Mips16InstrInfo.td revision 63f331235513a6f562ab4b2809b497c518b132e9
1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 :
18  ComplexPattern<iPTR, 3, "SelectAddr16", [frameindex], [SDNPWantParent]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16, CPU16Regs);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16_ea : Operand<i32> {
29  let PrintMethod = "printMemOperandEA";
30  let MIOperandInfo = (ops CPU16Regs, simm16);
31  let EncoderMethod = "getMemEncoding";
32}
33
34//
35// Compare a register and immediate and place result in CC
36// Implicit use of T8
37//
38// EXT-CCRR Instruction format
39//
40class FEXT_CCRXI16_ins<bits<5> _op, string asmstr,
41                       InstrItinClass itin>:
42  FEXT_RI16<_op, (outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
43            !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), [], itin> {
44  let isCodeGenOnly=1;
45}
46
47// JAL and JALX instruction format
48//
49class FJAL16_ins<bits<1> _X, string asmstr,
50                 InstrItinClass itin>:
51  FJAL16<_X, (outs), (ins simm20:$imm),
52         !strconcat(asmstr, "\t$imm\n\tnop"),[],
53         itin>  {
54  let isCodeGenOnly=1;
55}
56//
57// EXT-I instruction format
58//
59class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
60  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
61           !strconcat(asmstr, "\t$imm16"),[], itin>;
62
63//
64// EXT-I8 instruction format
65//
66
67class FEXT_I816_ins_base<bits<3> _func, string asmstr,
68                         string asmstr2, InstrItinClass itin>:
69  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
70            [], itin>;
71
72class FEXT_I816_ins<bits<3> _func, string asmstr,
73                    InstrItinClass itin>:
74  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
75
76class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
77                       InstrItinClass itin>:
78      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
79
80//
81// Assembler formats in alphabetical order.
82// Natural and pseudos are mixed together.
83//
84// Compare two registers and place result in CC
85// Implicit use of T8
86//
87// CC-RR Instruction format
88//
89class FCCRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
90  FRR16<f, (outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
91        !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), [], itin> {
92  let isCodeGenOnly=1;
93}
94
95//
96// EXT-RI instruction format
97//
98
99class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
100                         InstrItinClass itin>:
101  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
102                  !strconcat(asmstr, asmstr2), [], itin>;
103
104class FEXT_RI16_ins<bits<5> _op, string asmstr,
105                    InstrItinClass itin>:
106  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
107
108class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
109  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
110
111class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
112                      InstrItinClass itin>:
113  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
114            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
115
116class FEXT_2RI16_ins<bits<5> _op, string asmstr,
117                     InstrItinClass itin>:
118  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
119            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
120  let Constraints = "$rx_ = $rx";
121}
122
123
124// this has an explicit sp argument that we ignore to work around a problem
125// in the compiler
126class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
127                                InstrItinClass itin>:
128  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
129            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
130
131//
132// EXT-RRI instruction format
133//
134
135class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
136                         InstrItinClass itin>:
137  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
138             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
139
140class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
141                          InstrItinClass itin>:
142  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
143             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
144
145//
146//
147// EXT-RRI-A instruction format
148//
149
150class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
151                           InstrItinClass itin>:
152  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
153               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
154
155//
156// EXT-SHIFT instruction format
157//
158class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
159  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, shamt:$sa),
160               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
161
162//
163// EXT-T8I8
164//
165class FEXT_T8I816_ins<bits<3> _func, string asmstr, string asmstr2,
166                      InstrItinClass itin>:
167  FEXT_I816<_func, (outs),
168            (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
169            !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
170            !strconcat(asmstr, "\t$imm"))),[], itin> {
171  let isCodeGenOnly=1;
172}
173
174//
175// EXT-T8I8I
176//
177class FEXT_T8I8I16_ins<bits<3> _func, string asmstr, string asmstr2,
178                       InstrItinClass itin>:
179  FEXT_I816<_func, (outs),
180            (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
181            !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
182            !strconcat(asmstr, "\t$targ"))), [], itin> {
183  let isCodeGenOnly=1;
184}
185//
186
187
188//
189// I8_MOVR32 instruction format (used only by the MOVR32 instructio
190//
191class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
192       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins CPURegs:$r32),
193       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
194
195//
196// I8_MOV32R instruction format (used only by MOV32R instruction)
197//
198
199class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
200  FI8_MOV32R16<(outs CPURegs:$r32), (ins CPU16Regs:$rz),
201               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
202
203//
204// This are pseudo formats for multiply
205// This first one can be changed to non pseudo now.
206//
207// MULT
208//
209class FMULT16_ins<string asmstr, InstrItinClass itin> :
210  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
211               !strconcat(asmstr, "\t$rx, $ry"), []>;
212
213//
214// MULT-LO
215//
216class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
217  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
218               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
219  let isCodeGenOnly=1;
220}
221
222//
223// RR-type instruction format
224//
225
226class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
227  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
228        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
229}
230
231class FRRTR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
232  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
233        !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), [], itin> ;
234
235//
236// maybe refactor but need a $zero as a dummy first parameter
237//
238class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
239  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
240        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
241
242class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
243  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
244        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
245
246
247class FRR16_M_ins<bits<5> f, string asmstr,
248                  InstrItinClass itin> :
249  FRR16<f, (outs CPU16Regs:$rx), (ins),
250        !strconcat(asmstr, "\t$rx"), [], itin>;
251
252class FRxRxRy16_ins<bits<5> f, string asmstr,
253                    InstrItinClass itin> :
254  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
255            !strconcat(asmstr, "\t$rz, $ry"),
256            [], itin> {
257  let Constraints = "$rx = $rz";
258}
259
260let rx=0 in
261class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
262                              string asmstr, InstrItinClass itin>:
263  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
264              [], itin> ;
265
266
267class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
268                      string asmstr, InstrItinClass itin>:
269  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
270              !strconcat(asmstr, "\t $rx"), [], itin> ;
271
272//
273// RRR-type instruction format
274//
275
276class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
277  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
278         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
279
280//
281// These Sel patterns support the generation of conditional move
282// pseudo instructions.
