Mips16InstrInfo.td revision cbaf6d0cc3d3f363f269346817a90d3cbc8d1084
1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 :
18  ComplexPattern<iPTR, 3, "selectAddr16", [frameindex], [SDNPWantParent]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16, CPU16RegsPlusSP);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16_ea : Operand<i32> {
29  let PrintMethod = "printMemOperandEA";
30  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
31  let EncoderMethod = "getMemEncoding";
32}
33
34//
35//
36// I8 instruction format
37//
38
39class FI816_ins_base<bits<3> _func, string asmstr,
40                     string asmstr2, InstrItinClass itin>:
41  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
42        [], itin>;
43
44
45class FI816_SP_ins<bits<3> _func, string asmstr,
46                   InstrItinClass itin>:
47  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
48
49//
50// RI instruction format
51//
52
53
54class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
55                     InstrItinClass itin>:
56  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
57        !strconcat(asmstr, asmstr2), [], itin>;
58
59class FRI16_ins<bits<5> op, string asmstr,
60                InstrItinClass itin>:
61  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
62
63class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
64                     InstrItinClass itin>:
65  FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
66        !strconcat(asmstr, asmstr2), [], itin>;
67
68class FRI16R_ins<bits<5> op, string asmstr,
69                InstrItinClass itin>:
70  FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
71
72class F2RI16_ins<bits<5> _op, string asmstr,
73                     InstrItinClass itin>:
74  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
75        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
76  let Constraints = "$rx_ = $rx";
77}
78
79class FRI16_B_ins<bits<5> _op, string asmstr,
80                  InstrItinClass itin>:
81  FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
82        !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
83//
84// Compare a register and immediate and place result in CC
85// Implicit use of T8
86//
87// EXT-CCRR Instruction format
88//
89class FEXT_CCRXI16_ins<string asmstr>:
90  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
91               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
92  let isCodeGenOnly=1;
93  let usesCustomInserter = 1;
94}
95
96// JAL and JALX instruction format
97//
98class FJAL16_ins<bits<1> _X, string asmstr,
99                 InstrItinClass itin>:
100  FJAL16<_X, (outs), (ins simm20:$imm),
101         !strconcat(asmstr, "\t$imm\n\tnop"),[],
102         itin>  {
103  let isCodeGenOnly=1;
104}
105//
106// EXT-I instruction format
107//
108class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
109  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
110           !strconcat(asmstr, "\t$imm16"),[], itin>;
111
112//
113// EXT-I8 instruction format
114//
115
116class FEXT_I816_ins_base<bits<3> _func, string asmstr,
117                         string asmstr2, InstrItinClass itin>:
118  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
119            [], itin>;
120
121class FEXT_I816_ins<bits<3> _func, string asmstr,
122                    InstrItinClass itin>:
123  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
124
125class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
126                       InstrItinClass itin>:
127      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
128
129//
130// Assembler formats in alphabetical order.
131// Natural and pseudos are mixed together.
132//
133// Compare two registers and place result in CC
134// Implicit use of T8
135//
136// CC-RR Instruction format
137//
138class FCCRR16_ins<string asmstr> :
139  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
140               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
141  let isCodeGenOnly=1;
142  let usesCustomInserter = 1;
143}
144
145//
146// EXT-RI instruction format
147//
148
149class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
150                         InstrItinClass itin>:
151  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
152                  !strconcat(asmstr, asmstr2), [], itin>;
153
154class FEXT_RI16_ins<bits<5> _op, string asmstr,
155                    InstrItinClass itin>:
156  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
157
158class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
159                         InstrItinClass itin>:
160  FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
161                  !strconcat(asmstr, asmstr2), [], itin>;
162
163class FEXT_RI16R_ins<bits<5> _op, string asmstr,
164                    InstrItinClass itin>:
165  FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
166
167class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
168  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
169
170class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
171                      InstrItinClass itin>:
172  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
173            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
174
175class FEXT_2RI16_ins<bits<5> _op, string asmstr,
176                     InstrItinClass itin>:
177  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
178            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
179  let Constraints = "$rx_ = $rx";
180}
181
182
183// this has an explicit sp argument that we ignore to work around a problem
184// in the compiler
185class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
186                                InstrItinClass itin>:
187  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
188            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
189
190class FEXT_RI16_SP_Store_explicit_ins<bits<5> _op, string asmstr,
191                                InstrItinClass itin>:
192  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, CPUSPReg:$ry, simm16:$imm),
193            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
194
195//
196// EXT-RRI instruction format
197//
198
199class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
200                         InstrItinClass itin>:
201  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
202             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
203
204class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
205                          InstrItinClass itin>:
206  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
207             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
208
209//
210//
211// EXT-RRI-A instruction format
212//
213
214class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
215                           InstrItinClass itin>:
216  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
217               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
218
219//
220// EXT-SHIFT instruction format
221//
222class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
223  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, shamt:$sa),
224               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
225
226//
227// EXT-T8I8
228//
229class FEXT_T8I816_ins<string asmstr, string asmstr2>:
230  MipsPseudo16<(outs),
231               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
232               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
233               !strconcat(asmstr, "\t$imm"))),[]> {
234  let isCodeGenOnly=1;
235  let usesCustomInserter = 1;
236}
237
238//
239// EXT-T8I8I
240//
241class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
242  MipsPseudo16<(outs),
243               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
244               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
245               !strconcat(asmstr, "\t$targ"))), []> {
246  let isCodeGenOnly=1;
247  let usesCustomInserter = 1;
248}
249//
250
251
252//
253// I8_MOVR32 instruction format (used only by the MOVR32 instructio
254//
255class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
256       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
257       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
258
259//
260// I8_MOV32R instruction format (used only by MOV32R instruction)
261//
262
263class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
264  FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
265               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
266
267//
268// This are pseudo formats for multiply
269// This first one can be changed to non pseudo now.
