Mips64InstrInfo.td revision 1858786285139b87961d9ca08de91dcd59364afb
1//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips64 instructions.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Mips Operand, Complex Patterns and Transformations Definitions.
16//===----------------------------------------------------------------------===//
17
18// Instruction operand types
19def shamt_64       : Operand<i64>;
20
21// Unsigned Operand
22def uimm16_64      : Operand<i64> {
23  let PrintMethod = "printUnsignedImm";
24}
25
26// Transformation Function - get Imm - 32.
27def Subtract32 : SDNodeXForm<imm, [{
28  return getImm(N, (unsigned)N->getZExtValue() - 32);
29}]>;
30
31// shamt must fit in 6 bits.
32def immZExt6 : ImmLeaf<i32, [{return Imm == (Imm & 0x3f);}]>;
33
34//===----------------------------------------------------------------------===//
35// Instructions specific format
36//===----------------------------------------------------------------------===//
37let DecoderNamespace = "Mips64" in {
38
39multiclass Atomic2Ops64<PatFrag Op> {
40  def NAME : Atomic2Ops<Op, GPR64, GPR32>, Requires<[NotN64, HasStdEnc]>;
41  def _P8  : Atomic2Ops<Op, GPR64, GPR64>, Requires<[IsN64, HasStdEnc]>;
42}
43
44multiclass AtomicCmpSwap64<PatFrag Op>  {
45  def NAME : AtomicCmpSwap<Op, GPR64, GPR32>,
46             Requires<[NotN64, HasStdEnc]>;
47  def _P8  : AtomicCmpSwap<Op, GPR64, GPR64>,
48             Requires<[IsN64, HasStdEnc]>;
49}
50}
51let usesCustomInserter = 1, Predicates = [HasStdEnc],
52  DecoderNamespace = "Mips64" in {
53  defm ATOMIC_LOAD_ADD_I64  : Atomic2Ops64<atomic_load_add_64>;
54  defm ATOMIC_LOAD_SUB_I64  : Atomic2Ops64<atomic_load_sub_64>;
55  defm ATOMIC_LOAD_AND_I64  : Atomic2Ops64<atomic_load_and_64>;
56  defm ATOMIC_LOAD_OR_I64   : Atomic2Ops64<atomic_load_or_64>;
57  defm ATOMIC_LOAD_XOR_I64  : Atomic2Ops64<atomic_load_xor_64>;
58  defm ATOMIC_LOAD_NAND_I64 : Atomic2Ops64<atomic_load_nand_64>;
59  defm ATOMIC_SWAP_I64      : Atomic2Ops64<atomic_swap_64>;
60  defm ATOMIC_CMP_SWAP_I64  : AtomicCmpSwap64<atomic_cmp_swap_64>;
61}
62
63/// Pseudo instructions for loading and storing accumulator registers.