283//
284// The nomenclature uses the components making up the pseudo and may
285// be a bit counter intuitive when compared with the end result we seek.
286// For example using a bqez in the example directly below results in the
287// conditional move being done if the tested register is not zero.
288// I considered in easier to check by keeping the pseudo consistent with
289// it's components but it could have been done differently.
290//
291// The simplest case is when can test and operand directly and do the
292// conditional move based on a simple mips16 conditional
293//  branch instruction.
294// for example:
295// if $op == beqz or bnez:
296//
297// $op1 $rt, .+4
298// move $rd, $rs
299//
300// if $op == beqz, then if $rt != 0, then the conditional assignment
301// $rd = $rs is done.
302
303// if $op == bnez, then if $rt == 0, then the conditional assignment
304// $rd = $rs is done.
305//
306// So this pseudo class only has one operand, i.e. op
307//
308class Sel<bits<5> f1, string op, InstrItinClass itin>:
309  MipsInst16_32<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
310                CPU16Regs:$rt),
311                !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), [], itin,
312                Pseudo16> {
313  let isCodeGenOnly=1;
314  let Constraints = "$rd = $rd_";
315}
316
317//
318// The next two instruction classes allow for an operand which tests
319// two operands and returns a value in register T8 and
320//then does a conditional branch based on the value of T8
321//
322
323// op2 can be cmpi or slti/sltiu
324// op1 can bteqz or btnez
325// the operands for op2 are a register and a signed constant
326//
327// $op2 $t, $imm  ;test register t and branch conditionally
328// $op1 .+4       ;op1 is a conditional branch
329// move $rd, $rs
330//
331//
332class SeliT<bits<5> f1, string op1, bits<5> f2, string op2,
333                 InstrItinClass itin>:
334  MipsInst16_32<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
335                                        CPU16Regs:$rl, simm16:$imm),
336                 !strconcat(op2,
337                 !strconcat("\t$rl, $imm\n\t",
338                 !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), [], itin,
339                 Pseudo16> {
340  let isCodeGenOnly=1;
341  let Constraints = "$rd = $rd_";
342}
343
344//
345// op2 can be cmp or slt/sltu
346// op1 can be bteqz or btnez
347// the operands for op2 are two registers
348// op1 is a conditional branch
349//
350//
351// $op2 $rl, $rr  ;test registers rl,rr
352// $op1 .+4       ;op2 is a conditional branch
353// move $rd, $rs
354//
355//
356class SelT<bits<5> f1, string op1, bits<5> f2, string op2,
357           InstrItinClass itin>:
358  MipsInst16_32<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
359                CPU16Regs:$rl, CPU16Regs:$rr),
360                !strconcat(op2,
361                !strconcat("\t$rl, $rr\n\t",
362                !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), [], itin,
363                Pseudo16> {
364  let isCodeGenOnly=1;
365  let Constraints = "$rd = $rd_";
366}
367
368//
369// 32 bit constant
370//
371def imm32: Operand<i32>;
372
373def Constant32:
374  MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
375
376def LwConstant32:
377  MipsPseudo16<(outs), (ins CPU16Regs:$rx, imm32:$imm),
378    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
379
380
381//
382// Some general instruction class info
383//
384//
385
386class ArithLogic16Defs<bit isCom=0> {
387  bits<5> shamt = 0;
388  bit isCommutable = isCom;
389  bit isReMaterializable = 1;
390  bit neverHasSideEffects = 1;
391}
392
393class branch16 {
394  bit isBranch = 1;
395  bit isTerminator = 1;
396  bit isBarrier = 1;
397}
398
399class cbranch16 {
400  bit isBranch = 1;
401  bit isTerminator = 1;
402}
403
404class MayLoad {
405  bit mayLoad = 1;
406}
407
408class MayStore {
409  bit mayStore = 1;
410}
411//
412
413// Format: ADDIU rx, immediate MIPS16e
414// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
415// To add a constant to a 32-bit integer.
416//
417def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
418
419def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
420  ArithLogic16Defs<0>;
421
422def AddiuRxRyOffMemX16:
423  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
424
425//
426
427// Format: ADDIU rx, pc, immediate MIPS16e
428// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
429// To add a constant to the program counter.
430//
431def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
432
433//
434// Format: ADDIU sp, immediate MIPS16e
435// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
436// To add a constant to the stack pointer.
437//
438def AddiuSpImmX16
439  : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
440  let Defs = [SP];
441  let Uses = [SP];
442}
443
444//
445// Format: ADDU rz, rx, ry MIPS16e
446// Purpose: Add Unsigned Word (3-Operand)
447// To add 32-bit integers.
448//
449
450def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
451
452//
453// Format: AND rx, ry MIPS16e
454// Purpose: AND
455// To do a bitwise logical AND.
