Mips16InstrInfo.td revision c6d4d667a8a56b341fac949153ec5939857445df
1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 :
18  ComplexPattern<iPTR, 3, "selectAddr16", [frameindex], [SDNPWantParent]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16, CPU16RegsPlusSP);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16_ea : Operand<i32> {
29  let PrintMethod = "printMemOperandEA";
30  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
31  let EncoderMethod = "getMemEncoding";
32}
33
34//
35// I-type instruction format
36//
37// this is only used by bimm. the actual assembly value is a 12 bit signed
38// number
39//
40class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>:
41  FI16<op, (outs), (ins brtarget:$imm16),
42            !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>;
43
44//
45//
46// I8 instruction format
47//
48
49class FI816_ins_base<bits<3> _func, string asmstr,
50                     string asmstr2, InstrItinClass itin>:
51  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
52        [], itin>;
53
54
55class FI816_SP_ins<bits<3> _func, string asmstr,
56                   InstrItinClass itin>:
57  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
58
59//
60// RI instruction format
61//
62
63
64class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
65                     InstrItinClass itin>:
66  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
67        !strconcat(asmstr, asmstr2), [], itin>;
68
69class FRI16_ins<bits<5> op, string asmstr,
70                InstrItinClass itin>:
71  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
72
73class FRI16_TCP_ins<bits<5> _op, string asmstr,
74                    InstrItinClass itin>:
75  FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
76            !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>;
77            
78class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
79                     InstrItinClass itin>:
80  FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
81        !strconcat(asmstr, asmstr2), [], itin>;
82
83class FRI16R_ins<bits<5> op, string asmstr,
84                InstrItinClass itin>:
85  FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
86
87class F2RI16_ins<bits<5> _op, string asmstr,
88                     InstrItinClass itin>:
89  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
90        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
91  let Constraints = "$rx_ = $rx";
92}
93
94class FRI16_B_ins<bits<5> _op, string asmstr,
95                  InstrItinClass itin>:
96  FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
97        !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
98//
99// Compare a register and immediate and place result in CC
100// Implicit use of T8
101//
102// EXT-CCRR Instruction format
103//
104class FEXT_CCRXI16_ins<string asmstr>:
105  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
106               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
107  let isCodeGenOnly=1;
108  let usesCustomInserter = 1;
109}
110
111// JAL and JALX instruction format
112//
113class FJAL16_ins<bits<1> _X, string asmstr,
114                 InstrItinClass itin>:
115  FJAL16<_X, (outs), (ins simm20:$imm),
116         !strconcat(asmstr, "\t$imm\n\tnop"),[],
117         itin>  {
118  let isCodeGenOnly=1;
119}
120//
121// EXT-I instruction format
122//
123class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
124  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
125           !strconcat(asmstr, "\t$imm16"),[], itin>;
126
127//
128// EXT-I8 instruction format
129//
130
131class FEXT_I816_ins_base<bits<3> _func, string asmstr,
132                         string asmstr2, InstrItinClass itin>:
133  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
134            [], itin>;
135
136class FEXT_I816_ins<bits<3> _func, string asmstr,
137                    InstrItinClass itin>:
138  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
139
140class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
141                       InstrItinClass itin>:
142      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
143
144//
145// Assembler formats in alphabetical order.
146// Natural and pseudos are mixed together.
147//
148// Compare two registers and place result in CC
149// Implicit use of T8
150//
151// CC-RR Instruction format
152//
153class FCCRR16_ins<string asmstr> :
154  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
155               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
156  let isCodeGenOnly=1;
157  let usesCustomInserter = 1;
158}
159
160//
161// EXT-RI instruction format
162//
163
164class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
165                         InstrItinClass itin>:
166  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
167                  !strconcat(asmstr, asmstr2), [], itin>;
168
169class FEXT_RI16_ins<bits<5> _op, string asmstr,
170                    InstrItinClass itin>:
171  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
172
173class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
174                         InstrItinClass itin>:
175  FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
176                  !strconcat(asmstr, asmstr2), [], itin>;
177
178class FEXT_RI16R_ins<bits<5> _op, string asmstr,
179                    InstrItinClass itin>:
180  FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
181
182class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
183  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
184
185class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
186                      InstrItinClass itin>:
187  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
188            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
189
190class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr,
191                        InstrItinClass itin>:
192  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
193            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
194
195class FEXT_2RI16_ins<bits<5> _op, string asmstr,
196                     InstrItinClass itin>:
197  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
198            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
199  let Constraints = "$rx_ = $rx";
200}
201
202
203// this has an explicit sp argument that we ignore to work around a problem
204// in the compiler
205class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
206                                InstrItinClass itin>:
207  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
208            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
209
210class FEXT_RI16_SP_Store_explicit_ins<bits<5> _op, string asmstr,
211                                InstrItinClass itin>:
212  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, CPUSPReg:$ry, simm16:$imm),
213            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
214
215//
216// EXT-RRI instruction format
217//
218
219class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
220                         InstrItinClass itin>:
221  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
222             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
223
224class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
225                          InstrItinClass itin>:
226  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
227             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
228
229//
230//
231// EXT-RRI-A instruction format
232//
233
234class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
235                           InstrItinClass itin>:
236  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
237               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
238
239//
240// EXT-SHIFT instruction format
241//
242class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
243  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa),
244               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
245
246//
247// EXT-T8I8
248//
249class FEXT_T8I816_ins<string asmstr, string asmstr2>:
250  MipsPseudo16<(outs),
251               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
252               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
253               !strconcat(asmstr, "\t$imm"))),[]> {
254  let isCodeGenOnly=1;
255  let usesCustomInserter = 1;
256}
257
258//
259// EXT-T8I8I
260//
261class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
262  MipsPseudo16<(outs),
263               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
264               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
265               !strconcat(asmstr, "\t$targ"))), []> {
266  let isCodeGenOnly=1;
267  let usesCustomInserter = 1;
268}
269//
270
271
272//
273// I8_MOVR32 instruction format (used only by the MOVR32 instructio
274//
275class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
276       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
277       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
278
279//
280// I8_MOV32R instruction format (used only by MOV32R instruction)
281//
282
283class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
284  FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
285               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
286
287//
288// This are pseudo formats for multiply
289// This first one can be changed to non pseudo now.
