Mips64InstrInfo.td revision 5a7dd43f045f2f78adc81b497c5d78bd9da0884e
1//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips64 instructions.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Mips Operand, Complex Patterns and Transformations Definitions.
16//===----------------------------------------------------------------------===//
17
18// Instruction operand types
19def shamt_64       : Operand<i64>;
20
21// Unsigned Operand
22def uimm16_64      : Operand<i64> {
23  let PrintMethod = "printUnsignedImm";
24}
25
26// Transformation Function - get Imm - 32.
27def Subtract32 : SDNodeXForm<imm, [{
28  return getImm(N, (unsigned)N->getZExtValue() - 32);
29}]>;
30
31// shamt must fit in 6 bits.
32def immZExt6 : ImmLeaf<i32, [{return Imm == (Imm & 0x3f);}]>;
33
34//===----------------------------------------------------------------------===//
35// Instructions specific format
36//===----------------------------------------------------------------------===//
37// Shifts
38// 64-bit shift instructions.
39let DecoderNamespace = "Mips64" in {
40class shift_rotate_imm64<bits<6> func, bits<5> isRotate, string instr_asm,
41                         SDNode OpNode>:
42  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt6, shamt,
43                   CPU64Regs>;
44
45// Mul, Div
46class Mult64<bits<6> func, string instr_asm, InstrItinClass itin>:
47  Mult<func, instr_asm, itin, CPU64Regs, [HI64, LO64]>;
48class Div64<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
49  Div<op, func, instr_asm, itin, CPU64Regs, [HI64, LO64]>;
50
51multiclass Atomic2Ops64<PatFrag Op, string Opstr> {
52  def #NAME# : Atomic2Ops<Op, Opstr, CPU64Regs, CPURegs>,
53               Requires<[NotN64, HasStandardEncoding]>;
54  def _P8    : Atomic2Ops<Op, Opstr, CPU64Regs, CPU64Regs>,
55               Requires<[IsN64, HasStandardEncoding]> {
56    let isCodeGenOnly = 1;
57  }
58}
59
60multiclass AtomicCmpSwap64<PatFrag Op, string Width>  {
61  def #NAME# : AtomicCmpSwap<Op, Width, CPU64Regs, CPURegs>,
62               Requires<[NotN64, HasStandardEncoding]>;
63  def _P8    : AtomicCmpSwap<Op, Width, CPU64Regs, CPU64Regs>,
64               Requires<[IsN64, HasStandardEncoding]> {
65    let isCodeGenOnly = 1;
66  }
67}
68}
69let usesCustomInserter = 1, Predicates = [HasMips64, HasStandardEncoding],
70  DecoderNamespace = "Mips64" in {
71  defm ATOMIC_LOAD_ADD_I64  : Atomic2Ops64<atomic_load_add_64, "load_add_64">;
72  defm ATOMIC_LOAD_SUB_I64  : Atomic2Ops64<atomic_load_sub_64, "load_sub_64">;
73  defm ATOMIC_LOAD_AND_I64  : Atomic2Ops64<atomic_load_and_64, "load_and_64">;
74  defm ATOMIC_LOAD_OR_I64   : Atomic2Ops64<atomic_load_or_64, "load_or_64">;
75  defm ATOMIC_LOAD_XOR_I64  : Atomic2Ops64<atomic_load_xor_64, "load_xor_64">;
76  defm ATOMIC_LOAD_NAND_I64 : Atomic2Ops64<atomic_load_nand_64, "load_nand_64">;
77  defm ATOMIC_SWAP_I64      : Atomic2Ops64<atomic_swap_64, "swap_64">;
78  defm ATOMIC_CMP_SWAP_I64  : AtomicCmpSwap64<atomic_cmp_swap_64, "64">;
79}
80
81//===----------------------------------------------------------------------===//
82// Instruction definition
83//===----------------------------------------------------------------------===//
84let DecoderNamespace = "Mips64" in {
85/// Arithmetic Instructions (ALU Immediate)
86def DADDiu   : ArithLogicI<0x19, "daddiu", add, simm16_64, immSExt16,
87                           CPU64Regs>;
88def DANDi    : ArithLogicI<0x0c, "andi", and, uimm16_64, immZExt16, CPU64Regs>;
89def SLTi64   : SetCC_I<0x0a, "slti", setlt, simm16_64, immSExt16, CPU64Regs>;
90def SLTiu64  : SetCC_I<0x0b, "sltiu", setult, simm16_64, immSExt16, CPU64Regs>;
91def ORi64    : ArithLogicI<0x0d, "ori", or, uimm16_64, immZExt16, CPU64Regs>;
92def XORi64   : ArithLogicI<0x0e, "xori", xor, uimm16_64, immZExt16, CPU64Regs>;
93def LUi64    : LoadUpper<0x0f, "lui", CPU64Regs, uimm16_64>;
94
95/// Arithmetic Instructions (3-Operand, R-Type)
