Mips16InstrInfo.td revision 8a20844e277d1f51600134589aeb9ca88d9ca25d
1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 :
18  ComplexPattern<iPTR, 3, "SelectAddr16", [frameindex], [SDNPWantParent]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16, CPU16Regs);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16_ea : Operand<i32> {
29  let PrintMethod = "printMemOperandEA";
30  let MIOperandInfo = (ops CPU16Regs, simm16);
31  let EncoderMethod = "getMemEncoding";
32}
33
34//
35//
36// I8 instruction format
37//
38
39class FI816_ins_base<bits<3> _func, string asmstr,
40                     string asmstr2, InstrItinClass itin>:
41  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
42        [], itin>;
43
44
45class FI816_SP_ins<bits<3> _func, string asmstr,
46                   InstrItinClass itin>:
47  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
48
49//
50// RI instruction format
51//
52
53
54class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
55                     InstrItinClass itin>:
56  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
57        !strconcat(asmstr, asmstr2), [], itin>;
58
59class FRI16_ins<bits<5> op, string asmstr,
60                InstrItinClass itin>:
61  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
62      
63class F2RI16_ins<bits<5> _op, string asmstr,
64                     InstrItinClass itin>:
65  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
66        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
67  let Constraints = "$rx_ = $rx";
68}
69
70//
71// Compare a register and immediate and place result in CC
72// Implicit use of T8
73//
74// EXT-CCRR Instruction format
75//
76class FEXT_CCRXI16_ins<string asmstr>:
77  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
78               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
79  let isCodeGenOnly=1;
80}
81
82// JAL and JALX instruction format
83//
84class FJAL16_ins<bits<1> _X, string asmstr,
85                 InstrItinClass itin>:
86  FJAL16<_X, (outs), (ins simm20:$imm),
87         !strconcat(asmstr, "\t$imm\n\tnop"),[],
88         itin>  {
89  let isCodeGenOnly=1;
90}
91//
92// EXT-I instruction format
93//
94class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
95  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
96           !strconcat(asmstr, "\t$imm16"),[], itin>;
97
98//
99// EXT-I8 instruction format
100//
101
102class FEXT_I816_ins_base<bits<3> _func, string asmstr,
103                         string asmstr2, InstrItinClass itin>:
104  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
105            [], itin>;
106
107class FEXT_I816_ins<bits<3> _func, string asmstr,
108                    InstrItinClass itin>:
109  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
110
111class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
112                       InstrItinClass itin>:
113      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
114
115//
116// Assembler formats in alphabetical order.
117// Natural and pseudos are mixed together.
118//
119// Compare two registers and place result in CC
120// Implicit use of T8
121//
122// CC-RR Instruction format
123//
124class FCCRR16_ins<string asmstr> :
125  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
126               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
127  let isCodeGenOnly=1;
128}
129
130//
131// EXT-RI instruction format
132//
133
134class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
135                         InstrItinClass itin>:
136  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
137                  !strconcat(asmstr, asmstr2), [], itin>;
138
139class FEXT_RI16_ins<bits<5> _op, string asmstr,
140                    InstrItinClass itin>:
141  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
142
143class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
144  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
145
146class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
147                      InstrItinClass itin>:
148  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
149            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
150
151class FEXT_2RI16_ins<bits<5> _op, string asmstr,
152                     InstrItinClass itin>:
153  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
154            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
155  let Constraints = "$rx_ = $rx";
156}
157
158
159// this has an explicit sp argument that we ignore to work around a problem
160// in the compiler
161class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
162                                InstrItinClass itin>:
163  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
164            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
165
166//
167// EXT-RRI instruction format
168//
169
170class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
171                         InstrItinClass itin>:
172  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
173             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
174
175class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
176                          InstrItinClass itin>:
177  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
178             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
179
180//
181//
182// EXT-RRI-A instruction format
183//
184
185class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
186                           InstrItinClass itin>:
187  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
188               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
189
190//
191// EXT-SHIFT instruction format
192//
193class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
194  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, shamt:$sa),
195               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
196
197//
198// EXT-T8I8
199//
200class FEXT_T8I816_ins<string asmstr, string asmstr2>:
201  MipsPseudo16<(outs),
202               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
203               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
204               !strconcat(asmstr, "\t$imm"))),[]> {
205  let isCodeGenOnly=1;
206}
207
208//
209// EXT-T8I8I
210//
211class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
212  MipsPseudo16<(outs),
213               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
214               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
215               !strconcat(asmstr, "\t$targ"))), []> {
216  let isCodeGenOnly=1;
217}
218//
219
220
221//
222// I8_MOVR32 instruction format (used only by the MOVR32 instructio
223//
224class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
225       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins CPURegs:$r32),
226       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
227
228//
229// I8_MOV32R instruction format (used only by MOV32R instruction)
230//
231
232class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
233  FI8_MOV32R16<(outs CPURegs:$r32), (ins CPU16Regs:$rz),
234               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
235
236//
237// This are pseudo formats for multiply
238// This first one can be changed to non pseudo now.
