MipsISelLowering.cpp revision 116189a997a71d0e63db64ef4c6c3906078d94cf
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include <cctype>
38
39using namespace llvm;
40
41STATISTIC(NumTailCalls, "Number of tail calls");
42
43static cl::opt<bool>
44LargeGOT("mxgot", cl::Hidden,
45         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
46
47static cl::opt<bool>
48NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
49               cl::desc("MIPS: Don't trap on integer division by zero."),
50               cl::init(false));
51
52static const uint16_t O32IntRegs[4] = {
53  Mips::A0, Mips::A1, Mips::A2, Mips::A3
54};
55
56static const uint16_t Mips64IntRegs[8] = {
57  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
58  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
59};
60
61static const uint16_t Mips64DPRegs[8] = {
62  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
63  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
64};
65
66// If I is a shifted mask, set the size (Size) and the first bit of the
67// mask (Pos), and return true.
68// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
69static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
70  if (!isShiftedMask_64(I))
71    return false;
72
73  Size = CountPopulation_64(I);
74  Pos = countTrailingZeros(I);
75  return true;
76}
77
78SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
79  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
80  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
81}
82
83SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
84                                          SelectionDAG &DAG,
85                                          unsigned Flag) const {
86  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
87}
88
89SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
90                                          SelectionDAG &DAG,
91                                          unsigned Flag) const {
92  return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
93}
94
95SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
96                                          SelectionDAG &DAG,
97                                          unsigned Flag) const {
98  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
99}
100
101SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
102                                          SelectionDAG &DAG,
103                                          unsigned Flag) const {
104  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
105}
106
107SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
108                                          SelectionDAG &DAG,
109                                          unsigned Flag) const {
110  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
111                                   N->getOffset(), Flag);
112}
113
114const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
115  switch (Opcode) {
116  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
117  case MipsISD::TailCall:          return "MipsISD::TailCall";
118  case MipsISD::Hi:                return "MipsISD::Hi";
119  case MipsISD::Lo:                return "MipsISD::Lo";
120  case MipsISD::GPRel:             return "MipsISD::GPRel";
121  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
122  case MipsISD::Ret:               return "MipsISD::Ret";
123  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
124  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
125  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
126  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
127  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
128  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
129  case MipsISD::ExtractHI:         return "MipsISD::ExtractHI";
130  case MipsISD::ExtractLO:         return "MipsISD::ExtractLO";
131  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
132  case MipsISD::Mult:              return "MipsISD::Mult";
133  case MipsISD::Multu:             return "MipsISD::Multu";
134  case MipsISD::MAdd:              return "MipsISD::MAdd";
135  case MipsISD::MAddu:             return "MipsISD::MAddu";
136  case MipsISD::MSub:              return "MipsISD::MSub";
137  case MipsISD::MSubu:             return "MipsISD::MSubu";
138  case MipsISD::DivRem:            return "MipsISD::DivRem";
139  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
140  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
141  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
142  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
143  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
144  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
145  case MipsISD::Sync:              return "MipsISD::Sync";
146  case MipsISD::Ext:               return "MipsISD::Ext";
147  case MipsISD::Ins:               return "MipsISD::Ins";
148  case MipsISD::LWL:               return "MipsISD::LWL";
149  case MipsISD::LWR:               return "MipsISD::LWR";
150  case MipsISD::SWL:               return "MipsISD::SWL";
151  case MipsISD::SWR:               return "MipsISD::SWR";
152  case MipsISD::LDL:               return "MipsISD::LDL";
153  case MipsISD::LDR:               return "MipsISD::LDR";
154  case MipsISD::SDL:               return "MipsISD::SDL";
155  case MipsISD::SDR:               return "MipsISD::SDR";
156  case MipsISD::EXTP:              return "MipsISD::EXTP";
157  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
158  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
159  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
160  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
161  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
162  case MipsISD::SHILO:             return "MipsISD::SHILO";
163  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
164  case MipsISD::MULT:              return "MipsISD::MULT";
165  case MipsISD::MULTU:             return "MipsISD::MULTU";
166  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
167  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
168  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
169  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
170  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
171  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
172  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
173  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
174  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
175  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
176  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
177  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
178  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
179  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
180  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
181  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
182  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
183  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
184  case MipsISD::VSMAX:             return "MipsISD::VSMAX";
185  case MipsISD::VSMIN:             return "MipsISD::VSMIN";
186  case MipsISD::VUMAX:             return "MipsISD::VUMAX";
187  case MipsISD::VUMIN:             return "MipsISD::VUMIN";
188  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
189  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
190  case MipsISD::VNOR:              return "MipsISD::VNOR";
191  case MipsISD::VSHF:              return "MipsISD::VSHF";
192  case MipsISD::SHF:               return "MipsISD::SHF";
193  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
194  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
195  case MipsISD::ILVL:              return "MipsISD::ILVL";
196  case MipsISD::ILVR:              return "MipsISD::ILVR";
197  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
198  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
199  default:                         return NULL;
200  }
201}
202
203MipsTargetLowering::
204MipsTargetLowering(MipsTargetMachine &TM)
205  : TargetLowering(TM, new MipsTargetObjectFile()),
206    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
207    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
208    IsO32(Subtarget->isABI_O32()) {
209  // Mips does not have i1 type, so use i32 for
210  // setcc operations results (slt, sgt, ...).