456
457def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
458
459
460//
461// Format: BEQZ rx, offset MIPS16e
462// Purpose: Branch on Equal to Zero (Extended)
463// To test a GPR then do a PC-relative conditional branch.
464//
465def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
466
467// Format: B offset MIPS16e
468// Purpose: Unconditional Branch
469// To do an unconditional PC-relative branch.
470//
471def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
472
473//
474// Format: BNEZ rx, offset MIPS16e
475// Purpose: Branch on Not Equal to Zero (Extended)
476// To test a GPR then do a PC-relative conditional branch.
477//
478def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
479
480//
481// Format: BTEQZ offset MIPS16e
482// Purpose: Branch on T Equal to Zero (Extended)
483// To test special register T then do a PC-relative conditional branch.
484//
485def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16;
486
487def BteqzT8CmpX16: FEXT_T8I816_ins<0b000, "bteqz", "cmp", IIAlu>, cbranch16;
488
489def BteqzT8CmpiX16: FEXT_T8I8I16_ins<0b000, "bteqz", "cmpi", IIAlu>,
490  cbranch16;
491
492def BteqzT8SltX16: FEXT_T8I816_ins<0b000, "bteqz", "slt", IIAlu>, cbranch16;
493
494def BteqzT8SltuX16: FEXT_T8I816_ins<0b000, "bteqz", "sltu", IIAlu>, cbranch16;
495
496def BteqzT8SltiX16: FEXT_T8I8I16_ins<0b000, "bteqz", "slti", IIAlu>, cbranch16;
497
498def BteqzT8SltiuX16: FEXT_T8I8I16_ins<0b000, "bteqz", "sltiu", IIAlu>,
499  cbranch16;
500
501//
502// Format: BTNEZ offset MIPS16e
503// Purpose: Branch on T Not Equal to Zero (Extended)
504// To test special register T then do a PC-relative conditional branch.
505//
506def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16;
507
508def BtnezT8CmpX16: FEXT_T8I816_ins<0b000, "btnez", "cmp", IIAlu>, cbranch16;
509
510def BtnezT8CmpiX16: FEXT_T8I8I16_ins<0b000, "btnez", "cmpi", IIAlu>, cbranch16;
511
512def BtnezT8SltX16: FEXT_T8I816_ins<0b000, "btnez", "slt", IIAlu>, cbranch16;
513
514def BtnezT8SltuX16: FEXT_T8I816_ins<0b000, "btnez", "sltu", IIAlu>, cbranch16;
515
516def BtnezT8SltiX16: FEXT_T8I8I16_ins<0b000, "btnez", "slti", IIAlu>, cbranch16;
517
518def BtnezT8SltiuX16: FEXT_T8I8I16_ins<0b000, "btnez", "sltiu", IIAlu>,
519  cbranch16;
520
521//
522// Format: DIV rx, ry MIPS16e
523// Purpose: Divide Word
524// To divide 32-bit signed integers.
525//
526def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
527  let Defs = [HI, LO];
528}
529
530//
531// Format: DIVU rx, ry MIPS16e
532// Purpose: Divide Unsigned Word
533// To divide 32-bit unsigned integers.
534//
535def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
536  let Defs = [HI, LO];
537}
538//
539// Format: JAL target MIPS16e
540// Purpose: Jump and Link
541// To execute a procedure call within the current 256 MB-aligned
542// region and preserve the current ISA.
543//
544
545def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
546  let isBranch = 1;
547  let hasDelaySlot = 0;  // not true, but we add the nop for now
548  let isTerminator=1;
549  let isBarrier=1;
550}
551
552//
553// Format: JR ra MIPS16e
554// Purpose: Jump Register Through Register ra
555// To execute a branch to the instruction address in the return
556// address register.
557//
558
559def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
560  let isBranch = 1;
561  let isIndirectBranch = 1;
562  let hasDelaySlot = 1;
563  let isTerminator=1;
564  let isBarrier=1;
565}
566
567def JrcRa16: FRR16_JALRC_RA_only_ins<0, 0, "jrc", IIAlu> {
568  let isBranch = 1;
569  let isIndirectBranch = 1;
570  let isTerminator=1;
571  let isBarrier=1;
572}
573
574def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
575  let isBranch = 1;
576  let isIndirectBranch = 1;
577  let isTerminator=1;
578  let isBarrier=1;
579}
580//
581// Format: LB ry, offset(rx) MIPS16e
582// Purpose: Load Byte (Extended)
583// To load a byte from memory as a signed value.
584//
585def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad;
586
587//
588// Format: LBU ry, offset(rx) MIPS16e
589// Purpose: Load Byte Unsigned (Extended)
590// To load a byte from memory as a unsigned value.
591//
592def LbuRxRyOffMemX16:
593  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad;
594
595//
596// Format: LH ry, offset(rx) MIPS16e
597// Purpose: Load Halfword signed (Extended)
598// To load a halfword from memory as a signed value.
599//
600def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad;
601
602//
603// Format: LHU ry, offset(rx) MIPS16e
604// Purpose: Load Halfword unsigned (Extended)
605// To load a halfword from memory as an unsigned value.
606//
607def LhuRxRyOffMemX16:
608  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad;
609
610//
611// Format: LI rx, immediate MIPS16e
612// Purpose: Load Immediate (Extended)
613// To load a constant into a GPR.