270//
271// MULT
272//
273class FMULT16_ins<string asmstr, InstrItinClass itin> :
274  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
275               !strconcat(asmstr, "\t$rx, $ry"), []>;
276
277//
278// MULT-LO
279//
280class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
281  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
282               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
283  let isCodeGenOnly=1;
284}
285
286//
287// RR-type instruction format
288//
289
290class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
291  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
292        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
293}
294
295class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
296  FRRBreak16<(outs), (ins), asmstr, [], itin> {
297  let Code=0;
298}
299
300class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
301  FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
302        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
303}
304
305class FRRTR16_ins<string asmstr> :
306  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
307               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
308
309//
310// maybe refactor but need a $zero as a dummy first parameter
311//
312class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
313  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
314        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
315
316class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
317  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
318        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
319
320
321class FRR16_M_ins<bits<5> f, string asmstr,
322                  InstrItinClass itin> :
323  FRR16<f, (outs CPU16Regs:$rx), (ins),
324        !strconcat(asmstr, "\t$rx"), [], itin>;
325
326class FRxRxRy16_ins<bits<5> f, string asmstr,
327                    InstrItinClass itin> :
328  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
329            !strconcat(asmstr, "\t$rz, $ry"),
330            [], itin> {
331  let Constraints = "$rx = $rz";
332}
333
334let rx=0 in
335class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
336                              string asmstr, InstrItinClass itin>:
337  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
338              [], itin> ;
339
340
341class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
342                      string asmstr, InstrItinClass itin>:
343  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
344              !strconcat(asmstr, "\t $rx"), [], itin> ;
345
346//
347// RRR-type instruction format
348//
349
350class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
351  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
352         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
353
354//
355// These Sel patterns support the generation of conditional move
356// pseudo instructions.
357//
358// The nomenclature uses the components making up the pseudo and may
359// be a bit counter intuitive when compared with the end result we seek.
360// For example using a bqez in the example directly below results in the
361// conditional move being done if the tested register is not zero.
362// I considered in easier to check by keeping the pseudo consistent with
363// it's components but it could have been done differently.
364//
365// The simplest case is when can test and operand directly and do the
366// conditional move based on a simple mips16 conditional
367//  branch instruction.
368// for example:
369// if $op == beqz or bnez:
370//
371// $op1 $rt, .+4
372// move $rd, $rs
373//
374// if $op == beqz, then if $rt != 0, then the conditional assignment
375// $rd = $rs is done.
376
377// if $op == bnez, then if $rt == 0, then the conditional assignment
378// $rd = $rs is done.
379//
380// So this pseudo class only has one operand, i.e. op
381//
382class Sel<string op>:
383  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
384               CPU16Regs:$rt),
385               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
386  //let isCodeGenOnly=1;
387  let Constraints = "$rd = $rd_";
388  let usesCustomInserter = 1;
389}
390
391//
392// The next two instruction classes allow for an operand which tests
393// two operands and returns a value in register T8 and
394//then does a conditional branch based on the value of T8
395//
396
397// op2 can be cmpi or slti/sltiu
398// op1 can bteqz or btnez
399// the operands for op2 are a register and a signed constant
400//
401// $op2 $t, $imm  ;test register t and branch conditionally
402// $op1 .+4       ;op1 is a conditional branch
403// move $rd, $rs
404//
405//
406class SeliT<string op1, string op2>:
407  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
408                                       CPU16Regs:$rl, simm16:$imm),
409               !strconcat(op2,
410               !strconcat("\t$rl, $imm\n\t",
411               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
412  let isCodeGenOnly=1;
413  let Constraints = "$rd = $rd_";
414  let usesCustomInserter = 1;
415}
416
417//
418// op2 can be cmp or slt/sltu
419// op1 can be bteqz or btnez
420// the operands for op2 are two registers
421// op1 is a conditional branch
422//
423//
424// $op2 $rl, $rr  ;test registers rl,rr
425// $op1 .+4       ;op2 is a conditional branch
426// move $rd, $rs
427//
428//
429class SelT<string op1, string op2>:
430  MipsPseudo16<(outs CPU16Regs:$rd_),
431               (ins CPU16Regs:$rd, CPU16Regs:$rs,
432                CPU16Regs:$rl, CPU16Regs:$rr),
433               !strconcat(op2,
434               !strconcat("\t$rl, $rr\n\t",
435               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
436  let isCodeGenOnly=1;
437  let Constraints = "$rd = $rd_";
438  let usesCustomInserter = 1;
439}
440
441//
442// 32 bit constant
443//
444def imm32: Operand<i32>;
445
446def Constant32:
447  MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
448
449def LwConstant32:
450  MipsPseudo16<(outs CPU16Regs:$rx), (ins imm32:$imm),
451    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
452
453
454//
455// Some general instruction class info
456//
457//
458
459class ArithLogic16Defs<bit isCom=0> {
460  bits<5> shamt = 0;
461  bit isCommutable = isCom;
462  bit isReMaterializable = 1;
463  bit neverHasSideEffects = 1;
464}
465
466class branch16 {
467  bit isBranch = 1;
468  bit isTerminator = 1;
469  bit isBarrier = 1;
470}
471
472class cbranch16 {
473  bit isBranch = 1;
474  bit isTerminator = 1;
475}
476
477class MayLoad {
478  bit mayLoad = 1;
479}
480
481class MayStore {
482  bit mayStore = 1;
483}
484//
485
486
487// Format: ADDIU rx, immediate MIPS16e
488// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
489// To add a constant to a 32-bit integer.