239//
240// MULT
241//
242class FMULT16_ins<string asmstr, InstrItinClass itin> :
243  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
244               !strconcat(asmstr, "\t$rx, $ry"), []>;
245
246//
247// MULT-LO
248//
249class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
250  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
251               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
252  let isCodeGenOnly=1;
253}
254
255//
256// RR-type instruction format
257//
258
259class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
260  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
261        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
262}
263
264class FRRTR16_ins<string asmstr> :
265  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
266               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
267
268//
269// maybe refactor but need a $zero as a dummy first parameter
270//
271class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
272  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
273        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
274
275class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
276  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
277        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
278
279
280class FRR16_M_ins<bits<5> f, string asmstr,
281                  InstrItinClass itin> :
282  FRR16<f, (outs CPU16Regs:$rx), (ins),
283        !strconcat(asmstr, "\t$rx"), [], itin>;
284
285class FRxRxRy16_ins<bits<5> f, string asmstr,
286                    InstrItinClass itin> :
287  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
288            !strconcat(asmstr, "\t$rz, $ry"),
289            [], itin> {
290  let Constraints = "$rx = $rz";
291}
292
293let rx=0 in
294class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
295                              string asmstr, InstrItinClass itin>:
296  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
297              [], itin> ;
298
299
300class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
301                      string asmstr, InstrItinClass itin>:
302  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
303              !strconcat(asmstr, "\t $rx"), [], itin> ;
304
305//
306// RRR-type instruction format
307//
308
309class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
310  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
311         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
312
313//
314// These Sel patterns support the generation of conditional move
315// pseudo instructions.
316//
317// The nomenclature uses the components making up the pseudo and may
318// be a bit counter intuitive when compared with the end result we seek.
319// For example using a bqez in the example directly below results in the
320// conditional move being done if the tested register is not zero.
321// I considered in easier to check by keeping the pseudo consistent with
322// it's components but it could have been done differently.
323//
324// The simplest case is when can test and operand directly and do the
325// conditional move based on a simple mips16 conditional
326//  branch instruction.
327// for example:
328// if $op == beqz or bnez:
329//
330// $op1 $rt, .+4
331// move $rd, $rs
332//
333// if $op == beqz, then if $rt != 0, then the conditional assignment
334// $rd = $rs is done.
335
336// if $op == bnez, then if $rt == 0, then the conditional assignment
337// $rd = $rs is done.
338//
339// So this pseudo class only has one operand, i.e. op
340//
341class Sel<string op>:
342  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
343               CPU16Regs:$rt),
344               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
345  //let isCodeGenOnly=1;
346  let Constraints = "$rd = $rd_";
347}
348
349//
350// The next two instruction classes allow for an operand which tests
351// two operands and returns a value in register T8 and
352//then does a conditional branch based on the value of T8
353//
354
355// op2 can be cmpi or slti/sltiu
356// op1 can bteqz or btnez
357// the operands for op2 are a register and a signed constant
358//
359// $op2 $t, $imm  ;test register t and branch conditionally
360// $op1 .+4       ;op1 is a conditional branch
361// move $rd, $rs
362//
363//
364class SeliT<string op1, string op2>:
365  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
366                                       CPU16Regs:$rl, simm16:$imm),
367               !strconcat(op2,
368               !strconcat("\t$rl, $imm\n\t",
369               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
370  let isCodeGenOnly=1;
371  let Constraints = "$rd = $rd_";
372}
373
374//
375// op2 can be cmp or slt/sltu
376// op1 can be bteqz or btnez
377// the operands for op2 are two registers
378// op1 is a conditional branch
379//
380//
381// $op2 $rl, $rr  ;test registers rl,rr
382// $op1 .+4       ;op2 is a conditional branch
383// move $rd, $rs
384//
385//
386class SelT<string op1, string op2>:
387  MipsPseudo16<(outs CPU16Regs:$rd_), 
388               (ins CPU16Regs:$rd, CPU16Regs:$rs,
389                CPU16Regs:$rl, CPU16Regs:$rr),
390               !strconcat(op2,
391               !strconcat("\t$rl, $rr\n\t",
392               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
393  let isCodeGenOnly=1;
394  let Constraints = "$rd = $rd_";
395}
396
397//
398// 32 bit constant
399//
400def imm32: Operand<i32>;
401
402def Constant32:
403  MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
404
405def LwConstant32:
406  MipsPseudo16<(outs), (ins CPU16Regs:$rx, imm32:$imm),
407    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
408
409
410//
411// Some general instruction class info
412//
413//
414
415class ArithLogic16Defs<bit isCom=0> {
416  bits<5> shamt = 0;
417  bit isCommutable = isCom;
418  bit isReMaterializable = 1;
419  bit neverHasSideEffects = 1;
420}
421
422class branch16 {
423  bit isBranch = 1;
424  bit isTerminator = 1;
425  bit isBarrier = 1;
426}
427
428class cbranch16 {
429  bit isBranch = 1;
430  bit isTerminator = 1;
431}
432
433class MayLoad {
434  bit mayLoad = 1;
435}
436
437class MayStore {
438  bit mayStore = 1;
439}
440//
441
442
443// Format: ADDIU rx, immediate MIPS16e
444// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
445// To add a constant to a 32-bit integer.
446//
447def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
448
449def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIAlu>,
450  ArithLogic16Defs<0> {
451  let AddedComplexity = 5;
452}
453def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
454  ArithLogic16Defs<0> {
455  let isCodeGenOnly = 1;
456}
457
458def AddiuRxRyOffMemX16:
459  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
460
461//
462
463// Format: ADDIU rx, pc, immediate MIPS16e
464// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
465// To add a constant to the program counter.
466//
467def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
468
469//
470// Format: ADDIU sp, immediate MIPS16e
471// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
472// To add a constant to the stack pointer.
