MipsConstantIslandPass.cpp revision 1ef90831229a586c2421be4ae9f1e990312a4f95
1//===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//
11// This pass is used to make Pc relative loads of constants.
12// For now, only Mips16 will use this. While it has the same name and
13// uses many ideas from the LLVM ARM Constant Island Pass, it's not intended
14// to reuse any of the code from the ARM version.
15//
16// Loading constants inline is expensive on Mips16 and it's in general better
17// to place the constant nearby in code space and then it can be loaded with a
18// simple 16 bit load instruction.
19//
20// The constants can be not just numbers but addresses of functions and labels.
21// This can be particularly helpful in static relocation mode for embedded
22// non linux targets.
23//
24//
25
26#define DEBUG_TYPE "mips-constant-islands"
27
28#include "Mips.h"
29#include "MCTargetDesc/MipsBaseInfo.h"
30#include "MipsMachineFunction.h"
31#include "MipsTargetMachine.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/CodeGen/MachineBasicBlock.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/IR/Function.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/InstIterator.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Support/Format.h"
47#include <algorithm>
48
49using namespace llvm;
50
51STATISTIC(NumCPEs,       "Number of constpool entries");
52STATISTIC(NumSplit,      "Number of uncond branches inserted");
53#ifdef IN_PROGRESS
54STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
55#endif
56STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
57
58// FIXME: This option should be removed once it has received sufficient testing.
59static cl::opt<bool>
60AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
61          cl::desc("Align constant islands in code"));
62
63
64// Rather than do make check tests with huge amounts of code, we force
65// the test to use this amount.
66//
67static cl::opt<int> ConstantIslandsSmallOffset(
68  "mips-constant-islands-small-offset",
69  cl::init(0),
70  cl::desc("Make small offsets be this amount for testing purposes"),
71  cl::Hidden);
72
73/// UnknownPadding - Return the worst case padding that could result from
74/// unknown offset bits.  This does not include alignment padding caused by
75/// known offset bits.
76///
77/// @param LogAlign log2(alignment)
78/// @param KnownBits Number of known low offset bits.
79static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
80  if (KnownBits < LogAlign)
81    return (1u << LogAlign) - (1u << KnownBits);
82  return 0;
83}
84
85namespace {
86
87
88  typedef MachineBasicBlock::iterator Iter;
89  typedef MachineBasicBlock::reverse_iterator ReverseIter;
90
91  /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
92  /// requires constant pool entries to be scattered among the instructions
93  /// inside a function.  To do this, it completely ignores the normal LLVM
94  /// constant pool; instead, it places constants wherever it feels like with
95  /// special instructions.
96  ///
97  /// The terminology used in this pass includes:
98  ///   Islands - Clumps of constants placed in the function.
99  ///   Water   - Potential places where an island could be formed.
100  ///   CPE     - A constant pool entry that has been placed somewhere, which
101  ///             tracks a list of users.
102
103  class MipsConstantIslands : public MachineFunctionPass {
104
105    /// BasicBlockInfo - Information about the offset and size of a single
106    /// basic block.
107    struct BasicBlockInfo {
108      /// Offset - Distance from the beginning of the function to the beginning
109      /// of this basic block.
110      ///
111      /// Offsets are computed assuming worst case padding before an aligned
112      /// block. This means that subtracting basic block offsets always gives a
113      /// conservative estimate of the real distance which may be smaller.
114      ///
115      /// Because worst case padding is used, the computed offset of an aligned
116      /// block may not actually be aligned.
117      unsigned Offset;
118
119      /// Size - Size of the basic block in bytes.  If the block contains
120      /// inline assembly, this is a worst case estimate.
121      ///
122      /// The size does not include any alignment padding whether from the
123      /// beginning of the block, or from an aligned jump table at the end.
124      unsigned Size;
125
126      /// KnownBits - The number of low bits in Offset that are known to be
127      /// exact.  The remaining bits of Offset are an upper bound.
128      uint8_t KnownBits;
129
130      /// Unalign - When non-zero, the block contains instructions (inline asm)
131      /// of unknown size.  The real size may be smaller than Size bytes by a
132      /// multiple of 1 << Unalign.
133      uint8_t Unalign;
134
135      /// PostAlign - When non-zero, the block terminator contains a .align
136      /// directive, so the end of the block is aligned to 1 << PostAlign
137      /// bytes.
138      uint8_t PostAlign;
139
140      BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0),
141        PostAlign(0) {}
142
143      /// Compute the number of known offset bits internally to this block.
144      /// This number should be used to predict worst case padding when
145      /// splitting the block.
146      unsigned internalKnownBits() const {
147        unsigned Bits = Unalign ? Unalign : KnownBits;
148        // If the block size isn't a multiple of the known bits, assume the
149        // worst case padding.
150        if (Size & ((1u << Bits) - 1))
151          Bits = countTrailingZeros(Size);
152        return Bits;
153      }
154
155      /// Compute the offset immediately following this block.  If LogAlign is
156      /// specified, return the offset the successor block will get if it has
157      /// this alignment.
158      unsigned postOffset(unsigned LogAlign = 0) const {
159        unsigned PO = Offset + Size;
160        return PO;
161      }
162
163      /// Compute the number of known low bits of postOffset.  If this block
164      /// contains inline asm, the number of known bits drops to the
165      /// instruction alignment.  An aligned terminator may increase the number
166      /// of know bits.
167      /// If LogAlign is given, also consider the alignment of the next block.
168      unsigned postKnownBits(unsigned LogAlign = 0) const {
169        return std::max(std::max(unsigned(PostAlign), LogAlign),
170                        internalKnownBits());
171      }
172    };
173
174    std::vector<BasicBlockInfo> BBInfo;
175
176    /// WaterList - A sorted list of basic blocks where islands could be placed
177    /// (i.e. blocks that don't fall through to the following block, due
178    /// to a return, unreachable, or unconditional branch).
179    std::vector<MachineBasicBlock*> WaterList;
180
181    /// NewWaterList - The subset of WaterList that was created since the
182    /// previous iteration by inserting unconditional branches.
183    SmallSet<MachineBasicBlock*, 4> NewWaterList;
184
185    typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
186
187    /// CPUser - One user of a constant pool, keeping the machine instruction
188    /// pointer, the constant pool being referenced, and the max displacement
189    /// allowed from the instruction to the CP.  The HighWaterMark records the
190    /// highest basic block where a new CPEntry can be placed.  To ensure this
191    /// pass terminates, the CP entries are initially placed at the end of the
192    /// function and then move monotonically to lower addresses.  The
193    /// exception to this rule is when the current CP entry for a particular
194    /// CPUser is out of range, but there is another CP entry for the same
195    /// constant value in range.  We want to use the existing in-range CP
196    /// entry, but if it later moves out of range, the search for new water
197    /// should resume where it left off.  The HighWaterMark is used to record
198    /// that point.
199    struct CPUser {
200      MachineInstr *MI;
201      MachineInstr *CPEMI;
202      MachineBasicBlock *HighWaterMark;
203    private:
204      unsigned MaxDisp;
205      unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
206                                // with different displacements
207      unsigned LongFormOpcode;
208    public:
209      bool NegOk;
210      bool IsSoImm;
211      bool KnownAlignment;
212      CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
213             bool neg, bool soimm, unsigned longformmaxdisp, unsigned longformopcode)
214        : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
215          LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
216          NegOk(neg), IsSoImm(soimm), KnownAlignment(false)  {
217        HighWaterMark = CPEMI->getParent();
218      }
219      /// getMaxDisp - Returns the maximum displacement supported by MI.
220      /// Correct for unknown alignment.