490//
491def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
492
493def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIAlu>,
494  ArithLogic16Defs<0> {
495  let AddedComplexity = 5;
496}
497def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
498  ArithLogic16Defs<0> {
499  let isCodeGenOnly = 1;
500}
501
502def AddiuRxRyOffMemX16:
503  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
504
505//
506
507// Format: ADDIU rx, pc, immediate MIPS16e
508// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
509// To add a constant to the program counter.
510//
511def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
512
513//
514// Format: ADDIU sp, immediate MIPS16e
515// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
516// To add a constant to the stack pointer.
517//
518def AddiuSpImm16
519  : FI816_SP_ins<0b011, "addiu", IIAlu> {
520  let Defs = [SP];
521  let Uses = [SP];
522  let AddedComplexity = 5;
523}
524
525def AddiuSpImmX16
526  : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
527  let Defs = [SP];
528  let Uses = [SP];
529}
530
531//
532// Format: ADDU rz, rx, ry MIPS16e
533// Purpose: Add Unsigned Word (3-Operand)
534// To add 32-bit integers.
535//
536
537def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
538
539//
540// Format: AND rx, ry MIPS16e
541// Purpose: AND
542// To do a bitwise logical AND.
543
544def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
545
546
547//
548// Format: BEQZ rx, offset MIPS16e
549// Purpose: Branch on Equal to Zero
550// To test a GPR then do a PC-relative conditional branch.
551//
552def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
553
554
555//
556// Format: BEQZ rx, offset MIPS16e
557// Purpose: Branch on Equal to Zero (Extended)
558// To test a GPR then do a PC-relative conditional branch.
559//
560def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
561
562// Format: B offset MIPS16e
563// Purpose: Unconditional Branch
564// To do an unconditional PC-relative branch.
565//
566def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
567
568//
569// Format: BNEZ rx, offset MIPS16e
570// Purpose: Branch on Not Equal to Zero
571// To test a GPR then do a PC-relative conditional branch.
572//
573def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
574
575//
576// Format: BNEZ rx, offset MIPS16e
577// Purpose: Branch on Not Equal to Zero (Extended)
578// To test a GPR then do a PC-relative conditional branch.
579//
580def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
581
582
583//
584//Format: BREAK immediate
585// Purpose: Breakpoint
586// To cause a Breakpoint exception.
587
588def Break16: FRRBreakNull16_ins<"break 0", NoItinerary>; 
589//
590// Format: BTEQZ offset MIPS16e
591// Purpose: Branch on T Equal to Zero (Extended)
592// To test special register T then do a PC-relative conditional branch.
593//
594def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
595  let Uses = [T8];
596}
597
598def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
599
600def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
601  cbranch16;
602
603def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
604
605def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
606
607def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
608
609def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
610  cbranch16;
611
612//
613// Format: BTNEZ offset MIPS16e
614// Purpose: Branch on T Not Equal to Zero (Extended)
615// To test special register T then do a PC-relative conditional branch.
616//
617def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16 {
618  let Uses = [T8];
619}
620
621def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
622
623def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
624
625def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
626
627def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
628
629def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
630
631def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
632  cbranch16;
633
634//
635// Format: CMP rx, ry MIPS16e
636// Purpose: Compare
637// To compare the contents of two GPRs.
638//
639def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIAlu> {
640  let Defs = [T8];
641}
642
643//
644// Format: CMPI rx, immediate MIPS16e
645// Purpose: Compare Immediate
646// To compare a constant with the contents of a GPR.
647//
648def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIAlu> {
649  let Defs = [T8];
650}
651
652//
653// Format: CMPI rx, immediate MIPS16e
654// Purpose: Compare Immediate (Extended)
655// To compare a constant with the contents of a GPR.
656//
657def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIAlu> {
658  let Defs = [T8];
659}
660
661
662//
663// Format: DIV rx, ry MIPS16e
664// Purpose: Divide Word
665// To divide 32-bit signed integers.
666//
667def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
668  let Defs = [HI0, LO0];
669}
670
671//
672// Format: DIVU rx, ry MIPS16e
673// Purpose: Divide Unsigned Word
674// To divide 32-bit unsigned integers.
675//
676def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
677  let Defs = [HI0, LO0];
678}
679//
680// Format: JAL target MIPS16e
681// Purpose: Jump and Link
682// To execute a procedure call within the current 256 MB-aligned
683// region and preserve the current ISA.
684//
685
686def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
687  let hasDelaySlot = 0;  // not true, but we add the nop for now
688  let isCall=1;
689}
690
691//
692// Format: JR ra MIPS16e
693// Purpose: Jump Register Through Register ra
694// To execute a branch to the instruction address in the return
695// address register.
696//
697
698def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
699  let isBranch = 1;
700  let isIndirectBranch = 1;
701  let hasDelaySlot = 1;
702  let isTerminator=1;
703  let isBarrier=1;
704}
705
706def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIAlu> {
707  let isBranch = 1;
708  let isIndirectBranch = 1;
709  let isTerminator=1;
710  let isBarrier=1;
711}
712
713def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
714  let isBranch = 1;
715  let isIndirectBranch = 1;
716  let isTerminator=1;
717  let isBarrier=1;
718}
719//
720// Format: LB ry, offset(rx) MIPS16e
721// Purpose: Load Byte (Extended)
722// To load a byte from memory as a signed value.
723//
724def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad{
725  let isCodeGenOnly = 1;
726}
727
728//
729// Format: LBU ry, offset(rx) MIPS16e
730// Purpose: Load Byte Unsigned (Extended)
731// To load a byte from memory as a unsigned value.