96def DADDu    : ArithLogicR<0x00, 0x2d, "daddu", add, IIAlu, CPU64Regs, 1>;
97def DSUBu    : ArithLogicR<0x00, 0x2f, "dsubu", sub, IIAlu, CPU64Regs>;
98def SLT64    : SetCC_R<0x00, 0x2a, "slt", setlt, CPU64Regs>;
99def SLTu64   : SetCC_R<0x00, 0x2b, "sltu", setult, CPU64Regs>;
100def AND64    : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPU64Regs, 1>;
101def OR64     : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPU64Regs, 1>;
102def XOR64    : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPU64Regs, 1>;
103def NOR64    : LogicNOR<0x00, 0x27, "nor", CPU64Regs>;
104
105/// Shift Instructions
106def DSLL     : shift_rotate_imm64<0x38, 0x00, "dsll", shl>;
107def DSRL     : shift_rotate_imm64<0x3a, 0x00, "dsrl", srl>;
108def DSRA     : shift_rotate_imm64<0x3b, 0x00, "dsra", sra>;
109def DSLLV    : shift_rotate_reg<0x14, 0x00, "dsllv", shl, CPU64Regs>;
110def DSRLV    : shift_rotate_reg<0x16, 0x00, "dsrlv", srl, CPU64Regs>;
111def DSRAV    : shift_rotate_reg<0x17, 0x00, "dsrav", sra, CPU64Regs>;
112let Pattern = []<dag> in {
113  def DSLL32   : shift_rotate_imm64<0x3c, 0x00, "dsll32", shl>;
114  def DSRL32   : shift_rotate_imm64<0x3e, 0x00, "dsrl32", srl>;
115  def DSRA32   : shift_rotate_imm64<0x3f, 0x00, "dsra32", sra>;
116}
117}
118// Rotate Instructions
119let Predicates = [HasMips64r2, HasStandardEncoding],
120    DecoderNamespace = "Mips64" in {
121  def DROTR    : shift_rotate_imm64<0x3a, 0x01, "drotr", rotr>;
122  def DROTRV   : shift_rotate_reg<0x16, 0x01, "drotrv", rotr, CPU64Regs>;
123}
124
125let DecoderNamespace = "Mips64" in {
126/// Load and Store Instructions
127///  aligned
128defm LB64    : LoadM64<0x20, "lb",  sextloadi8>;
129defm LBu64   : LoadM64<0x24, "lbu", zextloadi8>;
130defm LH64    : LoadM64<0x21, "lh",  sextloadi16>;
131defm LHu64   : LoadM64<0x25, "lhu", zextloadi16>;
132defm LW64    : LoadM64<0x23, "lw",  sextloadi32>;
133defm LWu64   : LoadM64<0x27, "lwu", zextloadi32>;
134defm SB64    : StoreM64<0x28, "sb", truncstorei8>;
135defm SH64    : StoreM64<0x29, "sh", truncstorei16>;
136defm SW64    : StoreM64<0x2b, "sw", truncstorei32>;
137defm LD      : LoadM64<0x37, "ld",  load>;
138defm SD      : StoreM64<0x3f, "sd", store>;
139
140/// load/store left/right
141let isCodeGenOnly = 1 in {
142  defm LWL64 : LoadLeftRightM64<0x22, "lwl", MipsLWL>;
143  defm LWR64 : LoadLeftRightM64<0x26, "lwr", MipsLWR>;
144  defm SWL64 : StoreLeftRightM64<0x2a, "swl", MipsSWL>;
145  defm SWR64 : StoreLeftRightM64<0x2e, "swr", MipsSWR>;
146}
147defm LDL   : LoadLeftRightM64<0x1a, "ldl", MipsLDL>;
148defm LDR   : LoadLeftRightM64<0x1b, "ldr", MipsLDR>;
149defm SDL   : StoreLeftRightM64<0x2c, "sdl", MipsSDL>;
150defm SDR   : StoreLeftRightM64<0x2d, "sdr", MipsSDR>;
151
152/// Load-linked, Store-conditional
153def LLD    : LLBase<0x34, "lld", CPU64Regs, mem>,
154             Requires<[NotN64, HasStandardEncoding]>;
155def LLD_P8 : LLBase<0x34, "lld", CPU64Regs, mem64>,
156             Requires<[IsN64, HasStandardEncoding]> {
157  let isCodeGenOnly = 1;
158}
159def SCD    : SCBase<0x3c, "scd", CPU64Regs, mem>,
160             Requires<[NotN64, HasStandardEncoding]>;
161def SCD_P8 : SCBase<0x3c, "scd", CPU64Regs, mem64>,
162             Requires<[IsN64, HasStandardEncoding]> {
163  let isCodeGenOnly = 1;
164}
165
166/// Jump and Branch Instructions
167def JR64   : IndirectBranch<CPU64Regs>;
168def BEQ64  : CBranch<0x04, "beq", seteq, CPU64Regs>;
169def BNE64  : CBranch<0x05, "bne", setne, CPU64Regs>;
170def BGEZ64 : CBranchZero<0x01, 1, "bgez", setge, CPU64Regs>;
171def BGTZ64 : CBranchZero<0x07, 0, "bgtz", setgt, CPU64Regs>;
172def BLEZ64 : CBranchZero<0x06, 0, "blez", setle, CPU64Regs>;
173def BLTZ64 : CBranchZero<0x01, 0, "bltz", setlt, CPU64Regs>;
174}
175let DecoderNamespace = "Mips64" in
176def JALR64 : JumpLinkReg<0x00, 0x09, "jalr", CPU64Regs>;
177
178let DecoderNamespace = "Mips64" in {
179/// Multiply and Divide Instructions.