221      /// Conservatively subtract 2 bytes to handle weird alignment effects.
222      unsigned getMaxDisp() const {
223        unsigned xMaxDisp = ConstantIslandsSmallOffset? ConstantIslandsSmallOffset: MaxDisp;
224        return (KnownAlignment ? xMaxDisp : xMaxDisp - 2) - 2;
225      }
226      unsigned getLongFormMaxDisp() const {
227        return (KnownAlignment ? LongFormMaxDisp : LongFormMaxDisp - 2) - 2;
228      }
229      unsigned getLongFormOpcode() const {
230          return LongFormOpcode;
231      }
232    };
233
234    /// CPUsers - Keep track of all of the machine instructions that use various
235    /// constant pools and their max displacement.
236    std::vector<CPUser> CPUsers;
237
238  /// CPEntry - One per constant pool entry, keeping the machine instruction
239  /// pointer, the constpool index, and the number of CPUser's which
240  /// reference this entry.
241  struct CPEntry {
242    MachineInstr *CPEMI;
243    unsigned CPI;
244    unsigned RefCount;
245    CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
246      : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
247  };
248
249  /// CPEntries - Keep track of all of the constant pool entry machine
250  /// instructions. For each original constpool index (i.e. those that
251  /// existed upon entry to this pass), it keeps a vector of entries.
252  /// Original elements are cloned as we go along; the clones are
253  /// put in the vector of the original element, but have distinct CPIs.
254  std::vector<std::vector<CPEntry> > CPEntries;
255
256  /// ImmBranch - One per immediate branch, keeping the machine instruction
257  /// pointer, conditional or unconditional, the max displacement,
258  /// and (if isCond is true) the corresponding unconditional branch
259  /// opcode.
260  struct ImmBranch {
261    MachineInstr *MI;
262    unsigned MaxDisp : 31;
263    bool isCond : 1;
264    int UncondBr;
265    ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
266      : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
267  };
268
269  /// ImmBranches - Keep track of all the immediate branch instructions.
270  ///
271  std::vector<ImmBranch> ImmBranches;
272
273  /// HasFarJump - True if any far jump instruction has been emitted during
274  /// the branch fix up pass.
275  bool HasFarJump;
276
277  const TargetMachine &TM;
278  bool IsPIC;
279  unsigned ABI;
280  const MipsSubtarget *STI;
281  const MipsInstrInfo *TII;
282  MipsFunctionInfo *MFI;
283  MachineFunction *MF;
284  MachineConstantPool *MCP;
285
286  unsigned PICLabelUId;
287  bool PrescannedForConstants;
288
289  void initPICLabelUId(unsigned UId) {
290    PICLabelUId = UId;
291  }
292
293
294  unsigned createPICLabelUId() {
295    return PICLabelUId++;
296  }
297
298  public:
299    static char ID;
300    MipsConstantIslands(TargetMachine &tm)
301      : MachineFunctionPass(ID), TM(tm),
302        IsPIC(TM.getRelocationModel() == Reloc::PIC_),
303        ABI(TM.getSubtarget<MipsSubtarget>().getTargetABI()),
304        STI(&TM.getSubtarget<MipsSubtarget>()), MF(0), MCP(0), PrescannedForConstants(false){}
305
306    virtual const char *getPassName() const {
307      return "Mips Constant Islands";
308    }
309
310    bool runOnMachineFunction(MachineFunction &F);
311
312    void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
313    CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
314    unsigned getCPELogAlign(const MachineInstr *CPEMI);
315    void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
316    unsigned getOffsetOf(MachineInstr *MI) const;
317    unsigned getUserOffset(CPUser&) const;
318    void dumpBBs();
319    void verify();
320
321    bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
322                         unsigned Disp, bool NegativeOK, bool IsSoImm = false);
323    bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
324                         const CPUser &U) {
325      return isOffsetInRange(UserOffset, TrialOffset,
326                             U.getMaxDisp(), U.NegOk, U.IsSoImm);
327    }
328    bool isLongFormOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
329                                const CPUser &U) {
330      return isOffsetInRange(UserOffset, TrialOffset,
331                             U.getLongFormMaxDisp(), U.NegOk, U.IsSoImm);
332    }
333    void computeBlockSize(MachineBasicBlock *MBB);
334    MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
335    void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
336    void adjustBBOffsetsAfter(MachineBasicBlock *BB);
337    bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
338    int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
339    int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
340    bool findAvailableWater(CPUser&U, unsigned UserOffset,
341                            water_iterator &WaterIter);
342    void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
343                        MachineBasicBlock *&NewMBB);
344    bool handleConstantPoolUser(unsigned CPUserIndex);
345    void removeDeadCPEMI(MachineInstr *CPEMI);
346    bool removeUnusedCPEntries();
347    bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
348                          MachineInstr *CPEMI, unsigned Disp, bool NegOk,
349                          bool DoDump = false);
350    bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
351                        CPUser &U, unsigned &Growth);
352    bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
353    bool fixupImmediateBr(ImmBranch &Br);
354    bool fixupConditionalBr(ImmBranch &Br);
355    bool fixupUnconditionalBr(ImmBranch &Br);
356
357    void prescanForConstants();
358
359  private:
360
361  };
362
363  char MipsConstantIslands::ID = 0;
364} // end of anonymous namespace
365
366/// print block size and offset information - debugging
367void MipsConstantIslands::dumpBBs() {
368  DEBUG({
369    for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
370      const BasicBlockInfo &BBI = BBInfo[J];
371      dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
372             << " kb=" << unsigned(BBI.KnownBits)
373             << " ua=" << unsigned(BBI.Unalign)
374             << " pa=" << unsigned(BBI.PostAlign)
375             << format(" size=%#x\n", BBInfo[J].Size);
376    }
377  });
378}
379/// createMipsLongBranchPass - Returns a pass that converts branches to long
380/// branches.
381FunctionPass *llvm::createMipsConstantIslandPass(MipsTargetMachine &tm) {
382  return new MipsConstantIslands(tm);
383}
384
385bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
386  // The intention is for this to be a mips16 only pass for now
387  // FIXME:
388  MF = &mf;
389  MCP = mf.getConstantPool();
390  DEBUG(dbgs() << "constant island machine function " << "\n");
391  if (!TM.getSubtarget<MipsSubtarget>().inMips16Mode() ||
392      !MipsSubtarget::useConstantIslands()) {
393    return false;
394  }
395  TII = (const MipsInstrInfo*)MF->getTarget().getInstrInfo();
396  MFI = MF->getInfo<MipsFunctionInfo>();
397  DEBUG(dbgs() << "constant island processing " << "\n");
398  //
399  // will need to make predermination if there is any constants we need to
400  // put in constant islands. TBD.
401  //
402  if (!PrescannedForConstants) prescanForConstants();
403
404  HasFarJump = false;
405  // This pass invalidates liveness information when it splits basic blocks.
406  MF->getRegInfo().invalidateLiveness();
407
408  // Renumber all of the machine basic blocks in the function, guaranteeing that
409  // the numbers agree with the position of the block in the function.
410  MF->RenumberBlocks();
411
412  bool MadeChange = false;
413
414  // Perform the initial placement of the constant pool entries.  To start with,
415  // we put them all at the end of the function.
416  std::vector<MachineInstr*> CPEMIs;
417  if (!MCP->isEmpty())
418    doInitialPlacement(CPEMIs);
419
420  /// The next UID to take is the first unused one.
421  initPICLabelUId(CPEMIs.size());
422
423  // Do the initial scan of the function, building up information about the
424  // sizes of each block, the location of all the water, and finding all of the
425  // constant pool users.