211  setBooleanContents(ZeroOrOneBooleanContent);
212  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
213
214  // Load extented operations for i1 types must be promoted
215  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
216  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
217  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
218
219  // MIPS doesn't have extending float->double load/store
220  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
221  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
222
223  // Used by legalize types to correctly generate the setcc result.
224  // Without this, every float setcc comes with a AND/OR with the result,
225  // we don't want this, since the fpcmp result goes to a flag register,
226  // which is used implicitly by brcond and select operations.
227  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
228
229  // Mips Custom Operations
230  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
231  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
232  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
233  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
234  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
235  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
236  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
237  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
238  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
239  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
240  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
241  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
242  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
243  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
244  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
245  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
246  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
247  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
248
249  if (!TM.Options.NoNaNsFPMath) {
250    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
251    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
252  }
253
254  if (HasMips64) {
255    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
256    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
257    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
258    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
259    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
260    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
261    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
262    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
263    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
264  }
265
266  if (!HasMips64) {
267    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
268    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
269    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
270  }
271
272  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
273  if (HasMips64)
274    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
275
276  setOperationAction(ISD::SDIV, MVT::i32, Expand);
277  setOperationAction(ISD::SREM, MVT::i32, Expand);
278  setOperationAction(ISD::UDIV, MVT::i32, Expand);
279  setOperationAction(ISD::UREM, MVT::i32, Expand);
280  setOperationAction(ISD::SDIV, MVT::i64, Expand);
281  setOperationAction(ISD::SREM, MVT::i64, Expand);
282  setOperationAction(ISD::UDIV, MVT::i64, Expand);
283  setOperationAction(ISD::UREM, MVT::i64, Expand);
284
285  // Operations not directly supported by Mips.
