775// Format: LW ry, offset(rx) MIPS16e
776// Purpose: Load Word (Extended)
777// To load a word from memory as a signed value.
778//
779def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad{
780  let isCodeGenOnly = 1;
781}
782
783// Format: LW rx, offset(sp) MIPS16e
784// Purpose: Load Word (SP-Relative, Extended)
785// To load an SP-relative word from memory as a signed value.
786//
787def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10110, "lw", IILoad>, MayLoad{
788  let Uses = [SP];
789}
790
791//
792// Format: MOVE r32, rz MIPS16e
793// Purpose: Move
794// To move the contents of a GPR to a GPR.
795//
796def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
797
798//
799// Format: MOVE ry, r32 MIPS16e
800//Purpose: Move
801// To move the contents of a GPR to a GPR.
802//
803def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
804
805//
806// Format: MFHI rx MIPS16e
807// Purpose: Move From HI Register
808// To copy the special purpose HI register to a GPR.
809//
810def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
811  let Uses = [HI];
812  let neverHasSideEffects = 1;
813}
814
815//
816// Format: MFLO rx MIPS16e
817// Purpose: Move From LO Register
818// To copy the special purpose LO register to a GPR.
819//
820def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
821  let Uses = [LO];
822  let neverHasSideEffects = 1;
823}
824
825//
826// Pseudo Instruction for mult
827//
828def MultRxRy16:  FMULT16_ins<"mult",  IIAlu> {
829  let isCommutable = 1;
830  let neverHasSideEffects = 1;
831  let Defs = [HI, LO];
832}
833
834def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
835  let isCommutable = 1;
836  let neverHasSideEffects = 1;
837  let Defs = [HI, LO];
838}
839
840//
841// Format: MULT rx, ry MIPS16e
842// Purpose: Multiply Word
843// To multiply 32-bit signed integers.
844//
845def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
846  let isCommutable = 1;
847  let neverHasSideEffects = 1;
848  let Defs = [HI, LO];
849}
850
851//
852// Format: MULTU rx, ry MIPS16e
853// Purpose: Multiply Unsigned Word
854// To multiply 32-bit unsigned integers.
855//
856def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
857  let isCommutable = 1;
858  let neverHasSideEffects = 1;
859  let Defs = [HI, LO];
860}
861
862//
863// Format: NEG rx, ry MIPS16e
864// Purpose: Negate
865// To negate an integer value.
866//
867def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
868
869//
870// Format: NOT rx, ry MIPS16e
871// Purpose: Not
872// To complement an integer value
873//
874def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
875
876//
877// Format: OR rx, ry MIPS16e
878// Purpose: Or
879// To do a bitwise logical OR.
880//
881def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
882
883//
884// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
885// (All args are optional) MIPS16e
886// Purpose: Restore Registers and Deallocate Stack Frame
887// To deallocate a stack frame before exit from a subroutine,
888// restoring return address and static registers, and adjusting
889// stack
890//
891
892// fixed form for restoring RA and the frame
893// for direct object emitter, encoding needs to be adjusted for the
894// frame size
895//
896let ra=1, s=0,s0=1,s1=1 in
897def RestoreRaF16:
898  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
899             "restore\t$$ra,  $$s0, $$s1, $$s2, $frame_size", [], IILoad >, MayLoad {
900  let isCodeGenOnly = 1;
901  let Defs = [S0, S1, S2, RA, SP];
902  let Uses = [SP];
903}
904
905// Use Restore to increment SP since SP is not a Mip 16 register, this
906// is an easy way to do that which does not require a register.