426  initializeFunctionInfo(CPEMIs);
427  CPEMIs.clear();
428  DEBUG(dumpBBs());
429
430  /// Remove dead constant pool entries.
431  MadeChange |= removeUnusedCPEntries();
432
433  // Iteratively place constant pool entries and fix up branches until there
434  // is no change.
435  unsigned NoCPIters = 0, NoBRIters = 0;
436  while (true) {
437    DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
438    bool CPChange = false;
439    for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
440      CPChange |= handleConstantPoolUser(i);
441    if (CPChange && ++NoCPIters > 30)
442      report_fatal_error("Constant Island pass failed to converge!");
443    DEBUG(dumpBBs());
444
445    // Clear NewWaterList now.  If we split a block for branches, it should
446    // appear as "new water" for the next iteration of constant pool placement.
447    NewWaterList.clear();
448
449    DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
450    bool BRChange = false;
451#ifdef IN_PROGRESS
452    for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
453      BRChange |= fixupImmediateBr(ImmBranches[i]);
454    if (BRChange && ++NoBRIters > 30)
455      report_fatal_error("Branch Fix Up pass failed to converge!");
456    DEBUG(dumpBBs());
457#endif
458    if (!CPChange && !BRChange)
459      break;
460    MadeChange = true;
461  }
462
463  DEBUG(dbgs() << '\n'; dumpBBs());
464
465  BBInfo.clear();
466  WaterList.clear();
467  CPUsers.clear();
468  CPEntries.clear();
469  ImmBranches.clear();
470  return MadeChange;
471}
472
473/// doInitialPlacement - Perform the initial placement of the constant pool
474/// entries.  To start with, we put them all at the end of the function.
475void
476MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
477  // Create the basic block to hold the CPE's.
478  MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
479  MF->push_back(BB);
480
481
482  // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
483  unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
484
485  // Mark the basic block as required by the const-pool.
486  // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
487  BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
488
489  // The function needs to be as aligned as the basic blocks. The linker may
490  // move functions around based on their alignment.
491  MF->ensureAlignment(BB->getAlignment());
492
493  // Order the entries in BB by descending alignment.  That ensures correct
494  // alignment of all entries as long as BB is sufficiently aligned.  Keep
495  // track of the insertion point for each alignment.  We are going to bucket
496  // sort the entries as they are created.
497  SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
498
499  // Add all of the constants from the constant pool to the end block, use an
500  // identity mapping of CPI's to CPE's.
501  const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
502
503  const DataLayout &TD = *MF->getTarget().getDataLayout();
504  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
505    unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
506    assert(Size >= 4 && "Too small constant pool entry");
507    unsigned Align = CPs[i].getAlignment();
508    assert(isPowerOf2_32(Align) && "Invalid alignment");
509    // Verify that all constant pool entries are a multiple of their alignment.
510    // If not, we would have to pad them out so that instructions stay aligned.
511    assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
512
513    // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
514    unsigned LogAlign = Log2_32(Align);
515    MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
516
517    MachineInstr *CPEMI =
518      BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
519        .addImm(i).addConstantPoolIndex(i).addImm(Size);
520
521    CPEMIs.push_back(CPEMI);
522
523    // Ensure that future entries with higher alignment get inserted before
524    // CPEMI. This is bucket sort with iterators.
525    for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
526      if (InsPoint[a] == InsAt)
527        InsPoint[a] = CPEMI;
528    // Add a new CPEntry, but no corresponding CPUser yet.
529    std::vector<CPEntry> CPEs;
530    CPEs.push_back(CPEntry(CPEMI, i));
531    CPEntries.push_back(CPEs);
532    ++NumCPEs;
533    DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
534                 << Size << ", align = " << Align <<'\n');
535  }
536  DEBUG(BB->dump());
537}
538
539/// BBHasFallthrough - Return true if the specified basic block can fallthrough
540/// into the block immediately after it.
541static bool BBHasFallthrough(MachineBasicBlock *MBB) {
542  // Get the next machine basic block in the function.
543  MachineFunction::iterator MBBI = MBB;
544  // Can't fall off end of function.
545  if (llvm::next(MBBI) == MBB->getParent()->end())
546    return false;
547
548  MachineBasicBlock *NextBB = llvm::next(MBBI);
549  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
550       E = MBB->succ_end(); I != E; ++I)
551    if (*I == NextBB)
552      return true;
553
554  return false;
555}
556
557/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
558/// look up the corresponding CPEntry.
559MipsConstantIslands::CPEntry
560*MipsConstantIslands::findConstPoolEntry(unsigned CPI,
561                                        const MachineInstr *CPEMI) {
562  std::vector<CPEntry> &CPEs = CPEntries[CPI];
563  // Number of entries per constpool index should be small, just do a
564  // linear search.
565  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
566    if (CPEs[i].CPEMI == CPEMI)
567      return &CPEs[i];
568  }
569  return NULL;
570}
571
572/// getCPELogAlign - Returns the required alignment of the constant pool entry
573/// represented by CPEMI.  Alignment is measured in log2(bytes) units.
574unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
575  assert(CPEMI && CPEMI->getOpcode() == Mips::CONSTPOOL_ENTRY);
576
577  // Everything is 4-byte aligned unless AlignConstantIslands is set.
578  if (!AlignConstantIslands)
579    return 2;
580
581  unsigned CPI = CPEMI->getOperand(1).getIndex();
582  assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
583  unsigned Align = MCP->getConstants()[CPI].getAlignment();
584  assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
585  return Log2_32(Align);
586}
587
588/// initializeFunctionInfo - Do the initial scan of the function, building up
589/// information about the sizes of each block, the location of all the water,
590/// and finding all of the constant pool users.
591void MipsConstantIslands::
592initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
593  BBInfo.clear();
594  BBInfo.resize(MF->getNumBlockIDs());
595
596  // First thing, compute the size of all basic blocks, and see if the function
597  // has any inline assembly in it. If so, we have to be conservative about
598  // alignment assumptions, as we don't know for sure the size of any
599  // instructions in the inline assembly.
600  for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
601    computeBlockSize(I);
602
603  // The known bits of the entry block offset are determined by the function
604  // alignment.
605  BBInfo.front().KnownBits = MF->getAlignment();
606
607  // Compute block offsets.
608  adjustBBOffsetsAfter(MF->begin());
609
610  // Now go back through the instructions and build up our data structures.
611  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
612       MBBI != E; ++MBBI) {
613    MachineBasicBlock &MBB = *MBBI;
614
615    // If this block doesn't fall through into the next MBB, then this is
616    // 'water' that a constant pool island could be placed.
617    if (!BBHasFallthrough(&MBB))
618      WaterList.push_back(&MBB);
619    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
620         I != E; ++I) {
621      if (I->isDebugValue())
622        continue;
623
624      int Opc = I->getOpcode();
625      if (I->isBranch()) {
626        bool isCond = false;
627        unsigned Bits = 0;
628        unsigned Scale = 1;
629        int UOpc = Opc;
630
631        switch (Opc) {
632        default:
633          continue;  // Ignore other JT branches
634#ifdef IN_PROGRESS
635        case ARM::t2BR_JT:
636          T2JumpTables.push_back(I);
637          continue;   // Does not get an entry in ImmBranches
638        case ARM::Bcc:
639          isCond = true;
640          UOpc = ARM::B;
641          // Fallthrough
642        case ARM::B:
643          Bits = 24;
644          Scale = 4;
645          break;
646        case ARM::tBcc:
647          isCond = true;
648          UOpc = ARM::tB;
649          Bits = 8;
650          Scale = 2;
651          break;
652        case ARM::tB:
653          Bits = 11;
654          Scale = 2;
655          break;
656        case ARM::t2Bcc:
657          isCond = true;
658          UOpc = ARM::t2B;
659          Bits = 20;
660          Scale = 2;
661          break;
662        case ARM::t2B:
663          Bits = 24;
664          Scale = 2;
665          break;
666#endif
667        }
668        // Record this immediate branch.