473//
474def AddiuSpImm16
475  : FI816_SP_ins<0b011, "addiu", IIAlu> {
476  let Defs = [SP];
477  let Uses = [SP];
478  let AddedComplexity = 5;
479}
480
481def AddiuSpImmX16
482  : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
483  let Defs = [SP];
484  let Uses = [SP];
485}
486
487//
488// Format: ADDU rz, rx, ry MIPS16e
489// Purpose: Add Unsigned Word (3-Operand)
490// To add 32-bit integers.
491//
492
493def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
494
495//
496// Format: AND rx, ry MIPS16e
497// Purpose: AND
498// To do a bitwise logical AND.
499
500def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
501
502
503//
504// Format: BEQZ rx, offset MIPS16e
505// Purpose: Branch on Equal to Zero (Extended)
506// To test a GPR then do a PC-relative conditional branch.
507//
508def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
509
510// Format: B offset MIPS16e
511// Purpose: Unconditional Branch
512// To do an unconditional PC-relative branch.
513//
514def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
515
516//
517// Format: BNEZ rx, offset MIPS16e
518// Purpose: Branch on Not Equal to Zero (Extended)
519// To test a GPR then do a PC-relative conditional branch.
520//
521def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
522
523//
524// Format: BTEQZ offset MIPS16e
525// Purpose: Branch on T Equal to Zero (Extended)
526// To test special register T then do a PC-relative conditional branch.
527//
528def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
529  let Uses = [T8];
530}
531
532def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
533
534def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
535  cbranch16;
536
537def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
538
539def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
540
541def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
542
543def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
544  cbranch16;
545
546//
547// Format: BTNEZ offset MIPS16e
548// Purpose: Branch on T Not Equal to Zero (Extended)
549// To test special register T then do a PC-relative conditional branch.
550//
551def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16 {
552  let Uses = [T8];
553}
554
555def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
556
557def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
558
559def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
560
561def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
562
563def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
564
565def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
566  cbranch16;
567
568//
569// Format: CMP rx, ry MIPS16e
570// Purpose: Compare
571// To compare the contents of two GPRs.
572//
573def CmpRxRy16: FRR16_ins<0b01010, "cmp", IIAlu> {
574  let Defs = [T8];
575}
576
577//
578// Format: CMPI rx, immediate MIPS16e
579// Purpose: Compare Immediate
580// To compare a constant with the contents of a GPR.
581//
582def CmpiRxImm16: FRI16_ins<0b01110, "cmpi", IIAlu> {
583  let Defs = [T8];
584}
585
586//
587// Format: CMPI rx, immediate MIPS16e
588// Purpose: Compare Immediate (Extended)
589// To compare a constant with the contents of a GPR.
590//
591def CmpiRxImmX16: FEXT_RI16_ins<0b01110, "cmpi", IIAlu> {
592  let Defs = [T8];
593}
594
595
596//
597// Format: DIV rx, ry MIPS16e
598// Purpose: Divide Word
599// To divide 32-bit signed integers.
600//
601def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
602  let Defs = [HI, LO];
603}
604
605//
606// Format: DIVU rx, ry MIPS16e
607// Purpose: Divide Unsigned Word
608// To divide 32-bit unsigned integers.
609//
610def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
611  let Defs = [HI, LO];
612}
613//
614// Format: JAL target MIPS16e
615// Purpose: Jump and Link
616// To execute a procedure call within the current 256 MB-aligned
617// region and preserve the current ISA.
618//
619
620def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
621  let isBranch = 1;
622  let hasDelaySlot = 0;  // not true, but we add the nop for now
623  let isTerminator=1;
624  let isBarrier=1;
625}
626
627//
628// Format: JR ra MIPS16e
629// Purpose: Jump Register Through Register ra
630// To execute a branch to the instruction address in the return
631// address register.
632//
633
634def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
635  let isBranch = 1;
636  let isIndirectBranch = 1;
637  let hasDelaySlot = 1;
638  let isTerminator=1;
639  let isBarrier=1;
640}
641
642def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIAlu> {
643  let isBranch = 1;
644  let isIndirectBranch = 1;
645  let isTerminator=1;
646  let isBarrier=1;
647}
648
649def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
650  let isBranch = 1;
651  let isIndirectBranch = 1;
652  let isTerminator=1;
653  let isBarrier=1;
654}
655//
656// Format: LB ry, offset(rx) MIPS16e
657// Purpose: Load Byte (Extended)
658// To load a byte from memory as a signed value.
659//
660def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad{
661  let isCodeGenOnly = 1;
662}
663
664//
665// Format: LBU ry, offset(rx) MIPS16e
666// Purpose: Load Byte Unsigned (Extended)
667// To load a byte from memory as a unsigned value.
668//
669def LbuRxRyOffMemX16:
670  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad {
671  let isCodeGenOnly = 1;
672}
673
674//
675// Format: LH ry, offset(rx) MIPS16e
676// Purpose: Load Halfword signed (Extended)
677// To load a halfword from memory as a signed value.
678//
679def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad{
680  let isCodeGenOnly = 1;
681}
682
683//
684// Format: LHU ry, offset(rx) MIPS16e
685// Purpose: Load Halfword unsigned (Extended)
686// To load a halfword from memory as an unsigned value.
687//
688def LhuRxRyOffMemX16:
689  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad {
690  let isCodeGenOnly = 1;
691}
692
693//
694// Format: LI rx, immediate MIPS16e
695// Purpose: Load Immediate (Extended)
696// To load a constant into a GPR.
697//
698def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
699
700//
701// Format: LW ry, offset(rx) MIPS16e
702// Purpose: Load Word (Extended)
703// To load a word from memory as a signed value.