290//
291// MULT
292//
293class FMULT16_ins<string asmstr, InstrItinClass itin> :
294  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
295               !strconcat(asmstr, "\t$rx, $ry"), []>;
296
297//
298// MULT-LO
299//
300class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
301  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
302               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
303  let isCodeGenOnly=1;
304}
305
306//
307// RR-type instruction format
308//
309
310class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
311  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
312        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
313}
314
315class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
316  FRRBreak16<(outs), (ins), asmstr, [], itin> {
317  let Code=0;
318}
319
320class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
321  FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
322        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
323}
324
325class FRRTR16_ins<string asmstr> :
326  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
327               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
328
329//
330// maybe refactor but need a $zero as a dummy first parameter
331//
332class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
333  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
334        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
335
336class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
337  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
338        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
339
340
341class FRR16_M_ins<bits<5> f, string asmstr,
342                  InstrItinClass itin> :
343  FRR16<f, (outs CPU16Regs:$rx), (ins),
344        !strconcat(asmstr, "\t$rx"), [], itin>;
345
346class FRxRxRy16_ins<bits<5> f, string asmstr,
347                    InstrItinClass itin> :
348  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
349            !strconcat(asmstr, "\t$rz, $ry"),
350            [], itin> {
351  let Constraints = "$rx = $rz";
352}
353
354let rx=0 in
355class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
356                              string asmstr, InstrItinClass itin>:
357  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
358              [], itin> ;
359
360
361class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
362                      string asmstr, InstrItinClass itin>:
363  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
364              !strconcat(asmstr, "\t $rx"), [], itin> ;
365
366class FRR_SF16_ins
367  <bits<5> _funct, bits<3> _subfunc,
368    string asmstr, InstrItinClass itin>:
369  FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_),
370           !strconcat(asmstr, "\t $rx"),
371           [], itin> {
372  let Constraints = "$rx_ = $rx";
373  }
374//
375// RRR-type instruction format
376//
377
378class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
379  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
380         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
381
382//
383// These Sel patterns support the generation of conditional move
384// pseudo instructions.
385//
386// The nomenclature uses the components making up the pseudo and may
387// be a bit counter intuitive when compared with the end result we seek.
388// For example using a bqez in the example directly below results in the
389// conditional move being done if the tested register is not zero.
390// I considered in easier to check by keeping the pseudo consistent with
391// it's components but it could have been done differently.
392//
393// The simplest case is when can test and operand directly and do the
394// conditional move based on a simple mips16 conditional
395//  branch instruction.
396// for example:
397// if $op == beqz or bnez:
398//
399// $op1 $rt, .+4
400// move $rd, $rs
401//
402// if $op == beqz, then if $rt != 0, then the conditional assignment
403// $rd = $rs is done.
404
405// if $op == bnez, then if $rt == 0, then the conditional assignment
406// $rd = $rs is done.
407//
408// So this pseudo class only has one operand, i.e. op
409//
410class Sel<string op>:
411  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
412               CPU16Regs:$rt),
413               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
414  //let isCodeGenOnly=1;
415  let Constraints = "$rd = $rd_";
416  let usesCustomInserter = 1;
417}
418
419//
420// The next two instruction classes allow for an operand which tests
421// two operands and returns a value in register T8 and
422//then does a conditional branch based on the value of T8
423//
424
425// op2 can be cmpi or slti/sltiu
426// op1 can bteqz or btnez
427// the operands for op2 are a register and a signed constant
428//
429// $op2 $t, $imm  ;test register t and branch conditionally
430// $op1 .+4       ;op1 is a conditional branch
431// move $rd, $rs
432//
433//
434class SeliT<string op1, string op2>:
435  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
436                                       CPU16Regs:$rl, simm16:$imm),
437               !strconcat(op2,
438               !strconcat("\t$rl, $imm\n\t",
439               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
440  let isCodeGenOnly=1;
441  let Constraints = "$rd = $rd_";
442  let usesCustomInserter = 1;
443}
444
445//
446// op2 can be cmp or slt/sltu
447// op1 can be bteqz or btnez
448// the operands for op2 are two registers
449// op1 is a conditional branch
450//
451//
452// $op2 $rl, $rr  ;test registers rl,rr
453// $op1 .+4       ;op2 is a conditional branch
454// move $rd, $rs
455//
456//
457class SelT<string op1, string op2>:
458  MipsPseudo16<(outs CPU16Regs:$rd_),
459               (ins CPU16Regs:$rd, CPU16Regs:$rs,
460                CPU16Regs:$rl, CPU16Regs:$rr),
461               !strconcat(op2,
462               !strconcat("\t$rl, $rr\n\t",
463               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
464  let isCodeGenOnly=1;
465  let Constraints = "$rd = $rd_";
466  let usesCustomInserter = 1;
467}
468
469//
470// 32 bit constant
471//
472def imm32: Operand<i32>;
473
474def Constant32:
475  MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
476
477def LwConstant32:
478  MipsPseudo16<(outs CPU16Regs:$rx), (ins imm32:$imm, imm32:$constid),
479    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
480
481
482//
483// Some general instruction class info
484//
485//
486
487class ArithLogic16Defs<bit isCom=0> {
488  bits<5> shamt = 0;
489  bit isCommutable = isCom;
490  bit isReMaterializable = 1;
491  bit neverHasSideEffects = 1;
492}
493
494class branch16 {
495  bit isBranch = 1;
496  bit isTerminator = 1;
497  bit isBarrier = 1;
498}
499
500class cbranch16 {
501  bit isBranch = 1;
502  bit isTerminator = 1;
503}
504
505class MayLoad {
506  bit mayLoad = 1;
507}
508
509class MayStore {
510  bit mayStore = 1;
511}
512//
513
514
515// Format: ADDIU rx, immediate MIPS16e
516// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
517// To add a constant to a 32-bit integer.