732//
733def LbuRxRyOffMemX16:
734  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad {
735  let isCodeGenOnly = 1;
736}
737
738//
739// Format: LH ry, offset(rx) MIPS16e
740// Purpose: Load Halfword signed (Extended)
741// To load a halfword from memory as a signed value.
742//
743def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad{
744  let isCodeGenOnly = 1;
745}
746
747//
748// Format: LHU ry, offset(rx) MIPS16e
749// Purpose: Load Halfword unsigned (Extended)
750// To load a halfword from memory as an unsigned value.
751//
752def LhuRxRyOffMemX16:
753  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad {
754  let isCodeGenOnly = 1;
755}
756
757//
758// Format: LI rx, immediate MIPS16e
759// Purpose: Load Immediate
760// To load a constant into a GPR.
761//
762def LiRxImm16: FRI16_ins<0b01101, "li", IIAlu>;
763
764//
765// Format: LI rx, immediate MIPS16e
766// Purpose: Load Immediate (Extended)
767// To load a constant into a GPR.
768//
769def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
770
771//
772// Format: LW ry, offset(rx) MIPS16e
773// Purpose: Load Word (Extended)
774// To load a word from memory as a signed value.
775//
776def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad{
777  let isCodeGenOnly = 1;
778}
779
780// Format: LW rx, offset(sp) MIPS16e
781// Purpose: Load Word (SP-Relative, Extended)
782// To load an SP-relative word from memory as a signed value.
783//
784def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10110, "lw", IILoad>, MayLoad{
785  let Uses = [SP];
786}
787
788//
789// Format: MOVE r32, rz MIPS16e
790// Purpose: Move
791// To move the contents of a GPR to a GPR.
792//
793def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
794
795//
796// Format: MOVE ry, r32 MIPS16e
797//Purpose: Move
798// To move the contents of a GPR to a GPR.
799//
800def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
801
802//
803// Format: MFHI rx MIPS16e
804// Purpose: Move From HI Register
805// To copy the special purpose HI register to a GPR.
806//
807def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
808  let Uses = [HI0];
809  let neverHasSideEffects = 1;
810}
811
812//
813// Format: MFLO rx MIPS16e
814// Purpose: Move From LO Register
815// To copy the special purpose LO register to a GPR.
816//
817def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
818  let Uses = [LO0];
819  let neverHasSideEffects = 1;
820}
821
822//
823// Pseudo Instruction for mult
824//
825def MultRxRy16:  FMULT16_ins<"mult",  IIAlu> {
826  let isCommutable = 1;
827  let neverHasSideEffects = 1;
828  let Defs = [HI0, LO0];
829}
830
831def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
832  let isCommutable = 1;
833  let neverHasSideEffects = 1;
834  let Defs = [HI0, LO0];
835}
836
837//
838// Format: MULT rx, ry MIPS16e
839// Purpose: Multiply Word
840// To multiply 32-bit signed integers.
841//
842def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
843  let isCommutable = 1;
844  let neverHasSideEffects = 1;
845  let Defs = [HI0, LO0];
846}
847
848//
849// Format: MULTU rx, ry MIPS16e
850// Purpose: Multiply Unsigned Word
851// To multiply 32-bit unsigned integers.
852//
853def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
854  let isCommutable = 1;
855  let neverHasSideEffects = 1;
856  let Defs = [HI0, LO0];
857}
858
859//
860// Format: NEG rx, ry MIPS16e
861// Purpose: Negate
862// To negate an integer value.
863//
864def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
865
866//
867// Format: NOT rx, ry MIPS16e
868// Purpose: Not
869// To complement an integer value
870//
871def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
872
873//
874// Format: OR rx, ry MIPS16e
875// Purpose: Or
876// To do a bitwise logical OR.
877//
878def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
879
880//
881// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
882// (All args are optional) MIPS16e
883// Purpose: Restore Registers and Deallocate Stack Frame
884// To deallocate a stack frame before exit from a subroutine,
885// restoring return address and static registers, and adjusting
886// stack
887//
888
889// fixed form for restoring RA and the frame
890// for direct object emitter, encoding needs to be adjusted for the
891// frame size
892//
893let ra=1, s=0,s0=1,s1=1 in
894def RestoreRaF16:
895  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
896             "restore\t$$ra,  $$s0, $$s1, $$s2, $frame_size", [], IILoad >, MayLoad {
897  let isCodeGenOnly = 1;
898  let Defs = [S0, S1, S2, RA, SP];
899  let Uses = [SP];
900}
901
902// Use Restore to increment SP since SP is not a Mip 16 register, this
903// is an easy way to do that which does not require a register.
904//
905let ra=0, s=0,s0=0,s1=0 in
906def RestoreIncSpF16:
907  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
908             "restore\t$frame_size", [], IILoad >, MayLoad {
909  let isCodeGenOnly = 1;
910  let Defs = [SP];
911  let Uses = [SP];
912}
913
914//
915// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
916// MIPS16e
917// Purpose: Save Registers and Set Up Stack Frame
918// To set up a stack frame on entry to a subroutine,
919// saving return address and static registers, and adjusting stack
920//
921let ra=1, s=1,s0=1,s1=1 in
922def SaveRaF16:
923  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
924             "save\t$$ra, $$s0, $$s1, $$s2, $frame_size", [], IIStore >, MayStore {
925  let isCodeGenOnly = 1;
926  let Uses = [RA, SP, S0, S1, S2];
927  let Defs = [SP];
928}
929
930//
931// Use Save to decrement the SP by a constant since SP is not
932// a Mips16 register.
933//
934let ra=0, s=0,s0=0,s1=0 in
935def SaveDecSpF16:
936  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
937             "save\t$frame_size", [], IIStore >, MayStore {
938  let isCodeGenOnly = 1;
939  let Uses = [SP];
940  let Defs = [SP];
941}
942//
943// Format: SB ry, offset(rx) MIPS16e
944// Purpose: Store Byte (Extended)
945// To store a byte to memory.