704//
705def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad{
706  let isCodeGenOnly = 1;
707}
708
709// Format: LW rx, offset(sp) MIPS16e
710// Purpose: Load Word (SP-Relative, Extended)
711// To load an SP-relative word from memory as a signed value.
712//
713def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10110, "lw", IILoad>, MayLoad{
714  let Uses = [SP];
715}
716
717//
718// Format: MOVE r32, rz MIPS16e
719// Purpose: Move
720// To move the contents of a GPR to a GPR.
721//
722def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
723
724//
725// Format: MOVE ry, r32 MIPS16e
726//Purpose: Move
727// To move the contents of a GPR to a GPR.
728//
729def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
730
731//
732// Format: MFHI rx MIPS16e
733// Purpose: Move From HI Register
734// To copy the special purpose HI register to a GPR.
735//
736def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
737  let Uses = [HI];
738  let neverHasSideEffects = 1;
739}
740
741//
742// Format: MFLO rx MIPS16e
743// Purpose: Move From LO Register
744// To copy the special purpose LO register to a GPR.
745//
746def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
747  let Uses = [LO];
748  let neverHasSideEffects = 1;
749}
750
751//
752// Pseudo Instruction for mult
753//
754def MultRxRy16:  FMULT16_ins<"mult",  IIAlu> {
755  let isCommutable = 1;
756  let neverHasSideEffects = 1;
757  let Defs = [HI, LO];
758}
759
760def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
761  let isCommutable = 1;
762  let neverHasSideEffects = 1;
763  let Defs = [HI, LO];
764}
765
766//
767// Format: MULT rx, ry MIPS16e
768// Purpose: Multiply Word
769// To multiply 32-bit signed integers.
770//
771def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
772  let isCommutable = 1;
773  let neverHasSideEffects = 1;
774  let Defs = [HI, LO];
775}
776
777//
778// Format: MULTU rx, ry MIPS16e
779// Purpose: Multiply Unsigned Word
780// To multiply 32-bit unsigned integers.
781//
782def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
783  let isCommutable = 1;
784  let neverHasSideEffects = 1;
785  let Defs = [HI, LO];
786}
787
788//
789// Format: NEG rx, ry MIPS16e
790// Purpose: Negate
791// To negate an integer value.
792//
793def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
794
795//
796// Format: NOT rx, ry MIPS16e
797// Purpose: Not
798// To complement an integer value
799//
800def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
801
802//
803// Format: OR rx, ry MIPS16e
804// Purpose: Or
805// To do a bitwise logical OR.
806//
807def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
808
809//
810// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
811// (All args are optional) MIPS16e
812// Purpose: Restore Registers and Deallocate Stack Frame
813// To deallocate a stack frame before exit from a subroutine,
814// restoring return address and static registers, and adjusting
815// stack
816//
817
818// fixed form for restoring RA and the frame
819// for direct object emitter, encoding needs to be adjusted for the
820// frame size
821//
822let ra=1, s=0,s0=1,s1=1 in
823def RestoreRaF16:
824  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
825             "restore\t$$ra,  $$s0, $$s1, $frame_size", [], IILoad >, MayLoad {
826  let isCodeGenOnly = 1;
827  let Defs = [S0, S1, RA, SP];
828  let Uses = [SP];
829}
830
831// Use Restore to increment SP since SP is not a Mip 16 register, this
832// is an easy way to do that which does not require a register.
833//
834let ra=0, s=0,s0=0,s1=0 in
835def RestoreIncSpF16:
836  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
837             "restore\t$frame_size", [], IILoad >, MayLoad {
838  let isCodeGenOnly = 1;
839  let Defs = [SP];
840  let Uses = [SP];
841}
842
843//
844// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
845// MIPS16e
846// Purpose: Save Registers and Set Up Stack Frame
847// To set up a stack frame on entry to a subroutine,
848// saving return address and static registers, and adjusting stack
849//
850let ra=1, s=1,s0=1,s1=1 in
851def SaveRaF16:
852  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
853             "save\t$$ra, $$s0, $$s1, $frame_size", [], IIStore >, MayStore {
854  let isCodeGenOnly = 1;
855  let Uses = [RA, SP, S0, S1];
856  let Defs = [SP];
857}
858
859//
860// Use Save to decrement the SP by a constant since SP is not
861// a Mips16 register.
862//
863let ra=0, s=0,s0=0,s1=0 in
864def SaveDecSpF16:
865  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
866             "save\t$frame_size", [], IIStore >, MayStore {
867  let isCodeGenOnly = 1;
868  let Uses = [SP];
869  let Defs = [SP];
870}
871//
872// Format: SB ry, offset(rx) MIPS16e
873// Purpose: Store Byte (Extended)
874// To store a byte to memory.
875//
876def SbRxRyOffMemX16:
877  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore;
878
879//
880// The Sel(T) instructions are pseudos
881// T means that they use T8 implicitly.
882//
883//
884// Format: SelBeqZ rd, rs, rt
885// Purpose: if rt==0, do nothing
886//          else rs = rt
887//
888def SelBeqZ: Sel<"beqz">;
889
890//
891// Format:  SelTBteqZCmp rd, rs, rl, rr
892// Purpose: b = Cmp rl, rr.
893//          If b==0 then do nothing.
894//          if b!=0 then rd = rs
895//
896def SelTBteqZCmp: SelT<"bteqz", "cmp">;
897
898//
899// Format:  SelTBteqZCmpi rd, rs, rl, rr
900// Purpose: b = Cmpi rl, imm.