907//
908let ra=0, s=0,s0=0,s1=0 in
909def RestoreIncSpF16:
910  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
911             "restore\t$frame_size", [], IILoad >, MayLoad {
912  let isCodeGenOnly = 1;
913  let Defs = [SP];
914  let Uses = [SP];
915}
916
917//
918// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
919// MIPS16e
920// Purpose: Save Registers and Set Up Stack Frame
921// To set up a stack frame on entry to a subroutine,
922// saving return address and static registers, and adjusting stack
923//
924let ra=1, s=1,s0=1,s1=1 in
925def SaveRaF16:
926  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
927             "save\t$$ra, $$s0, $$s1, $$s2, $frame_size", [], IIStore >, MayStore {
928  let isCodeGenOnly = 1;
929  let Uses = [RA, SP, S0, S1, S2];
930  let Defs = [SP];
931}
932
933//
934// Use Save to decrement the SP by a constant since SP is not
935// a Mips16 register.
936//
937let ra=0, s=0,s0=0,s1=0 in
938def SaveDecSpF16:
939  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
940             "save\t$frame_size", [], IIStore >, MayStore {
941  let isCodeGenOnly = 1;
942  let Uses = [SP];
943  let Defs = [SP];
944}
945//
946// Format: SB ry, offset(rx) MIPS16e
947// Purpose: Store Byte (Extended)
948// To store a byte to memory.
949//
950def SbRxRyOffMemX16:
951  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore;
952
953//
954// The Sel(T) instructions are pseudos
955// T means that they use T8 implicitly.
956//
957//
958// Format: SelBeqZ rd, rs, rt
959// Purpose: if rt==0, do nothing
960//          else rs = rt
961//
962def SelBeqZ: Sel<"beqz">;
963
964//
965// Format:  SelTBteqZCmp rd, rs, rl, rr
966// Purpose: b = Cmp rl, rr.
967//          If b==0 then do nothing.
968//          if b!=0 then rd = rs
969//
970def SelTBteqZCmp: SelT<"bteqz", "cmp">;
971
972//
973// Format:  SelTBteqZCmpi rd, rs, rl, rr
974// Purpose: b = Cmpi rl, imm.
975//          If b==0 then do nothing.
976//          if b!=0 then rd = rs
977//
978def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
979
980//
981// Format:  SelTBteqZSlt rd, rs, rl, rr
982// Purpose: b = Slt rl, rr.
983//          If b==0 then do nothing.
984//          if b!=0 then rd = rs
985//
986def SelTBteqZSlt: SelT<"bteqz", "slt">;
987
988//
989// Format:  SelTBteqZSlti rd, rs, rl, rr
990// Purpose: b = Slti rl, imm.
991//          If b==0 then do nothing.
992//          if b!=0 then rd = rs
993//
994def SelTBteqZSlti: SeliT<"bteqz", "slti">;
995
996//
997// Format:  SelTBteqZSltu rd, rs, rl, rr
998// Purpose: b = Sltu rl, rr.
999//          If b==0 then do nothing.
1000//          if b!=0 then rd = rs
1001//
1002def SelTBteqZSltu: SelT<"bteqz", "sltu">;
1003
1004//
1005// Format:  SelTBteqZSltiu rd, rs, rl, rr
1006// Purpose: b = Sltiu rl, imm.
1007//          If b==0 then do nothing.
1008//          if b!=0 then rd = rs
1009//
1010def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
1011
1012//
1013// Format: SelBnez rd, rs, rt
1014// Purpose: if rt!=0, do nothing
1015//          else rs = rt
1016//
1017def SelBneZ: Sel<"bnez">;
1018
1019//
1020// Format:  SelTBtneZCmp rd, rs, rl, rr
1021// Purpose: b = Cmp rl, rr.
1022//          If b!=0 then do nothing.
1023//          if b0=0 then rd = rs
1024//
1025def SelTBtneZCmp: SelT<"btnez", "cmp">;
1026
1027//
1028// Format:  SelTBtnezCmpi rd, rs, rl, rr
1029// Purpose: b = Cmpi rl, imm.
1030//          If b!=0 then do nothing.
1031//          if b==0 then rd = rs
1032//
1033def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1034
1035//
1036// Format:  SelTBtneZSlt rd, rs, rl, rr
1037// Purpose: b = Slt rl, rr.
1038//          If b!=0 then do nothing.