669        unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
670        ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
671
672      }
673
674
675      if (Opc == Mips::CONSTPOOL_ENTRY)
676        continue;
677
678
679      // Scan the instructions for constant pool operands.
680      for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
681        if (I->getOperand(op).isCPI()) {
682
683          // We found one.  The addressing mode tells us the max displacement
684          // from the PC that this instruction permits.
685
686          // Basic size info comes from the TSFlags field.
687          unsigned Bits = 0;
688          unsigned Scale = 1;
689          bool NegOk = false;
690          bool IsSoImm = false;
691          unsigned LongFormBits = 0;
692          unsigned LongFormScale = 0;
693          unsigned LongFormOpcode = 0;
694          switch (Opc) {
695          default:
696            llvm_unreachable("Unknown addressing mode for CP reference!");
697          case Mips::LwRxPcTcp16:
698            Bits = 8;
699            Scale = 2;
700            LongFormOpcode = Mips::LwRxPcTcpX16;
701            break;
702          case Mips::LwRxPcTcpX16:
703            Bits = 16;
704            Scale = 2;
705            break;
706#ifdef IN_PROGRESS
707          // Taking the address of a CP entry.
708          case ARM::LEApcrel:
709            // This takes a SoImm, which is 8 bit immediate rotated. We'll
710            // pretend the maximum offset is 255 * 4. Since each instruction
711            // 4 byte wide, this is always correct. We'll check for other
712            // displacements that fits in a SoImm as well.
713            Bits = 8;
714            Scale = 4;
715            NegOk = true;
716            IsSoImm = true;
717            break;
718          case ARM::t2LEApcrel:
719            Bits = 12;
720            NegOk = true;
721            break;
722          case ARM::tLEApcrel:
723            Bits = 8;
724            Scale = 4;
725            break;
726
727          case ARM::LDRBi12:
728          case ARM::LDRi12:
729          case ARM::LDRcp:
730          case ARM::t2LDRpci:
731            Bits = 12;  // +-offset_12
732            NegOk = true;
733            break;
734
735          case ARM::tLDRpci:
736            Bits = 8;
737            Scale = 4;  // +(offset_8*4)
738            break;
739
740          case ARM::VLDRD:
741          case ARM::VLDRS:
742            Bits = 8;
743            Scale = 4;  // +-(offset_8*4)
744            NegOk = true;
745            break;
746#endif
747          }
748          // Remember that this is a user of a CP entry.
749          unsigned CPI = I->getOperand(op).getIndex();
750          MachineInstr *CPEMI = CPEMIs[CPI];
751          unsigned MaxOffs = ((1 << Bits)-1) * Scale;
752          unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
753          CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm, LongFormMaxOffs,
754                                   LongFormOpcode));
755
756          // Increment corresponding CPEntry reference count.
757          CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
758          assert(CPE && "Cannot find a corresponding CPEntry!");
759          CPE->RefCount++;
760
761          // Instructions can only use one CP entry, don't bother scanning the
762          // rest of the operands.
763          break;
764
765        }
766
767    }
768  }
769
770}
771
772/// computeBlockSize - Compute the size and some alignment information for MBB.
773/// This function updates BBInfo directly.
774void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
775  BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
776  BBI.Size = 0;
777  BBI.Unalign = 0;
778  BBI.PostAlign = 0;
779
780  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
781       ++I)
782    BBI.Size += TII->GetInstSizeInBytes(I);
783
784}
785
786/// getOffsetOf - Return the current offset of the specified machine instruction
787/// from the start of the function.  This offset changes as stuff is moved
788/// around inside the function.
789unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
790  MachineBasicBlock *MBB = MI->getParent();
791
792  // The offset is composed of two things: the sum of the sizes of all MBB's
793  // before this instruction's block, and the offset from the start of the block
794  // it is in.
795  unsigned Offset = BBInfo[MBB->getNumber()].Offset;
796
797  // Sum instructions before MI in MBB.
798  for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
799    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
800    Offset += TII->GetInstSizeInBytes(I);
801  }
802  return Offset;
803}
804
805/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
806/// ID.
807static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
808                              const MachineBasicBlock *RHS) {
809  return LHS->getNumber() < RHS->getNumber();
810}
811
812/// updateForInsertedWaterBlock - When a block is newly inserted into the
813/// machine function, it upsets all of the block numbers.  Renumber the blocks
814/// and update the arrays that parallel this numbering.
815void MipsConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
816  // Renumber the MBB's to keep them consecutive.
817  NewBB->getParent()->RenumberBlocks(NewBB);
818
819  // Insert an entry into BBInfo to align it properly with the (newly
820  // renumbered) block numbers.
821  BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
822
823  // Next, update WaterList.  Specifically, we need to add NewMBB as having
824  // available water after it.
825  water_iterator IP =
826    std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
827                     CompareMBBNumbers);
828  WaterList.insert(IP, NewBB);
829}
830
831/// getUserOffset - Compute the offset of U.MI as seen by the hardware
832/// displacement computation.  Update U.KnownAlignment to match its current
833/// basic block location.
834unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
835  unsigned UserOffset = getOffsetOf(U.MI);
836  const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
837  unsigned KnownBits = BBI.internalKnownBits();
838
839  // The value read from PC is offset from the actual instruction address.
840#ifdef IN_PROGRESS
841  UserOffset += (isThumb ? 4 : 8);
842#endif
843
844  // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
845  // Make sure U.getMaxDisp() returns a constrained range.
846  U.KnownAlignment = (KnownBits >= 2);
847
848  // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
849  // purposes of the displacement computation; compensate for that here.
850  // For unknown alignments, getMaxDisp() constrains the range instead.
851#ifdef IN_PROGRESS
852  if (isThumb && U.KnownAlignment)
853    UserOffset &= ~3u;
854#endif
855
856  return UserOffset;
857}
858
859/// Split the basic block containing MI into two blocks, which are joined by
860/// an unconditional branch.  Update data structures and renumber blocks to
861/// account for this change and returns the newly created block.
862MachineBasicBlock *MipsConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
863  MachineBasicBlock *OrigBB = MI->getParent();
864
865  // Create a new MBB for the code after the OrigBB.
866  MachineBasicBlock *NewBB =
867    MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
868  MachineFunction::iterator MBBI = OrigBB; ++MBBI;
869  MF->insert(MBBI, NewBB);
870
871  // Splice the instructions starting with MI over to NewBB.
872  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
873
874  // Add an unconditional branch from OrigBB to NewBB.
875  // Note the new unconditional branch is not being recorded.
876  // There doesn't seem to be meaningful DebugInfo available; this doesn't
877  // correspond to anything in the source.
878  BuildMI(OrigBB, DebugLoc(), TII->get(Mips::BimmX16)).addMBB(NewBB);
879#ifdef IN_PROGRESS
880  unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
881  if (!isThumb)
882    BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
883  else
884    BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
885            .addImm(ARMCC::AL).addReg(0);
886#endif
887  ++NumSplit;
888
889  // Update the CFG.  All succs of OrigBB are now succs of NewBB.
890  NewBB->transferSuccessors(OrigBB);
891
892  // OrigBB branches to NewBB.
893  OrigBB->addSuccessor(NewBB);
894
895  // Update internal data structures to account for the newly inserted MBB.
896  // This is almost the same as updateForInsertedWaterBlock, except that
897  // the Water goes after OrigBB, not NewBB.