901//          If b==0 then do nothing.
902//          if b!=0 then rd = rs
903//
904def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
905
906//
907// Format:  SelTBteqZSlt rd, rs, rl, rr
908// Purpose: b = Slt rl, rr.
909//          If b==0 then do nothing.
910//          if b!=0 then rd = rs
911//
912def SelTBteqZSlt: SelT<"bteqz", "slt">;
913
914//
915// Format:  SelTBteqZSlti rd, rs, rl, rr
916// Purpose: b = Slti rl, imm.
917//          If b==0 then do nothing.
918//          if b!=0 then rd = rs
919//
920def SelTBteqZSlti: SeliT<"bteqz", "slti">;
921
922//
923// Format:  SelTBteqZSltu rd, rs, rl, rr
924// Purpose: b = Sltu rl, rr.
925//          If b==0 then do nothing.
926//          if b!=0 then rd = rs
927//
928def SelTBteqZSltu: SelT<"bteqz", "sltu">;
929
930//
931// Format:  SelTBteqZSltiu rd, rs, rl, rr
932// Purpose: b = Sltiu rl, imm.
933//          If b==0 then do nothing.
934//          if b!=0 then rd = rs
935//
936def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
937
938//
939// Format: SelBnez rd, rs, rt
940// Purpose: if rt!=0, do nothing
941//          else rs = rt
942//
943def SelBneZ: Sel<"bnez">;
944
945//
946// Format:  SelTBtneZCmp rd, rs, rl, rr
947// Purpose: b = Cmp rl, rr.
948//          If b!=0 then do nothing.
949//          if b0=0 then rd = rs
950//
951def SelTBtneZCmp: SelT<"btnez", "cmp">;
952
953//
954// Format:  SelTBtnezCmpi rd, rs, rl, rr
955// Purpose: b = Cmpi rl, imm.
956//          If b!=0 then do nothing.
957//          if b==0 then rd = rs
958//
959def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
960
961//
962// Format:  SelTBtneZSlt rd, rs, rl, rr
963// Purpose: b = Slt rl, rr.
964//          If b!=0 then do nothing.
965//          if b==0 then rd = rs
966//
967def SelTBtneZSlt: SelT<"btnez", "slt">;
968
969//
970// Format:  SelTBtneZSlti rd, rs, rl, rr
971// Purpose: b = Slti rl, imm.
972//          If b!=0 then do nothing.
973//          if b==0 then rd = rs
974//
975def SelTBtneZSlti: SeliT<"btnez", "slti">;
976
977//
978// Format:  SelTBtneZSltu rd, rs, rl, rr
979// Purpose: b = Sltu rl, rr.
980//          If b!=0 then do nothing.
981//          if b==0 then rd = rs
982//
983def SelTBtneZSltu: SelT<"btnez", "sltu">;
984
985//
986// Format:  SelTBtneZSltiu rd, rs, rl, rr
987// Purpose: b = Slti rl, imm.
988//          If b!=0 then do nothing.
989//          if b==0 then rd = rs
990//
991def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
992//
993//
994// Format: SH ry, offset(rx) MIPS16e
995// Purpose: Store Halfword (Extended)
996// To store a halfword to memory.
997//
998def ShRxRyOffMemX16:
999  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore;
1000
1001//
1002// Format: SLL rx, ry, sa MIPS16e
1003// Purpose: Shift Word Left Logical (Extended)
1004// To execute a left-shift of a word by a fixed number of bits—0 to 31 bits.
1005//
1006def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
1007
1008//
1009// Format: SLLV ry, rx MIPS16e
1010// Purpose: Shift Word Left Logical Variable
1011// To execute a left-shift of a word by a variable number of bits.
1012//
1013def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
1014
1015// Format: SLTI rx, immediate MIPS16e
1016// Purpose: Set on Less Than Immediate
1017// To record the result of a less-than comparison with a constant.
1018//
1019//
1020def SltiRxImm16: FRI16_ins<0b01010, "slti", IIAlu> {
1021  let Defs = [T8];
1022}
1023
1024//
1025// Format: SLTI rx, immediate MIPS16e
1026// Purpose: Set on Less Than Immediate (Extended)
1027// To record the result of a less-than comparison with a constant.
1028//
1029//
1030def SltiRxImmX16: FEXT_RI16_ins<0b01010, "slti", IIAlu> {
1031  let Defs = [T8];
1032}
1033
1034def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1035
1036// Format: SLTIU rx, immediate MIPS16e
1037// Purpose: Set on Less Than Immediate Unsigned
1038// To record the result of a less-than comparison with a constant.
1039//
1040//
1041def SltiuRxImm16: FRI16_ins<0b01011, "sltiu", IIAlu> {
1042  let Defs = [T8];
1043}
1044
1045//
1046// Format: SLTI rx, immediate MIPS16e
1047// Purpose: Set on Less Than Immediate Unsigned (Extended)
1048// To record the result of a less-than comparison with a constant.
1049//
1050//
1051def SltiuRxImmX16: FEXT_RI16_ins<0b01011, "sltiu", IIAlu> {
1052  let Defs = [T8];
1053}
1054//
1055// Format: SLTIU rx, immediate MIPS16e
1056// Purpose: Set on Less Than Immediate Unsigned (Extended)
1057// To record the result of a less-than comparison with a constant.
1058//
1059def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1060
1061//
1062// Format: SLT rx, ry MIPS16e
1063// Purpose: Set on Less Than
1064// To record the result of a less-than comparison.
