Mips16InstrInfo.td revision 5404ed811de113a21c99366c43b1209f3ba40c62
1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 :
18  ComplexPattern<iPTR, 3, "selectAddr16", [frameindex], [SDNPWantParent]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16, CPU16RegsPlusSP);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16_ea : Operand<i32> {
29  let PrintMethod = "printMemOperandEA";
30  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
31  let EncoderMethod = "getMemEncoding";
32}
33
34//
35//
36// I8 instruction format
37//
38
39class FI816_ins_base<bits<3> _func, string asmstr,
40                     string asmstr2, InstrItinClass itin>:
41  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
42        [], itin>;
43
44
45class FI816_SP_ins<bits<3> _func, string asmstr,
46                   InstrItinClass itin>:
47  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
48
49//
50// RI instruction format
51//
52
53
54class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
55                     InstrItinClass itin>:
56  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
57        !strconcat(asmstr, asmstr2), [], itin>;
58
59class FRI16_ins<bits<5> op, string asmstr,
60                InstrItinClass itin>:
61  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
62
63class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
64                     InstrItinClass itin>:
65  FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
66        !strconcat(asmstr, asmstr2), [], itin>;
67
68class FRI16R_ins<bits<5> op, string asmstr,
69                InstrItinClass itin>:
70  FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
71
72class F2RI16_ins<bits<5> _op, string asmstr,
73                     InstrItinClass itin>:
74  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
75        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
76  let Constraints = "$rx_ = $rx";
77}
78
79class FRI16_B_ins<bits<5> _op, string asmstr,
80                  InstrItinClass itin>:
81  FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
82        !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
83//
84// Compare a register and immediate and place result in CC
85// Implicit use of T8
86//
87// EXT-CCRR Instruction format
88//
89class FEXT_CCRXI16_ins<string asmstr>:
90  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
91               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
92  let isCodeGenOnly=1;
93  let usesCustomInserter = 1;
94}
95
96// JAL and JALX instruction format
97//
98class FJAL16_ins<bits<1> _X, string asmstr,
99                 InstrItinClass itin>:
100  FJAL16<_X, (outs), (ins simm20:$imm),
101         !strconcat(asmstr, "\t$imm\n\tnop"),[],
102         itin>  {
103  let isCodeGenOnly=1;
104}
105//
106// EXT-I instruction format
107//
108class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
109  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
110           !strconcat(asmstr, "\t$imm16"),[], itin>;
111
112//
113// EXT-I8 instruction format
114//
115
116class FEXT_I816_ins_base<bits<3> _func, string asmstr,
117                         string asmstr2, InstrItinClass itin>:
118  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
119            [], itin>;
120
121class FEXT_I816_ins<bits<3> _func, string asmstr,
122                    InstrItinClass itin>:
123  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
124
125class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
126                       InstrItinClass itin>:
127      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
128
129//
130// Assembler formats in alphabetical order.
131// Natural and pseudos are mixed together.
132//
133// Compare two registers and place result in CC
134// Implicit use of T8
135//
136// CC-RR Instruction format
137//
138class FCCRR16_ins<string asmstr> :
139  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
140               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
141  let isCodeGenOnly=1;
142  let usesCustomInserter = 1;
143}
144
145//
146// EXT-RI instruction format
147//
148
149class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
150                         InstrItinClass itin>:
151  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
152                  !strconcat(asmstr, asmstr2), [], itin>;
153
154class FEXT_RI16_ins<bits<5> _op, string asmstr,
155                    InstrItinClass itin>:
156  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
157
158class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
159                         InstrItinClass itin>:
160  FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
161                  !strconcat(asmstr, asmstr2), [], itin>;
162
163class FEXT_RI16R_ins<bits<5> _op, string asmstr,
164                    InstrItinClass itin>:
165  FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
166
167class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
168  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
169
170class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
171                      InstrItinClass itin>:
172  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
173            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
174
175class FEXT_2RI16_ins<bits<5> _op, string asmstr,
176                     InstrItinClass itin>:
177  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
178            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
179  let Constraints = "$rx_ = $rx";
180}
181
182
183// this has an explicit sp argument that we ignore to work around a problem
184// in the compiler
185class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
186                                InstrItinClass itin>:
187  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
188            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
189
190class FEXT_RI16_SP_Store_explicit_ins<bits<5> _op, string asmstr,
191                                InstrItinClass itin>:
192  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, CPUSPReg:$ry, simm16:$imm),
193            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
194
195//
196// EXT-RRI instruction format
197//
198
199class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
200                         InstrItinClass itin>:
201  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
202             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
203
204class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
205                          InstrItinClass itin>:
206  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
207             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
208
209//
210//
211// EXT-RRI-A instruction format
212//
213
214class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
215                           InstrItinClass itin>:
216  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
217               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
218
219//
220// EXT-SHIFT instruction format
221//
222class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
223  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa),
224               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
225
226//
227// EXT-T8I8
228//
229class FEXT_T8I816_ins<string asmstr, string asmstr2>:
230  MipsPseudo16<(outs),
231               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
232               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
233               !strconcat(asmstr, "\t$imm"))),[]> {
234  let isCodeGenOnly=1;
235  let usesCustomInserter = 1;
236}
237
238//
239// EXT-T8I8I
240//
241class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
242  MipsPseudo16<(outs),
243               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
244               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
245               !strconcat(asmstr, "\t$targ"))), []> {
246  let isCodeGenOnly=1;
247  let usesCustomInserter = 1;
248}
249//
250
251
252//
253// I8_MOVR32 instruction format (used only by the MOVR32 instructio
254//
255class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
256       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
257       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
258
259//
260// I8_MOV32R instruction format (used only by MOV32R instruction)
261//
262
263class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
264  FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
265               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
266
267//
268// This are pseudo formats for multiply
269// This first one can be changed to non pseudo now.