898  MF->RenumberBlocks(NewBB);
899
900  // Insert an entry into BBInfo to align it properly with the (newly
901  // renumbered) block numbers.
902  BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
903
904  // Next, update WaterList.  Specifically, we need to add OrigMBB as having
905  // available water after it (but not if it's already there, which happens
906  // when splitting before a conditional branch that is followed by an
907  // unconditional branch - in that case we want to insert NewBB).
908  water_iterator IP =
909    std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
910                     CompareMBBNumbers);
911  MachineBasicBlock* WaterBB = *IP;
912  if (WaterBB == OrigBB)
913    WaterList.insert(llvm::next(IP), NewBB);
914  else
915    WaterList.insert(IP, OrigBB);
916  NewWaterList.insert(OrigBB);
917
918  // Figure out how large the OrigBB is.  As the first half of the original
919  // block, it cannot contain a tablejump.  The size includes
920  // the new jump we added.  (It should be possible to do this without
921  // recounting everything, but it's very confusing, and this is rarely
922  // executed.)
923  computeBlockSize(OrigBB);
924
925  // Figure out how large the NewMBB is.  As the second half of the original
926  // block, it may contain a tablejump.
927  computeBlockSize(NewBB);
928
929  // All BBOffsets following these blocks must be modified.
930  adjustBBOffsetsAfter(OrigBB);
931
932  return NewBB;
933}
934
935#ifndef NDEBUG
936
937
938/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
939/// reference) is within MaxDisp of TrialOffset (a proposed location of a
940/// constant pool entry).
941/// UserOffset is computed by getUserOffset above to include PC adjustments. If
942/// the mod 4 alignment of UserOffset is not known, the uncertainty must be
943/// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
944bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
945                                         unsigned TrialOffset, unsigned MaxDisp,
946                                         bool NegativeOK, bool IsSoImm) {
947  if (UserOffset <= TrialOffset) {
948    // User before the Trial.
949    if (TrialOffset - UserOffset <= MaxDisp)
950      return true;
951    // FIXME: Make use full range of soimm values.
952  } else if (NegativeOK) {
953    if (UserOffset - TrialOffset <= MaxDisp)
954      return true;
955    // FIXME: Make use full range of soimm values.
956  }
957  return false;
958}
959
960/// isWaterInRange - Returns true if a CPE placed after the specified
961/// Water (a basic block) will be in range for the specific MI.
962///
963/// Compute how much the function will grow by inserting a CPE after Water.
964bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
965                                        MachineBasicBlock* Water, CPUser &U,
966                                        unsigned &Growth) {
967  unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
968  unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
969  unsigned NextBlockOffset, NextBlockAlignment;
970  MachineFunction::const_iterator NextBlock = Water;
971  if (++NextBlock == MF->end()) {
972    NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
973    NextBlockAlignment = 0;
974  } else {
975    NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
976    NextBlockAlignment = NextBlock->getAlignment();
977  }
978  unsigned Size = U.CPEMI->getOperand(2).getImm();
979  unsigned CPEEnd = CPEOffset + Size;
980
981  // The CPE may be able to hide in the alignment padding before the next
982  // block. It may also cause more padding to be required if it is more aligned
983  // that the next block.
984  if (CPEEnd > NextBlockOffset) {
985    Growth = CPEEnd - NextBlockOffset;
986    // Compute the padding that would go at the end of the CPE to align the next
987    // block.
988    Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
989
990    // If the CPE is to be inserted before the instruction, that will raise
991    // the offset of the instruction. Also account for unknown alignment padding
992    // in blocks between CPE and the user.
993    if (CPEOffset < UserOffset)
994      UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
995  } else
996    // CPE fits in existing padding.
997    Growth = 0;
998
999  return isOffsetInRange(UserOffset, CPEOffset, U);
1000}
1001
1002/// isCPEntryInRange - Returns true if the distance between specific MI and
1003/// specific ConstPool entry instruction can fit in MI's displacement field.
1004bool MipsConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1005                                      MachineInstr *CPEMI, unsigned MaxDisp,
1006                                      bool NegOk, bool DoDump) {
1007  unsigned CPEOffset  = getOffsetOf(CPEMI);
1008
1009  if (DoDump) {
1010    DEBUG({
1011      unsigned Block = MI->getParent()->getNumber();
1012      const BasicBlockInfo &BBI = BBInfo[Block];
1013      dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1014             << " max delta=" << MaxDisp
1015             << format(" insn address=%#x", UserOffset)
1016             << " in BB#" << Block << ": "
1017             << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1018             << format("CPE address=%#x offset=%+d: ", CPEOffset,
1019                       int(CPEOffset-UserOffset));
1020    });
1021  }
1022
1023  return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1024}
1025
1026/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1027/// unconditionally branches to its only successor.
1028static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1029  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1030    return false;
1031
1032#ifdef IN_PROGRESS
1033  MachineBasicBlock *Succ = *MBB->succ_begin();
1034  MachineBasicBlock *Pred = *MBB->pred_begin();
1035  MachineInstr *PredMI = &Pred->back();
1036  if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1037      || PredMI->getOpcode() == ARM::t2B)
1038    return PredMI->getOperand(0).getMBB() == Succ;
1039#endif
1040  return false;
1041}
1042#endif // NDEBUG
1043
1044void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1045  unsigned BBNum = BB->getNumber();
1046  for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1047    // Get the offset and known bits at the end of the layout predecessor.
1048    // Include the alignment of the current block.
1049    unsigned Offset = BBInfo[i - 1].postOffset();
1050    BBInfo[i].Offset = Offset;
1051  }
1052}
1053
1054/// decrementCPEReferenceCount - find the constant pool entry with index CPI
1055/// and instruction CPEMI, and decrement its refcount.  If the refcount
1056/// becomes 0 remove the entry and instruction.  Returns true if we removed
1057/// the entry, false if we didn't.
1058
1059bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1060                                                    MachineInstr *CPEMI) {
1061  // Find the old entry. Eliminate it if it is no longer used.
1062  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1063  assert(CPE && "Unexpected!");
1064  if (--CPE->RefCount == 0) {
1065    removeDeadCPEMI(CPEMI);
1066    CPE->CPEMI = NULL;
1067    --NumCPEs;
1068    return true;
1069  }
1070  return false;
1071}
1072
1073/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1074/// if not, see if an in-range clone of the CPE is in range, and if so,
1075/// change the data structures so the user references the clone.  Returns:
1076/// 0 = no existing entry found
1077/// 1 = entry found, and there were no code insertions or deletions
1078/// 2 = entry found, and there were code insertions or deletions
1079int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1080{
1081  MachineInstr *UserMI = U.MI;
1082  MachineInstr *CPEMI  = U.CPEMI;
1083
1084  // Check to see if the CPE is already in-range.
1085  if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1086                       true)) {
1087    DEBUG(dbgs() << "In range\n");
1088    return 1;
1089  }
1090
1091  // No.  Look for previously created clones of the CPE that are in range.
1092  unsigned CPI = CPEMI->getOperand(1).getIndex();
1093  std::vector<CPEntry> &CPEs = CPEntries[CPI];
1094  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1095    // We already tried this one
1096    if (CPEs[i].CPEMI == CPEMI)
1097      continue;
1098    // Removing CPEs can leave empty entries, skip
1099    if (CPEs[i].CPEMI == NULL)
1100      continue;
1101    if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1102                     U.NegOk)) {
1103      DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1104                   << CPEs[i].CPI << "\n");
1105      // Point the CPUser node to the replacement
1106      U.CPEMI = CPEs[i].CPEMI;
1107      // Change the CPI in the instruction operand to refer to the clone.