180def DMULT    : Mult64<0x1c, "dmult", IIImul>;
181def DMULTu   : Mult64<0x1d, "dmultu", IIImul>;
182def DSDIV    : Div64<MipsDivRem, 0x1e, "ddiv", IIIdiv>;
183def DUDIV    : Div64<MipsDivRemU, 0x1f, "ddivu", IIIdiv>;
184
185def MTHI64 : MoveToLOHI<0x11, "mthi", CPU64Regs, [HI64]>;
186def MTLO64 : MoveToLOHI<0x13, "mtlo", CPU64Regs, [LO64]>;
187def MFHI64 : MoveFromLOHI<0x10, "mfhi", CPU64Regs, [HI64]>;
188def MFLO64 : MoveFromLOHI<0x12, "mflo", CPU64Regs, [LO64]>;
189
190/// Sign Ext In Register Instructions.
191def SEB64 : SignExtInReg<0x10, "seb", i8, CPU64Regs>;
192def SEH64 : SignExtInReg<0x18, "seh", i16, CPU64Regs>;
193
194/// Count Leading
195def DCLZ : CountLeading0<0x24, "dclz", CPU64Regs>;
196def DCLO : CountLeading1<0x25, "dclo", CPU64Regs>;
197
198/// Double Word Swap Bytes/HalfWords
199def DSBH : SubwordSwap<0x24, 0x2, "dsbh", CPU64Regs>;
200def DSHD : SubwordSwap<0x24, 0x5, "dshd", CPU64Regs>;
201
202def LEA_ADDiu64 : EffectiveAddress<0x19,"daddiu\t$rt, $addr", CPU64Regs, mem_ea_64>;
203}
204let Uses = [SP_64], DecoderNamespace = "Mips64" in
205def DynAlloc64 : EffectiveAddress<0x19,"daddiu\t$rt, $addr", CPU64Regs, mem_ea_64>,
206                 Requires<[IsN64, HasStandardEncoding]>;
207let DecoderNamespace = "Mips64" in {
208def RDHWR64 : ReadHardware<CPU64Regs, HWRegs64>;
209
210def DEXT : ExtBase<3, "dext", CPU64Regs>;
211let Pattern = []<dag> in {
212  def DEXTU : ExtBase<2, "dextu", CPU64Regs>;
213  def DEXTM : ExtBase<1, "dextm", CPU64Regs>;
214}
215def DINS : InsBase<7, "dins", CPU64Regs>;
216let Pattern = []<dag> in {
217  def DINSU : InsBase<6, "dinsu", CPU64Regs>;
218  def DINSM : InsBase<5, "dinsm", CPU64Regs>;
219}
220
221let isCodeGenOnly = 1, rs = 0, shamt = 0 in {
222  def DSLL64_32 : FR<0x00, 0x3c, (outs CPU64Regs:$rd), (ins CPURegs:$rt),
223                     "dsll\t$rd, $rt, 32", [], IIAlu>;
224  def SLL64_32 : FR<0x0, 0x00, (outs CPU64Regs:$rd), (ins CPURegs:$rt),
225                    "sll\t$rd, $rt, 0", [], IIAlu>;
226  def SLL64_64 : FR<0x0, 0x00, (outs CPU64Regs:$rd), (ins CPU64Regs:$rt),
227                    "sll\t$rd, $rt, 0", [], IIAlu>;
228}
229}
230//===----------------------------------------------------------------------===//
231//  Arbitrary patterns that map to one or more instructions
232//===----------------------------------------------------------------------===//
233
234// extended loads
235let Predicates = [NotN64, HasStandardEncoding] in {
236  def : MipsPat<(i64 (extloadi1  addr:$src)), (LB64 addr:$src)>;
237  def : MipsPat<(i64 (extloadi8  addr:$src)), (LB64 addr:$src)>;
238  def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64 addr:$src)>;
239  def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64 addr:$src)>;
240}
241let Predicates = [IsN64, HasStandardEncoding] in {
242  def : MipsPat<(i64 (extloadi1  addr:$src)), (LB64_P8 addr:$src)>;
243  def : MipsPat<(i64 (extloadi8  addr:$src)), (LB64_P8 addr:$src)>;
244  def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64_P8 addr:$src)>;