518//
519def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
520
521def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIAlu>,
522  ArithLogic16Defs<0> {
523  let AddedComplexity = 5;
524}
525def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
526  ArithLogic16Defs<0> {
527  let isCodeGenOnly = 1;
528}
529
530def AddiuRxRyOffMemX16:
531  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
532
533//
534
535// Format: ADDIU rx, pc, immediate MIPS16e
536// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
537// To add a constant to the program counter.
538//
539def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
540
541//
542// Format: ADDIU sp, immediate MIPS16e
543// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
544// To add a constant to the stack pointer.
545//
546def AddiuSpImm16
547  : FI816_SP_ins<0b011, "addiu", IIAlu> {
548  let Defs = [SP];
549  let Uses = [SP];
550  let AddedComplexity = 5;
551}
552
553def AddiuSpImmX16
554  : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
555  let Defs = [SP];
556  let Uses = [SP];
557}
558
559//
560// Format: ADDU rz, rx, ry MIPS16e
561// Purpose: Add Unsigned Word (3-Operand)
562// To add 32-bit integers.
563//
564
565def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
566
567//
568// Format: AND rx, ry MIPS16e
569// Purpose: AND
570// To do a bitwise logical AND.
571
572def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
573
574
575//
576// Format: BEQZ rx, offset MIPS16e
577// Purpose: Branch on Equal to Zero
578// To test a GPR then do a PC-relative conditional branch.
579//
580def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
581
582
583//
584// Format: BEQZ rx, offset MIPS16e
585// Purpose: Branch on Equal to Zero (Extended)
586// To test a GPR then do a PC-relative conditional branch.
587//
588def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
589
590//
591// Format: B offset MIPS16e
592// Purpose: Unconditional Branch (Extended)
593// To do an unconditional PC-relative branch.
594//
595
596def Bimm16: FI16_ins<0b00010, "b", IIAlu>, branch16;
597
598// Format: B offset MIPS16e
599// Purpose: Unconditional Branch
600// To do an unconditional PC-relative branch.
601//
602def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
603
604//
605// Format: BNEZ rx, offset MIPS16e
606// Purpose: Branch on Not Equal to Zero
607// To test a GPR then do a PC-relative conditional branch.
608//
609def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
610
611//
612// Format: BNEZ rx, offset MIPS16e
613// Purpose: Branch on Not Equal to Zero (Extended)
614// To test a GPR then do a PC-relative conditional branch.
615//
616def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
617
618
619//
620//Format: BREAK immediate
621// Purpose: Breakpoint
622// To cause a Breakpoint exception.
623
624def Break16: FRRBreakNull16_ins<"break 0", NoItinerary>; 
625//
626// Format: BTEQZ offset MIPS16e
627// Purpose: Branch on T Equal to Zero (Extended)
628// To test special register T then do a PC-relative conditional branch.
629//
630def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
631  let Uses = [T8];
632}
633
634def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
635
636def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
637  cbranch16;
638
639def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
640
641def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
642
643def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
644
645def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
646  cbranch16;
647
648//
649// Format: BTNEZ offset MIPS16e
650// Purpose: Branch on T Not Equal to Zero (Extended)
651// To test special register T then do a PC-relative conditional branch.
652//
653def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16 {
654  let Uses = [T8];
655}
656
657def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
658
659def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
660
661def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
662
663def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
664
665def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
666
667def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
668  cbranch16;
669
670//
671// Format: CMP rx, ry MIPS16e
672// Purpose: Compare
673// To compare the contents of two GPRs.
674//
675def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIAlu> {
676  let Defs = [T8];
677}
678
679//
680// Format: CMPI rx, immediate MIPS16e
681// Purpose: Compare Immediate
682// To compare a constant with the contents of a GPR.
683//
684def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIAlu> {
685  let Defs = [T8];
686}
687
688//
689// Format: CMPI rx, immediate MIPS16e
690// Purpose: Compare Immediate (Extended)
691// To compare a constant with the contents of a GPR.
692//
693def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIAlu> {
694  let Defs = [T8];
695}
696
697
698//
699// Format: DIV rx, ry MIPS16e
700// Purpose: Divide Word
701// To divide 32-bit signed integers.
702//
703def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
704  let Defs = [HI0, LO0];
705}
706
707//
708// Format: DIVU rx, ry MIPS16e
709// Purpose: Divide Unsigned Word
710// To divide 32-bit unsigned integers.
711//
712def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
713  let Defs = [HI0, LO0];
714}
715//
716// Format: JAL target MIPS16e
717// Purpose: Jump and Link
718// To execute a procedure call within the current 256 MB-aligned
719// region and preserve the current ISA.
720//
721
722def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
723  let hasDelaySlot = 0;  // not true, but we add the nop for now
724  let isCall=1;
725}
726
727//
728// Format: JR ra MIPS16e
729// Purpose: Jump Register Through Register ra
730// To execute a branch to the instruction address in the return
731// address register.
732//
733
734def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
735  let isBranch = 1;
736  let isIndirectBranch = 1;
737  let hasDelaySlot = 1;
738  let isTerminator=1;
739  let isBarrier=1;
740}
741
742def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIAlu> {
743  let isBranch = 1;
744  let isIndirectBranch = 1;
745  let isTerminator=1;
746  let isBarrier=1;
747}
748
749def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
750  let isBranch = 1;
751  let isIndirectBranch = 1;
752  let isTerminator=1;
753  let isBarrier=1;
754}
755//
756// Format: LB ry, offset(rx) MIPS16e
757// Purpose: Load Byte (Extended)
758// To load a byte from memory as a signed value.
759//
760def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad{
761  let isCodeGenOnly = 1;
762}
763
764//
765// Format: LBU ry, offset(rx) MIPS16e
766// Purpose: Load Byte Unsigned (Extended)
767// To load a byte from memory as a unsigned value.