614//
615def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
616
617//
618// Format: LW ry, offset(rx) MIPS16e
619// Purpose: Load Word (Extended)
620// To load a word from memory as a signed value.
621//
622def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad;
623
624// Format: LW rx, offset(sp) MIPS16e
625// Purpose: Load Word (SP-Relative, Extended)
626// To load an SP-relative word from memory as a signed value.
627//
628def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10110, "lw", IILoad>, MayLoad{
629  let Uses = [SP];
630}
631
632//
633// Format: MOVE r32, rz MIPS16e
634// Purpose: Move
635// To move the contents of a GPR to a GPR.
636//
637def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
638
639//
640// Format: MOVE ry, r32 MIPS16e
641//Purpose: Move
642// To move the contents of a GPR to a GPR.
643//
644def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
645
646//
647// Format: MFHI rx MIPS16e
648// Purpose: Move From HI Register
649// To copy the special purpose HI register to a GPR.
650//
651def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
652  let Uses = [HI];
653  let neverHasSideEffects = 1;
654}
655
656//
657// Format: MFLO rx MIPS16e
658// Purpose: Move From LO Register
659// To copy the special purpose LO register to a GPR.
660//
661def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
662  let Uses = [LO];
663  let neverHasSideEffects = 1;
664}
665
666//
667// Pseudo Instruction for mult
668//
669def MultRxRy16:  FMULT16_ins<"mult",  IIAlu> {
670  let isCommutable = 1;
671  let neverHasSideEffects = 1;
672  let Defs = [HI, LO];
673}
674
675def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
676  let isCommutable = 1;
677  let neverHasSideEffects = 1;
678  let Defs = [HI, LO];
679}
680
681//
682// Format: MULT rx, ry MIPS16e
683// Purpose: Multiply Word
684// To multiply 32-bit signed integers.
685//
686def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
687  let isCommutable = 1;
688  let neverHasSideEffects = 1;
689  let Defs = [HI, LO];
690}
691
692//
693// Format: MULTU rx, ry MIPS16e
694// Purpose: Multiply Unsigned Word
695// To multiply 32-bit unsigned integers.
696//
697def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
698  let isCommutable = 1;
699  let neverHasSideEffects = 1;
700  let Defs = [HI, LO];
701}
702
703//
704// Format: NEG rx, ry MIPS16e
705// Purpose: Negate
706// To negate an integer value.
707//
708def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
709
710//
711// Format: NOT rx, ry MIPS16e
712// Purpose: Not
713// To complement an integer value
714//
715def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
716
717//
718// Format: OR rx, ry MIPS16e
719// Purpose: Or
720// To do a bitwise logical OR.
721//
722def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
723
724//
725// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
726// (All args are optional) MIPS16e
727// Purpose: Restore Registers and Deallocate Stack Frame
728// To deallocate a stack frame before exit from a subroutine,
729// restoring return address and static registers, and adjusting
730// stack
731//
732
733// fixed form for restoring RA and the frame
734// for direct object emitter, encoding needs to be adjusted for the
735// frame size
736//
737let ra=1, s=0,s0=1,s1=1 in
738def RestoreRaF16:
739  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
740             "restore\t$$ra,  $$s0, $$s1, $frame_size", [], IILoad >, MayLoad {
741  let isCodeGenOnly = 1;
742  let Defs = [S0, S1, RA, SP];
743  let Uses = [SP];
744}
745
746// Use Restore to increment SP since SP is not a Mip 16 register, this
747// is an easy way to do that which does not require a register.
748//
749let ra=0, s=0,s0=0,s1=0 in
750def RestoreIncSpF16:
751  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
752             "restore\t$frame_size", [], IILoad >, MayLoad {
753  let isCodeGenOnly = 1;
754  let Defs = [SP];
755  let Uses = [SP];
756}
757
758//
759// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
760// MIPS16e
761// Purpose: Save Registers and Set Up Stack Frame
762// To set up a stack frame on entry to a subroutine,
763// saving return address and static registers, and adjusting stack
764//
765let ra=1, s=1,s0=1,s1=1 in
766def SaveRaF16:
767  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
768             "save\t$$ra, $$s0, $$s1, $frame_size", [], IIStore >, MayStore {
769  let isCodeGenOnly = 1;
770  let Uses = [RA, SP, S0, S1];
771  let Defs = [SP];
772}
773
774//
775// Use Save to decrement the SP by a constant since SP is not
776// a Mips16 register.
777//
778let ra=0, s=0,s0=0,s1=0 in
779def SaveDecSpF16:
780  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
781             "save\t$frame_size", [], IIStore >, MayStore {
782  let isCodeGenOnly = 1;
783  let Uses = [SP];
784  let Defs = [SP];
785}
786//
787// Format: SB ry, offset(rx) MIPS16e
788// Purpose: Store Byte (Extended)
789// To store a byte to memory.
790//
791def SbRxRyOffMemX16:
792  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore;
793
794//
795// The Sel(T) instructions are pseudos
796// T means that they use T8 implicitly.
797//
798//
799// Format: SelBeqZ rd, rs, rt
800// Purpose: if rt==0, do nothing
801//          else rs = rt
802//
803def SelBeqZ: Sel<0b00100, "beqz", IIAlu>;
804
805//
806// Format:  SelTBteqZCmp rd, rs, rl, rr
807// Purpose: b = Cmp rl, rr.
808//          If b==0 then do nothing.