286  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
287  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
288  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
289  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
290  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
291  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
292  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
293  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
294  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
295  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
296  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
297  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
298  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
299  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
300  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
301  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
302  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
303  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
304  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
305  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
306  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
307  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
308
309  if (!Subtarget->hasMips32r2())
310    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
311
312  if (!Subtarget->hasMips64r2())
313    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
314
315  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
316  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
317  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
318  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
319  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
320  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
321  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
322  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
323  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
324  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
325  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
326  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
327  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
328  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
329  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
330  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
331  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
332
333  if (!TM.Options.NoNaNsFPMath) {
334    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
335    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
336  }
337
338  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
339
340  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
341  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
342  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
343
344  // Use the default for now
345  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
346  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
347
348  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
349  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
350  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
351  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
352
353  setInsertFencesForAtomic(true);
354
355  if (!Subtarget->hasSEInReg()) {
356    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
357    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
358  }
359
360  if (!Subtarget->hasBitCount()) {
361    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
362    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
363  }
364
365  if (!Subtarget->hasSwap()) {
366    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
367    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
368  }
369
370  if (HasMips64) {
371    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
372    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
373    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
374    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
375  }
376
377  setOperationAction(ISD::TRAP, MVT::Other, Legal);
378
379  setTargetDAGCombine(ISD::SDIVREM);
380  setTargetDAGCombine(ISD::UDIVREM);
381  setTargetDAGCombine(ISD::SELECT);
382  setTargetDAGCombine(ISD::AND);
383  setTargetDAGCombine(ISD::OR);
384  setTargetDAGCombine(ISD::ADD);
385
386  setMinFunctionAlignment(HasMips64 ? 3 : 2);
387
388  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
389
390  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
391  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
392
393  MaxStoresPerMemcpy = 16;
394}
395
396const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
397  if (TM.getSubtargetImpl()->inMips16Mode())
398    return llvm::createMips16TargetLowering(TM);
399
400  return llvm::createMipsSETargetLowering(TM);
401}
402
403EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
404  if (!VT.isVector())
405    return MVT::i32;
406  return VT.changeVectorElementTypeToInteger();
407}
408
409static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
410                                    TargetLowering::DAGCombinerInfo &DCI,
411                                    const MipsSubtarget *Subtarget) {
412  if (DCI.isBeforeLegalizeOps())
413    return SDValue();
414
415  EVT Ty = N->getValueType(0);
416  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
417  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
418  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
419                                                  MipsISD::DivRemU16;
420  SDLoc DL(N);
421
422  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
423                               N->getOperand(0), N->getOperand(1));
424  SDValue InChain = DAG.getEntryNode();
425  SDValue InGlue = DivRem;
426
427  // insert MFLO
428  if (N->hasAnyUseOfValue(0)) {
429    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
430                                            InGlue);
431    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
432    InChain = CopyFromLo.getValue(1);
433    InGlue = CopyFromLo.getValue(2);
434  }
435
436  // insert MFHI
437  if (N->hasAnyUseOfValue(1)) {
438    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
439                                            HI, Ty, InGlue);
440    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
441  }
442
443  return SDValue();
444}
445
446static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
447  switch (CC) {
448  default: llvm_unreachable("Unknown fp condition code!");
449  case ISD::SETEQ:
450  case ISD::SETOEQ: return Mips::FCOND_OEQ;
451  case ISD::SETUNE: return Mips::FCOND_UNE;
452  case ISD::SETLT:
453  case ISD::SETOLT: return Mips::FCOND_OLT;
454  case ISD::SETGT:
455  case ISD::SETOGT: return Mips::FCOND_OGT;
456  case ISD::SETLE:
457  case ISD::SETOLE: return Mips::FCOND_OLE;
458  case ISD::SETGE:
459  case ISD::SETOGE: return Mips::FCOND_OGE;
460  case ISD::SETULT: return Mips::FCOND_ULT;
461  case ISD::SETULE: return Mips::FCOND_ULE;
462  case ISD::SETUGT: return Mips::FCOND_UGT;
463  case ISD::SETUGE: return Mips::FCOND_UGE;
464  case ISD::SETUO:  return Mips::FCOND_UN;
465  case ISD::SETO:   return Mips::FCOND_OR;
466  case ISD::SETNE:
467  case ISD::SETONE: return Mips::FCOND_ONE;
468  case ISD::SETUEQ: return Mips::FCOND_UEQ;
469  }
470}
471
472
473/// This function returns true if the floating point conditional branches and
474/// conditional moves which use condition code CC should be inverted.
475static bool invertFPCondCodeUser(Mips::CondCode CC) {
476  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
477    return false;
478
479  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
480         "Illegal Condition Code");
481
482  return true;
483}
484
485// Creates and returns an FPCmp node from a setcc node.
486// Returns Op if setcc is not a floating point comparison.
487static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
488  // must be a SETCC node
489  if (Op.getOpcode() != ISD::SETCC)
490    return Op;
491
492  SDValue LHS = Op.getOperand(0);
493
494  if (!LHS.getValueType().isFloatingPoint())
495    return Op;
496
497  SDValue RHS = Op.getOperand(1);
498  SDLoc DL(Op);
499
500  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
501  // node if necessary.
502  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
503
504  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
505                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
506}
507
508// Creates and returns a CMovFPT/F node.