1065//
1066def SltRxRy16: FRR16_ins<0b00010, "slt", IIAlu>;
1067
1068def SltCCRxRy16: FCCRR16_ins<"slt">;
1069
1070// Format: SLTU rx, ry MIPS16e
1071// Purpose: Set on Less Than Unsigned
1072// To record the result of an unsigned less-than comparison.
1073//
1074def SltuRxRy16: FRR16_ins<0b00011, "sltu", IIAlu>;
1075
1076def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1077  let isCodeGenOnly=1;
1078}
1079
1080
1081def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1082//
1083// Format: SRAV ry, rx MIPS16e
1084// Purpose: Shift Word Right Arithmetic Variable
1085// To execute an arithmetic right-shift of a word by a variable
1086// number of bits.
1087//
1088def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
1089
1090
1091//
1092// Format: SRA rx, ry, sa MIPS16e
1093// Purpose: Shift Word Right Arithmetic (Extended)
1094// To execute an arithmetic right-shift of a word by a fixed
1095// number of bits—1 to 8 bits.
1096//
1097def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
1098
1099
1100//
1101// Format: SRLV ry, rx MIPS16e
1102// Purpose: Shift Word Right Logical Variable
1103// To execute a logical right-shift of a word by a variable
1104// number of bits.
1105//
1106def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
1107
1108
1109//
1110// Format: SRL rx, ry, sa MIPS16e
1111// Purpose: Shift Word Right Logical (Extended)
1112// To execute a logical right-shift of a word by a fixed
1113// number of bits—1 to 31 bits.
1114//
1115def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
1116
1117//
1118// Format: SUBU rz, rx, ry MIPS16e
1119// Purpose: Subtract Unsigned Word
1120// To subtract 32-bit integers
1121//
1122def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
1123
1124//
1125// Format: SW ry, offset(rx) MIPS16e
1126// Purpose: Store Word (Extended)
1127// To store a word to memory.
1128//
1129def SwRxRyOffMemX16:
1130  FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore;
1131
1132//
1133// Format: SW rx, offset(sp) MIPS16e
1134// Purpose: Store Word rx (SP-Relative)
1135// To store an SP-relative word to memory.
1136//
1137def SwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b11010, "sw", IIStore>, MayStore;
1138
1139//
1140//
1141// Format: XOR rx, ry MIPS16e
1142// Purpose: Xor
1143// To do a bitwise logical XOR.
1144//
1145def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
1146
1147class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1148  let Predicates = [InMips16Mode];
1149}
1150
1151// Unary Arith/Logic
1152//
1153class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1154  Mips16Pat<(OpNode CPU16Regs:$r),
1155            (I CPU16Regs:$r)>;
1156
1157def: ArithLogicU_pat<not, NotRxRy16>;
1158def: ArithLogicU_pat<ineg, NegRxRy16>;
1159
1160class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1161  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1162            (I CPU16Regs:$l, CPU16Regs:$r)>;
1163
1164def: ArithLogic16_pat<add, AdduRxRyRz16>;
1165def: ArithLogic16_pat<and, AndRxRxRy16>;
1166def: ArithLogic16_pat<mul, MultRxRyRz16>;
1167def: ArithLogic16_pat<or, OrRxRxRy16>;
1168def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1169def: ArithLogic16_pat<xor, XorRxRxRy16>;
1170
1171// Arithmetic and logical instructions with 2 register operands.
1172
1173class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1174  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1175            (I CPU16Regs:$in, imm_type:$imm)>;
1176
1177def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1178def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1179def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1180def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1181def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1182
1183class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1184  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1185            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1186
1187def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1188def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1189def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1190
1191class LoadM16_pat<PatFrag OpNode, Instruction I> :
1192  Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
1193
1194def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
1195def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
1196def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
1197def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
1198def: LoadM16_pat<load, LwRxRyOffMemX16>;
1199
1200class StoreM16_pat<PatFrag OpNode, Instruction I> :
1201  Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
1202            (I CPU16Regs:$r, addr16:$addr)>;
1203
1204def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
1205def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
1206def: StoreM16_pat<store, SwRxRyOffMemX16>;
1207
1208// Unconditional branch
1209class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1210  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1211    let Predicates = [InMips16Mode];
1212  }
1213
1214def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1215                (Jal16 tglobaladdr:$dst)>;
1216
1217def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1218                (Jal16 texternalsym:$dst)>;
1219
1220// Indirect branch
1221def: Mips16Pat<
1222  (brind CPU16Regs:$rs),
1223  (JrcRx16 CPU16Regs:$rs)>;
1224
1225// Jump and Link (Call)
1226let isCall=1, hasDelaySlot=0 in
1227def JumpLinkReg16:
1228  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1229              "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>;
1230
1231// Mips16 pseudos
1232let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1233  hasExtraSrcRegAllocReq = 1 in
1234def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1235
1236
1237// setcc patterns
1238
1239class SetCC_R16<PatFrag cond_op, Instruction I>:
1240  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1241            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1242
1243class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1244  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1245            (I CPU16Regs:$rx, imm_type:$imm16)>;
1246
1247
1248def: Mips16Pat<(i32  addr16:$addr),
1249               (AddiuRxRyOffMemX16  addr16:$addr)>;
1250
1251
1252// Large (>16 bit) immediate loads
1253def : Mips16Pat<(i32 imm:$imm),
1254                (OrRxRxRy16 (SllX16 (LiRxImmX16 (HI16 imm:$imm)), 16),
1255                (LiRxImmX16 (LO16 imm:$imm)))>;
1256
1257// Carry MipsPatterns
1258def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
1259                (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1260def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
1261                (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1262def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
1263                (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
1264
1265//
1266// Some branch conditional patterns are not generated by llvm at this time.