270//
271// MULT
272//
273class FMULT16_ins<string asmstr, InstrItinClass itin> :
274  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
275               !strconcat(asmstr, "\t$rx, $ry"), []>;
276
277//
278// MULT-LO
279//
280class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
281  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
282               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
283  let isCodeGenOnly=1;
284}
285
286//
287// RR-type instruction format
288//
289
290class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
291  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
292        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
293}
294
295class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
296  FRRBreak16<(outs), (ins), asmstr, [], itin> {
297  let Code=0;
298}
299
300class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
301  FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
302        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
303}
304
305class FRRTR16_ins<string asmstr> :
306  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
307               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
308
309//
310// maybe refactor but need a $zero as a dummy first parameter
311//
312class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
313  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
314        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
315
316class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
317  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
318        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
319
320
321class FRR16_M_ins<bits<5> f, string asmstr,
322                  InstrItinClass itin> :
323  FRR16<f, (outs CPU16Regs:$rx), (ins),
324        !strconcat(asmstr, "\t$rx"), [], itin>;
325
326class FRxRxRy16_ins<bits<5> f, string asmstr,
327                    InstrItinClass itin> :
328  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
329            !strconcat(asmstr, "\t$rz, $ry"),
330            [], itin> {
331  let Constraints = "$rx = $rz";
332}
333
334let rx=0 in
335class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
336                              string asmstr, InstrItinClass itin>:
337  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
338              [], itin> ;
339
340
341class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
342                      string asmstr, InstrItinClass itin>:
343  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
344              !strconcat(asmstr, "\t $rx"), [], itin> ;
345
346//
347// RRR-type instruction format
348//
349
350class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
351  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
352         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
353
354//
355// These Sel patterns support the generation of conditional move
356// pseudo instructions.
357//
358// The nomenclature uses the components making up the pseudo and may
359// be a bit counter intuitive when compared with the end result we seek.
360// For example using a bqez in the example directly below results in the
361// conditional move being done if the tested register is not zero.
362// I considered in easier to check by keeping the pseudo consistent with
363// it's components but it could have been done differently.
364//
365// The simplest case is when can test and operand directly and do the
366// conditional move based on a simple mips16 conditional
367//  branch instruction.
368// for example:
369// if $op == beqz or bnez:
370//
371// $op1 $rt, .+4
372// move $rd, $rs
373//
374// if $op == beqz, then if $rt != 0, then the conditional assignment
375// $rd = $rs is done.
376
377// if $op == bnez, then if $rt == 0, then the conditional assignment
378// $rd = $rs is done.
379//
380// So this pseudo class only has one operand, i.e. op
381//
382class Sel<string op>:
383  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
384               CPU16Regs:$rt),
385               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
386  //let isCodeGenOnly=1;
387  let Constraints = "$rd = $rd_";
388  let usesCustomInserter = 1;
389}
390
391//
392// The next two instruction classes allow for an operand which tests
393// two operands and returns a value in register T8 and
394//then does a conditional branch based on the value of T8
395//
396
397// op2 can be cmpi or slti/sltiu
398// op1 can bteqz or btnez
399// the operands for op2 are a register and a signed constant
400//
401// $op2 $t, $imm  ;test register t and branch conditionally
402// $op1 .+4       ;op1 is a conditional branch
403// move $rd, $rs
404//
405//
406class SeliT<string op1, string op2>:
407  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
408                                       CPU16Regs:$rl, simm16:$imm),
409               !strconcat(op2,
410               !strconcat("\t$rl, $imm\n\t",
411               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
412  let isCodeGenOnly=1;
413  let Constraints = "$rd = $rd_";
414  let usesCustomInserter = 1;
415}
416
417//
418// op2 can be cmp or slt/sltu
419// op1 can be bteqz or btnez
420// the operands for op2 are two registers
421// op1 is a conditional branch
422//
423//
424// $op2 $rl, $rr  ;test registers rl,rr
425// $op1 .+4       ;op2 is a conditional branch
426// move $rd, $rs
427//
428//
429class SelT<string op1, string op2>:
430  MipsPseudo16<(outs CPU16Regs:$rd_),
431               (ins CPU16Regs:$rd, CPU16Regs:$rs,
432                CPU16Regs:$rl, CPU16Regs:$rr),
433               !strconcat(op2,
434               !strconcat("\t$rl, $rr\n\t",
435               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
436  let isCodeGenOnly=1;
437  let Constraints = "$rd = $rd_";
438  let usesCustomInserter = 1;
439}
440
441//
442// 32 bit constant
443//
444def imm32: Operand<i32>;
445
446def Constant32:
447  MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
448
449def LwConstant32:
450  MipsPseudo16<(outs CPU16Regs:$rx), (ins imm32:$imm),
451    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
452
453
454//
455// Some general instruction class info
456//
457//
458
459class ArithLogic16Defs<bit isCom=0> {
460  bits<5> shamt = 0;
461  bit isCommutable = isCom;
462  bit isReMaterializable = 1;
463  bit neverHasSideEffects = 1;
464}
465
466class branch16 {
467  bit isBranch = 1;
468  bit isTerminator = 1;
469  bit isBarrier = 1;
470}
471
472class cbranch16 {
473  bit isBranch = 1;
474  bit isTerminator = 1;
475}
476
477class MayLoad {
478  bit mayLoad = 1;
479}
480
481class MayStore {
482  bit mayStore = 1;
483}
484//
485
486
487// Format: ADDIU rx, immediate MIPS16e
488// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
489// To add a constant to a 32-bit integer.