64let isPseudo = 1, isCodeGenOnly = 1 in {
65  defm LOAD_AC128  : LoadM<"", ACRegs128>;
66  defm STORE_AC128 : StoreM<"", ACRegs128>;
67}
68
69//===----------------------------------------------------------------------===//
70// Instruction definition
71//===----------------------------------------------------------------------===//
72let DecoderNamespace = "Mips64" in {
73/// Arithmetic Instructions (ALU Immediate)
74def DADDi   : ArithLogicI<"daddi", simm16_64, GPR64Opnd>, ADDI_FM<0x18>;
75def DADDiu  : ArithLogicI<"daddiu", simm16_64, GPR64Opnd, IIArith,
76                          immSExt16, add>,
77              ADDI_FM<0x19>, IsAsCheapAsAMove;
78
79let isCodeGenOnly = 1 in {
80def SLTi64  : SetCC_I<"slti", setlt, simm16_64, immSExt16, GPR64Opnd>,
81              SLTI_FM<0xa>;
82def SLTiu64 : SetCC_I<"sltiu", setult, simm16_64, immSExt16, GPR64Opnd>,
83              SLTI_FM<0xb>;
84def ANDi64 : ArithLogicI<"andi", uimm16_64, GPR64Opnd, IILogic, immZExt16,
85                         and>,
86             ADDI_FM<0xc>;
87def ORi64   : ArithLogicI<"ori", uimm16_64, GPR64Opnd, IILogic, immZExt16,
88                          or>,
89              ADDI_FM<0xd>;
90def XORi64  : ArithLogicI<"xori", uimm16_64, GPR64Opnd, IILogic, immZExt16,
91                          xor>,
92              ADDI_FM<0xe>;
93def LUi64   : LoadUpper<"lui", GPR64Opnd, uimm16_64>, LUI_FM;
94}
95
96/// Arithmetic Instructions (3-Operand, R-Type)
97def DADD   : ArithLogicR<"dadd", GPR64Opnd>, ADD_FM<0, 0x2c>;
98def DADDu  : ArithLogicR<"daddu", GPR64Opnd, 1, IIArith, add>,
99                              ADD_FM<0, 0x2d>;
100def DSUBu  : ArithLogicR<"dsubu", GPR64Opnd, 0, IIArith, sub>,
101                              ADD_FM<0, 0x2f>;
102
103let isCodeGenOnly = 1 in {
104def SLT64  : SetCC_R<"slt", setlt, GPR64Opnd>, ADD_FM<0, 0x2a>;
105def SLTu64 : SetCC_R<"sltu", setult, GPR64Opnd>, ADD_FM<0, 0x2b>;
106def AND64  : ArithLogicR<"and", GPR64Opnd, 1, IIArith, and>, ADD_FM<0, 0x24>;
107def OR64   : ArithLogicR<"or", GPR64Opnd, 1, IIArith, or>, ADD_FM<0, 0x25>;
108def XOR64  : ArithLogicR<"xor", GPR64Opnd, 1, IIArith, xor>, ADD_FM<0, 0x26>;
109def NOR64  : LogicNOR<"nor", GPR64Opnd>, ADD_FM<0, 0x27>;
110}
111
112/// Shift Instructions
113def DSLL   : shift_rotate_imm<"dsll", shamt, GPR64Opnd, shl, immZExt6>,
114             SRA_FM<0x38, 0>;
115def DSRL   : shift_rotate_imm<"dsrl", shamt, GPR64Opnd, srl, immZExt6>,
116             SRA_FM<0x3a, 0>;
117def DSRA   : shift_rotate_imm<"dsra", shamt, GPR64Opnd, sra, immZExt6>,
118             SRA_FM<0x3b, 0>;
119def DSLLV  : shift_rotate_reg<"dsllv", GPR64Opnd, shl>, SRLV_FM<0x14, 0>;
120def DSRLV  : shift_rotate_reg<"dsrlv", GPR64Opnd, srl>, SRLV_FM<0x16, 0>;
121def DSRAV  : shift_rotate_reg<"dsrav", GPR64Opnd, sra>, SRLV_FM<0x17, 0>;
122def DSLL32 : shift_rotate_imm<"dsll32", shamt, GPR64Opnd>, SRA_FM<0x3c, 0>;
123def DSRL32 : shift_rotate_imm<"dsrl32", shamt, GPR64Opnd>, SRA_FM<0x3e, 0>;
124def DSRA32 : shift_rotate_imm<"dsra32", shamt, GPR64Opnd>, SRA_FM<0x3f, 0>;
125