1108      for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1109        if (UserMI->getOperand(j).isCPI()) {
1110          UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1111          break;
1112        }
1113      // Adjust the refcount of the clone...
1114      CPEs[i].RefCount++;
1115      // ...and the original.  If we didn't remove the old entry, none of the
1116      // addresses changed, so we don't need another pass.
1117      return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1118    }
1119  }
1120  return 0;
1121}
1122
1123/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1124/// This version checks if the longer form of the instruction can be used to
1125/// to satisfy things.
1126/// if not, see if an in-range clone of the CPE is in range, and if so,
1127/// change the data structures so the user references the clone.  Returns:
1128/// 0 = no existing entry found
1129/// 1 = entry found, and there were no code insertions or deletions
1130/// 2 = entry found, and there were code insertions or deletions
1131int MipsConstantIslands::findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset)
1132{
1133  MachineInstr *UserMI = U.MI;
1134  MachineInstr *CPEMI  = U.CPEMI;
1135
1136  // Check to see if the CPE is already in-range.
1137  if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getLongFormMaxDisp(), U.NegOk,
1138                       true)) {
1139    DEBUG(dbgs() << "In range\n");
1140    UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1141    return 2;  // instruction is longer length now
1142  }
1143
1144  // No.  Look for previously created clones of the CPE that are in range.
1145  unsigned CPI = CPEMI->getOperand(1).getIndex();
1146  std::vector<CPEntry> &CPEs = CPEntries[CPI];
1147  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1148    // We already tried this one
1149    if (CPEs[i].CPEMI == CPEMI)
1150      continue;
1151    // Removing CPEs can leave empty entries, skip
1152    if (CPEs[i].CPEMI == NULL)
1153      continue;
1154    if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getLongFormMaxDisp(),
1155                     U.NegOk)) {
1156      DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1157                   << CPEs[i].CPI << "\n");
1158      // Point the CPUser node to the replacement
1159      U.CPEMI = CPEs[i].CPEMI;
1160      // Change the CPI in the instruction operand to refer to the clone.
1161      for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1162        if (UserMI->getOperand(j).isCPI()) {
1163          UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1164          break;
1165        }
1166      // Adjust the refcount of the clone...
1167      CPEs[i].RefCount++;
1168      // ...and the original.  If we didn't remove the old entry, none of the
1169      // addresses changed, so we don't need another pass.
1170      return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1171    }
1172  }
1173  return 0;
1174}
1175
1176/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1177/// the specific unconditional branch instruction.
1178static inline unsigned getUnconditionalBrDisp(int Opc) {
1179#ifdef IN_PROGRESS
1180  switch (Opc) {
1181  case ARM::tB:
1182    return ((1<<10)-1)*2;
1183  case ARM::t2B:
1184    return ((1<<23)-1)*2;
1185  default:
1186    break;
1187  }
1188#endif
1189  return ((1<<23)-1)*4;
1190}
1191
1192/// findAvailableWater - Look for an existing entry in the WaterList in which
1193/// we can place the CPE referenced from U so it's within range of U's MI.
1194/// Returns true if found, false if not.  If it returns true, WaterIter
1195/// is set to the WaterList entry.  For Thumb, prefer water that will not
1196/// introduce padding to water that will.  To ensure that this pass
1197/// terminates, the CPE location for a particular CPUser is only allowed to
1198/// move to a lower address, so search backward from the end of the list and
1199/// prefer the first water that is in range.
1200bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1201                                      water_iterator &WaterIter) {
1202  if (WaterList.empty())
1203    return false;
1204
1205  unsigned BestGrowth = ~0u;
1206  for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();;
1207       --IP) {
1208    MachineBasicBlock* WaterBB = *IP;
1209    // Check if water is in range and is either at a lower address than the
1210    // current "high water mark" or a new water block that was created since
1211    // the previous iteration by inserting an unconditional branch.  In the
1212    // latter case, we want to allow resetting the high water mark back to
1213    // this new water since we haven't seen it before.  Inserting branches
1214    // should be relatively uncommon and when it does happen, we want to be
1215    // sure to take advantage of it for all the CPEs near that block, so that
1216    // we don't insert more branches than necessary.
1217    unsigned Growth;
1218    if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1219        (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1220         NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1221      // This is the least amount of required padding seen so far.
1222      BestGrowth = Growth;
1223      WaterIter = IP;
1224      DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1225                   << " Growth=" << Growth << '\n');
1226
1227      // Keep looking unless it is perfect.
1228      if (BestGrowth == 0)
1229        return true;
1230    }
1231    if (IP == B)
1232      break;
1233  }
1234  return BestGrowth != ~0u;
1235}
1236
1237/// createNewWater - No existing WaterList entry will work for
1238/// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1239/// block is used if in range, and the conditional branch munged so control
1240/// flow is correct.  Otherwise the block is split to create a hole with an
1241/// unconditional branch around it.  In either case NewMBB is set to a
1242/// block following which the new island can be inserted (the WaterList
1243/// is not adjusted).
1244void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1245                                        unsigned UserOffset,
1246                                        MachineBasicBlock *&NewMBB) {
1247  CPUser &U = CPUsers[CPUserIndex];
1248  MachineInstr *UserMI = U.MI;
1249  MachineInstr *CPEMI  = U.CPEMI;
1250  unsigned CPELogAlign = getCPELogAlign(CPEMI);
1251  MachineBasicBlock *UserMBB = UserMI->getParent();
1252  const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1253
1254  // If the block does not end in an unconditional branch already, and if the
1255  // end of the block is within range, make new water there.  (The addition
1256  // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1257  // Thumb2, 2 on Thumb1.
1258  if (BBHasFallthrough(UserMBB)) {
1259    // Size of branch to insert.
1260#ifdef IN_PROGRESS
1261    unsigned Delta = isThumb1 ? 2 : 4;
1262#else
1263    unsigned Delta = 4;
1264#endif
1265    // Compute the offset where the CPE will begin.
1266    unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1267
1268    if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1269      DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1270            << format(", expected CPE offset %#x\n", CPEOffset));
1271      NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
1272      // Add an unconditional branch from UserMBB to fallthrough block.  Record
1273      // it for branch lengthening; this new branch will not get out of range,
1274      // but if the preceding conditional branch is out of range, the targets
1275      // will be exchanged, and the altered branch may be out of range, so the
1276      // machinery has to know about it.
1277#ifdef IN_PROGRESS
1278      int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1279      if (!isThumb)
1280        BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1281      else
1282        BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
1283          .addImm(ARMCC::AL).addReg(0);
1284#else
1285      int UncondBr = 1;
1286#endif
1287      unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1288      ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1289                                      MaxDisp, false, UncondBr));
1290      BBInfo[UserMBB->getNumber()].Size += Delta;
1291      adjustBBOffsetsAfter(UserMBB);
1292      return;
1293    }
1294  }
1295
1296  // What a big block.  Find a place within the block to split it.  This is a
1297  // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1298  // entries are 4 bytes: if instruction I references island CPE, and
1299  // instruction I+1 references CPE', it will not work well to put CPE as far
1300  // forward as possible, since then CPE' cannot immediately follow it (that
1301  // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1302  // need to create a new island.  So, we make a first guess, then walk through
1303  // the instructions between the one currently being looked at and the
1304  // possible insertion point, and make sure any other instructions that
1305  // reference CPEs will be able to use the same island area; if not, we back
1306  // up the insertion point.
1307
1308  // Try to split the block so it's fully aligned.  Compute the latest split
1309  // point where we can add a 4-byte branch instruction, and then align to
1310  // LogAlign which is the largest possible alignment in the function.