946//
947def SbRxRyOffMemX16:
948  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore;
949
950//
951// The Sel(T) instructions are pseudos
952// T means that they use T8 implicitly.
953//
954//
955// Format: SelBeqZ rd, rs, rt
956// Purpose: if rt==0, do nothing
957//          else rs = rt
958//
959def SelBeqZ: Sel<"beqz">;
960
961//
962// Format:  SelTBteqZCmp rd, rs, rl, rr
963// Purpose: b = Cmp rl, rr.
964//          If b==0 then do nothing.
965//          if b!=0 then rd = rs
966//
967def SelTBteqZCmp: SelT<"bteqz", "cmp">;
968
969//
970// Format:  SelTBteqZCmpi rd, rs, rl, rr
971// Purpose: b = Cmpi rl, imm.
972//          If b==0 then do nothing.
973//          if b!=0 then rd = rs
974//
975def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
976
977//
978// Format:  SelTBteqZSlt rd, rs, rl, rr
979// Purpose: b = Slt rl, rr.
980//          If b==0 then do nothing.
981//          if b!=0 then rd = rs
982//
983def SelTBteqZSlt: SelT<"bteqz", "slt">;
984
985//
986// Format:  SelTBteqZSlti rd, rs, rl, rr
987// Purpose: b = Slti rl, imm.
988//          If b==0 then do nothing.
989//          if b!=0 then rd = rs
990//
991def SelTBteqZSlti: SeliT<"bteqz", "slti">;
992
993//
994// Format:  SelTBteqZSltu rd, rs, rl, rr
995// Purpose: b = Sltu rl, rr.
996//          If b==0 then do nothing.
997//          if b!=0 then rd = rs
998//
999def SelTBteqZSltu: SelT<"bteqz", "sltu">;
1000
1001//
1002// Format:  SelTBteqZSltiu rd, rs, rl, rr
1003// Purpose: b = Sltiu rl, imm.
1004//          If b==0 then do nothing.
1005//          if b!=0 then rd = rs
1006//
1007def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
1008
1009//
1010// Format: SelBnez rd, rs, rt
1011// Purpose: if rt!=0, do nothing
1012//          else rs = rt
1013//
1014def SelBneZ: Sel<"bnez">;
1015
1016//
1017// Format:  SelTBtneZCmp rd, rs, rl, rr
1018// Purpose: b = Cmp rl, rr.
1019//          If b!=0 then do nothing.
1020//          if b0=0 then rd = rs
1021//
1022def SelTBtneZCmp: SelT<"btnez", "cmp">;
1023
1024//
1025// Format:  SelTBtnezCmpi rd, rs, rl, rr
1026// Purpose: b = Cmpi rl, imm.
1027//          If b!=0 then do nothing.
1028//          if b==0 then rd = rs
1029//
1030def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1031
1032//
1033// Format:  SelTBtneZSlt rd, rs, rl, rr
1034// Purpose: b = Slt rl, rr.
1035//          If b!=0 then do nothing.
1036//          if b==0 then rd = rs
1037//
1038def SelTBtneZSlt: SelT<"btnez", "slt">;
1039
1040//
1041// Format:  SelTBtneZSlti rd, rs, rl, rr
1042// Purpose: b = Slti rl, imm.
1043//          If b!=0 then do nothing.
1044//          if b==0 then rd = rs
1045//
1046def SelTBtneZSlti: SeliT<"btnez", "slti">;
1047
1048//
1049// Format:  SelTBtneZSltu rd, rs, rl, rr
1050// Purpose: b = Sltu rl, rr.
1051//          If b!=0 then do nothing.
1052//          if b==0 then rd = rs
1053//
1054def SelTBtneZSltu: SelT<"btnez", "sltu">;
1055
1056//
1057// Format:  SelTBtneZSltiu rd, rs, rl, rr
1058// Purpose: b = Slti rl, imm.
1059//          If b!=0 then do nothing.
1060//          if b==0 then rd = rs
1061//
1062def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1063//
1064//
1065// Format: SH ry, offset(rx) MIPS16e
1066// Purpose: Store Halfword (Extended)
1067// To store a halfword to memory.
1068//
1069def ShRxRyOffMemX16:
1070  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore;
1071
1072//
1073// Format: SLL rx, ry, sa MIPS16e
1074// Purpose: Shift Word Left Logical (Extended)
1075// To execute a left-shift of a word by a fixed number of bits—0 to 31 bits.
1076//
1077def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
1078
1079//
1080// Format: SLLV ry, rx MIPS16e
1081// Purpose: Shift Word Left Logical Variable
1082// To execute a left-shift of a word by a variable number of bits.
1083//
1084def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
1085
1086// Format: SLTI rx, immediate MIPS16e
1087// Purpose: Set on Less Than Immediate
1088// To record the result of a less-than comparison with a constant.
1089//
1090//
1091def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIAlu> {
1092  let Defs = [T8];
1093}
1094
1095//
1096// Format: SLTI rx, immediate MIPS16e
1097// Purpose: Set on Less Than Immediate (Extended)
1098// To record the result of a less-than comparison with a constant.
1099//
1100//
1101def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIAlu> {
1102  let Defs = [T8];
1103}
1104
1105def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1106
1107// Format: SLTIU rx, immediate MIPS16e
1108// Purpose: Set on Less Than Immediate Unsigned
1109// To record the result of a less-than comparison with a constant.
1110//
1111//
1112def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIAlu> {
1113  let Defs = [T8];
1114}
1115
1116//
1117// Format: SLTI rx, immediate MIPS16e
1118// Purpose: Set on Less Than Immediate Unsigned (Extended)
1119// To record the result of a less-than comparison with a constant.