490//
491def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
492
493def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIAlu>,
494  ArithLogic16Defs<0> {
495  let AddedComplexity = 5;
496}
497def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
498  ArithLogic16Defs<0> {
499  let isCodeGenOnly = 1;
500}
501
502def AddiuRxRyOffMemX16:
503  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
504
505//
506
507// Format: ADDIU rx, pc, immediate MIPS16e
508// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
509// To add a constant to the program counter.
510//
511def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
512
513//
514// Format: ADDIU sp, immediate MIPS16e
515// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
516// To add a constant to the stack pointer.
517//
518def AddiuSpImm16
519  : FI816_SP_ins<0b011, "addiu", IIAlu> {
520  let Defs = [SP];
521  let Uses = [SP];
522  let AddedComplexity = 5;
523}
524
525def AddiuSpImmX16
526  : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
527  let Defs = [SP];
528  let Uses = [SP];
529}
530
531//
532// Format: ADDU rz, rx, ry MIPS16e
533// Purpose: Add Unsigned Word (3-Operand)
534// To add 32-bit integers.
535//
536
537def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
538
539//
540// Format: AND rx, ry MIPS16e
541// Purpose: AND
542// To do a bitwise logical AND.
543
544def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
545
546
547//
548// Format: BEQZ rx, offset MIPS16e
549// Purpose: Branch on Equal to Zero
550// To test a GPR then do a PC-relative conditional branch.
551//
552def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
553
554
555//
556// Format: BEQZ rx, offset MIPS16e
557// Purpose: Branch on Equal to Zero (Extended)
558// To test a GPR then do a PC-relative conditional branch.
559//
560def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
561
562// Format: B offset MIPS16e
563// Purpose: Unconditional Branch
564// To do an unconditional PC-relative branch.
565//
566def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
567
568//
569// Format: BNEZ rx, offset MIPS16e
570// Purpose: Branch on Not Equal to Zero
571// To test a GPR then do a PC-relative conditional branch.
572//
573def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
574
575//
576// Format: BNEZ rx, offset MIPS16e
577// Purpose: Branch on Not Equal to Zero (Extended)
578// To test a GPR then do a PC-relative conditional branch.
579//
580def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
581
582
583//
584//Format: BREAK immediate
585// Purpose: Breakpoint
586// To cause a Breakpoint exception.
587
588def Break16: FRRBreakNull16_ins<"break 0", NoItinerary>; 
589//
590// Format: BTEQZ offset MIPS16e
591// Purpose: Branch on T Equal to Zero (Extended)
592// To test special register T then do a PC-relative conditional branch.
593//
594def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
595  let Uses = [T8];
596}
597
598def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
599
600def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
601  cbranch16;
602
603def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
604
605def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
606
607def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
608
609def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
610  cbranch16;
611
612//
613// Format: BTNEZ offset MIPS16e
614// Purpose: Branch on T Not Equal to Zero (Extended)
615// To test special register T then do a PC-relative conditional branch.
616//
617def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16 {
618  let Uses = [T8];
619}
620
621def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
622
623def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
624
625def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
626
627def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
628
629def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
630
631def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
632  cbranch16;
633
634//
635// Format: CMP rx, ry MIPS16e
636// Purpose: Compare
637// To compare the contents of two GPRs.
638//
639def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIAlu> {
640  let Defs = [T8];
641}
642
643//
644// Format: CMPI rx, immediate MIPS16e
645// Purpose: Compare Immediate
646// To compare a constant with the contents of a GPR.
647//
648def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIAlu> {
649  let Defs = [T8];
650}
651
652//
653// Format: CMPI rx, immediate MIPS16e
654// Purpose: Compare Immediate (Extended)
655// To compare a constant with the contents of a GPR.
656//
657def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIAlu> {
658  let Defs = [T8];
659}
660
661
662//
663// Format: DIV rx, ry MIPS16e
664// Purpose: Divide Word
665// To divide 32-bit signed integers.
666//
667def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
668  let Defs = [HI0, LO0];
669}
670
671//
672// Format: DIVU rx, ry MIPS16e
673// Purpose: Divide Unsigned Word
674// To divide 32-bit unsigned integers.
675//
676def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
677  let Defs = [HI0, LO0];
678}
679//
680// Format: JAL target MIPS16e
681// Purpose: Jump and Link
682// To execute a procedure call within the current 256 MB-aligned
683// region and preserve the current ISA.
684//
685
686def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
687  let hasDelaySlot = 0;  // not true, but we add the nop for now
688  let isCall=1;
689}
690
691//
692// Format: JR ra MIPS16e
693// Purpose: Jump Register Through Register ra
694// To execute a branch to the instruction address in the return
695// address register.
696//
697
698def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
699  let isBranch = 1;
700  let isIndirectBranch = 1;
701  let hasDelaySlot = 1;
702  let isTerminator=1;
703  let isBarrier=1;
704}
705
706def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIAlu> {
707  let isBranch = 1;
708  let isIndirectBranch = 1;
709  let isTerminator=1;
710  let isBarrier=1;
711}
712
713def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
714  let isBranch = 1;
715  let isIndirectBranch = 1;
716  let isTerminator=1;
717  let isBarrier=1;
718}
719//
720// Format: LB ry, offset(rx) MIPS16e
721// Purpose: Load Byte (Extended)
722// To load a byte from memory as a signed value.
723//
724def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad{
725  let isCodeGenOnly = 1;
726}
727
728//
729// Format: LBU ry, offset(rx) MIPS16e
730// Purpose: Load Byte Unsigned (Extended)
731// To load a byte from memory as a unsigned value.
732//
733def LbuRxRyOffMemX16:
734  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad {
735  let isCodeGenOnly = 1;
736}
737
738//
739// Format: LH ry, offset(rx) MIPS16e
740// Purpose: Load Halfword signed (Extended)
741// To load a halfword from memory as a signed value.