1267// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1268// comparison they are used and for unsigned a different pattern is used.
1269// I am pushing upstream from the full mips16 port and it seemed that I needed
1270// these earlier and the mips32 port has these but now I cannot create test
1271// cases that use these patterns. While I sort this all out I will leave these
1272// extra patterns commented out and if I can be sure they are really not used,
1273// I will delete the code. I don't want to check the code in uncommented without
1274// a valid test case. In some cases, the compiler is generating patterns with
1275// setcc instead and earlier I had implemented setcc first so may have masked
1276// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1277// figure out how to enable the brcond patterns or else possibly new
1278// combinations of of brcond and setcc.
1279//
1280//
1281// bcond-seteq
1282//
1283def: Mips16Pat
1284  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1285   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1286  >;
1287
1288
1289def: Mips16Pat
1290  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1291   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1292  >;
1293
1294def: Mips16Pat
1295  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1296   (BeqzRxImmX16 CPU16Regs:$rx, bb:$targ16)
1297  >;
1298
1299//
1300// bcond-setgt (do we need to have this pair of setlt, setgt??)
1301//
1302def: Mips16Pat
1303  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1304   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1305  >;
1306
1307//
1308// bcond-setge
1309//
1310def: Mips16Pat
1311  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1312   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1313  >;
1314
1315//
1316// never called because compiler transforms a >= k to a > (k-1)
1317def: Mips16Pat
1318  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1319   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1320  >;
1321
1322//
1323// bcond-setlt
1324//
1325def: Mips16Pat
1326  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1327   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1328  >;
1329
1330def: Mips16Pat
1331  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1332   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1333  >;
1334
1335//
1336// bcond-setle
1337//
1338def: Mips16Pat
1339  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1340   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1341  >;
1342
1343//
1344// bcond-setne
1345//
1346def: Mips16Pat
1347  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1348   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1349  >;
1350
1351def: Mips16Pat
1352  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1353   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1354  >;
1355
1356def: Mips16Pat
1357  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1358   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1359  >;
1360
1361//
1362// This needs to be there but I forget which code will generate it
1363//
1364def: Mips16Pat
1365  <(brcond CPU16Regs:$rx, bb:$targ16),
1366   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1367  >;
1368
1369//
1370
1371//
1372// bcond-setugt
1373//
1374//def: Mips16Pat
1375//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1376//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1377//  >;
1378
1379//
1380// bcond-setuge
1381//
1382//def: Mips16Pat
1383//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1384//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1385//  >;
1386
1387
1388//
1389// bcond-setult
1390//
1391//def: Mips16Pat
1392//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1393//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1394//  >;
1395
1396def: UncondBranch16_pat<br, BimmX16>;
1397
1398// Small immediates
1399def: Mips16Pat<(i32 immSExt16:$in),
1400               (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
1401
1402def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1403
1404//
1405// MipsDivRem
1406//
1407def: Mips16Pat
1408  <(MipsDivRem CPU16Regs:$rx, CPU16Regs:$ry),
1409   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1410
1411//
1412// MipsDivRemU
1413//
1414def: Mips16Pat
1415  <(MipsDivRemU CPU16Regs:$rx, CPU16Regs:$ry),
1416   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1417
1418//  signed a,b
1419//  x = (a>=b)?x:y
1420//
1421//  if !(a < b) x = y
1422//
1423def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1424                 CPU16Regs:$x, CPU16Regs:$y),
1425                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1426                 CPU16Regs:$a, CPU16Regs:$b)>;
1427
1428//  signed a,b
1429//  x = (a>b)?x:y
1430//
1431//  if  (b < a) x = y
1432//
1433def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1434                 CPU16Regs:$x, CPU16Regs:$y),
1435                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1436                 CPU16Regs:$b, CPU16Regs:$a)>;
1437
1438// unsigned a,b
1439// x = (a>=b)?x:y
1440//
1441// if !(a < b) x = y;
1442//
1443def : Mips16Pat<
1444  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1445   CPU16Regs:$x, CPU16Regs:$y),
1446  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1447   CPU16Regs:$a, CPU16Regs:$b)>;
1448
1449//  unsigned a,b
1450//  x = (a>b)?x:y
1451//
1452//  if (b < a) x = y
1453//
1454def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1455                 CPU16Regs:$x, CPU16Regs:$y),
1456                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1457                 CPU16Regs:$b, CPU16Regs:$a)>;
1458
1459// signed
1460// x = (a >= k)?x:y
1461// due to an llvm optimization, i don't think that this will ever
1462// be used. This is transformed into x = (a > k-1)?x:y
1463//
1464//
1465
1466//def : Mips16Pat<
1467//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1468//   CPU16Regs:$T, CPU16Regs:$F),
1469//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1470//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1471
1472//def : Mips16Pat<
1473//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1474//   CPU16Regs:$T, CPU16Regs:$F),
1475//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1476//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1477
1478// signed
1479// x = (a < k)?x:y
1480//
1481// if !(a < k) x = y;
1482//
1483def : Mips16Pat<
1484  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1485   CPU16Regs:$x, CPU16Regs:$y),
1486  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1487   CPU16Regs:$a, immSExt16:$b)>;
1488
1489
1490//
1491//
1492// signed
1493// x = (a <= b)? x : y
1494//
1495// if  (b < a) x = y
1496//
1497def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1498                 CPU16Regs:$x, CPU16Regs:$y),