768//
769def LbuRxRyOffMemX16:
770  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad {
771  let isCodeGenOnly = 1;
772}
773
774//
775// Format: LH ry, offset(rx) MIPS16e
776// Purpose: Load Halfword signed (Extended)
777// To load a halfword from memory as a signed value.
778//
779def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad{
780  let isCodeGenOnly = 1;
781}
782
783//
784// Format: LHU ry, offset(rx) MIPS16e
785// Purpose: Load Halfword unsigned (Extended)
786// To load a halfword from memory as an unsigned value.
787//
788def LhuRxRyOffMemX16:
789  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad {
790  let isCodeGenOnly = 1;
791}
792
793//
794// Format: LI rx, immediate MIPS16e
795// Purpose: Load Immediate
796// To load a constant into a GPR.
797//
798def LiRxImm16: FRI16_ins<0b01101, "li", IIAlu>;
799
800//
801// Format: LI rx, immediate MIPS16e
802// Purpose: Load Immediate (Extended)
803// To load a constant into a GPR.
804//
805def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
806
807def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIAlu> {
808  let isCodeGenOnly = 1;
809}
810
811//
812// Format: LW ry, offset(rx) MIPS16e
813// Purpose: Load Word (Extended)
814// To load a word from memory as a signed value.
815//
816def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad{
817  let isCodeGenOnly = 1;
818}
819
820// Format: LW rx, offset(sp) MIPS16e
821// Purpose: Load Word (SP-Relative, Extended)
822// To load an SP-relative word from memory as a signed value.
823//
824def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10010, "lw", IILoad>, MayLoad{
825  let Uses = [SP];
826}
827
828def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", IILoad>, MayLoad;
829
830def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", IILoad>, MayLoad;
831//
832// Format: MOVE r32, rz MIPS16e
833// Purpose: Move
834// To move the contents of a GPR to a GPR.
835//
836def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
837
838//
839// Format: MOVE ry, r32 MIPS16e
840//Purpose: Move
841// To move the contents of a GPR to a GPR.
842//
843def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
844
845//
846// Format: MFHI rx MIPS16e
847// Purpose: Move From HI Register
848// To copy the special purpose HI register to a GPR.
849//
850def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
851  let Uses = [HI0];
852  let neverHasSideEffects = 1;
853}
854
855//
856// Format: MFLO rx MIPS16e
857// Purpose: Move From LO Register
858// To copy the special purpose LO register to a GPR.
859//
860def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
861  let Uses = [LO0];
862  let neverHasSideEffects = 1;
863}
864
865//
866// Pseudo Instruction for mult
867//
868def MultRxRy16:  FMULT16_ins<"mult",  IIAlu> {
869  let isCommutable = 1;
870  let neverHasSideEffects = 1;
871  let Defs = [HI0, LO0];
872}
873
874def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
875  let isCommutable = 1;
876  let neverHasSideEffects = 1;
877  let Defs = [HI0, LO0];
878}
879
880//
881// Format: MULT rx, ry MIPS16e
882// Purpose: Multiply Word
883// To multiply 32-bit signed integers.
884//
885def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
886  let isCommutable = 1;
887  let neverHasSideEffects = 1;
888  let Defs = [HI0, LO0];
889}
890
891//
892// Format: MULTU rx, ry MIPS16e
893// Purpose: Multiply Unsigned Word
894// To multiply 32-bit unsigned integers.
895//
896def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
897  let isCommutable = 1;
898  let neverHasSideEffects = 1;
899  let Defs = [HI0, LO0];
900}
901
902//
903// Format: NEG rx, ry MIPS16e
904// Purpose: Negate
905// To negate an integer value.
906//
907def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
908
909//
910// Format: NOT rx, ry MIPS16e
911// Purpose: Not
912// To complement an integer value
913//
914def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
915
916//
917// Format: OR rx, ry MIPS16e
918// Purpose: Or
919// To do a bitwise logical OR.
920//
921def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
922
923//
924// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
925// (All args are optional) MIPS16e
926// Purpose: Restore Registers and Deallocate Stack Frame
927// To deallocate a stack frame before exit from a subroutine,
928// restoring return address and static registers, and adjusting
929// stack
930//
931
932// fixed form for restoring RA and the frame
933// for direct object emitter, encoding needs to be adjusted for the
934// frame size
935//
936let ra=1, s=0,s0=1,s1=1 in
937def RestoreRaF16:
938  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
939             "restore\t$$ra,  $$s0, $$s1, $$s2, $frame_size", [], IILoad >, MayLoad {
940  let isCodeGenOnly = 1;
941  let Defs = [S0, S1, S2, RA, SP];
942  let Uses = [SP];
943}
944
945// Use Restore to increment SP since SP is not a Mip 16 register, this
946// is an easy way to do that which does not require a register.
947//
948let ra=0, s=0,s0=0,s1=0 in
949def RestoreIncSpF16:
950  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
951             "restore\t$frame_size", [], IILoad >, MayLoad {
952  let isCodeGenOnly = 1;
953  let Defs = [SP];
954  let Uses = [SP];
955}
956
957//
958// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
959// MIPS16e
960// Purpose: Save Registers and Set Up Stack Frame
961// To set up a stack frame on entry to a subroutine,
962// saving return address and static registers, and adjusting stack
963//
964let ra=1, s=1,s0=1,s1=1 in
965def SaveRaF16:
966  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
967             "save\t$$ra, $$s0, $$s1, $$s2, $frame_size", [], IIStore >, MayStore {
968  let isCodeGenOnly = 1;
969  let Uses = [RA, SP, S0, S1, S2];
970  let Defs = [SP];
971}
972
973//
974// Use Save to decrement the SP by a constant since SP is not
975// a Mips16 register.
976//
977let ra=0, s=0,s0=0,s1=0 in
978def SaveDecSpF16:
979  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
980             "save\t$frame_size", [], IIStore >, MayStore {
981  let isCodeGenOnly = 1;
982  let Uses = [SP];
983  let Defs = [SP];
984}
985//
986// Format: SB ry, offset(rx) MIPS16e
987// Purpose: Store Byte (Extended)
988// To store a byte to memory.