126// Rotate Instructions
127let Predicates = [HasMips64r2, HasStdEnc] in {
128  def DROTR  : shift_rotate_imm<"drotr", shamt, GPR64Opnd, rotr, immZExt6>,
129               SRA_FM<0x3a, 1>;
130  def DROTRV : shift_rotate_reg<"drotrv", GPR64Opnd, rotr>,
131               SRLV_FM<0x16, 1>;
132}
133
134/// Load and Store Instructions
135///  aligned
136let isCodeGenOnly = 1 in {
137defm LB64  : LoadM<"lb", GPR64Opnd, sextloadi8, IILoad>, LW_FM<0x20>;
138defm LBu64 : LoadM<"lbu", GPR64Opnd, zextloadi8, IILoad>, LW_FM<0x24>;
139defm LH64  : LoadM<"lh", GPR64Opnd, sextloadi16, IILoad>, LW_FM<0x21>;
140defm LHu64 : LoadM<"lhu", GPR64Opnd, zextloadi16, IILoad>, LW_FM<0x25>;
141defm LW64  : LoadM<"lw", GPR64Opnd, sextloadi32, IILoad>, LW_FM<0x23>;
142defm SB64  : StoreM<"sb", GPR64Opnd, truncstorei8, IIStore>, LW_FM<0x28>;
143defm SH64  : StoreM<"sh", GPR64Opnd, truncstorei16, IIStore>, LW_FM<0x29>;
144defm SW64  : StoreM<"sw", GPR64Opnd, truncstorei32, IIStore>, LW_FM<0x2b>;
145}
146
147defm LWu   : LoadM<"lwu", GPR64Opnd, zextloadi32, IILoad>, LW_FM<0x27>;
148defm LD    : LoadM<"ld", GPR64Opnd, load, IILoad>, LW_FM<0x37>;
149defm SD    : StoreM<"sd", GPR64Opnd, store, IIStore>, LW_FM<0x3f>;
150
151/// load/store left/right
152let isCodeGenOnly = 1 in {
153defm LWL64 : LoadLeftRightM<"lwl", MipsLWL, GPR64Opnd>, LW_FM<0x22>;
154defm LWR64 : LoadLeftRightM<"lwr", MipsLWR, GPR64Opnd>, LW_FM<0x26>;
155defm SWL64 : StoreLeftRightM<"swl", MipsSWL, GPR64Opnd>, LW_FM<0x2a>;
156defm SWR64 : StoreLeftRightM<"swr", MipsSWR, GPR64Opnd>, LW_FM<0x2e>;
157}
158
159defm LDL   : LoadLeftRightM<"ldl", MipsLDL, GPR64Opnd>, LW_FM<0x1a>;
160defm LDR   : LoadLeftRightM<"ldr", MipsLDR, GPR64Opnd>, LW_FM<0x1b>;
161defm SDL   : StoreLeftRightM<"sdl", MipsSDL, GPR64Opnd>, LW_FM<0x2c>;
162defm SDR   : StoreLeftRightM<"sdr", MipsSDR, GPR64Opnd>, LW_FM<0x2d>;
163
164/// Load-linked, Store-conditional
165let Predicates = [NotN64, HasStdEnc] in {
166  def LLD : LLBase<"lld", GPR64Opnd, mem>, LW_FM<0x34>;
167  def SCD : SCBase<"scd", GPR64Opnd, mem>, LW_FM<0x3c>;
168}
169
170let Predicates = [IsN64, HasStdEnc], isCodeGenOnly = 1 in {
171  def LLD_P8 : LLBase<"lld", GPR64Opnd, mem64>, LW_FM<0x34>;
172  def SCD_P8 : SCBase<"scd", GPR64Opnd, mem64>, LW_FM<0x3c>;
173}
174
175/// Jump and Branch Instructions
176let isCodeGenOnly = 1 in {
177def JR64   : IndirectBranch<GPR64Opnd>, MTLO_FM<8>;
178def BEQ64  : CBranch<"beq", seteq, GPR64Opnd>, BEQ_FM<4>;
179def BNE64  : CBranch<"bne", setne, GPR64Opnd>, BEQ_FM<5>;
180def BGEZ64 : CBranchZero<"bgez", setge, GPR64Opnd>, BGEZ_FM<1, 1>;
181def BGTZ64 : CBranchZero<"bgtz", setgt, GPR64Opnd>, BGEZ_FM<7, 0>;
182def BLEZ64 : CBranchZero<"blez", setle, GPR64Opnd>, BGEZ_FM<6, 0>;
183def BLTZ64 : CBranchZero<"bltz", setlt, GPR64Opnd>, BGEZ_FM<1, 0>;
184def JALR64 : JumpLinkReg<"jalr", GPR64Opnd>, JALR_FM;
185def JALR64Pseudo : JumpLinkRegPseudo<GPR64Opnd, JALR, RA, GPR32Opnd>;
186def TAILCALL64_R : JumpFR<GPR64Opnd, MipsTailCall>, MTLO_FM<8>, IsTailCall;
187}
188
189/// Multiply and Divide Instructions.