742//
743def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad{
744  let isCodeGenOnly = 1;
745}
746
747//
748// Format: LHU ry, offset(rx) MIPS16e
749// Purpose: Load Halfword unsigned (Extended)
750// To load a halfword from memory as an unsigned value.
751//
752def LhuRxRyOffMemX16:
753  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad {
754  let isCodeGenOnly = 1;
755}
756
757//
758// Format: LI rx, immediate MIPS16e
759// Purpose: Load Immediate
760// To load a constant into a GPR.
761//
762def LiRxImm16: FRI16_ins<0b01101, "li", IIAlu>;
763
764//
765// Format: LI rx, immediate MIPS16e
766// Purpose: Load Immediate (Extended)
767// To load a constant into a GPR.
768//
769def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
770
771def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIAlu> {
772  let isCodeGenOnly = 1;
773}
774
775//
776// Format: LW ry, offset(rx) MIPS16e
777// Purpose: Load Word (Extended)
778// To load a word from memory as a signed value.
779//
780def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad{
781  let isCodeGenOnly = 1;
782}
783
784// Format: LW rx, offset(sp) MIPS16e
785// Purpose: Load Word (SP-Relative, Extended)
786// To load an SP-relative word from memory as a signed value.
787//
788def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10110, "lw", IILoad>, MayLoad{
789  let Uses = [SP];
790}
791
792//
793// Format: MOVE r32, rz MIPS16e
794// Purpose: Move
795// To move the contents of a GPR to a GPR.
796//
797def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
798
799//
800// Format: MOVE ry, r32 MIPS16e
801//Purpose: Move
802// To move the contents of a GPR to a GPR.
803//
804def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
805
806//
807// Format: MFHI rx MIPS16e
808// Purpose: Move From HI Register
809// To copy the special purpose HI register to a GPR.
810//
811def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
812  let Uses = [HI0];
813  let neverHasSideEffects = 1;
814}
815
816//
817// Format: MFLO rx MIPS16e
818// Purpose: Move From LO Register
819// To copy the special purpose LO register to a GPR.
820//
821def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
822  let Uses = [LO0];
823  let neverHasSideEffects = 1;
824}
825
826//
827// Pseudo Instruction for mult
828//
829def MultRxRy16:  FMULT16_ins<"mult",  IIAlu> {
830  let isCommutable = 1;
831  let neverHasSideEffects = 1;
832  let Defs = [HI0, LO0];
833}
834
835def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
836  let isCommutable = 1;
837  let neverHasSideEffects = 1;
838  let Defs = [HI0, LO0];
839}
840
841//
842// Format: MULT rx, ry MIPS16e
843// Purpose: Multiply Word
844// To multiply 32-bit signed integers.
845//
846def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
847  let isCommutable = 1;
848  let neverHasSideEffects = 1;
849  let Defs = [HI0, LO0];
850}
851
852//
853// Format: MULTU rx, ry MIPS16e
854// Purpose: Multiply Unsigned Word
855// To multiply 32-bit unsigned integers.
856//
857def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
858  let isCommutable = 1;
859  let neverHasSideEffects = 1;
860  let Defs = [HI0, LO0];
861}
862
863//
864// Format: NEG rx, ry MIPS16e
865// Purpose: Negate
866// To negate an integer value.
867//
868def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
869
870//
871// Format: NOT rx, ry MIPS16e
872// Purpose: Not
873// To complement an integer value
874//
875def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
876
877//
878// Format: OR rx, ry MIPS16e
879// Purpose: Or
880// To do a bitwise logical OR.
881//
882def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
883
884//
885// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
886// (All args are optional) MIPS16e
887// Purpose: Restore Registers and Deallocate Stack Frame
888// To deallocate a stack frame before exit from a subroutine,
889// restoring return address and static registers, and adjusting
890// stack
891//
892
893// fixed form for restoring RA and the frame
894// for direct object emitter, encoding needs to be adjusted for the
895// frame size
896//
897let ra=1, s=0,s0=1,s1=1 in
898def RestoreRaF16:
899  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
900             "restore\t$$ra,  $$s0, $$s1, $$s2, $frame_size", [], IILoad >, MayLoad {
901  let isCodeGenOnly = 1;
902  let Defs = [S0, S1, S2, RA, SP];
903  let Uses = [SP];
904}
905
906// Use Restore to increment SP since SP is not a Mip 16 register, this
907// is an easy way to do that which does not require a register.
908//
909let ra=0, s=0,s0=0,s1=0 in
910def RestoreIncSpF16:
911  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
912             "restore\t$frame_size", [], IILoad >, MayLoad {
913  let isCodeGenOnly = 1;
914  let Defs = [SP];
915  let Uses = [SP];
916}
917
918//
919// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
920// MIPS16e
921// Purpose: Save Registers and Set Up Stack Frame
922// To set up a stack frame on entry to a subroutine,
923// saving return address and static registers, and adjusting stack
924//
925let ra=1, s=1,s0=1,s1=1 in
926def SaveRaF16:
927  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
928             "save\t$$ra, $$s0, $$s1, $$s2, $frame_size", [], IIStore >, MayStore {
929  let isCodeGenOnly = 1;
930  let Uses = [RA, SP, S0, S1, S2];
931  let Defs = [SP];
932}
933
934//
935// Use Save to decrement the SP by a constant since SP is not
936// a Mips16 register.
937//
938let ra=0, s=0,s0=0,s1=0 in
939def SaveDecSpF16:
940  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
941             "save\t$frame_size", [], IIStore >, MayStore {
942  let isCodeGenOnly = 1;
943  let Uses = [SP];
944  let Defs = [SP];
945}
946//
947// Format: SB ry, offset(rx) MIPS16e
948// Purpose: Store Byte (Extended)
949// To store a byte to memory.