989//
990def SbRxRyOffMemX16:
991  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore;
992
993//
994// Format: SEB rx MIPS16e
995// Purpose: Sign-Extend Byte
996// Sign-extend least significant byte in register rx.
997//
998def SebRx16
999  : FRR_SF16_ins<0b10001, 0b100, "seb", IIAlu>;
1000
1001//
1002// Format: SEH rx MIPS16e
1003// Purpose: Sign-Extend Halfword
1004// Sign-extend least significant word in register rx.
1005//
1006def SehRx16
1007  : FRR_SF16_ins<0b10001, 0b101, "seh", IIAlu>;
1008
1009//
1010// The Sel(T) instructions are pseudos
1011// T means that they use T8 implicitly.
1012//
1013//
1014// Format: SelBeqZ rd, rs, rt
1015// Purpose: if rt==0, do nothing
1016//          else rs = rt
1017//
1018def SelBeqZ: Sel<"beqz">;
1019
1020//
1021// Format:  SelTBteqZCmp rd, rs, rl, rr
1022// Purpose: b = Cmp rl, rr.
1023//          If b==0 then do nothing.
1024//          if b!=0 then rd = rs
1025//
1026def SelTBteqZCmp: SelT<"bteqz", "cmp">;
1027
1028//
1029// Format:  SelTBteqZCmpi rd, rs, rl, rr
1030// Purpose: b = Cmpi rl, imm.
1031//          If b==0 then do nothing.
1032//          if b!=0 then rd = rs
1033//
1034def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
1035
1036//
1037// Format:  SelTBteqZSlt rd, rs, rl, rr
1038// Purpose: b = Slt rl, rr.
1039//          If b==0 then do nothing.
1040//          if b!=0 then rd = rs
1041//
1042def SelTBteqZSlt: SelT<"bteqz", "slt">;
1043
1044//
1045// Format:  SelTBteqZSlti rd, rs, rl, rr
1046// Purpose: b = Slti rl, imm.
1047//          If b==0 then do nothing.
1048//          if b!=0 then rd = rs
1049//
1050def SelTBteqZSlti: SeliT<"bteqz", "slti">;
1051
1052//
1053// Format:  SelTBteqZSltu rd, rs, rl, rr
1054// Purpose: b = Sltu rl, rr.
1055//          If b==0 then do nothing.
1056//          if b!=0 then rd = rs
1057//
1058def SelTBteqZSltu: SelT<"bteqz", "sltu">;
1059
1060//
1061// Format:  SelTBteqZSltiu rd, rs, rl, rr
1062// Purpose: b = Sltiu rl, imm.
1063//          If b==0 then do nothing.
1064//          if b!=0 then rd = rs
1065//
1066def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
1067
1068//
1069// Format: SelBnez rd, rs, rt
1070// Purpose: if rt!=0, do nothing
1071//          else rs = rt
1072//
1073def SelBneZ: Sel<"bnez">;
1074
1075//
1076// Format:  SelTBtneZCmp rd, rs, rl, rr
1077// Purpose: b = Cmp rl, rr.
1078//          If b!=0 then do nothing.
1079//          if b0=0 then rd = rs
1080//
1081def SelTBtneZCmp: SelT<"btnez", "cmp">;
1082
1083//
1084// Format:  SelTBtnezCmpi rd, rs, rl, rr
1085// Purpose: b = Cmpi rl, imm.
1086//          If b!=0 then do nothing.
1087//          if b==0 then rd = rs
1088//
1089def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1090
1091//
1092// Format:  SelTBtneZSlt rd, rs, rl, rr
1093// Purpose: b = Slt rl, rr.
1094//          If b!=0 then do nothing.
1095//          if b==0 then rd = rs
1096//
1097def SelTBtneZSlt: SelT<"btnez", "slt">;
1098
1099//
1100// Format:  SelTBtneZSlti rd, rs, rl, rr
1101// Purpose: b = Slti rl, imm.
1102//          If b!=0 then do nothing.
1103//          if b==0 then rd = rs
1104//
1105def SelTBtneZSlti: SeliT<"btnez", "slti">;
1106
1107//
1108// Format:  SelTBtneZSltu rd, rs, rl, rr
1109// Purpose: b = Sltu rl, rr.
1110//          If b!=0 then do nothing.
1111//          if b==0 then rd = rs
1112//
1113def SelTBtneZSltu: SelT<"btnez", "sltu">;
1114
1115//
1116// Format:  SelTBtneZSltiu rd, rs, rl, rr
1117// Purpose: b = Slti rl, imm.
1118//          If b!=0 then do nothing.
1119//          if b==0 then rd = rs
1120//
1121def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1122//
1123//
1124// Format: SH ry, offset(rx) MIPS16e
1125// Purpose: Store Halfword (Extended)
1126// To store a halfword to memory.
1127//
1128def ShRxRyOffMemX16:
1129  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore;
1130
1131//
1132// Format: SLL rx, ry, sa MIPS16e
1133// Purpose: Shift Word Left Logical (Extended)
1134// To execute a left-shift of a word by a fixed number of bits-0 to 31 bits.
1135//
1136def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
1137
1138//
1139// Format: SLLV ry, rx MIPS16e
1140// Purpose: Shift Word Left Logical Variable
1141// To execute a left-shift of a word by a variable number of bits.
1142//
1143def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
1144
1145// Format: SLTI rx, immediate MIPS16e
1146// Purpose: Set on Less Than Immediate
1147// To record the result of a less-than comparison with a constant.
1148//
1149//
1150def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIAlu> {
1151  let Defs = [T8];
1152}
1153
1154//
1155// Format: SLTI rx, immediate MIPS16e
1156// Purpose: Set on Less Than Immediate (Extended)
1157// To record the result of a less-than comparison with a constant.
1158//
1159//
1160def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIAlu> {
1161  let Defs = [T8];
1162}
1163
1164def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1165
1166// Format: SLTIU rx, immediate MIPS16e
1167// Purpose: Set on Less Than Immediate Unsigned
1168// To record the result of a less-than comparison with a constant.