190def DMULT  : Mult<"dmult", IIImult, GPR64Opnd, [HI64, LO64]>,
191             MULT_FM<0, 0x1c>;
192def DMULTu : Mult<"dmultu", IIImult, GPR64Opnd, [HI64, LO64]>,
193             MULT_FM<0, 0x1d>;
194def PseudoDMULT  : MultDivPseudo<DMULT, ACRegs128, GPR64Opnd, MipsMult,
195                                 IIImult>;
196def PseudoDMULTu : MultDivPseudo<DMULTu, ACRegs128, GPR64Opnd, MipsMultu,
197                                 IIImult>;
198def DSDIV : Div<"ddiv", IIIdiv, GPR64Opnd, [HI64, LO64]>, MULT_FM<0, 0x1e>;
199def DUDIV : Div<"ddivu", IIIdiv, GPR64Opnd, [HI64, LO64]>, MULT_FM<0, 0x1f>;
200def PseudoDSDIV : MultDivPseudo<DSDIV, ACRegs128, GPR64Opnd, MipsDivRem,
201                                IIIdiv, 0, 1, 1>;
202def PseudoDUDIV : MultDivPseudo<DUDIV, ACRegs128, GPR64Opnd, MipsDivRemU,
203                                IIIdiv, 0, 1, 1>;
204
205let isCodeGenOnly = 1 in {
206def MTHI64 : MoveToLOHI<"mthi", GPR64Opnd, [HI64]>, MTLO_FM<0x11>;
207def MTLO64 : MoveToLOHI<"mtlo", GPR64Opnd, [LO64]>, MTLO_FM<0x13>;
208def MFHI64 : MoveFromLOHI<"mfhi", GPR64Opnd, [HI64]>, MFLO_FM<0x10>;
209def MFLO64 : MoveFromLOHI<"mflo", GPR64Opnd, [LO64]>, MFLO_FM<0x12>;
210
211/// Sign Ext In Register Instructions.
212def SEB64 : SignExtInReg<"seb", i8, GPR64Opnd>, SEB_FM<0x10, 0x20>;
213def SEH64 : SignExtInReg<"seh", i16, GPR64Opnd>, SEB_FM<0x18, 0x20>;
214}
215
216/// Count Leading
217def DCLZ : CountLeading0<"dclz", GPR64Opnd>, CLO_FM<0x24>;
218def DCLO : CountLeading1<"dclo", GPR64Opnd>, CLO_FM<0x25>;
219
220/// Double Word Swap Bytes/HalfWords
221def DSBH : SubwordSwap<"dsbh", GPR64Opnd>, SEB_FM<2, 0x24>;
222def DSHD : SubwordSwap<"dshd", GPR64Opnd>, SEB_FM<5, 0x24>;
223
224def LEA_ADDiu64 : EffectiveAddress<"daddiu", GPR64Opnd, mem_ea_64>, LW_FM<0x19>;
225
226let isCodeGenOnly = 1 in
227def RDHWR64 : ReadHardware<GPR64Opnd, HW64RegsOpnd>, RDHWR_FM;
228
229def DEXT : ExtBase<"dext", GPR64Opnd>, EXT_FM<3>;
230let Pattern = []<dag> in {
231  def DEXTU : ExtBase<"dextu", GPR64Opnd>, EXT_FM<2>;
232  def DEXTM : ExtBase<"dextm", GPR64Opnd>, EXT_FM<1>;
233}
234def DINS : InsBase<"dins", GPR64Opnd>, EXT_FM<7>;
235let Pattern = []<dag> in {
236  def DINSU : InsBase<"dinsu", GPR64Opnd>, EXT_FM<6>;
237  def DINSM : InsBase<"dinsm", GPR64Opnd>, EXT_FM<5>;
238}
239
240let isCodeGenOnly = 1, rs = 0, shamt = 0 in {
241  def DSLL64_32 : FR<0x00, 0x3c, (outs GPR64:$rd), (ins GPR32:$rt),
242                     "dsll\t$rd, $rt, 32", [], IIArith>;
243  def SLL64_32 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR32:$rt),
244                    "sll\t$rd, $rt, 0", [], IIArith>;
245  def SLL64_64 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR64:$rt),
246                    "sll\t$rd, $rt, 0", [], IIArith>;
247}
248}
249//===----------------------------------------------------------------------===//
250//  Arbitrary patterns that map to one or more instructions
251//===----------------------------------------------------------------------===//