809//          if b!=0 then rd = rs
810//
811def SelTBteqZCmp: SelT<0b000, "bteqz", 0b01010, "cmp", IIAlu>;
812
813//
814// Format:  SelTBteqZCmpi rd, rs, rl, rr
815// Purpose: b = Cmpi rl, imm.
816//          If b==0 then do nothing.
817//          if b!=0 then rd = rs
818//
819def SelTBteqZCmpi: SeliT<0b000, "bteqz", 0b01110, "cmpi", IIAlu>;
820
821//
822// Format:  SelTBteqZSlt rd, rs, rl, rr
823// Purpose: b = Slt rl, rr.
824//          If b==0 then do nothing.
825//          if b!=0 then rd = rs
826//
827def SelTBteqZSlt: SelT<0b000, "bteqz", 0b00010, "slt", IIAlu>;
828
829//
830// Format:  SelTBteqZSlti rd, rs, rl, rr
831// Purpose: b = Slti rl, imm.
832//          If b==0 then do nothing.
833//          if b!=0 then rd = rs
834//
835def SelTBteqZSlti: SeliT<0b000, "bteqz", 0b01010, "slti", IIAlu>;
836
837//
838// Format:  SelTBteqZSltu rd, rs, rl, rr
839// Purpose: b = Sltu rl, rr.
840//          If b==0 then do nothing.
841//          if b!=0 then rd = rs
842//
843def SelTBteqZSltu: SelT<0b000, "bteqz", 0b00011, "sltu", IIAlu>;
844
845//
846// Format:  SelTBteqZSltiu rd, rs, rl, rr
847// Purpose: b = Sltiu rl, imm.
848//          If b==0 then do nothing.
849//          if b!=0 then rd = rs
850//
851def SelTBteqZSltiu: SeliT<0b000, "bteqz", 0b01011, "sltiu", IIAlu>;
852
853//
854// Format: SelBnez rd, rs, rt
855// Purpose: if rt!=0, do nothing
856//          else rs = rt
857//
858def SelBneZ: Sel<0b00101, "bnez", IIAlu>;
859
860//
861// Format:  SelTBtneZCmp rd, rs, rl, rr
862// Purpose: b = Cmp rl, rr.
863//          If b!=0 then do nothing.
864//          if b0=0 then rd = rs
865//
866def SelTBtneZCmp: SelT<0b001, "btnez", 0b01010, "cmp", IIAlu>;
867
868//
869// Format:  SelTBtnezCmpi rd, rs, rl, rr
870// Purpose: b = Cmpi rl, imm.
871//          If b!=0 then do nothing.
872//          if b==0 then rd = rs
873//
874def SelTBtneZCmpi: SeliT<0b000, "btnez", 0b01110, "cmpi", IIAlu>;
875
876//
877// Format:  SelTBtneZSlt rd, rs, rl, rr
878// Purpose: b = Slt rl, rr.
879//          If b!=0 then do nothing.
880//          if b==0 then rd = rs
881//
882def SelTBtneZSlt: SelT<0b001, "btnez", 0b00010, "slt", IIAlu>;
883
884//
885// Format:  SelTBtneZSlti rd, rs, rl, rr
886// Purpose: b = Slti rl, imm.
887//          If b!=0 then do nothing.
888//          if b==0 then rd = rs
889//
890def SelTBtneZSlti: SeliT<0b001, "btnez", 0b01010, "slti", IIAlu>;
891
892//
893// Format:  SelTBtneZSltu rd, rs, rl, rr
894// Purpose: b = Sltu rl, rr.
895//          If b!=0 then do nothing.
896//          if b==0 then rd = rs
897//
898def SelTBtneZSltu: SelT<0b001, "btnez", 0b00011, "sltu", IIAlu>;
899
900//
901// Format:  SelTBtneZSltiu rd, rs, rl, rr
902// Purpose: b = Slti rl, imm.
903//          If b!=0 then do nothing.
904//          if b==0 then rd = rs
905//
906def SelTBtneZSltiu: SeliT<0b001, "btnez", 0b01011, "sltiu", IIAlu>;
907//
908//
909// Format: SH ry, offset(rx) MIPS16e
910// Purpose: Store Halfword (Extended)
911// To store a halfword to memory.
912//
913def ShRxRyOffMemX16:
914  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore;
915
916//
917// Format: SLL rx, ry, sa MIPS16e
918// Purpose: Shift Word Left Logical (Extended)
919// To execute a left-shift of a word by a fixed number of bits—0 to 31 bits.
920//
921def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
922
923//
924// Format: SLLV ry, rx MIPS16e
925// Purpose: Shift Word Left Logical Variable
926// To execute a left-shift of a word by a variable number of bits.
927//
928def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
929
930//
931// Format: SLTI rx, immediate MIPS16e
932// Purpose: Set on Less Than Immediate (Extended)
933// To record the result of a less-than comparison with a constant.
934//
935def SltiCCRxImmX16: FEXT_CCRXI16_ins<0b01010, "slti", IIAlu>;
936
937//
938// Format: SLTIU rx, immediate MIPS16e
939// Purpose: Set on Less Than Immediate Unsigned (Extended)
940// To record the result of a less-than comparison with a constant.
941//
942def SltiuCCRxImmX16: FEXT_CCRXI16_ins<0b01011, "sltiu", IIAlu>;
943
944//
945// Format: SLT rx, ry MIPS16e
946// Purpose: Set on Less Than
947// To record the result of a less-than comparison.