1039//          if b==0 then rd = rs
1040//
1041def SelTBtneZSlt: SelT<"btnez", "slt">;
1042
1043//
1044// Format:  SelTBtneZSlti rd, rs, rl, rr
1045// Purpose: b = Slti rl, imm.
1046//          If b!=0 then do nothing.
1047//          if b==0 then rd = rs
1048//
1049def SelTBtneZSlti: SeliT<"btnez", "slti">;
1050
1051//
1052// Format:  SelTBtneZSltu rd, rs, rl, rr
1053// Purpose: b = Sltu rl, rr.
1054//          If b!=0 then do nothing.
1055//          if b==0 then rd = rs
1056//
1057def SelTBtneZSltu: SelT<"btnez", "sltu">;
1058
1059//
1060// Format:  SelTBtneZSltiu rd, rs, rl, rr
1061// Purpose: b = Slti rl, imm.
1062//          If b!=0 then do nothing.
1063//          if b==0 then rd = rs
1064//
1065def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1066//
1067//
1068// Format: SH ry, offset(rx) MIPS16e
1069// Purpose: Store Halfword (Extended)
1070// To store a halfword to memory.
1071//
1072def ShRxRyOffMemX16:
1073  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore;
1074
1075//
1076// Format: SLL rx, ry, sa MIPS16e
1077// Purpose: Shift Word Left Logical (Extended)
1078// To execute a left-shift of a word by a fixed number of bits—0 to 31 bits.
1079//
1080def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
1081
1082//
1083// Format: SLLV ry, rx MIPS16e
1084// Purpose: Shift Word Left Logical Variable
1085// To execute a left-shift of a word by a variable number of bits.
1086//
1087def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
1088
1089// Format: SLTI rx, immediate MIPS16e
1090// Purpose: Set on Less Than Immediate
1091// To record the result of a less-than comparison with a constant.
1092//
1093//
1094def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIAlu> {
1095  let Defs = [T8];
1096}
1097
1098//
1099// Format: SLTI rx, immediate MIPS16e
1100// Purpose: Set on Less Than Immediate (Extended)
1101// To record the result of a less-than comparison with a constant.
1102//
1103//
1104def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIAlu> {
1105  let Defs = [T8];
1106}
1107
1108def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1109
1110// Format: SLTIU rx, immediate MIPS16e
1111// Purpose: Set on Less Than Immediate Unsigned
1112// To record the result of a less-than comparison with a constant.
1113//
1114//
1115def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIAlu> {
1116  let Defs = [T8];
1117}
1118
1119//
1120// Format: SLTI rx, immediate MIPS16e
1121// Purpose: Set on Less Than Immediate Unsigned (Extended)
1122// To record the result of a less-than comparison with a constant.
1123//
1124//
1125def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIAlu> {
1126  let Defs = [T8];
1127}
1128//
1129// Format: SLTIU rx, immediate MIPS16e
1130// Purpose: Set on Less Than Immediate Unsigned (Extended)
1131// To record the result of a less-than comparison with a constant.
1132//
1133def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1134
1135//
1136// Format: SLT rx, ry MIPS16e
1137// Purpose: Set on Less Than
1138// To record the result of a less-than comparison.
1139//
1140def SltRxRy16: FRR16R_ins<0b00010, "slt", IIAlu>{
1141  let Defs = [T8];
1142}
1143
1144def SltCCRxRy16: FCCRR16_ins<"slt">;
1145
1146// Format: SLTU rx, ry MIPS16e
1147// Purpose: Set on Less Than Unsigned
1148// To record the result of an unsigned less-than comparison.
1149//
1150def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIAlu>{
1151  let Defs = [T8];
1152}
1153
1154def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1155  let isCodeGenOnly=1;
1156  let Defs = [T8];
1157}
1158
1159
1160def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1161//
1162// Format: SRAV ry, rx MIPS16e
1163// Purpose: Shift Word Right Arithmetic Variable
1164// To execute an arithmetic right-shift of a word by a variable
1165// number of bits.