1120//
1121//
1122def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIAlu> {
1123  let Defs = [T8];
1124}
1125//
1126// Format: SLTIU rx, immediate MIPS16e
1127// Purpose: Set on Less Than Immediate Unsigned (Extended)
1128// To record the result of a less-than comparison with a constant.
1129//
1130def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1131
1132//
1133// Format: SLT rx, ry MIPS16e
1134// Purpose: Set on Less Than
1135// To record the result of a less-than comparison.
1136//
1137def SltRxRy16: FRR16R_ins<0b00010, "slt", IIAlu>{
1138  let Defs = [T8];
1139}
1140
1141def SltCCRxRy16: FCCRR16_ins<"slt">;
1142
1143// Format: SLTU rx, ry MIPS16e
1144// Purpose: Set on Less Than Unsigned
1145// To record the result of an unsigned less-than comparison.
1146//
1147def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIAlu>{
1148  let Defs = [T8];
1149}
1150
1151def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1152  let isCodeGenOnly=1;
1153  let Defs = [T8];
1154}
1155
1156
1157def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1158//
1159// Format: SRAV ry, rx MIPS16e
1160// Purpose: Shift Word Right Arithmetic Variable
1161// To execute an arithmetic right-shift of a word by a variable
1162// number of bits.
1163//
1164def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
1165
1166
1167//
1168// Format: SRA rx, ry, sa MIPS16e
1169// Purpose: Shift Word Right Arithmetic (Extended)
1170// To execute an arithmetic right-shift of a word by a fixed
1171// number of bits—1 to 8 bits.
1172//
1173def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
1174
1175
1176//
1177// Format: SRLV ry, rx MIPS16e
1178// Purpose: Shift Word Right Logical Variable
1179// To execute a logical right-shift of a word by a variable
1180// number of bits.
1181//
1182def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
1183
1184
1185//
1186// Format: SRL rx, ry, sa MIPS16e
1187// Purpose: Shift Word Right Logical (Extended)
1188// To execute a logical right-shift of a word by a fixed
1189// number of bits—1 to 31 bits.
1190//
1191def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
1192
1193//
1194// Format: SUBU rz, rx, ry MIPS16e
1195// Purpose: Subtract Unsigned Word
1196// To subtract 32-bit integers
1197//
1198def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
1199
1200//
1201// Format: SW ry, offset(rx) MIPS16e
1202// Purpose: Store Word (Extended)
1203// To store a word to memory.
1204//
1205def SwRxRyOffMemX16:
1206  FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore;
1207
1208//
1209// Format: SW rx, offset(sp) MIPS16e
1210// Purpose: Store Word rx (SP-Relative)
1211// To store an SP-relative word to memory.
1212//
1213def SwRxSpImmX16: FEXT_RI16_SP_Store_explicit_ins
1214  <0b11010, "sw", IIStore>, MayStore;
1215
1216//
1217//
1218// Format: XOR rx, ry MIPS16e
1219// Purpose: Xor
1220// To do a bitwise logical XOR.
1221//
1222def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
1223
1224class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1225  let Predicates = [InMips16Mode];
1226}
1227
1228// Unary Arith/Logic
1229//
1230class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1231  Mips16Pat<(OpNode CPU16Regs:$r),
1232            (I CPU16Regs:$r)>;
1233
1234def: ArithLogicU_pat<not, NotRxRy16>;
1235def: ArithLogicU_pat<ineg, NegRxRy16>;
1236
1237class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1238  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1239            (I CPU16Regs:$l, CPU16Regs:$r)>;
1240
1241def: ArithLogic16_pat<add, AdduRxRyRz16>;
1242def: ArithLogic16_pat<and, AndRxRxRy16>;
1243def: ArithLogic16_pat<mul, MultRxRyRz16>;
1244def: ArithLogic16_pat<or, OrRxRxRy16>;
1245def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1246def: ArithLogic16_pat<xor, XorRxRxRy16>;
1247
1248// Arithmetic and logical instructions with 2 register operands.
1249
1250class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1251  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1252            (I CPU16Regs:$in, imm_type:$imm)>;
1253
1254def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1255def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1256def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1257def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1258def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1259
1260class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1261  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1262            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1263
1264def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1265def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1266def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1267
1268class LoadM16_pat<PatFrag OpNode, Instruction I> :
1269  Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
1270
1271def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
1272def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
1273def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
1274def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
1275def: LoadM16_pat<load, LwRxRyOffMemX16>;
1276
1277class StoreM16_pat<PatFrag OpNode, Instruction I> :
1278  Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
1279            (I CPU16Regs:$r, addr16:$addr)>;
1280
1281def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
1282def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
1283def: StoreM16_pat<store, SwRxRyOffMemX16>;
1284
1285// Unconditional branch
1286class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1287  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1288    let Predicates = [InMips16Mode];
1289  }
1290
1291def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1292                (Jal16 tglobaladdr:$dst)>;
1293
1294def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1295                (Jal16 texternalsym:$dst)>;
1296
1297// Indirect branch
1298def: Mips16Pat<
1299  (brind CPU16Regs:$rs),
1300  (JrcRx16 CPU16Regs:$rs)>;
1301
1302// Jump and Link (Call)
1303let isCall=1, hasDelaySlot=0 in
1304def JumpLinkReg16:
1305  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1306              "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>;
1307
1308// Mips16 pseudos
1309let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1310  hasExtraSrcRegAllocReq = 1 in
1311def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1312
1313
1314// setcc patterns
1315
1316class SetCC_R16<PatFrag cond_op, Instruction I>:
1317  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1318            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1319
1320class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1321  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1322            (I CPU16Regs:$rx, imm_type:$imm16)>;
1323
1324
1325def: Mips16Pat<(i32  addr16:$addr),
1326               (AddiuRxRyOffMemX16  addr16:$addr)>;
1327
1328
1329// Large (>16 bit) immediate loads
1330def : Mips16Pat<(i32 imm:$imm),
1331                (OrRxRxRy16 (SllX16 (LiRxImmX16 (HI16 imm:$imm)), 16),
1332                (LiRxImmX16 (LO16 imm:$imm)))>;
1333
1334// Carry MipsPatterns
1335def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
1336                (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1337def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
1338                (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1339def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
1340                (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
1341
1342//
1343// Some branch conditional patterns are not generated by llvm at this time.