948//
949def SltRxRy16: FRR16_ins<0b00010, "slt", IIAlu>;
950
951def SltCCRxRy16: FCCRR16_ins<0b00010, "slt", IIAlu>;
952
953// Format: SLTU rx, ry MIPS16e
954// Purpose: Set on Less Than Unsigned
955// To record the result of an unsigned less-than comparison.
956//
957def SltuRxRyRz16: FRRTR16_ins<0b00011, "sltu", IIAlu> {
958  let isCodeGenOnly=1;
959}
960
961
962def SltuCCRxRy16: FCCRR16_ins<0b00011, "sltu", IIAlu>;
963//
964// Format: SRAV ry, rx MIPS16e
965// Purpose: Shift Word Right Arithmetic Variable
966// To execute an arithmetic right-shift of a word by a variable
967// number of bits.
968//
969def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
970
971
972//
973// Format: SRA rx, ry, sa MIPS16e
974// Purpose: Shift Word Right Arithmetic (Extended)
975// To execute an arithmetic right-shift of a word by a fixed
976// number of bits—1 to 8 bits.
977//
978def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
979
980
981//
982// Format: SRLV ry, rx MIPS16e
983// Purpose: Shift Word Right Logical Variable
984// To execute a logical right-shift of a word by a variable
985// number of bits.
986//
987def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
988
989
990//
991// Format: SRL rx, ry, sa MIPS16e
992// Purpose: Shift Word Right Logical (Extended)
993// To execute a logical right-shift of a word by a fixed
994// number of bits—1 to 31 bits.
995//
996def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
997
998//
999// Format: SUBU rz, rx, ry MIPS16e
1000// Purpose: Subtract Unsigned Word
1001// To subtract 32-bit integers
1002//
1003def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
1004
1005//
1006// Format: SW ry, offset(rx) MIPS16e
1007// Purpose: Store Word (Extended)
1008// To store a word to memory.
1009//
1010def SwRxRyOffMemX16:
1011  FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore;
1012
1013//
1014// Format: SW rx, offset(sp) MIPS16e
1015// Purpose: Store Word rx (SP-Relative)
1016// To store an SP-relative word to memory.
1017//
1018def SwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b11010, "sw", IIStore>, MayStore;
1019
1020//
1021//
1022// Format: XOR rx, ry MIPS16e
1023// Purpose: Xor
1024// To do a bitwise logical XOR.
1025//
1026def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
1027
1028class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1029  let Predicates = [InMips16Mode];
1030}
1031
1032// Unary Arith/Logic
1033//
1034class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1035  Mips16Pat<(OpNode CPU16Regs:$r),
1036            (I CPU16Regs:$r)>;
1037
1038def: ArithLogicU_pat<not, NotRxRy16>;
1039def: ArithLogicU_pat<ineg, NegRxRy16>;
1040
1041class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1042  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1043            (I CPU16Regs:$l, CPU16Regs:$r)>;
1044
1045def: ArithLogic16_pat<add, AdduRxRyRz16>;
1046def: ArithLogic16_pat<and, AndRxRxRy16>;
1047def: ArithLogic16_pat<mul, MultRxRyRz16>;
1048def: ArithLogic16_pat<or, OrRxRxRy16>;
1049def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1050def: ArithLogic16_pat<xor, XorRxRxRy16>;
1051
1052// Arithmetic and logical instructions with 2 register operands.
1053
1054class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1055  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1056            (I CPU16Regs:$in, imm_type:$imm)>;
1057
1058def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1059def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1060def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1061def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1062
1063class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1064  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1065            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1066
1067def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1068def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1069def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1070
1071class LoadM16_pat<PatFrag OpNode, Instruction I> :
1072  Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
1073
1074def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
1075def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
1076def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
1077def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
1078def: LoadM16_pat<load, LwRxRyOffMemX16>;
1079
1080class StoreM16_pat<PatFrag OpNode, Instruction I> :
1081  Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
1082            (I CPU16Regs:$r, addr16:$addr)>;
1083
1084def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
1085def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
1086def: StoreM16_pat<store, SwRxRyOffMemX16>;
1087
1088// Unconditional branch
1089class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1090  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1091    let Predicates = [RelocPIC, InMips16Mode];
1092  }
1093
1094def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1095                (Jal16 tglobaladdr:$dst)>;
1096
1097// Indirect branch
1098def: Mips16Pat<
1099  (brind CPU16Regs:$rs),
1100  (JrcRx16 CPU16Regs:$rs)>;
1101
1102// Jump and Link (Call)
1103let isCall=1, hasDelaySlot=0 in
1104def JumpLinkReg16:
1105  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1106              "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>;
1107
1108// Mips16 pseudos
1109let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1110  hasExtraSrcRegAllocReq = 1 in
1111def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1112
1113
1114// setcc patterns
1115
1116class SetCC_R16<PatFrag cond_op, Instruction I>:
1117  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1118            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1119
1120class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1121  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1122            (I CPU16Regs:$rx, imm_type:$imm16)>;
1123
1124
1125def: Mips16Pat<(i32  addr16:$addr),
1126               (AddiuRxRyOffMemX16  addr16:$addr)>;
1127
1128
1129// Large (>16 bit) immediate loads
1130def : Mips16Pat<(i32 imm:$imm),
1131                (OrRxRxRy16 (SllX16 (LiRxImmX16 (HI16 imm:$imm)), 16),
1132                (LiRxImmX16 (LO16 imm:$imm)))>;
1133
1134// Carry MipsPatterns
1135def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
1136                (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1137def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
1138                (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1139def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
1140                (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
1141
1142//
1143// Some branch conditional patterns are not generated by llvm at this time.