1311  unsigned LogAlign = MF->getAlignment();
1312  assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1313  unsigned KnownBits = UserBBI.internalKnownBits();
1314  unsigned UPad = UnknownPadding(LogAlign, KnownBits);
1315  unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1316  DEBUG(dbgs() << format("Split in middle of big block before %#x",
1317                         BaseInsertOffset));
1318
1319  // The 4 in the following is for the unconditional branch we'll be inserting
1320  // (allows for long branch on Thumb1).  Alignment of the island is handled
1321  // inside isOffsetInRange.
1322  BaseInsertOffset -= 4;
1323
1324  DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1325               << " la=" << LogAlign
1326               << " kb=" << KnownBits
1327               << " up=" << UPad << '\n');
1328
1329  // This could point off the end of the block if we've already got constant
1330  // pool entries following this block; only the last one is in the water list.
1331  // Back past any possible branches (allow for a conditional and a maximally
1332  // long unconditional).
1333  if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1334    BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
1335    DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1336  }
1337  unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1338    CPEMI->getOperand(2).getImm();
1339  MachineBasicBlock::iterator MI = UserMI;
1340  ++MI;
1341  unsigned CPUIndex = CPUserIndex+1;
1342  unsigned NumCPUsers = CPUsers.size();
1343  MachineInstr *LastIT = 0;
1344  for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1345       Offset < BaseInsertOffset;
1346       Offset += TII->GetInstSizeInBytes(MI),
1347       MI = llvm::next(MI)) {
1348    assert(MI != UserMBB->end() && "Fell off end of block");
1349    if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1350      CPUser &U = CPUsers[CPUIndex];
1351      if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1352        // Shift intertion point by one unit of alignment so it is within reach.
1353        BaseInsertOffset -= 1u << LogAlign;
1354        EndInsertOffset  -= 1u << LogAlign;
1355      }
1356      // This is overly conservative, as we don't account for CPEMIs being
1357      // reused within the block, but it doesn't matter much.  Also assume CPEs
1358      // are added in order with alignment padding.  We may eventually be able
1359      // to pack the aligned CPEs better.
1360      EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1361      CPUIndex++;
1362    }
1363#ifdef IN_PROGRESS
1364    // Remember the last IT instruction.
1365    if (MI->getOpcode() == ARM::t2IT)
1366      LastIT = MI;
1367#endif
1368  }
1369
1370  --MI;
1371
1372  // Avoid splitting an IT block.
1373  if (LastIT) {
1374#ifdef IN_PROGRESS
1375    unsigned PredReg = 0;
1376    ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg);
1377    if (CC != ARMCC::AL)
1378      MI = LastIT;
1379#endif
1380  }
1381  NewMBB = splitBlockBeforeInstr(MI);
1382}
1383
1384/// handleConstantPoolUser - Analyze the specified user, checking to see if it
1385/// is out-of-range.  If so, pick up the constant pool value and move it some
1386/// place in-range.  Return true if we changed any addresses (thus must run
1387/// another pass of branch lengthening), false otherwise.
1388bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1389  CPUser &U = CPUsers[CPUserIndex];
1390  MachineInstr *UserMI = U.MI;
1391  MachineInstr *CPEMI  = U.CPEMI;
1392  unsigned CPI = CPEMI->getOperand(1).getIndex();
1393  unsigned Size = CPEMI->getOperand(2).getImm();
1394  // Compute this only once, it's expensive.
1395  unsigned UserOffset = getUserOffset(U);
1396
1397  // See if the current entry is within range, or there is a clone of it
1398  // in range.
1399  int result = findInRangeCPEntry(U, UserOffset);
1400  if (result==1) return false;
1401  else if (result==2) return true;
1402
1403
1404  // Look for water where we can place this CPE.
1405  MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1406  MachineBasicBlock *NewMBB;
1407  water_iterator IP;
1408  if (findAvailableWater(U, UserOffset, IP)) {
1409    DEBUG(dbgs() << "Found water in range\n");
1410    MachineBasicBlock *WaterBB = *IP;
1411
1412    // If the original WaterList entry was "new water" on this iteration,
1413    // propagate that to the new island.  This is just keeping NewWaterList
1414    // updated to match the WaterList, which will be updated below.
1415    if (NewWaterList.erase(WaterBB))
1416      NewWaterList.insert(NewIsland);
1417
1418    // The new CPE goes before the following block (NewMBB).
1419    NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
1420
1421  } else {
1422    // No water found.
1423    // we first see if a longer form of the instrucion could have reached the constant.
1424    // in that case we won't bother to split
1425#ifdef IN_PROGRESS
1426    result = findLongFormInRangeCPEntry(U, UserOffset);
1427#endif
1428    DEBUG(dbgs() << "No water found\n");
1429    createNewWater(CPUserIndex, UserOffset, NewMBB);
1430
1431    // splitBlockBeforeInstr adds to WaterList, which is important when it is
1432    // called while handling branches so that the water will be seen on the
1433    // next iteration for constant pools, but in this context, we don't want
1434    // it.  Check for this so it will be removed from the WaterList.
1435    // Also remove any entry from NewWaterList.
1436    MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
1437    IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1438    if (IP != WaterList.end())
1439      NewWaterList.erase(WaterBB);
1440
1441    // We are adding new water.  Update NewWaterList.
1442    NewWaterList.insert(NewIsland);
1443  }
1444
1445  // Remove the original WaterList entry; we want subsequent insertions in
1446  // this vicinity to go after the one we're about to insert.  This
1447  // considerably reduces the number of times we have to move the same CPE
1448  // more than once and is also important to ensure the algorithm terminates.
1449  if (IP != WaterList.end())
1450    WaterList.erase(IP);
1451
1452  // Okay, we know we can put an island before NewMBB now, do it!
1453  MF->insert(NewMBB, NewIsland);
1454
1455  // Update internal data structures to account for the newly inserted MBB.
1456  updateForInsertedWaterBlock(NewIsland);
1457
1458  // Decrement the old entry, and remove it if refcount becomes 0.
1459  decrementCPEReferenceCount(CPI, CPEMI);
1460
1461  // Now that we have an island to add the CPE to, clone the original CPE and
1462  // add it to the island.
1463  U.HighWaterMark = NewIsland;
1464  U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1465                .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1466  CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1467  ++NumCPEs;
1468
1469  // Mark the basic block as aligned as required by the const-pool entry.
1470  NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1471
1472  // Increase the size of the island block to account for the new entry.
1473  BBInfo[NewIsland->getNumber()].Size += Size;
1474  adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland)));
1475
1476  // No existing clone of this CPE is within range.
1477  // We will be generating a new clone.  Get a UID for it.
1478  unsigned ID = createPICLabelUId();
1479
1480  // Finally, change the CPI in the instruction operand to be ID.
1481  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1482    if (UserMI->getOperand(i).isCPI()) {
1483      UserMI->getOperand(i).setIndex(ID);
1484      break;
1485    }
1486
1487  DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1488        << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1489
1490  return true;
1491}
1492
1493/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1494/// sizes and offsets of impacted basic blocks.
1495void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1496  MachineBasicBlock *CPEBB = CPEMI->getParent();
1497  unsigned Size = CPEMI->getOperand(2).getImm();
1498  CPEMI->eraseFromParent();
1499  BBInfo[CPEBB->getNumber()].Size -= Size;
1500  // All succeeding offsets have the current size value added in, fix this.
1501  if (CPEBB->empty()) {
1502    BBInfo[CPEBB->getNumber()].Size = 0;
1503
1504    // This block no longer needs to be aligned.
1505    CPEBB->setAlignment(0);
1506  } else
1507    // Entries are sorted by descending alignment, so realign from the front.