950//
951def SbRxRyOffMemX16:
952  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore;
953
954//
955// The Sel(T) instructions are pseudos
956// T means that they use T8 implicitly.
957//
958//
959// Format: SelBeqZ rd, rs, rt
960// Purpose: if rt==0, do nothing
961//          else rs = rt
962//
963def SelBeqZ: Sel<"beqz">;
964
965//
966// Format:  SelTBteqZCmp rd, rs, rl, rr
967// Purpose: b = Cmp rl, rr.
968//          If b==0 then do nothing.
969//          if b!=0 then rd = rs
970//
971def SelTBteqZCmp: SelT<"bteqz", "cmp">;
972
973//
974// Format:  SelTBteqZCmpi rd, rs, rl, rr
975// Purpose: b = Cmpi rl, imm.
976//          If b==0 then do nothing.
977//          if b!=0 then rd = rs
978//
979def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
980
981//
982// Format:  SelTBteqZSlt rd, rs, rl, rr
983// Purpose: b = Slt rl, rr.
984//          If b==0 then do nothing.
985//          if b!=0 then rd = rs
986//
987def SelTBteqZSlt: SelT<"bteqz", "slt">;
988
989//
990// Format:  SelTBteqZSlti rd, rs, rl, rr
991// Purpose: b = Slti rl, imm.
992//          If b==0 then do nothing.
993//          if b!=0 then rd = rs
994//
995def SelTBteqZSlti: SeliT<"bteqz", "slti">;
996
997//
998// Format:  SelTBteqZSltu rd, rs, rl, rr
999// Purpose: b = Sltu rl, rr.
1000//          If b==0 then do nothing.
1001//          if b!=0 then rd = rs
1002//
1003def SelTBteqZSltu: SelT<"bteqz", "sltu">;
1004
1005//
1006// Format:  SelTBteqZSltiu rd, rs, rl, rr
1007// Purpose: b = Sltiu rl, imm.
1008//          If b==0 then do nothing.
1009//          if b!=0 then rd = rs
1010//
1011def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
1012
1013//
1014// Format: SelBnez rd, rs, rt
1015// Purpose: if rt!=0, do nothing
1016//          else rs = rt
1017//
1018def SelBneZ: Sel<"bnez">;
1019
1020//
1021// Format:  SelTBtneZCmp rd, rs, rl, rr
1022// Purpose: b = Cmp rl, rr.
1023//          If b!=0 then do nothing.
1024//          if b0=0 then rd = rs
1025//
1026def SelTBtneZCmp: SelT<"btnez", "cmp">;
1027
1028//
1029// Format:  SelTBtnezCmpi rd, rs, rl, rr
1030// Purpose: b = Cmpi rl, imm.
1031//          If b!=0 then do nothing.
1032//          if b==0 then rd = rs
1033//
1034def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1035
1036//
1037// Format:  SelTBtneZSlt rd, rs, rl, rr
1038// Purpose: b = Slt rl, rr.
1039//          If b!=0 then do nothing.
1040//          if b==0 then rd = rs
1041//
1042def SelTBtneZSlt: SelT<"btnez", "slt">;
1043
1044//
1045// Format:  SelTBtneZSlti rd, rs, rl, rr
1046// Purpose: b = Slti rl, imm.
1047//          If b!=0 then do nothing.
1048//          if b==0 then rd = rs
1049//
1050def SelTBtneZSlti: SeliT<"btnez", "slti">;
1051
1052//
1053// Format:  SelTBtneZSltu rd, rs, rl, rr
1054// Purpose: b = Sltu rl, rr.
1055//          If b!=0 then do nothing.
1056//          if b==0 then rd = rs
1057//
1058def SelTBtneZSltu: SelT<"btnez", "sltu">;
1059
1060//
1061// Format:  SelTBtneZSltiu rd, rs, rl, rr
1062// Purpose: b = Slti rl, imm.
1063//          If b!=0 then do nothing.
1064//          if b==0 then rd = rs
1065//
1066def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1067//
1068//
1069// Format: SH ry, offset(rx) MIPS16e
1070// Purpose: Store Halfword (Extended)
1071// To store a halfword to memory.
1072//
1073def ShRxRyOffMemX16:
1074  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore;
1075
1076//
1077// Format: SLL rx, ry, sa MIPS16e
1078// Purpose: Shift Word Left Logical (Extended)
1079// To execute a left-shift of a word by a fixed number of bits—0 to 31 bits.
1080//
1081def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
1082
1083//
1084// Format: SLLV ry, rx MIPS16e
1085// Purpose: Shift Word Left Logical Variable
1086// To execute a left-shift of a word by a variable number of bits.
1087//
1088def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
1089
1090// Format: SLTI rx, immediate MIPS16e
1091// Purpose: Set on Less Than Immediate
1092// To record the result of a less-than comparison with a constant.
1093//
1094//
1095def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIAlu> {
1096  let Defs = [T8];
1097}
1098
1099//
1100// Format: SLTI rx, immediate MIPS16e
1101// Purpose: Set on Less Than Immediate (Extended)
1102// To record the result of a less-than comparison with a constant.
1103//
1104//
1105def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIAlu> {
1106  let Defs = [T8];
1107}
1108
1109def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1110
1111// Format: SLTIU rx, immediate MIPS16e
1112// Purpose: Set on Less Than Immediate Unsigned
1113// To record the result of a less-than comparison with a constant.
1114//
1115//
1116def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIAlu> {
1117  let Defs = [T8];
1118}
1119
1120//
1121// Format: SLTI rx, immediate MIPS16e
1122// Purpose: Set on Less Than Immediate Unsigned (Extended)
1123// To record the result of a less-than comparison with a constant.