252
253// extended loads
254let Predicates = [NotN64, HasStdEnc] in {
255  def : MipsPat<(i64 (extloadi1  addr:$src)), (LB64 addr:$src)>;
256  def : MipsPat<(i64 (extloadi8  addr:$src)), (LB64 addr:$src)>;
257  def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64 addr:$src)>;
258  def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64 addr:$src)>;
259}
260let Predicates = [IsN64, HasStdEnc] in {
261  def : MipsPat<(i64 (extloadi1  addr:$src)), (LB64_P8 addr:$src)>;
262  def : MipsPat<(i64 (extloadi8  addr:$src)), (LB64_P8 addr:$src)>;
263  def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64_P8 addr:$src)>;
264  def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64_P8 addr:$src)>;
265}
266
267// hi/lo relocs
268def : MipsPat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>;
269def : MipsPat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>;
270def : MipsPat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>;
271def : MipsPat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>;
272def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>;
273def : MipsPat<(MipsHi texternalsym:$in), (LUi64 texternalsym:$in)>;
274
275def : MipsPat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>;
276def : MipsPat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>;
277def : MipsPat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>;
278def : MipsPat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>;
279def : MipsPat<(MipsLo tglobaltlsaddr:$in),
280              (DADDiu ZERO_64, tglobaltlsaddr:$in)>;
281def : MipsPat<(MipsLo texternalsym:$in), (DADDiu ZERO_64, texternalsym:$in)>;
282
283def : MipsPat<(add GPR64:$hi, (MipsLo tglobaladdr:$lo)),
284              (DADDiu GPR64:$hi, tglobaladdr:$lo)>;
285def : MipsPat<(add GPR64:$hi, (MipsLo tblockaddress:$lo)),
286              (DADDiu GPR64:$hi, tblockaddress:$lo)>;
287def : MipsPat<(add GPR64:$hi, (MipsLo tjumptable:$lo)),
288              (DADDiu GPR64:$hi, tjumptable:$lo)>;
289def : MipsPat<(add GPR64:$hi, (MipsLo tconstpool:$lo)),
290              (DADDiu GPR64:$hi, tconstpool:$lo)>;
291def : MipsPat<(add GPR64:$hi, (MipsLo tglobaltlsaddr:$lo)),
292              (DADDiu GPR64:$hi, tglobaltlsaddr:$lo)>;
293
294def : WrapperPat<tglobaladdr, DADDiu, GPR64>;
295def : WrapperPat<tconstpool, DADDiu, GPR64>;
296def : WrapperPat<texternalsym, DADDiu, GPR64>;
297def : WrapperPat<tblockaddress, DADDiu, GPR64>;
298def : WrapperPat<tjumptable, DADDiu, GPR64>;
299def : WrapperPat<tglobaltlsaddr, DADDiu, GPR64>;
300
301defm : BrcondPats<GPR64, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
302                  ZERO_64>;
303
304def : MipsPat<(brcond (i32 (setlt i64:$lhs, 1)), bb:$dst),
305              (BLEZ64 i64:$lhs, bb:$dst)>;
306def : MipsPat<(brcond (i32 (setgt i64:$lhs, -1)), bb:$dst),
307              (BGEZ64 i64:$lhs, bb:$dst)>;
308
309// setcc patterns
310defm : SeteqPats<GPR64, SLTiu64, XOR64, SLTu64, ZERO_64>;
311defm : SetlePats<GPR64, SLT64, SLTu64>;