1508    CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
1509
1510  adjustBBOffsetsAfter(CPEBB);
1511  // An island has only one predecessor BB and one successor BB. Check if
1512  // this BB's predecessor jumps directly to this BB's successor. This
1513  // shouldn't happen currently.
1514  assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1515  // FIXME: remove the empty blocks after all the work is done?
1516}
1517
1518/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1519/// are zero.
1520bool MipsConstantIslands::removeUnusedCPEntries() {
1521  unsigned MadeChange = false;
1522  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1523      std::vector<CPEntry> &CPEs = CPEntries[i];
1524      for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1525        if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1526          removeDeadCPEMI(CPEs[j].CPEMI);
1527          CPEs[j].CPEMI = NULL;
1528          MadeChange = true;
1529        }
1530      }
1531  }
1532  return MadeChange;
1533}
1534
1535/// isBBInRange - Returns true if the distance between specific MI and
1536/// specific BB can fit in MI's displacement field.
1537bool MipsConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1538                                     unsigned MaxDisp) {
1539#ifdef IN_PROGRESS
1540  unsigned PCAdj      = isThumb ? 4 : 8;
1541#else
1542  unsigned PCAdj = 4;
1543#endif
1544  unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1545  unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1546
1547  DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1548               << " from BB#" << MI->getParent()->getNumber()
1549               << " max delta=" << MaxDisp
1550               << " from " << getOffsetOf(MI) << " to " << DestOffset
1551               << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1552
1553  if (BrOffset <= DestOffset) {
1554    // Branch before the Dest.
1555    if (DestOffset-BrOffset <= MaxDisp)
1556      return true;
1557  } else {
1558    if (BrOffset-DestOffset <= MaxDisp)
1559      return true;
1560  }
1561  return false;
1562}
1563
1564/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1565/// away to fit in its displacement field.
1566bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1567  MachineInstr *MI = Br.MI;
1568  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1569
1570  // Check to see if the DestBB is already in-range.
1571  if (isBBInRange(MI, DestBB, Br.MaxDisp))
1572    return false;
1573
1574  if (!Br.isCond)
1575    return fixupUnconditionalBr(Br);
1576  return fixupConditionalBr(Br);
1577}
1578
1579/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1580/// too far away to fit in its displacement field. If the LR register has been
1581/// spilled in the epilogue, then we can use BL to implement a far jump.
1582/// Otherwise, add an intermediate branch instruction to a branch.
1583bool
1584MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1585  MachineInstr *MI = Br.MI;
1586  MachineBasicBlock *MBB = MI->getParent();
1587#ifdef IN_PROGRESS
1588  if (!isThumb1)
1589    llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1590#endif
1591  // Use BL to implement far jump.
1592  Br.MaxDisp = (1 << 21) * 2;
1593#ifdef IN_PROGRESS
1594  MI->setDesc(TII->get(ARM::tBfar));
1595#endif
1596  BBInfo[MBB->getNumber()].Size += 2;
1597  adjustBBOffsetsAfter(MBB);
1598  HasFarJump = true;
1599  ++NumUBrFixed;
1600
1601  DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1602
1603  return true;
1604}
1605
1606/// fixupConditionalBr - Fix up a conditional branch whose destination is too
1607/// far away to fit in its displacement field. It is converted to an inverse
1608/// conditional branch + an unconditional branch to the destination.
1609bool
1610MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1611#ifdef IN_PROGRESS
1612  MachineInstr *MI = Br.MI;
1613  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1614
1615  // Add an unconditional branch to the destination and invert the branch
1616  // condition to jump over it:
1617  // blt L1
1618  // =>
1619  // bge L2
1620  // b   L1
1621  // L2:
1622  ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1623  CC = ARMCC::getOppositeCondition(CC);
1624  unsigned CCReg = MI->getOperand(2).getReg();
1625
1626  // If the branch is at the end of its MBB and that has a fall-through block,
1627  // direct the updated conditional branch to the fall-through block. Otherwise,
1628  // split the MBB before the next instruction.
1629  MachineBasicBlock *MBB = MI->getParent();
1630  MachineInstr *BMI = &MBB->back();
1631  bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1632
1633  ++NumCBrFixed;
1634  if (BMI != MI) {
1635    if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1636        BMI->getOpcode() == Br.UncondBr) {
1637      // Last MI in the BB is an unconditional branch. Can we simply invert the
1638      // condition and swap destinations:
1639      // beq L1
1640      // b   L2
1641      // =>
1642      // bne L2
1643      // b   L1
1644      MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1645      if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1646        DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
1647                     << *BMI);
1648        BMI->getOperand(0).setMBB(DestBB);
1649        MI->getOperand(0).setMBB(NewDest);
1650        MI->getOperand(1).setImm(CC);
1651        return true;
1652      }
1653    }
1654  }
1655
1656  if (NeedSplit) {
1657    splitBlockBeforeInstr(MI);
1658    // No need for the branch to the next block. We're adding an unconditional
1659    // branch to the destination.
1660    int delta = TII->GetInstSizeInBytes(&MBB->back());
1661    BBInfo[MBB->getNumber()].Size -= delta;
1662    MBB->back().eraseFromParent();
1663    // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1664  }
1665  MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
1666
1667  DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
1668               << " also invert condition and change dest. to BB#"
1669               << NextBB->getNumber() << "\n");
1670
1671  // Insert a new conditional branch and a new unconditional branch.
1672  // Also update the ImmBranch as well as adding a new entry for the new branch.
1673  BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1674    .addMBB(NextBB).addImm(CC).addReg(CCReg);
1675  Br.MI = &MBB->back();
1676  BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1677  if (isThumb)
1678    BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
1679            .addImm(ARMCC::AL).addReg(0);
1680  else
1681    BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1682  BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1683  unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1684  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1685
1686  // Remove the old conditional branch.  It may or may not still be in MBB.
1687  BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
1688  MI->eraseFromParent();
1689  adjustBBOffsetsAfter(MBB);
1690#endif
1691  return true;
1692}
1693
1694
1695void MipsConstantIslands::prescanForConstants() {
1696  unsigned int J;
1697  PrescannedForConstants = true;
1698  for (MachineFunction::iterator B =
1699         MF->begin(), E = MF->end(); B != E; ++B) {
1700    for (MachineBasicBlock::instr_iterator I =
1701        B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1702      switch(I->getDesc().getOpcode()) {
1703        case Mips::LwConstant32: {
1704          DEBUG(dbgs() << "constant island constant " << *I << "\n");
1705          J = I->getNumOperands();
1706          DEBUG(dbgs() << "num operands " << J  << "\n");
1707          MachineOperand& Literal = I->getOperand(1);
1708          if (Literal.isImm()) {
1709            int64_t V = Literal.getImm();
1710            DEBUG(dbgs() << "literal " << V  << "\n");
1711            Type *Int32Ty =
1712              Type::getInt32Ty(MF->getFunction()->getContext());
1713            const Constant *C = ConstantInt::get(Int32Ty, V);
1714            unsigned index = MCP->getConstantPoolIndex(C, 4);
1715            I->getOperand(2).ChangeToImmediate(index);
1716            DEBUG(dbgs() << "constant island constant " << *I << "\n");
1717            I->setDesc(TII->get(Mips::LwRxPcTcp16));
1718            I->RemoveOperand(1);
1719            I->RemoveOperand(1);
1720            I->addOperand(MachineOperand::CreateCPI(index, 0));
1721            I->addOperand(MachineOperand::CreateImm(4));
1722          }
1723          break;
1724        }
1725        default:
1726          break;
1727      }
1728    }
1729  }
1730}
1731
1732