1166//
1167def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
1168
1169
1170//
1171// Format: SRA rx, ry, sa MIPS16e
1172// Purpose: Shift Word Right Arithmetic (Extended)
1173// To execute an arithmetic right-shift of a word by a fixed
1174// number of bits—1 to 8 bits.
1175//
1176def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
1177
1178
1179//
1180// Format: SRLV ry, rx MIPS16e
1181// Purpose: Shift Word Right Logical Variable
1182// To execute a logical right-shift of a word by a variable
1183// number of bits.
1184//
1185def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
1186
1187
1188//
1189// Format: SRL rx, ry, sa MIPS16e
1190// Purpose: Shift Word Right Logical (Extended)
1191// To execute a logical right-shift of a word by a fixed
1192// number of bits—1 to 31 bits.
1193//
1194def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
1195
1196//
1197// Format: SUBU rz, rx, ry MIPS16e
1198// Purpose: Subtract Unsigned Word
1199// To subtract 32-bit integers
1200//
1201def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
1202
1203//
1204// Format: SW ry, offset(rx) MIPS16e
1205// Purpose: Store Word (Extended)
1206// To store a word to memory.
1207//
1208def SwRxRyOffMemX16:
1209  FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore;
1210
1211//
1212// Format: SW rx, offset(sp) MIPS16e
1213// Purpose: Store Word rx (SP-Relative)
1214// To store an SP-relative word to memory.
1215//
1216def SwRxSpImmX16: FEXT_RI16_SP_Store_explicit_ins
1217  <0b11010, "sw", IIStore>, MayStore;
1218
1219//
1220//
1221// Format: XOR rx, ry MIPS16e
1222// Purpose: Xor
1223// To do a bitwise logical XOR.
1224//
1225def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
1226
1227class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1228  let Predicates = [InMips16Mode];
1229}
1230
1231// Unary Arith/Logic
1232//
1233class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1234  Mips16Pat<(OpNode CPU16Regs:$r),
1235            (I CPU16Regs:$r)>;
1236
1237def: ArithLogicU_pat<not, NotRxRy16>;
1238def: ArithLogicU_pat<ineg, NegRxRy16>;
1239
1240class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1241  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1242            (I CPU16Regs:$l, CPU16Regs:$r)>;
1243
1244def: ArithLogic16_pat<add, AdduRxRyRz16>;
1245def: ArithLogic16_pat<and, AndRxRxRy16>;
1246def: ArithLogic16_pat<mul, MultRxRyRz16>;
1247def: ArithLogic16_pat<or, OrRxRxRy16>;
1248def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1249def: ArithLogic16_pat<xor, XorRxRxRy16>;
1250
1251// Arithmetic and logical instructions with 2 register operands.
1252
1253class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1254  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1255            (I CPU16Regs:$in, imm_type:$imm)>;
1256
1257def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1258def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1259def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1260def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1261def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1262
1263class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1264  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1265            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1266
1267def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1268def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1269def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1270
1271class LoadM16_pat<PatFrag OpNode, Instruction I> :
1272  Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
1273
1274def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
1275def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
1276def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
1277def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
1278def: LoadM16_pat<load, LwRxRyOffMemX16>;
1279
1280class StoreM16_pat<PatFrag OpNode, Instruction I> :
1281  Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
1282            (I CPU16Regs:$r, addr16:$addr)>;
1283
1284def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
1285def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
1286def: StoreM16_pat<store, SwRxRyOffMemX16>;
1287
1288// Unconditional branch
1289class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1290  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1291    let Predicates = [InMips16Mode];
1292  }
1293
1294def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1295                (Jal16 tglobaladdr:$dst)>;
1296
1297def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1298                (Jal16 texternalsym:$dst)>;
1299
1300// Indirect branch
1301def: Mips16Pat<
1302  (brind CPU16Regs:$rs),
1303  (JrcRx16 CPU16Regs:$rs)>;
1304
1305// Jump and Link (Call)
1306let isCall=1, hasDelaySlot=0 in
1307def JumpLinkReg16:
1308  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1309              "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>;
1310
1311// Mips16 pseudos
1312let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1313  hasExtraSrcRegAllocReq = 1 in
1314def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1315
1316
1317// setcc patterns
1318
1319class SetCC_R16<PatFrag cond_op, Instruction I>:
1320  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1321            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1322
1323class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1324  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1325            (I CPU16Regs:$rx, imm_type:$imm16)>;
1326
1327
1328def: Mips16Pat<(i32  addr16:$addr),
1329               (AddiuRxRyOffMemX16  addr16:$addr)>;
1330
1331
1332// Large (>16 bit) immediate loads
1333def : Mips16Pat<(i32 imm:$imm),
1334                (OrRxRxRy16 (SllX16 (LiRxImmX16 (HI16 imm:$imm)), 16),
1335                (LiRxImmX16 (LO16 imm:$imm)))>;
1336
1337// Carry MipsPatterns
1338def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
1339                (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1340def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
1341                (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1342def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
1343                (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
1344
1345//
1346// Some branch conditional patterns are not generated by llvm at this time.