312defm : SetgtPats<GPR64, SLT64, SLTu64>;
313defm : SetgePats<GPR64, SLT64, SLTu64>;
314defm : SetgeImmPats<GPR64, SLTi64, SLTiu64>;
315
316// truncate
317def : MipsPat<(i32 (trunc GPR64:$src)),
318              (SLL (EXTRACT_SUBREG GPR64:$src, sub_32), 0)>,
319      Requires<[IsN64, HasStdEnc]>;
320
321// 32-to-64-bit extension
322def : MipsPat<(i64 (anyext GPR32:$src)), (SLL64_32 GPR32:$src)>;
323def : MipsPat<(i64 (zext GPR32:$src)), (DSRL (DSLL64_32 GPR32:$src), 32)>;
324def : MipsPat<(i64 (sext GPR32:$src)), (SLL64_32 GPR32:$src)>;
325
326// Sign extend in register
327def : MipsPat<(i64 (sext_inreg GPR64:$src, i32)),
328              (SLL64_64 GPR64:$src)>;
329
330// bswap MipsPattern
331def : MipsPat<(bswap GPR64:$rt), (DSHD (DSBH GPR64:$rt))>;
332
333// mflo/hi patterns.
334def : MipsPat<(i64 (ExtractLOHI ACRegs128:$ac, imm:$lohi_idx)),
335              (EXTRACT_SUBREG ACRegs128:$ac, imm:$lohi_idx)>;
336
337//===----------------------------------------------------------------------===//
338// Instruction aliases
339//===----------------------------------------------------------------------===//
340def : InstAlias<"move $dst, $src",
341                (DADDu GPR64Opnd:$dst,  GPR64Opnd:$src, ZERO_64), 1>,
342      Requires<[HasMips64]>;
343def : InstAlias<"daddu $rs, $rt, $imm",
344                (DADDiu GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
345                0>;
346def : InstAlias<"dadd $rs, $rt, $imm",
347                (DADDi GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
348                0>;
349
350/// Move between CPU and coprocessor registers
351let DecoderNamespace = "Mips64" in {
352def DMFC0_3OP64 : MFC3OP<(outs GPR64Opnd:$rt),
353                         (ins GPR64Opnd:$rd, uimm16:$sel),
354                         "dmfc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 1>;
355def DMTC0_3OP64 : MFC3OP<(outs GPR64Opnd:$rd, uimm16:$sel),
356                         (ins GPR64Opnd:$rt),
357                         "dmtc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 5>;
358def DMFC2_3OP64 : MFC3OP<(outs GPR64Opnd:$rt),
359                         (ins GPR64Opnd:$rd, uimm16:$sel),
360                         "dmfc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 1>;
361def DMTC2_3OP64 : MFC3OP<(outs GPR64Opnd:$rd, uimm16:$sel),
362                         (ins GPR64Opnd:$rt),
363                         "dmtc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 5>;
364}
365
366// Two operand (implicit 0 selector) versions:
367def : InstAlias<"dmfc0 $rt, $rd",
368                (DMFC0_3OP64 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
369def : InstAlias<"dmtc0 $rt, $rd",
370                (DMTC0_3OP64 GPR64Opnd:$rd, 0, GPR64Opnd:$rt), 0>;
371def : InstAlias<"dmfc2 $rt, $rd",
372                (DMFC2_3OP64 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
373def : InstAlias<"dmtc2 $rt, $rd",
374                (DMTC2_3OP64 GPR64Opnd:$rd, 0, GPR64Opnd:$rt), 0>;
375
376