509static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
510                            SDValue False, SDLoc DL) {
511  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
512  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
513  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
514
515  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
516                     True.getValueType(), True, FCC0, False, Cond);
517}
518
519static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
520                                    TargetLowering::DAGCombinerInfo &DCI,
521                                    const MipsSubtarget *Subtarget) {
522  if (DCI.isBeforeLegalizeOps())
523    return SDValue();
524
525  SDValue SetCC = N->getOperand(0);
526
527  if ((SetCC.getOpcode() != ISD::SETCC) ||
528      !SetCC.getOperand(0).getValueType().isInteger())
529    return SDValue();
530
531  SDValue False = N->getOperand(2);
532  EVT FalseTy = False.getValueType();
533
534  if (!FalseTy.isInteger())
535    return SDValue();
536
537  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
538
539  if (!CN || CN->getZExtValue())
540    return SDValue();
541
542  const SDLoc DL(N);
543  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
544  SDValue True = N->getOperand(1);
545
546  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
547                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
548
549  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
550}
551
552static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
553                                 TargetLowering::DAGCombinerInfo &DCI,
554                                 const MipsSubtarget *Subtarget) {
555  // Pattern match EXT.
556  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
557  //  => ext $dst, $src, size, pos
558  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
559    return SDValue();
560
561  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
562  unsigned ShiftRightOpc = ShiftRight.getOpcode();
563
564  // Op's first operand must be a shift right.
565  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
566    return SDValue();
567
568  // The second operand of the shift must be an immediate.
569  ConstantSDNode *CN;
570  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
571    return SDValue();
572
573  uint64_t Pos = CN->getZExtValue();
574  uint64_t SMPos, SMSize;
575
576  // Op's second operand must be a shifted mask.
577  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
578      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
579    return SDValue();
580
581  // Return if the shifted mask does not start at bit 0 or the sum of its size
582  // and Pos exceeds the word's size.
583  EVT ValTy = N->getValueType(0);
584  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
585    return SDValue();
586
587  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
588                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
589                     DAG.getConstant(SMSize, MVT::i32));
590}
591
592static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
593                                TargetLowering::DAGCombinerInfo &DCI,
594                                const MipsSubtarget *Subtarget) {
595  // Pattern match INS.
596  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
597  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
598  //  => ins $dst, $src, size, pos, $src1
599  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
600    return SDValue();
601
602  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
603  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
604  ConstantSDNode *CN;
605
606  // See if Op's first operand matches (and $src1 , mask0).
607  if (And0.getOpcode() != ISD::AND)
608    return SDValue();
609
610  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
611      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
612    return SDValue();
613
614  // See if Op's second operand matches (and (shl $src, pos), mask1).
615  if (And1.getOpcode() != ISD::AND)
616    return SDValue();
617
618  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
619      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
620    return SDValue();
621
622  // The shift masks must have the same position and size.
623  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
624    return SDValue();
625
626  SDValue Shl = And1.getOperand(0);
627  if (Shl.getOpcode() != ISD::SHL)
628    return SDValue();
629
630  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
631    return SDValue();
632
633  unsigned Shamt = CN->getZExtValue();
634
635  // Return if the shift amount and the first bit position of mask are not the
636  // same.