1347// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1348// comparison they are used and for unsigned a different pattern is used.
1349// I am pushing upstream from the full mips16 port and it seemed that I needed
1350// these earlier and the mips32 port has these but now I cannot create test
1351// cases that use these patterns. While I sort this all out I will leave these
1352// extra patterns commented out and if I can be sure they are really not used,
1353// I will delete the code. I don't want to check the code in uncommented without
1354// a valid test case. In some cases, the compiler is generating patterns with
1355// setcc instead and earlier I had implemented setcc first so may have masked
1356// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1357// figure out how to enable the brcond patterns or else possibly new
1358// combinations of of brcond and setcc.
1359//
1360//
1361// bcond-seteq
1362//
1363def: Mips16Pat
1364  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1365   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1366  >;
1367
1368
1369def: Mips16Pat
1370  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1371   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1372  >;
1373
1374def: Mips16Pat
1375  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1376   (BeqzRxImmX16 CPU16Regs:$rx, bb:$targ16)
1377  >;
1378
1379//
1380// bcond-setgt (do we need to have this pair of setlt, setgt??)
1381//
1382def: Mips16Pat
1383  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1384   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1385  >;
1386
1387//
1388// bcond-setge
1389//
1390def: Mips16Pat
1391  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1392   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1393  >;
1394
1395//
1396// never called because compiler transforms a >= k to a > (k-1)
1397def: Mips16Pat
1398  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1399   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1400  >;
1401
1402//
1403// bcond-setlt
1404//
1405def: Mips16Pat
1406  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1407   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1408  >;
1409
1410def: Mips16Pat
1411  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1412   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1413  >;
1414
1415//
1416// bcond-setle
1417//
1418def: Mips16Pat
1419  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1420   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1421  >;
1422
1423//
1424// bcond-setne
1425//
1426def: Mips16Pat
1427  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1428   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1429  >;
1430
1431def: Mips16Pat
1432  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1433   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1434  >;
1435
1436def: Mips16Pat
1437  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1438   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1439  >;
1440
1441//
1442// This needs to be there but I forget which code will generate it
1443//
1444def: Mips16Pat
1445  <(brcond CPU16Regs:$rx, bb:$targ16),
1446   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1447  >;
1448
1449//
1450
1451//
1452// bcond-setugt
1453//
1454//def: Mips16Pat
1455//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1456//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1457//  >;
1458
1459//
1460// bcond-setuge
1461//
1462//def: Mips16Pat
1463//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1464//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1465//  >;
1466
1467
1468//
1469// bcond-setult
1470//
1471//def: Mips16Pat
1472//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1473//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1474//  >;
1475
1476def: UncondBranch16_pat<br, BimmX16>;
1477
1478// Small immediates
1479def: Mips16Pat<(i32 immSExt16:$in),
1480               (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
1481
1482def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1483
1484//
1485// MipsDivRem
1486//
1487def: Mips16Pat
1488  <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
1489   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1490
1491//
1492// MipsDivRemU
1493//
1494def: Mips16Pat
1495  <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
1496   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1497
1498//  signed a,b
1499//  x = (a>=b)?x:y
1500//
1501//  if !(a < b) x = y
1502//
1503def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1504                 CPU16Regs:$x, CPU16Regs:$y),