245  def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64_P8 addr:$src)>;
246}
247
248// hi/lo relocs
249def : MipsPat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>;
250def : MipsPat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>;
251def : MipsPat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>;
252def : MipsPat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>;
253def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>;
254
255def : MipsPat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>;
256def : MipsPat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>;
257def : MipsPat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>;
258def : MipsPat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>;
259def : MipsPat<(MipsLo tglobaltlsaddr:$in),
260              (DADDiu ZERO_64, tglobaltlsaddr:$in)>;
261
262def : MipsPat<(add CPU64Regs:$hi, (MipsLo tglobaladdr:$lo)),
263              (DADDiu CPU64Regs:$hi, tglobaladdr:$lo)>;
264def : MipsPat<(add CPU64Regs:$hi, (MipsLo tblockaddress:$lo)),
265              (DADDiu CPU64Regs:$hi, tblockaddress:$lo)>;
266def : MipsPat<(add CPU64Regs:$hi, (MipsLo tjumptable:$lo)),
267              (DADDiu CPU64Regs:$hi, tjumptable:$lo)>;
268def : MipsPat<(add CPU64Regs:$hi, (MipsLo tconstpool:$lo)),
269              (DADDiu CPU64Regs:$hi, tconstpool:$lo)>;
270def : MipsPat<(add CPU64Regs:$hi, (MipsLo tglobaltlsaddr:$lo)),
271              (DADDiu CPU64Regs:$hi, tglobaltlsaddr:$lo)>;
272
273def : WrapperPat<tglobaladdr, DADDiu, CPU64Regs>;
274def : WrapperPat<tconstpool, DADDiu, CPU64Regs>;
275def : WrapperPat<texternalsym, DADDiu, CPU64Regs>;
276def : WrapperPat<tblockaddress, DADDiu, CPU64Regs>;
277def : WrapperPat<tjumptable, DADDiu, CPU64Regs>;
278def : WrapperPat<tglobaltlsaddr, DADDiu, CPU64Regs>;
279
280defm : BrcondPats<CPU64Regs, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
281                  ZERO_64>;
282
283// setcc patterns
284defm : SeteqPats<CPU64Regs, SLTiu64, XOR64, SLTu64, ZERO_64>;
285defm : SetlePats<CPU64Regs, SLT64, SLTu64>;
286defm : SetgtPats<CPU64Regs, SLT64, SLTu64>;
287defm : SetgePats<CPU64Regs, SLT64, SLTu64>;
288defm : SetgeImmPats<CPU64Regs, SLTi64, SLTiu64>;
289
290// select MipsDynAlloc
291def : MipsPat<(MipsDynAlloc addr:$f), (DynAlloc64 addr:$f)>,
292      Requires<[IsN64, HasStandardEncoding]>;
293
294// truncate
295def : MipsPat<(i32 (trunc CPU64Regs:$src)),
296              (SLL (EXTRACT_SUBREG CPU64Regs:$src, sub_32), 0)>,
297      Requires<[IsN64, HasStandardEncoding]>;
298
299// 32-to-64-bit extension
300def : MipsPat<(i64 (anyext CPURegs:$src)), (SLL64_32 CPURegs:$src)>;
301def : MipsPat<(i64 (zext CPURegs:$src)), (DSRL (DSLL64_32 CPURegs:$src), 32)>;
302def : MipsPat<(i64 (sext CPURegs:$src)), (SLL64_32 CPURegs:$src)>;
303
304// Sign extend in register
305def : MipsPat<(i64 (sext_inreg CPU64Regs:$src, i32)),
306              (SLL64_64 CPU64Regs:$src)>;
307
308// bswap MipsPattern
309def : MipsPat<(bswap CPU64Regs:$rt), (DSHD (DSBH CPU64Regs:$rt))>;
310