1124//
1125//
1126def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIAlu> {
1127  let Defs = [T8];
1128}
1129//
1130// Format: SLTIU rx, immediate MIPS16e
1131// Purpose: Set on Less Than Immediate Unsigned (Extended)
1132// To record the result of a less-than comparison with a constant.
1133//
1134def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1135
1136//
1137// Format: SLT rx, ry MIPS16e
1138// Purpose: Set on Less Than
1139// To record the result of a less-than comparison.
1140//
1141def SltRxRy16: FRR16R_ins<0b00010, "slt", IIAlu>{
1142  let Defs = [T8];
1143}
1144
1145def SltCCRxRy16: FCCRR16_ins<"slt">;
1146
1147// Format: SLTU rx, ry MIPS16e
1148// Purpose: Set on Less Than Unsigned
1149// To record the result of an unsigned less-than comparison.
1150//
1151def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIAlu>{
1152  let Defs = [T8];
1153}
1154
1155def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1156  let isCodeGenOnly=1;
1157  let Defs = [T8];
1158}
1159
1160
1161def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1162//
1163// Format: SRAV ry, rx MIPS16e
1164// Purpose: Shift Word Right Arithmetic Variable
1165// To execute an arithmetic right-shift of a word by a variable
1166// number of bits.
1167//
1168def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
1169
1170
1171//
1172// Format: SRA rx, ry, sa MIPS16e
1173// Purpose: Shift Word Right Arithmetic (Extended)
1174// To execute an arithmetic right-shift of a word by a fixed
1175// number of bits—1 to 8 bits.
1176//
1177def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
1178
1179
1180//
1181// Format: SRLV ry, rx MIPS16e
1182// Purpose: Shift Word Right Logical Variable
1183// To execute a logical right-shift of a word by a variable
1184// number of bits.
1185//
1186def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
1187
1188
1189//
1190// Format: SRL rx, ry, sa MIPS16e
1191// Purpose: Shift Word Right Logical (Extended)
1192// To execute a logical right-shift of a word by a fixed
1193// number of bits—1 to 31 bits.
1194//
1195def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
1196
1197//
1198// Format: SUBU rz, rx, ry MIPS16e
1199// Purpose: Subtract Unsigned Word
1200// To subtract 32-bit integers
1201//
1202def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
1203
1204//
1205// Format: SW ry, offset(rx) MIPS16e
1206// Purpose: Store Word (Extended)
1207// To store a word to memory.
1208//
1209def SwRxRyOffMemX16:
1210  FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore;
1211
1212//
1213// Format: SW rx, offset(sp) MIPS16e
1214// Purpose: Store Word rx (SP-Relative)
1215// To store an SP-relative word to memory.
1216//
1217def SwRxSpImmX16: FEXT_RI16_SP_Store_explicit_ins
1218  <0b11010, "sw", IIStore>, MayStore;
1219
1220//
1221//
1222// Format: XOR rx, ry MIPS16e
1223// Purpose: Xor
1224// To do a bitwise logical XOR.
1225//
1226def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
1227
1228class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1229  let Predicates = [InMips16Mode];
1230}
1231
1232// Unary Arith/Logic
1233//
1234class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1235  Mips16Pat<(OpNode CPU16Regs:$r),
1236            (I CPU16Regs:$r)>;
1237
1238def: ArithLogicU_pat<not, NotRxRy16>;
1239def: ArithLogicU_pat<ineg, NegRxRy16>;
1240
1241class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1242  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1243            (I CPU16Regs:$l, CPU16Regs:$r)>;
1244
1245def: ArithLogic16_pat<add, AdduRxRyRz16>;
1246def: ArithLogic16_pat<and, AndRxRxRy16>;
1247def: ArithLogic16_pat<mul, MultRxRyRz16>;
1248def: ArithLogic16_pat<or, OrRxRxRy16>;
1249def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1250def: ArithLogic16_pat<xor, XorRxRxRy16>;
1251
1252// Arithmetic and logical instructions with 2 register operands.
1253
1254class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1255  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1256            (I CPU16Regs:$in, imm_type:$imm)>;
1257
1258def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1259def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1260def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1261def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1262def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1263
1264class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1265  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1266            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1267
1268def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1269def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1270def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1271
1272class LoadM16_pat<PatFrag OpNode, Instruction I> :
1273  Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
1274
1275def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
1276def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
1277def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
1278def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
1279def: LoadM16_pat<load, LwRxRyOffMemX16>;
1280
1281class StoreM16_pat<PatFrag OpNode, Instruction I> :
1282  Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
1283            (I CPU16Regs:$r, addr16:$addr)>;
1284
1285def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
1286def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
1287def: StoreM16_pat<store, SwRxRyOffMemX16>;
1288
1289// Unconditional branch
1290class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1291  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1292    let Predicates = [InMips16Mode];
1293  }
1294
1295def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1296                (Jal16 tglobaladdr:$dst)>;
1297
1298def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1299                (Jal16 texternalsym:$dst)>;
1300
1301// Indirect branch
1302def: Mips16Pat<
1303  (brind CPU16Regs:$rs),
1304  (JrcRx16 CPU16Regs:$rs)>;
1305
1306// Jump and Link (Call)
1307let isCall=1, hasDelaySlot=0 in
1308def JumpLinkReg16:
1309  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1310              "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>;
1311
1312// Mips16 pseudos
1313let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1314  hasExtraSrcRegAllocReq = 1 in
1315def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1316
1317
1318// setcc patterns
1319
1320class SetCC_R16<PatFrag cond_op, Instruction I>:
1321  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1322            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1323
1324class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1325  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1326            (I CPU16Regs:$rx, imm_type:$imm16)>;
1327
1328
1329def: Mips16Pat<(i32  addr16:$addr),
1330               (AddiuRxRyOffMemX16  addr16:$addr)>;
1331
1332
1333// Large (>16 bit) immediate loads
1334def : Mips16Pat<(i32 imm:$imm),
1335                (OrRxRxRy16 (SllX16 (LiRxImmX16 (HI16 imm:$imm)), 16),
1336                (LiRxImmX16 (LO16 imm:$imm)))>;
1337
1338// Carry MipsPatterns
1339def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
1340                (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1341def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
1342                (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1343def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
1344                (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
1345
1346//
1347// Some branch conditional patterns are not generated by llvm at this time.