1344// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1345// comparison they are used and for unsigned a different pattern is used.
1346// I am pushing upstream from the full mips16 port and it seemed that I needed
1347// these earlier and the mips32 port has these but now I cannot create test
1348// cases that use these patterns. While I sort this all out I will leave these
1349// extra patterns commented out and if I can be sure they are really not used,
1350// I will delete the code. I don't want to check the code in uncommented without
1351// a valid test case. In some cases, the compiler is generating patterns with
1352// setcc instead and earlier I had implemented setcc first so may have masked
1353// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1354// figure out how to enable the brcond patterns or else possibly new
1355// combinations of of brcond and setcc.
1356//
1357//
1358// bcond-seteq
1359//
1360def: Mips16Pat
1361  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1362   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1363  >;
1364
1365
1366def: Mips16Pat
1367  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1368   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1369  >;
1370
1371def: Mips16Pat
1372  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1373   (BeqzRxImmX16 CPU16Regs:$rx, bb:$targ16)
1374  >;
1375
1376//
1377// bcond-setgt (do we need to have this pair of setlt, setgt??)
1378//
1379def: Mips16Pat
1380  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1381   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1382  >;
1383
1384//
1385// bcond-setge
1386//
1387def: Mips16Pat
1388  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1389   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1390  >;
1391
1392//
1393// never called because compiler transforms a >= k to a > (k-1)
1394def: Mips16Pat
1395  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1396   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1397  >;
1398
1399//
1400// bcond-setlt
1401//
1402def: Mips16Pat
1403  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1404   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1405  >;
1406
1407def: Mips16Pat
1408  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1409   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1410  >;
1411
1412//
1413// bcond-setle
1414//
1415def: Mips16Pat
1416  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1417   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1418  >;
1419
1420//
1421// bcond-setne
1422//
1423def: Mips16Pat
1424  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1425   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1426  >;
1427
1428def: Mips16Pat
1429  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1430   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1431  >;
1432
1433def: Mips16Pat
1434  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1435   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1436  >;
1437
1438//
1439// This needs to be there but I forget which code will generate it
1440//
1441def: Mips16Pat
1442  <(brcond CPU16Regs:$rx, bb:$targ16),
1443   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1444  >;
1445
1446//
1447
1448//
1449// bcond-setugt
1450//
1451//def: Mips16Pat
1452//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1453//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1454//  >;
1455
1456//
1457// bcond-setuge
1458//
1459//def: Mips16Pat
1460//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1461//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1462//  >;
1463
1464
1465//
1466// bcond-setult
1467//
1468//def: Mips16Pat
1469//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1470//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1471//  >;
1472
1473def: UncondBranch16_pat<br, BimmX16>;
1474
1475// Small immediates
1476def: Mips16Pat<(i32 immSExt16:$in),
1477               (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
1478
1479def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1480
1481//
1482// MipsDivRem
1483//
1484def: Mips16Pat
1485  <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
1486   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1487
1488//
1489// MipsDivRemU
1490//
1491def: Mips16Pat
1492  <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
1493   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1494
1495//  signed a,b
1496//  x = (a>=b)?x:y
1497//
1498//  if !(a < b) x = y
1499//
1500def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1501                 CPU16Regs:$x, CPU16Regs:$y),
1502                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1503                 CPU16Regs:$a, CPU16Regs:$b)>;
1504
1505//  signed a,b
1506//  x = (a>b)?x:y
1507//
1508//  if  (b < a) x = y
1509//
1510def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1511                 CPU16Regs:$x, CPU16Regs:$y),
1512                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1513                 CPU16Regs:$b, CPU16Regs:$a)>;
1514
1515// unsigned a,b
1516// x = (a>=b)?x:y
1517//
1518// if !(a < b) x = y;
1519//
1520def : Mips16Pat<
1521  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1522   CPU16Regs:$x, CPU16Regs:$y),
1523  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1524   CPU16Regs:$a, CPU16Regs:$b)>;
1525
1526//  unsigned a,b
1527//  x = (a>b)?x:y
1528//
1529//  if (b < a) x = y
1530//
1531def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1532                 CPU16Regs:$x, CPU16Regs:$y),
1533                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1534                 CPU16Regs:$b, CPU16Regs:$a)>;
1535
1536// signed
1537// x = (a >= k)?x:y
1538// due to an llvm optimization, i don't think that this will ever
1539// be used. This is transformed into x = (a > k-1)?x:y
1540//
1541//
1542
1543//def : Mips16Pat<
1544//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1545//   CPU16Regs:$T, CPU16Regs:$F),
1546//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1547//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1548
1549//def : Mips16Pat<
1550//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1551//   CPU16Regs:$T, CPU16Regs:$F),
1552//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1553//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1554
1555// signed
1556// x = (a < k)?x:y
1557//
1558// if !(a < k) x = y;
1559//
1560def : Mips16Pat<
1561  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1562   CPU16Regs:$x, CPU16Regs:$y),
1563  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1564   CPU16Regs:$a, immSExt16:$b)>;
1565
1566
1567//
1568//
1569// signed
1570// x = (a <= b)? x : y
1571//
1572// if  (b < a) x = y
1573//
1574def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1575                 CPU16Regs:$x, CPU16Regs:$y),