1505                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1506                 CPU16Regs:$a, CPU16Regs:$b)>;
1507
1508//  signed a,b
1509//  x = (a>b)?x:y
1510//
1511//  if  (b < a) x = y
1512//
1513def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1514                 CPU16Regs:$x, CPU16Regs:$y),
1515                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1516                 CPU16Regs:$b, CPU16Regs:$a)>;
1517
1518// unsigned a,b
1519// x = (a>=b)?x:y
1520//
1521// if !(a < b) x = y;
1522//
1523def : Mips16Pat<
1524  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1525   CPU16Regs:$x, CPU16Regs:$y),
1526  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1527   CPU16Regs:$a, CPU16Regs:$b)>;
1528
1529//  unsigned a,b
1530//  x = (a>b)?x:y
1531//
1532//  if (b < a) x = y
1533//
1534def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1535                 CPU16Regs:$x, CPU16Regs:$y),
1536                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1537                 CPU16Regs:$b, CPU16Regs:$a)>;
1538
1539// signed
1540// x = (a >= k)?x:y
1541// due to an llvm optimization, i don't think that this will ever
1542// be used. This is transformed into x = (a > k-1)?x:y
1543//
1544//
1545
1546//def : Mips16Pat<
1547//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1548//   CPU16Regs:$T, CPU16Regs:$F),
1549//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1550//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1551
1552//def : Mips16Pat<
1553//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1554//   CPU16Regs:$T, CPU16Regs:$F),
1555//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1556//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1557
1558// signed
1559// x = (a < k)?x:y
1560//
1561// if !(a < k) x = y;
1562//
1563def : Mips16Pat<
1564  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1565   CPU16Regs:$x, CPU16Regs:$y),
1566  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1567   CPU16Regs:$a, immSExt16:$b)>;
1568
1569
1570//
1571//
1572// signed
1573// x = (a <= b)? x : y
1574//
1575// if  (b < a) x = y
1576//
1577def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1578                 CPU16Regs:$x, CPU16Regs:$y),
1579                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1580                 CPU16Regs:$b, CPU16Regs:$a)>;
1581
1582//
1583// unnsigned
1584// x = (a <= b)? x : y
1585//
1586// if  (b < a) x = y
1587//
1588def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1589                 CPU16Regs:$x, CPU16Regs:$y),
1590                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1591                 CPU16Regs:$b, CPU16Regs:$a)>;
1592
1593//
1594// signed/unsigned
1595// x = (a == b)? x : y
1596//
1597// if (a != b) x = y
1598//
1599def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1600                 CPU16Regs:$x, CPU16Regs:$y),
1601                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1602                 CPU16Regs:$b, CPU16Regs:$a)>;
1603
1604//
1605// signed/unsigned
1606// x = (a == 0)? x : y
1607//
1608// if (a != 0) x = y
1609//
1610def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1611                 CPU16Regs:$x, CPU16Regs:$y),
1612                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1613                 CPU16Regs:$a)>;
1614
1615
1616//
1617// signed/unsigned
1618// x = (a == k)? x : y
1619//
1620// if (a != k) x = y
1621//
1622def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1623                 CPU16Regs:$x, CPU16Regs:$y),
1624                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1625                 CPU16Regs:$a, immZExt16:$k)>;
1626
1627
1628//
1629// signed/unsigned
1630// x = (a != b)? x : y
1631//
1632// if (a == b) x = y
1633//
1634//
1635def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1636                 CPU16Regs:$x, CPU16Regs:$y),
1637                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1638                 CPU16Regs:$b, CPU16Regs:$a)>;
1639
1640//
1641// signed/unsigned
1642// x = (a != 0)? x : y
1643//
1644// if (a == 0) x = y
1645//
1646def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1647                 CPU16Regs:$x, CPU16Regs:$y),
1648                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1649                 CPU16Regs:$a)>;
1650
1651// signed/unsigned
1652// x = (a)? x : y
1653//
1654// if (!a) x = y
1655//
1656def : Mips16Pat<(select  CPU16Regs:$a,
1657                 CPU16Regs:$x, CPU16Regs:$y),