1348// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1349// comparison they are used and for unsigned a different pattern is used.
1350// I am pushing upstream from the full mips16 port and it seemed that I needed
1351// these earlier and the mips32 port has these but now I cannot create test
1352// cases that use these patterns. While I sort this all out I will leave these
1353// extra patterns commented out and if I can be sure they are really not used,
1354// I will delete the code. I don't want to check the code in uncommented without
1355// a valid test case. In some cases, the compiler is generating patterns with
1356// setcc instead and earlier I had implemented setcc first so may have masked
1357// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1358// figure out how to enable the brcond patterns or else possibly new
1359// combinations of of brcond and setcc.
1360//
1361//
1362// bcond-seteq
1363//
1364def: Mips16Pat
1365  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1366   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1367  >;
1368
1369
1370def: Mips16Pat
1371  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1372   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1373  >;
1374
1375def: Mips16Pat
1376  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1377   (BeqzRxImmX16 CPU16Regs:$rx, bb:$targ16)
1378  >;
1379
1380//
1381// bcond-setgt (do we need to have this pair of setlt, setgt??)
1382//
1383def: Mips16Pat
1384  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1385   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1386  >;
1387
1388//
1389// bcond-setge
1390//
1391def: Mips16Pat
1392  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1393   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1394  >;
1395
1396//
1397// never called because compiler transforms a >= k to a > (k-1)
1398def: Mips16Pat
1399  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1400   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1401  >;
1402
1403//
1404// bcond-setlt
1405//
1406def: Mips16Pat
1407  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1408   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1409  >;
1410
1411def: Mips16Pat
1412  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1413   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1414  >;
1415
1416//
1417// bcond-setle
1418//
1419def: Mips16Pat
1420  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1421   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1422  >;
1423
1424//
1425// bcond-setne
1426//
1427def: Mips16Pat
1428  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1429   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1430  >;
1431
1432def: Mips16Pat
1433  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1434   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1435  >;
1436
1437def: Mips16Pat
1438  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1439   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1440  >;
1441
1442//
1443// This needs to be there but I forget which code will generate it
1444//
1445def: Mips16Pat
1446  <(brcond CPU16Regs:$rx, bb:$targ16),
1447   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1448  >;
1449
1450//
1451
1452//
1453// bcond-setugt
1454//
1455//def: Mips16Pat
1456//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1457//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1458//  >;
1459
1460//
1461// bcond-setuge
1462//
1463//def: Mips16Pat
1464//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1465//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1466//  >;
1467
1468
1469//
1470// bcond-setult
1471//
1472//def: Mips16Pat
1473//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1474//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1475//  >;
1476
1477def: UncondBranch16_pat<br, BimmX16>;
1478
1479// Small immediates
1480def: Mips16Pat<(i32 immSExt16:$in),
1481               (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
1482
1483def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1484
1485//
1486// MipsDivRem
1487//
1488def: Mips16Pat
1489  <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
1490   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1491
1492//
1493// MipsDivRemU
1494//
1495def: Mips16Pat
1496  <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
1497   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1498
1499//  signed a,b
1500//  x = (a>=b)?x:y
1501//
1502//  if !(a < b) x = y
1503//
1504def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1505                 CPU16Regs:$x, CPU16Regs:$y),
1506                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1507                 CPU16Regs:$a, CPU16Regs:$b)>;
1508
1509//  signed a,b
1510//  x = (a>b)?x:y
1511//
1512//  if  (b < a) x = y
1513//
1514def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1515                 CPU16Regs:$x, CPU16Regs:$y),
1516                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1517                 CPU16Regs:$b, CPU16Regs:$a)>;
1518
1519// unsigned a,b
1520// x = (a>=b)?x:y
1521//
1522// if !(a < b) x = y;
1523//
1524def : Mips16Pat<
1525  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1526   CPU16Regs:$x, CPU16Regs:$y),
1527  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1528   CPU16Regs:$a, CPU16Regs:$b)>;
1529
1530//  unsigned a,b
1531//  x = (a>b)?x:y
1532//
1533//  if (b < a) x = y
1534//
1535def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1536                 CPU16Regs:$x, CPU16Regs:$y),
1537                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1538                 CPU16Regs:$b, CPU16Regs:$a)>;
1539
1540// signed
1541// x = (a >= k)?x:y
1542// due to an llvm optimization, i don't think that this will ever
1543// be used. This is transformed into x = (a > k-1)?x:y
1544//
1545//
1546
1547//def : Mips16Pat<
1548//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1549//   CPU16Regs:$T, CPU16Regs:$F),
1550//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1551//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1552
1553//def : Mips16Pat<
1554//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1555//   CPU16Regs:$T, CPU16Regs:$F),
1556//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1557//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1558
1559// signed
1560// x = (a < k)?x:y
1561//
1562// if !(a < k) x = y;
1563//
1564def : Mips16Pat<
1565  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1566   CPU16Regs:$x, CPU16Regs:$y),
1567  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1568   CPU16Regs:$a, immSExt16:$b)>;
1569
1570
1571//
1572//
1573// signed
1574// x = (a <= b)? x : y
1575//
1576// if  (b < a) x = y
1577//
1578def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1579                 CPU16Regs:$x, CPU16Regs:$y),
1580                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1581                 CPU16Regs:$b, CPU16Regs:$a)>;
1582
1583//
1584// unnsigned
1585// x = (a <= b)? x : y
1586//
1587// if  (b < a) x = y
1588//