1499                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1500                 CPU16Regs:$b, CPU16Regs:$a)>;
1501
1502//
1503// unnsigned
1504// x = (a <= b)? x : y
1505//
1506// if  (b < a) x = y
1507//
1508def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1509                 CPU16Regs:$x, CPU16Regs:$y),
1510                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1511                 CPU16Regs:$b, CPU16Regs:$a)>;
1512
1513//
1514// signed/unsigned
1515// x = (a == b)? x : y
1516//
1517// if (a != b) x = y
1518//
1519def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1520                 CPU16Regs:$x, CPU16Regs:$y),
1521                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1522                 CPU16Regs:$b, CPU16Regs:$a)>;
1523
1524//
1525// signed/unsigned
1526// x = (a == 0)? x : y
1527//
1528// if (a != 0) x = y
1529//
1530def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1531                 CPU16Regs:$x, CPU16Regs:$y),
1532                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1533                 CPU16Regs:$a)>;
1534
1535
1536//
1537// signed/unsigned
1538// x = (a == k)? x : y
1539//
1540// if (a != k) x = y
1541//
1542def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1543                 CPU16Regs:$x, CPU16Regs:$y),
1544                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1545                 CPU16Regs:$a, immZExt16:$k)>;
1546
1547
1548//
1549// signed/unsigned
1550// x = (a != b)? x : y
1551//
1552// if (a == b) x = y
1553//
1554//
1555def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1556                 CPU16Regs:$x, CPU16Regs:$y),
1557                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1558                 CPU16Regs:$b, CPU16Regs:$a)>;
1559
1560//
1561// signed/unsigned
1562// x = (a != 0)? x : y
1563//
1564// if (a == 0) x = y
1565//
1566def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1567                 CPU16Regs:$x, CPU16Regs:$y),
1568                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1569                 CPU16Regs:$a)>;
1570
1571// signed/unsigned
1572// x = (a)? x : y
1573//
1574// if (!a) x = y
1575//
1576def : Mips16Pat<(select  CPU16Regs:$a,
1577                 CPU16Regs:$x, CPU16Regs:$y),
1578      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1579       CPU16Regs:$a)>;
1580
1581
1582//
1583// signed/unsigned
1584// x = (a != k)? x : y
1585//
1586// if (a == k) x = y
1587//
1588def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1589                 CPU16Regs:$x, CPU16Regs:$y),
1590                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1591                 CPU16Regs:$a, immZExt16:$k)>;
1592
1593//
1594// When writing C code to test setxx these patterns,
1595// some will be transformed into
1596// other things. So we test using C code but using -O3 and -O0
1597//
1598// seteq
1599//
1600def : Mips16Pat
1601  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1602   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1603
1604def : Mips16Pat
1605  <(seteq CPU16Regs:$lhs, 0),
1606   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1607
1608
1609//
1610// setge
1611//
1612
1613def: Mips16Pat
1614  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1615   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1616   (LiRxImmX16 1))>;
1617
1618//
1619// For constants, llvm transforms this to:
1620// x > (k -1) and then reverses the operands to use setlt. So this pattern
1621// is not used now by the compiler. (Presumably checking that k-1 does not
1622// overflow). The compiler never uses this at a the current time, due to
1623// other optimizations.
1624//
1625//def: Mips16Pat
1626//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1627//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1628//   (LiRxImmX16 1))>;
1629
1630// This catches the x >= -32768 case by transforming it to  x > -32769
1631//
1632def: Mips16Pat
1633  <(setgt CPU16Regs:$lhs, -32769),
1634   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1635   (LiRxImmX16 1))>;
1636
1637//
1638// setgt
1639//
1640//
1641
1642def: Mips16Pat
1643  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1644   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1645
1646//
1647// setle
1648//
1649def: Mips16Pat
1650  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1651   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1652
1653//
1654// setlt
1655//
1656def: SetCC_R16<setlt, SltCCRxRy16>;
1657
1658def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1659
1660//
1661// setne
1662//
1663def : Mips16Pat
1664  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1665   (SltuCCRxRy16 (LiRxImmX16 0),
1666   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1667
1668
1669//
1670// setuge
1671//
1672def: Mips16Pat
1673  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1674   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1675   (LiRxImmX16 1))>;
1676
1677// this pattern will never be used because the compiler will transform
1678// x >= k to x > (k - 1) and then use SLT
1679//
1680//def: Mips16Pat
1681//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1682//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1683//   (LiRxImmX16 1))>;
1684
1685//
1686// setugt
1687//
1688def: Mips16Pat
1689  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1690   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1691
1692//
1693// setule
1694//
1695def: Mips16Pat
1696  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1697   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1698
1699//
1700// setult
1701//
1702def: SetCC_R16<setult, SltuCCRxRy16>;
1703
1704def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1705
1706def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1707               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1708
1709// hi/lo relocs
1710
1711def : Mips16Pat<(MipsHi tglobaladdr:$in), 
1712                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1713def : Mips16Pat<(MipsHi tjumptable:$in),
1714                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1715def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
1716                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1717
1718// wrapper_pic
1719class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1720  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1721            (ADDiuOp RC:$gp, node:$in)>;
1722
1723
1724def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1725def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1726
1727def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1728                (LbuRxRyOffMemX16  addr16:$src)>;
1729def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1730                (LhuRxRyOffMemX16  addr16:$src)>;
1731