637  EVT ValTy = N->getValueType(0);
638  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
639    return SDValue();
640
641  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
642                     DAG.getConstant(SMPos0, MVT::i32),
643                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
644}
645
646static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
647                                 TargetLowering::DAGCombinerInfo &DCI,
648                                 const MipsSubtarget *Subtarget) {
649  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
650
651  if (DCI.isBeforeLegalizeOps())
652    return SDValue();
653
654  SDValue Add = N->getOperand(1);
655
656  if (Add.getOpcode() != ISD::ADD)
657    return SDValue();
658
659  SDValue Lo = Add.getOperand(1);
660
661  if ((Lo.getOpcode() != MipsISD::Lo) ||
662      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
663    return SDValue();
664
665  EVT ValTy = N->getValueType(0);
666  SDLoc DL(N);
667
668  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
669                             Add.getOperand(0));
670  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
671}
672
673SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
674  const {
675  SelectionDAG &DAG = DCI.DAG;
676  unsigned Opc = N->getOpcode();
677
678  switch (Opc) {
679  default: break;
680  case ISD::SDIVREM:
681  case ISD::UDIVREM:
682    return performDivRemCombine(N, DAG, DCI, Subtarget);
683  case ISD::SELECT:
684    return performSELECTCombine(N, DAG, DCI, Subtarget);
685  case ISD::AND:
686    return performANDCombine(N, DAG, DCI, Subtarget);
687  case ISD::OR:
688    return performORCombine(N, DAG, DCI, Subtarget);
689  case ISD::ADD:
690    return performADDCombine(N, DAG, DCI, Subtarget);
691  }
692
693  return SDValue();
694}
695
696void
697MipsTargetLowering::LowerOperationWrapper(SDNode *N,
698                                          SmallVectorImpl<SDValue> &Results,
699                                          SelectionDAG &DAG) const {
700  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
701
702  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
703    Results.push_back(Res.getValue(I));
704}
705
706void
707MipsTargetLowering::ReplaceNodeResults(SDNode *N,
708                                       SmallVectorImpl<SDValue> &Results,
709                                       SelectionDAG &DAG) const {
710  return LowerOperationWrapper(N, Results, DAG);
711}
712
713SDValue MipsTargetLowering::
714LowerOperation(SDValue Op, SelectionDAG &DAG) const
715{
716  switch (Op.getOpcode())
717  {
718  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
719  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
720  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
721  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
722  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
723  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
724  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
725  case ISD::SELECT:             return lowerSELECT(Op, DAG);
726  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
727  case ISD::SETCC:              return lowerSETCC(Op, DAG);
728  case ISD::VASTART:            return lowerVASTART(Op, DAG);
729  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
730  case ISD::FABS:               return lowerFABS(Op, DAG);
731  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
732  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
733  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
734  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
735  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
736  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
737  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
738  case ISD::LOAD:               return lowerLOAD(Op, DAG);
739  case ISD::STORE:              return lowerSTORE(Op, DAG);
740  case ISD::ADD:                return lowerADD(Op, DAG);
741  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
742  }
743  return SDValue();
744}
745
746//===----------------------------------------------------------------------===//
747//  Lower helper functions
748//===----------------------------------------------------------------------===//
749
750// addLiveIn - This helper function adds the specified physical register to the
751// MachineFunction as a live in value.  It also creates a corresponding
752// virtual register for it.
753static unsigned
754addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
755{
756  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
757  MF.getRegInfo().addLiveIn(PReg, VReg);
758  return VReg;
759}
760
761static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
762                                          MachineBasicBlock &MBB,
763                                          const TargetInstrInfo &TII,
764                                          bool Is64Bit) {
765  if (NoZeroDivCheck)
766    return &MBB;
767
768  // Insert instruction "teq $divisor_reg, $zero, 7".
769  MachineBasicBlock::iterator I(MI);
770  MachineInstrBuilder MIB;
771  MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
772    .addOperand(MI->getOperand(2)).addReg(Mips::ZERO).addImm(7);
773
774  // Use the 32-bit sub-register if this is a 64-bit division.