1576                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1577                 CPU16Regs:$b, CPU16Regs:$a)>;
1578
1579//
1580// unnsigned
1581// x = (a <= b)? x : y
1582//
1583// if  (b < a) x = y
1584//
1585def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1586                 CPU16Regs:$x, CPU16Regs:$y),
1587                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1588                 CPU16Regs:$b, CPU16Regs:$a)>;
1589
1590//
1591// signed/unsigned
1592// x = (a == b)? x : y
1593//
1594// if (a != b) x = y
1595//
1596def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1597                 CPU16Regs:$x, CPU16Regs:$y),
1598                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1599                 CPU16Regs:$b, CPU16Regs:$a)>;
1600
1601//
1602// signed/unsigned
1603// x = (a == 0)? x : y
1604//
1605// if (a != 0) x = y
1606//
1607def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1608                 CPU16Regs:$x, CPU16Regs:$y),
1609                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1610                 CPU16Regs:$a)>;
1611
1612
1613//
1614// signed/unsigned
1615// x = (a == k)? x : y
1616//
1617// if (a != k) x = y
1618//
1619def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1620                 CPU16Regs:$x, CPU16Regs:$y),
1621                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1622                 CPU16Regs:$a, immZExt16:$k)>;
1623
1624
1625//
1626// signed/unsigned
1627// x = (a != b)? x : y
1628//
1629// if (a == b) x = y
1630//
1631//
1632def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1633                 CPU16Regs:$x, CPU16Regs:$y),
1634                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1635                 CPU16Regs:$b, CPU16Regs:$a)>;
1636
1637//
1638// signed/unsigned
1639// x = (a != 0)? x : y
1640//
1641// if (a == 0) x = y
1642//
1643def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1644                 CPU16Regs:$x, CPU16Regs:$y),
1645                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1646                 CPU16Regs:$a)>;
1647
1648// signed/unsigned
1649// x = (a)? x : y
1650//
1651// if (!a) x = y
1652//
1653def : Mips16Pat<(select  CPU16Regs:$a,
1654                 CPU16Regs:$x, CPU16Regs:$y),
1655      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1656       CPU16Regs:$a)>;
1657
1658
1659//
1660// signed/unsigned
1661// x = (a != k)? x : y
1662//
1663// if (a == k) x = y
1664//
1665def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1666                 CPU16Regs:$x, CPU16Regs:$y),
1667                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1668                 CPU16Regs:$a, immZExt16:$k)>;
1669
1670//
1671// When writing C code to test setxx these patterns,
1672// some will be transformed into
1673// other things. So we test using C code but using -O3 and -O0
1674//
1675// seteq
1676//
1677def : Mips16Pat
1678  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1679   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1680
1681def : Mips16Pat
1682  <(seteq CPU16Regs:$lhs, 0),
1683   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1684
1685
1686//
1687// setge
1688//
1689
1690def: Mips16Pat
1691  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1692   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1693   (LiRxImmX16 1))>;
1694
1695//
1696// For constants, llvm transforms this to:
1697// x > (k -1) and then reverses the operands to use setlt. So this pattern
1698// is not used now by the compiler. (Presumably checking that k-1 does not
1699// overflow). The compiler never uses this at a the current time, due to
1700// other optimizations.
1701//
1702//def: Mips16Pat
1703//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1704//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1705//   (LiRxImmX16 1))>;
1706
1707// This catches the x >= -32768 case by transforming it to  x > -32769
1708//
1709def: Mips16Pat
1710  <(setgt CPU16Regs:$lhs, -32769),
1711   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1712   (LiRxImmX16 1))>;
1713
1714//
1715// setgt
1716//
1717//
1718
1719def: Mips16Pat
1720  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1721   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1722
1723//
1724// setle
1725//
1726def: Mips16Pat
1727  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1728   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1729
1730//
1731// setlt
1732//
1733def: SetCC_R16<setlt, SltCCRxRy16>;
1734
1735def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1736
1737//
1738// setne
1739//
1740def : Mips16Pat
1741  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1742   (SltuCCRxRy16 (LiRxImmX16 0),
1743   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1744
1745
1746//
1747// setuge
1748//
1749def: Mips16Pat
1750  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1751   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1752   (LiRxImmX16 1))>;
1753
1754// this pattern will never be used because the compiler will transform
1755// x >= k to x > (k - 1) and then use SLT
1756//
1757//def: Mips16Pat
1758//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1759//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1760//   (LiRxImmX16 1))>;
1761
1762//
1763// setugt
1764//
1765def: Mips16Pat
1766  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1767   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1768
1769//
1770// setule
1771//
1772def: Mips16Pat
1773  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1774   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1775
1776//
1777// setult
1778//
1779def: SetCC_R16<setult, SltuCCRxRy16>;
1780
1781def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1782
1783def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1784               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1785
1786// hi/lo relocs
1787
1788def : Mips16Pat<(MipsHi tglobaladdr:$in),
1789                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1790def : Mips16Pat<(MipsHi tjumptable:$in),
1791                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1792def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
1793                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1794
1795// wrapper_pic
1796class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1797  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1798            (ADDiuOp RC:$gp, node:$in)>;
1799
1800
1801def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1802def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1803
1804def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1805                (LbuRxRyOffMemX16  addr16:$src)>;
1806def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1807                (LhuRxRyOffMemX16  addr16:$src)>;
1808
1809def: Mips16Pat<(trap), (Break16)>;
1810
1811