1658      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1659       CPU16Regs:$a)>;
1660
1661
1662//
1663// signed/unsigned
1664// x = (a != k)? x : y
1665//
1666// if (a == k) x = y
1667//
1668def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1669                 CPU16Regs:$x, CPU16Regs:$y),
1670                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1671                 CPU16Regs:$a, immZExt16:$k)>;
1672
1673//
1674// When writing C code to test setxx these patterns,
1675// some will be transformed into
1676// other things. So we test using C code but using -O3 and -O0
1677//
1678// seteq
1679//
1680def : Mips16Pat
1681  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1682   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1683
1684def : Mips16Pat
1685  <(seteq CPU16Regs:$lhs, 0),
1686   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1687
1688
1689//
1690// setge
1691//
1692
1693def: Mips16Pat
1694  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1695   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1696   (LiRxImmX16 1))>;
1697
1698//
1699// For constants, llvm transforms this to:
1700// x > (k -1) and then reverses the operands to use setlt. So this pattern
1701// is not used now by the compiler. (Presumably checking that k-1 does not
1702// overflow). The compiler never uses this at a the current time, due to
1703// other optimizations.
1704//
1705//def: Mips16Pat
1706//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1707//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1708//   (LiRxImmX16 1))>;
1709
1710// This catches the x >= -32768 case by transforming it to  x > -32769
1711//
1712def: Mips16Pat
1713  <(setgt CPU16Regs:$lhs, -32769),
1714   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1715   (LiRxImmX16 1))>;
1716
1717//
1718// setgt
1719//
1720//
1721
1722def: Mips16Pat
1723  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1724   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1725
1726//
1727// setle
1728//
1729def: Mips16Pat
1730  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1731   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1732
1733//
1734// setlt
1735//
1736def: SetCC_R16<setlt, SltCCRxRy16>;
1737
1738def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1739
1740//
1741// setne
1742//
1743def : Mips16Pat
1744  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1745   (SltuCCRxRy16 (LiRxImmX16 0),
1746   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1747
1748
1749//
1750// setuge
1751//
1752def: Mips16Pat
1753  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1754   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1755   (LiRxImmX16 1))>;
1756
1757// this pattern will never be used because the compiler will transform
1758// x >= k to x > (k - 1) and then use SLT
1759//
1760//def: Mips16Pat
1761//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1762//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1763//   (LiRxImmX16 1))>;
1764
1765//
1766// setugt
1767//
1768def: Mips16Pat
1769  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1770   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1771
1772//
1773// setule
1774//
1775def: Mips16Pat
1776  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1777   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1778
1779//
1780// setult
1781//
1782def: SetCC_R16<setult, SltuCCRxRy16>;
1783
1784def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1785
1786def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1787               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1788
1789// hi/lo relocs
1790
1791def : Mips16Pat<(MipsHi tglobaladdr:$in),
1792                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1793def : Mips16Pat<(MipsHi tjumptable:$in),
1794                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1795def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
1796                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1797
1798// wrapper_pic
1799class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1800  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1801            (ADDiuOp RC:$gp, node:$in)>;
1802
1803
1804def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1805def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1806
1807def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1808                (LbuRxRyOffMemX16  addr16:$src)>;
1809def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1810                (LhuRxRyOffMemX16  addr16:$src)>;
1811
1812def: Mips16Pat<(trap), (Break16)>;
1813
1814