775  if (Is64Bit)
776    MIB->getOperand(0).setSubReg(Mips::sub_32);
777
778  return &MBB;
779}
780
781MachineBasicBlock *
782MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
783                                                MachineBasicBlock *BB) const {
784  switch (MI->getOpcode()) {
785  default:
786    llvm_unreachable("Unexpected instr type to insert");
787  case Mips::ATOMIC_LOAD_ADD_I8:
788    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
789  case Mips::ATOMIC_LOAD_ADD_I16:
790    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
791  case Mips::ATOMIC_LOAD_ADD_I32:
792    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
793  case Mips::ATOMIC_LOAD_ADD_I64:
794    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
795
796  case Mips::ATOMIC_LOAD_AND_I8:
797    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
798  case Mips::ATOMIC_LOAD_AND_I16:
799    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
800  case Mips::ATOMIC_LOAD_AND_I32:
801    return emitAtomicBinary(MI, BB, 4, Mips::AND);
802  case Mips::ATOMIC_LOAD_AND_I64:
803    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
804
805  case Mips::ATOMIC_LOAD_OR_I8:
806    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
807  case Mips::ATOMIC_LOAD_OR_I16:
808    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
809  case Mips::ATOMIC_LOAD_OR_I32:
810    return emitAtomicBinary(MI, BB, 4, Mips::OR);
811  case Mips::ATOMIC_LOAD_OR_I64:
812    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
813
814  case Mips::ATOMIC_LOAD_XOR_I8:
815    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
816  case Mips::ATOMIC_LOAD_XOR_I16:
817    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
818  case Mips::ATOMIC_LOAD_XOR_I32:
819    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
820  case Mips::ATOMIC_LOAD_XOR_I64:
821    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
822
823  case Mips::ATOMIC_LOAD_NAND_I8:
824    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
825  case Mips::ATOMIC_LOAD_NAND_I16:
826    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
827  case Mips::ATOMIC_LOAD_NAND_I32:
828    return emitAtomicBinary(MI, BB, 4, 0, true);
829  case Mips::ATOMIC_LOAD_NAND_I64:
830    return emitAtomicBinary(MI, BB, 8, 0, true);
831
832  case Mips::ATOMIC_LOAD_SUB_I8:
833    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
834  case Mips::ATOMIC_LOAD_SUB_I16:
835    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
836  case Mips::ATOMIC_LOAD_SUB_I32:
837    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
838  case Mips::ATOMIC_LOAD_SUB_I64:
839    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
840
841  case Mips::ATOMIC_SWAP_I8:
842    return emitAtomicBinaryPartword(MI, BB, 1, 0);
843  case Mips::ATOMIC_SWAP_I16:
844    return emitAtomicBinaryPartword(MI, BB, 2, 0);
845  case Mips::ATOMIC_SWAP_I32:
846    return emitAtomicBinary(MI, BB, 4, 0);
847  case Mips::ATOMIC_SWAP_I64:
848    return emitAtomicBinary(MI, BB, 8, 0);
849
850  case Mips::ATOMIC_CMP_SWAP_I8:
851    return emitAtomicCmpSwapPartword(MI, BB, 1);
852  case Mips::ATOMIC_CMP_SWAP_I16:
853    return emitAtomicCmpSwapPartword(MI, BB, 2);
854  case Mips::ATOMIC_CMP_SWAP_I32:
855    return emitAtomicCmpSwap(MI, BB, 4);
856  case Mips::ATOMIC_CMP_SWAP_I64:
857    return emitAtomicCmpSwap(MI, BB, 8);
858  case Mips::PseudoSDIV:
859  case Mips::PseudoUDIV:
860    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
861  case Mips::PseudoDSDIV:
862  case Mips::PseudoDUDIV:
863    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
864  }
865}
866
867// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
868// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
869MachineBasicBlock *
870MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
871                                     unsigned Size, unsigned BinOpcode,
872                                     bool Nand) const {
873  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
874
875  MachineFunction *MF = BB->getParent();
876  MachineRegisterInfo &RegInfo = MF->getRegInfo();
877  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
878  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
879  DebugLoc DL = MI->getDebugLoc();
880  unsigned LL, SC, AND, NOR, ZERO, BEQ;
881
882  if (Size == 4) {
883    LL = Mips::LL;
884    SC = Mips::SC;
885    AND = Mips::AND;
886    NOR = Mips::NOR;
887    ZERO = Mips::ZERO;
888    BEQ = Mips::BEQ;
889  }
890  else {
891    LL = Mips::LLD;
892    SC = Mips::SCD;
893    AND = Mips::AND64;
894    NOR = Mips::NOR64;
895    ZERO = Mips::ZERO_64;
896    BEQ = Mips::BEQ64;
897  }
898
899  unsigned OldVal = MI->getOperand(0).getReg();
900  unsigned Ptr = MI->getOperand(1).getReg();
901  unsigned Incr = MI->getOperand(2).getReg();
902
903  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
904  unsigned AndRes = RegInfo.createVirtualRegister(RC);
905  unsigned Success = RegInfo.createVirtualRegister(RC);
906
907  // insert new blocks after the current block
908  const BasicBlock *LLVM_BB = BB->getBasicBlock();
909  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
910  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
911  MachineFunction::iterator It = BB;
912  ++It;
913  MF->insert(It, loopMBB);
914  MF->insert(It, exitMBB);
915
916  // Transfer the remainder of BB and its successor edges to exitMBB.