1169//
1170//
1171def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIAlu> {
1172  let Defs = [T8];
1173}
1174
1175//
1176// Format: SLTI rx, immediate MIPS16e
1177// Purpose: Set on Less Than Immediate Unsigned (Extended)
1178// To record the result of a less-than comparison with a constant.
1179//
1180//
1181def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIAlu> {
1182  let Defs = [T8];
1183}
1184//
1185// Format: SLTIU rx, immediate MIPS16e
1186// Purpose: Set on Less Than Immediate Unsigned (Extended)
1187// To record the result of a less-than comparison with a constant.
1188//
1189def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1190
1191//
1192// Format: SLT rx, ry MIPS16e
1193// Purpose: Set on Less Than
1194// To record the result of a less-than comparison.
1195//
1196def SltRxRy16: FRR16R_ins<0b00010, "slt", IIAlu>{
1197  let Defs = [T8];
1198}
1199
1200def SltCCRxRy16: FCCRR16_ins<"slt">;
1201
1202// Format: SLTU rx, ry MIPS16e
1203// Purpose: Set on Less Than Unsigned
1204// To record the result of an unsigned less-than comparison.
1205//
1206def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIAlu>{
1207  let Defs = [T8];
1208}
1209
1210def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1211  let isCodeGenOnly=1;
1212  let Defs = [T8];
1213}
1214
1215
1216def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1217//
1218// Format: SRAV ry, rx MIPS16e
1219// Purpose: Shift Word Right Arithmetic Variable
1220// To execute an arithmetic right-shift of a word by a variable
1221// number of bits.
1222//
1223def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
1224
1225
1226//
1227// Format: SRA rx, ry, sa MIPS16e
1228// Purpose: Shift Word Right Arithmetic (Extended)
1229// To execute an arithmetic right-shift of a word by a fixed
1230// number of bits-1 to 8 bits.
1231//
1232def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
1233
1234
1235//
1236// Format: SRLV ry, rx MIPS16e
1237// Purpose: Shift Word Right Logical Variable
1238// To execute a logical right-shift of a word by a variable
1239// number of bits.
1240//
1241def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
1242
1243
1244//
1245// Format: SRL rx, ry, sa MIPS16e
1246// Purpose: Shift Word Right Logical (Extended)
1247// To execute a logical right-shift of a word by a fixed
1248// number of bits-1 to 31 bits.
1249//
1250def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
1251
1252//
1253// Format: SUBU rz, rx, ry MIPS16e
1254// Purpose: Subtract Unsigned Word
1255// To subtract 32-bit integers
1256//
1257def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
1258
1259//
1260// Format: SW ry, offset(rx) MIPS16e
1261// Purpose: Store Word (Extended)
1262// To store a word to memory.
1263//
1264def SwRxRyOffMemX16:
1265  FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore;
1266
1267//
1268// Format: SW rx, offset(sp) MIPS16e
1269// Purpose: Store Word rx (SP-Relative)
1270// To store an SP-relative word to memory.
1271//
1272def SwRxSpImmX16: FEXT_RI16_SP_Store_explicit_ins
1273  <0b11010, "sw", IIStore>, MayStore;
1274
1275//
1276//
1277// Format: XOR rx, ry MIPS16e
1278// Purpose: Xor
1279// To do a bitwise logical XOR.
1280//
1281def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
1282
1283class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1284  let Predicates = [InMips16Mode];
1285}
1286
1287// Unary Arith/Logic
1288//
1289class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1290  Mips16Pat<(OpNode CPU16Regs:$r),
1291            (I CPU16Regs:$r)>;
1292
1293def: ArithLogicU_pat<not, NotRxRy16>;
1294def: ArithLogicU_pat<ineg, NegRxRy16>;
1295
1296class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1297  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1298            (I CPU16Regs:$l, CPU16Regs:$r)>;
1299
1300def: ArithLogic16_pat<add, AdduRxRyRz16>;
1301def: ArithLogic16_pat<and, AndRxRxRy16>;
1302def: ArithLogic16_pat<mul, MultRxRyRz16>;
1303def: ArithLogic16_pat<or, OrRxRxRy16>;
1304def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1305def: ArithLogic16_pat<xor, XorRxRxRy16>;
1306
1307// Arithmetic and logical instructions with 2 register operands.
1308
1309class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1310  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1311            (I CPU16Regs:$in, imm_type:$imm)>;
1312
1313def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1314def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1315def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1316def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1317def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1318
1319class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1320  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1321            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1322
1323def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1324def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1325def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1326
1327class LoadM16_pat<PatFrag OpNode, Instruction I> :
1328  Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
1329
1330def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
1331def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
1332def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
1333def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
1334def: LoadM16_pat<load, LwRxRyOffMemX16>;
1335
1336class StoreM16_pat<PatFrag OpNode, Instruction I> :
1337  Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
1338            (I CPU16Regs:$r, addr16:$addr)>;
1339
1340def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
1341def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
1342def: StoreM16_pat<store, SwRxRyOffMemX16>;
1343
1344// Unconditional branch
1345class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1346  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1347    let Predicates = [InMips16Mode];
1348  }
1349
1350def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1351                (Jal16 tglobaladdr:$dst)>;
1352
1353def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1354                (Jal16 texternalsym:$dst)>;
1355
1356// Indirect branch
1357def: Mips16Pat<
1358  (brind CPU16Regs:$rs),
1359  (JrcRx16 CPU16Regs:$rs)>;
1360
1361// Jump and Link (Call)
1362let isCall=1, hasDelaySlot=0 in
1363def JumpLinkReg16:
1364  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1365              "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>;
1366
1367// Mips16 pseudos
1368let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1369  hasExtraSrcRegAllocReq = 1 in
1370def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1371
1372
1373// setcc patterns
1374
1375class SetCC_R16<PatFrag cond_op, Instruction I>:
1376  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1377            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1378
1379class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1380  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1381            (I CPU16Regs:$rx, imm_type:$imm16)>;
1382
1383
1384def: Mips16Pat<(i32  addr16:$addr),
1385               (AddiuRxRyOffMemX16  addr16:$addr)>;
1386
1387
1388// Large (>16 bit) immediate loads
1389def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>;
1390
1391// Carry MipsPatterns
1392def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
1393                (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1394def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
1395                (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1396def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
1397                (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
1398
1399//
1400// Some branch conditional patterns are not generated by llvm at this time.