1589def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1590                 CPU16Regs:$x, CPU16Regs:$y),
1591                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1592                 CPU16Regs:$b, CPU16Regs:$a)>;
1593
1594//
1595// signed/unsigned
1596// x = (a == b)? x : y
1597//
1598// if (a != b) x = y
1599//
1600def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1601                 CPU16Regs:$x, CPU16Regs:$y),
1602                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1603                 CPU16Regs:$b, CPU16Regs:$a)>;
1604
1605//
1606// signed/unsigned
1607// x = (a == 0)? x : y
1608//
1609// if (a != 0) x = y
1610//
1611def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1612                 CPU16Regs:$x, CPU16Regs:$y),
1613                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1614                 CPU16Regs:$a)>;
1615
1616
1617//
1618// signed/unsigned
1619// x = (a == k)? x : y
1620//
1621// if (a != k) x = y
1622//
1623def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1624                 CPU16Regs:$x, CPU16Regs:$y),
1625                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1626                 CPU16Regs:$a, immZExt16:$k)>;
1627
1628
1629//
1630// signed/unsigned
1631// x = (a != b)? x : y
1632//
1633// if (a == b) x = y
1634//
1635//
1636def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1637                 CPU16Regs:$x, CPU16Regs:$y),
1638                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1639                 CPU16Regs:$b, CPU16Regs:$a)>;
1640
1641//
1642// signed/unsigned
1643// x = (a != 0)? x : y
1644//
1645// if (a == 0) x = y
1646//
1647def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1648                 CPU16Regs:$x, CPU16Regs:$y),
1649                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1650                 CPU16Regs:$a)>;
1651
1652// signed/unsigned
1653// x = (a)? x : y
1654//
1655// if (!a) x = y
1656//
1657def : Mips16Pat<(select  CPU16Regs:$a,
1658                 CPU16Regs:$x, CPU16Regs:$y),
1659      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1660       CPU16Regs:$a)>;
1661
1662
1663//
1664// signed/unsigned
1665// x = (a != k)? x : y
1666//
1667// if (a == k) x = y
1668//
1669def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1670                 CPU16Regs:$x, CPU16Regs:$y),
1671                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1672                 CPU16Regs:$a, immZExt16:$k)>;
1673
1674//
1675// When writing C code to test setxx these patterns,
1676// some will be transformed into
1677// other things. So we test using C code but using -O3 and -O0
1678//
1679// seteq
1680//
1681def : Mips16Pat
1682  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1683   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1684
1685def : Mips16Pat
1686  <(seteq CPU16Regs:$lhs, 0),
1687   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1688
1689
1690//
1691// setge
1692//
1693
1694def: Mips16Pat
1695  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1696   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1697   (LiRxImmX16 1))>;
1698
1699//
1700// For constants, llvm transforms this to:
1701// x > (k -1) and then reverses the operands to use setlt. So this pattern
1702// is not used now by the compiler. (Presumably checking that k-1 does not
1703// overflow). The compiler never uses this at a the current time, due to
1704// other optimizations.
1705//
1706//def: Mips16Pat
1707//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1708//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1709//   (LiRxImmX16 1))>;
1710
1711// This catches the x >= -32768 case by transforming it to  x > -32769
1712//
1713def: Mips16Pat
1714  <(setgt CPU16Regs:$lhs, -32769),
1715   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1716   (LiRxImmX16 1))>;
1717
1718//
1719// setgt
1720//
1721//
1722
1723def: Mips16Pat
1724  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1725   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1726
1727//
1728// setle
1729//
1730def: Mips16Pat
1731  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1732   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1733
1734//
1735// setlt
1736//
1737def: SetCC_R16<setlt, SltCCRxRy16>;
1738
1739def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1740
1741//
1742// setne
1743//
1744def : Mips16Pat
1745  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1746   (SltuCCRxRy16 (LiRxImmX16 0),
1747   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1748
1749
1750//
1751// setuge
1752//
1753def: Mips16Pat
1754  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1755   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1756   (LiRxImmX16 1))>;
1757
1758// this pattern will never be used because the compiler will transform
1759// x >= k to x > (k - 1) and then use SLT
1760//
1761//def: Mips16Pat
1762//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1763//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1764//   (LiRxImmX16 1))>;
1765
1766//
1767// setugt
1768//
1769def: Mips16Pat
1770  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1771   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1772
1773//
1774// setule
1775//
1776def: Mips16Pat
1777  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1778   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1779
1780//
1781// setult
1782//
1783def: SetCC_R16<setult, SltuCCRxRy16>;
1784
1785def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1786
1787def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1788               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1789
1790// hi/lo relocs
1791def : Mips16Pat<(MipsHi tblockaddress:$in),
1792                (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>;
1793def : Mips16Pat<(MipsHi tglobaladdr:$in),
1794                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1795def : Mips16Pat<(MipsHi tjumptable:$in),
1796                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1797def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
1798                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1799
1800def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>;
1801
1802// wrapper_pic
1803class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1804  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1805            (ADDiuOp RC:$gp, node:$in)>;
1806
1807
1808def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1809def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1810
1811def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1812                (LbuRxRyOffMemX16  addr16:$src)>;
1813def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1814                (LhuRxRyOffMemX16  addr16:$src)>;
1815
1816def: Mips16Pat<(trap), (Break16)>;
1817
1818def GotPrologue16:   
1819  MipsPseudo16<
1820    (outs CPU16Regs:$rh, CPU16Regs:$rl),
1821    (ins simm16:$immHi, simm16:$immLo),
1822    ".align 2\n\tli\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ;
1823