1144// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1145// comparison they are used and for unsigned a different pattern is used.
1146// I am pushing upstream from the full mips16 port and it seemed that I needed
1147// these earlier and the mips32 port has these but now I cannot create test
1148// cases that use these patterns. While I sort this all out I will leave these
1149// extra patterns commented out and if I can be sure they are really not used,
1150// I will delete the code. I don't want to check the code in uncommented without
1151// a valid test case. In some cases, the compiler is generating patterns with
1152// setcc instead and earlier I had implemented setcc first so may have masked
1153// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1154// figure out how to enable the brcond patterns or else possibly new
1155// combinations of of brcond and setcc.
1156//
1157//
1158// bcond-seteq
1159//
1160def: Mips16Pat
1161  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1162   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1163  >;
1164
1165
1166def: Mips16Pat
1167  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1168   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1169  >;
1170
1171def: Mips16Pat
1172  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1173   (BeqzRxImmX16 CPU16Regs:$rx, bb:$targ16)
1174  >;
1175
1176//
1177// bcond-setgt (do we need to have this pair of setlt, setgt??)
1178//
1179def: Mips16Pat
1180  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1181   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1182  >;
1183
1184//
1185// bcond-setge
1186//
1187def: Mips16Pat
1188  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1189   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1190  >;
1191
1192//
1193// never called because compiler transforms a >= k to a > (k-1)
1194def: Mips16Pat
1195  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1196   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1197  >;
1198
1199//
1200// bcond-setlt
1201//
1202def: Mips16Pat
1203  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1204   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1205  >;
1206
1207def: Mips16Pat
1208  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1209   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1210  >;
1211
1212//
1213// bcond-setle
1214//
1215def: Mips16Pat
1216  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1217   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1218  >;
1219
1220//
1221// bcond-setne
1222//
1223def: Mips16Pat
1224  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1225   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1226  >;
1227
1228def: Mips16Pat
1229  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1230   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1231  >;
1232
1233def: Mips16Pat
1234  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1235   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1236  >;
1237
1238//
1239// This needs to be there but I forget which code will generate it
1240//
1241def: Mips16Pat
1242  <(brcond CPU16Regs:$rx, bb:$targ16),
1243   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1244  >;
1245
1246//
1247
1248//
1249// bcond-setugt
1250//
1251//def: Mips16Pat
1252//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1253//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1254//  >;
1255
1256//
1257// bcond-setuge
1258//
1259//def: Mips16Pat
1260//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1261//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1262//  >;
1263
1264
1265//
1266// bcond-setult
1267//
1268//def: Mips16Pat
1269//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1270//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1271//  >;
1272
1273def: UncondBranch16_pat<br, BimmX16>;
1274
1275// Small immediates
1276def: Mips16Pat<(i32 immSExt16:$in),
1277               (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
1278
1279def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1280
1281//
1282// MipsDivRem
1283//
1284def: Mips16Pat
1285  <(MipsDivRem CPU16Regs:$rx, CPU16Regs:$ry),
1286   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1287
1288//
1289// MipsDivRemU
1290//
1291def: Mips16Pat
1292  <(MipsDivRemU CPU16Regs:$rx, CPU16Regs:$ry),
1293   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1294
1295//  signed a,b
1296//  x = (a>=b)?x:y
1297//
1298//  if !(a < b) x = y
1299//
1300def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1301                 CPU16Regs:$x, CPU16Regs:$y),
1302                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1303                 CPU16Regs:$a, CPU16Regs:$b)>;
1304
1305//  signed a,b
1306//  x = (a>b)?x:y
1307//
1308//  if  (b < a) x = y
1309//
1310def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1311                 CPU16Regs:$x, CPU16Regs:$y),
1312                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1313                 CPU16Regs:$b, CPU16Regs:$a)>;
1314
1315// unsigned a,b
1316// x = (a>=b)?x:y
1317//
1318// if !(a < b) x = y;
1319//
1320def : Mips16Pat<
1321  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1322   CPU16Regs:$x, CPU16Regs:$y),
1323  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1324   CPU16Regs:$a, CPU16Regs:$b)>;
1325
1326//  unsigned a,b
1327//  x = (a>b)?x:y
1328//
1329//  if (b < a) x = y
1330//
1331def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1332                 CPU16Regs:$x, CPU16Regs:$y),
1333                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1334                 CPU16Regs:$b, CPU16Regs:$a)>;
1335
1336// signed
1337// x = (a >= k)?x:y
1338// due to an llvm optimization, i don't think that this will ever
1339// be used. This is transformed into x = (a > k-1)?x:y
1340//
1341//
1342
1343//def : Mips16Pat<
1344//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1345//   CPU16Regs:$T, CPU16Regs:$F),
1346//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1347//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1348
1349//def : Mips16Pat<
1350//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1351//   CPU16Regs:$T, CPU16Regs:$F),
1352//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1353//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1354
1355// signed
1356// x = (a < k)?x:y
1357//
1358// if !(a < k) x = y;
1359//
1360def : Mips16Pat<
1361  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1362   CPU16Regs:$x, CPU16Regs:$y),
1363  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1364   CPU16Regs:$a, immSExt16:$b)>;
1365
1366
1367//
1368//
1369// signed
1370// x = (a <= b)? x : y
1371//
1372// if  (b < a) x = y
1373//
1374def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1375                 CPU16Regs:$x, CPU16Regs:$y),