1401// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1402// comparison they are used and for unsigned a different pattern is used.
1403// I am pushing upstream from the full mips16 port and it seemed that I needed
1404// these earlier and the mips32 port has these but now I cannot create test
1405// cases that use these patterns. While I sort this all out I will leave these
1406// extra patterns commented out and if I can be sure they are really not used,
1407// I will delete the code. I don't want to check the code in uncommented without
1408// a valid test case. In some cases, the compiler is generating patterns with
1409// setcc instead and earlier I had implemented setcc first so may have masked
1410// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1411// figure out how to enable the brcond patterns or else possibly new
1412// combinations of of brcond and setcc.
1413//
1414//
1415// bcond-seteq
1416//
1417def: Mips16Pat
1418  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1419   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1420  >;
1421
1422
1423def: Mips16Pat
1424  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1425   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1426  >;
1427
1428def: Mips16Pat
1429  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1430   (BeqzRxImmX16 CPU16Regs:$rx, bb:$targ16)
1431  >;
1432
1433//
1434// bcond-setgt (do we need to have this pair of setlt, setgt??)
1435//
1436def: Mips16Pat
1437  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1438   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1439  >;
1440
1441//
1442// bcond-setge
1443//
1444def: Mips16Pat
1445  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1446   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1447  >;
1448
1449//
1450// never called because compiler transforms a >= k to a > (k-1)
1451def: Mips16Pat
1452  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1453   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1454  >;
1455
1456//
1457// bcond-setlt
1458//
1459def: Mips16Pat
1460  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1461   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1462  >;
1463
1464def: Mips16Pat
1465  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1466   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1467  >;
1468
1469//
1470// bcond-setle
1471//
1472def: Mips16Pat
1473  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1474   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1475  >;
1476
1477//
1478// bcond-setne
1479//
1480def: Mips16Pat
1481  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1482   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1483  >;
1484
1485def: Mips16Pat
1486  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1487   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1488  >;
1489
1490def: Mips16Pat
1491  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1492   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1493  >;
1494
1495//
1496// This needs to be there but I forget which code will generate it
1497//
1498def: Mips16Pat
1499  <(brcond CPU16Regs:$rx, bb:$targ16),
1500   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1501  >;
1502
1503//
1504
1505//
1506// bcond-setugt
1507//
1508//def: Mips16Pat
1509//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1510//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1511//  >;
1512
1513//
1514// bcond-setuge
1515//
1516//def: Mips16Pat
1517//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1518//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1519//  >;
1520
1521
1522//
1523// bcond-setult
1524//
1525//def: Mips16Pat
1526//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1527//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1528//  >;
1529
1530def: UncondBranch16_pat<br, Bimm16>;
1531
1532// Small immediates
1533def: Mips16Pat<(i32 immSExt16:$in),
1534               (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
1535
1536def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1537
1538//
1539// MipsDivRem
1540//
1541def: Mips16Pat
1542  <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
1543   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1544
1545//
1546// MipsDivRemU
1547//
1548def: Mips16Pat
1549  <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
1550   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1551
1552//  signed a,b
1553//  x = (a>=b)?x:y
1554//
1555//  if !(a < b) x = y
1556//
1557def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1558                 CPU16Regs:$x, CPU16Regs:$y),
1559                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1560                 CPU16Regs:$a, CPU16Regs:$b)>;
1561
1562//  signed a,b
1563//  x = (a>b)?x:y
1564//
1565//  if  (b < a) x = y
1566//
1567def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1568                 CPU16Regs:$x, CPU16Regs:$y),
1569                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1570                 CPU16Regs:$b, CPU16Regs:$a)>;
1571
1572// unsigned a,b
1573// x = (a>=b)?x:y
1574//
1575// if !(a < b) x = y;
1576//
1577def : Mips16Pat<
1578  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1579   CPU16Regs:$x, CPU16Regs:$y),
1580  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1581   CPU16Regs:$a, CPU16Regs:$b)>;
1582
1583//  unsigned a,b
1584//  x = (a>b)?x:y
1585//
1586//  if (b < a) x = y
1587//
1588def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1589                 CPU16Regs:$x, CPU16Regs:$y),
1590                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1591                 CPU16Regs:$b, CPU16Regs:$a)>;
1592
1593// signed
1594// x = (a >= k)?x:y
1595// due to an llvm optimization, i don't think that this will ever
1596// be used. This is transformed into x = (a > k-1)?x:y
1597//
1598//
1599
1600//def : Mips16Pat<
1601//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1602//   CPU16Regs:$T, CPU16Regs:$F),
1603//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1604//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1605
1606//def : Mips16Pat<
1607//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1608//   CPU16Regs:$T, CPU16Regs:$F),
1609//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1610//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1611
1612// signed
1613// x = (a < k)?x:y
1614//
1615// if !(a < k) x = y;
1616//
1617def : Mips16Pat<
1618  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1619   CPU16Regs:$x, CPU16Regs:$y),
1620  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1621   CPU16Regs:$a, immSExt16:$b)>;
1622
1623
1624//
1625//
1626// signed
1627// x = (a <= b)? x : y
1628//
1629// if  (b < a) x = y
1630//
1631def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1632                 CPU16Regs:$x, CPU16Regs:$y),
1633                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1634                 CPU16Regs:$b, CPU16Regs:$a)>;
1635
1636//
1637// unnsigned
1638// x = (a <= b)? x : y
1639//
1640// if  (b < a) x = y
1641//
1642def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1643                 CPU16Regs:$x, CPU16Regs:$y),
1644                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1645                 CPU16Regs:$b, CPU16Regs:$a)>;
1646
1647//
1648// signed/unsigned
1649// x = (a == b)? x : y
1650//
1651// if (a != b) x = y
1652//
1653def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1654                 CPU16Regs:$x, CPU16Regs:$y),
1655                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1656                 CPU16Regs:$b, CPU16Regs:$a)>;
1657
1658//
1659// signed/unsigned
1660// x = (a == 0)? x : y
1661//
1662// if (a != 0) x = y
1663//
1664def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1665                 CPU16Regs:$x, CPU16Regs:$y),
1666                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1667                 CPU16Regs:$a)>;
1668
1669
1670//
1671// signed/unsigned
1672// x = (a == k)? x : y
1673//
1674// if (a != k) x = y
1675//
1676def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1677                 CPU16Regs:$x, CPU16Regs:$y),
1678                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1679                 CPU16Regs:$a, immZExt16:$k)>;
1680
1681
1682//
1683// signed/unsigned
1684// x = (a != b)? x : y
1685//
1686// if (a == b) x = y
1687//
1688//
1689def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1690                 CPU16Regs:$x, CPU16Regs:$y),
1691                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1692                 CPU16Regs:$b, CPU16Regs:$a)>;
1693
1694//
1695// signed/unsigned
1696// x = (a != 0)? x : y
1697//
1698// if (a == 0) x = y
1699//
1700def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1701                 CPU16Regs:$x, CPU16Regs:$y),
1702                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1703                 CPU16Regs:$a)>;
1704
1705// signed/unsigned
1706// x = (a)? x : y
1707//
1708// if (!a) x = y
1709//
1710def : Mips16Pat<(select  CPU16Regs:$a,
1711                 CPU16Regs:$x, CPU16Regs:$y),
1712      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1713       CPU16Regs:$a)>;
1714
1715
1716//
1717// signed/unsigned
1718// x = (a != k)? x : y
1719//
1720// if (a == k) x = y
1721//
1722def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1723                 CPU16Regs:$x, CPU16Regs:$y),
1724                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1725                 CPU16Regs:$a, immZExt16:$k)>;
1726
1727//
1728// When writing C code to test setxx these patterns,
1729// some will be transformed into
1730// other things. So we test using C code but using -O3 and -O0
1731//
1732// seteq
1733//
1734def : Mips16Pat
1735  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1736   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1737
1738def : Mips16Pat
1739  <(seteq CPU16Regs:$lhs, 0),
1740   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1741
1742
1743//
1744// setge
1745//
1746
1747def: Mips16Pat
1748  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1749   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1750   (LiRxImmX16 1))>;
1751
1752//
1753// For constants, llvm transforms this to:
1754// x > (k -1) and then reverses the operands to use setlt. So this pattern
1755// is not used now by the compiler. (Presumably checking that k-1 does not
1756// overflow). The compiler never uses this at a the current time, due to
1757// other optimizations.
1758//
1759//def: Mips16Pat
1760//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1761//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1762//   (LiRxImmX16 1))>;
1763
1764// This catches the x >= -32768 case by transforming it to  x > -32769
1765//
1766def: Mips16Pat
1767  <(setgt CPU16Regs:$lhs, -32769),
1768   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1769   (LiRxImmX16 1))>;
1770
1771//
1772// setgt
1773//
1774//
1775
1776def: Mips16Pat
1777  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1778   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1779
1780//
1781// setle
1782//
1783def: Mips16Pat
1784  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1785   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1786
1787//
1788// setlt
1789//
1790def: SetCC_R16<setlt, SltCCRxRy16>;
1791
1792def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1793
1794//
1795// setne
1796//
1797def : Mips16Pat
1798  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1799   (SltuCCRxRy16 (LiRxImmX16 0),
1800   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1801
1802
1803//
1804// setuge
1805//
1806def: Mips16Pat
1807  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1808   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1809   (LiRxImmX16 1))>;
1810
1811// this pattern will never be used because the compiler will transform
1812// x >= k to x > (k - 1) and then use SLT
1813//
1814//def: Mips16Pat
1815//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1816//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1817//   (LiRxImmX16 1))>;
1818
1819//
1820// setugt
1821//
1822def: Mips16Pat
1823  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1824   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1825
1826//
1827// setule
1828//
1829def: Mips16Pat
1830  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1831   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1832
1833//
1834// setult
1835//
1836def: SetCC_R16<setult, SltuCCRxRy16>;
1837
1838def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1839
1840def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1841               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1842
1843// hi/lo relocs
1844def : Mips16Pat<(MipsHi tblockaddress:$in),
1845                (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>;
1846def : Mips16Pat<(MipsHi tglobaladdr:$in),
1847                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1848def : Mips16Pat<(MipsHi tjumptable:$in),
1849                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1850def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
1851                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1852
1853def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>;
1854
1855// wrapper_pic
1856class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1857  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1858            (ADDiuOp RC:$gp, node:$in)>;
1859
1860
1861def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1862def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1863
1864def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1865                (LbuRxRyOffMemX16  addr16:$src)>;
1866def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1867                (LhuRxRyOffMemX16  addr16:$src)>;
1868
1869def: Mips16Pat<(trap), (Break16)>;
1870
1871def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8),
1872                (SebRx16 CPU16Regs:$val)>;
1873
1874def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16),
1875                (SehRx16 CPU16Regs:$val)>;
1876
1877def GotPrologue16:   
1878  MipsPseudo16<
1879    (outs CPU16Regs:$rh, CPU16Regs:$rl),
1880    (ins simm16:$immHi, simm16:$immLo),
1881    ".align 2\n\tli\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ;
1882
1883// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
1884def cpinst_operand : Operand<i32> {
1885  // let PrintMethod = "printCPInstOperand";
1886}
1887
1888// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
1889// the function.  The first operand is the ID# for this instruction, the second
1890// is the index into the MachineConstantPool that this is, the third is the
1891// size in bytes of this constant pool entry.
1892//
1893let neverHasSideEffects = 1, isNotDuplicable = 1 in
1894def CONSTPOOL_ENTRY :
1895MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1896                      i32imm:$size), "foo", []>;
1897
1898