1376                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1377                 CPU16Regs:$b, CPU16Regs:$a)>;
1378
1379//
1380// unnsigned
1381// x = (a <= b)? x : y
1382//
1383// if  (b < a) x = y
1384//
1385def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1386                 CPU16Regs:$x, CPU16Regs:$y),
1387                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1388                 CPU16Regs:$b, CPU16Regs:$a)>;
1389
1390//
1391// signed/unsigned
1392// x = (a == b)? x : y
1393//
1394// if (a != b) x = y
1395//
1396def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1397                 CPU16Regs:$x, CPU16Regs:$y),
1398                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1399                 CPU16Regs:$b, CPU16Regs:$a)>;
1400
1401//
1402// signed/unsigned
1403// x = (a == 0)? x : y
1404//
1405// if (a != 0) x = y
1406//
1407def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1408                 CPU16Regs:$x, CPU16Regs:$y),
1409                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1410                 CPU16Regs:$a)>;
1411
1412
1413//
1414// signed/unsigned
1415// x = (a == k)? x : y
1416//
1417// if (a != k) x = y
1418//
1419def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1420                 CPU16Regs:$x, CPU16Regs:$y),
1421                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1422                 CPU16Regs:$a, immZExt16:$k)>;
1423
1424
1425//
1426// signed/unsigned
1427// x = (a != b)? x : y
1428//
1429// if (a == b) x = y
1430//
1431//
1432def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1433                 CPU16Regs:$x, CPU16Regs:$y),
1434                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1435                 CPU16Regs:$b, CPU16Regs:$a)>;
1436
1437//
1438// signed/unsigned
1439// x = (a != 0)? x : y
1440//
1441// if (a == 0) x = y
1442//
1443def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1444                 CPU16Regs:$x, CPU16Regs:$y),
1445                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1446                 CPU16Regs:$a)>;
1447
1448// signed/unsigned
1449// x = (a)? x : y
1450//
1451// if (!a) x = y
1452//
1453def : Mips16Pat<(select  CPU16Regs:$a,
1454                 CPU16Regs:$x, CPU16Regs:$y),
1455      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1456       CPU16Regs:$a)>;
1457
1458
1459//
1460// signed/unsigned
1461// x = (a != k)? x : y
1462//
1463// if (a == k) x = y
1464//
1465def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1466                 CPU16Regs:$x, CPU16Regs:$y),
1467                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1468                 CPU16Regs:$a, immZExt16:$k)>;
1469
1470//
1471// When writing C code to test setxx these patterns,
1472// some will be transformed into
1473// other things. So we test using C code but using -O3 and -O0
1474//
1475// seteq
1476//
1477def : Mips16Pat
1478  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1479   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1480
1481def : Mips16Pat
1482  <(seteq CPU16Regs:$lhs, 0),
1483   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1484
1485
1486//
1487// setge
1488//
1489
1490def: Mips16Pat
1491  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1492   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1493   (LiRxImmX16 1))>;
1494
1495//
1496// For constants, llvm transforms this to:
1497// x > (k -1) and then reverses the operands to use setlt. So this pattern
1498// is not used now by the compiler. (Presumably checking that k-1 does not
1499// overflow). The compiler never uses this at a the current time, due to
1500// other optimizations.
1501//
1502//def: Mips16Pat
1503//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1504//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1505//   (LiRxImmX16 1))>;
1506
1507// This catches the x >= -32768 case by transforming it to  x > -32769
1508//
1509def: Mips16Pat
1510  <(setgt CPU16Regs:$lhs, -32769),
1511   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1512   (LiRxImmX16 1))>;
1513
1514//
1515// setgt
1516//
1517//
1518
1519def: Mips16Pat
1520  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1521   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1522
1523//
1524// setle
1525//
1526def: Mips16Pat
1527  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1528   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1529
1530//
1531// setlt
1532//
1533def: SetCC_R16<setlt, SltCCRxRy16>;
1534
1535def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1536
1537//
1538// setne
1539//
1540def : Mips16Pat
1541  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1542   (SltuCCRxRy16 (LiRxImmX16 0),
1543   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1544
1545
1546//
1547// setuge
1548//
1549def: Mips16Pat
1550  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1551   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1552   (LiRxImmX16 1))>;
1553
1554// this pattern will never be used because the compiler will transform
1555// x >= k to x > (k - 1) and then use SLT
1556//
1557//def: Mips16Pat
1558//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1559//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1560//   (LiRxImmX16 1))>;
1561
1562//
1563// setugt
1564//
1565def: Mips16Pat
1566  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1567   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1568
1569//
1570// setule
1571//
1572def: Mips16Pat
1573  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1574   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1575
1576//
1577// setult
1578//
1579def: SetCC_R16<setult, SltuCCRxRy16>;
1580
1581def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1582
1583def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1584               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1585
1586// hi/lo relocs
1587
1588def : Mips16Pat<(MipsHi tglobaladdr:$in), 
1589                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1590def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
1591                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1592
1593// wrapper_pic
1594class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1595  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1596            (ADDiuOp RC:$gp, node:$in)>;
1597
1598
1599def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1600def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1601
1602def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1603                (LbuRxRyOffMemX16  addr16:$src)>;
1604def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1605                (LhuRxRyOffMemX16  addr16:$src)>;
1606