917  exitMBB->splice(exitMBB->begin(), BB,
918                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
919  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
920
921  //  thisMBB:
922  //    ...
923  //    fallthrough --> loopMBB
924  BB->addSuccessor(loopMBB);
925  loopMBB->addSuccessor(loopMBB);
926  loopMBB->addSuccessor(exitMBB);
927
928  //  loopMBB:
929  //    ll oldval, 0(ptr)
930  //    <binop> storeval, oldval, incr
931  //    sc success, storeval, 0(ptr)
932  //    beq success, $0, loopMBB
933  BB = loopMBB;
934  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
935  if (Nand) {
936    //  and andres, oldval, incr
937    //  nor storeval, $0, andres
938    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
939    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
940  } else if (BinOpcode) {
941    //  <binop> storeval, oldval, incr
942    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
943  } else {
944    StoreVal = Incr;
945  }
946  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
947  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
948
949  MI->eraseFromParent(); // The instruction is gone now.
950
951  return exitMBB;
952}
953
954MachineBasicBlock *
955MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
956                                             MachineBasicBlock *BB,
957                                             unsigned Size, unsigned BinOpcode,
958                                             bool Nand) const {
959  assert((Size == 1 || Size == 2) &&
960         "Unsupported size for EmitAtomicBinaryPartial.");
961
962  MachineFunction *MF = BB->getParent();
963  MachineRegisterInfo &RegInfo = MF->getRegInfo();
964  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
965  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
966  DebugLoc DL = MI->getDebugLoc();
967
968  unsigned Dest = MI->getOperand(0).getReg();
969  unsigned Ptr = MI->getOperand(1).getReg();
970  unsigned Incr = MI->getOperand(2).getReg();
971
972  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
973  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
974  unsigned Mask = RegInfo.createVirtualRegister(RC);
975  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
976  unsigned NewVal = RegInfo.createVirtualRegister(RC);
977  unsigned OldVal = RegInfo.createVirtualRegister(RC);
978  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
979  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
980  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
981  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
982  unsigned AndRes = RegInfo.createVirtualRegister(RC);
983  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
984  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
985  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
986  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
987  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
988  unsigned SllRes = RegInfo.createVirtualRegister(RC);
989  unsigned Success = RegInfo.createVirtualRegister(RC);
990
991  // insert new blocks after the current block
992  const BasicBlock *LLVM_BB = BB->getBasicBlock();
993  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
994  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
995  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
996  MachineFunction::iterator It = BB;
997  ++It;
998  MF->insert(It, loopMBB);
999  MF->insert(It, sinkMBB);
1000  MF->insert(It, exitMBB);
1001
1002  // Transfer the remainder of BB and its successor edges to exitMBB.
1003  exitMBB->splice(exitMBB->begin(), BB,
1004                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1005  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1006
1007  BB->addSuccessor(loopMBB);
1008  loopMBB->addSuccessor(loopMBB);
1009  loopMBB->addSuccessor(sinkMBB);
1010  sinkMBB->addSuccessor(exitMBB);
1011
1012  //  thisMBB:
1013  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1014  //    and     alignedaddr,ptr,masklsb2
1015  //    andi    ptrlsb2,ptr,3
1016  //    sll     shiftamt,ptrlsb2,3
1017  //    ori     maskupper,$0,255               # 0xff
1018  //    sll     mask,maskupper,shiftamt
1019  //    nor     mask2,$0,mask
1020  //    sll     incr2,incr,shiftamt
1021
1022  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1023  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1024    .addReg(Mips::ZERO).addImm(-4);
1025  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1026    .addReg(Ptr).addReg(MaskLSB2);
1027  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1028  if (Subtarget->isLittle()) {
1029    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1030  } else {
1031    unsigned Off = RegInfo.createVirtualRegister(RC);
1032    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1033      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1034    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1035  }
1036  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1037    .addReg(Mips::ZERO).addImm(MaskImm);
1038  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1039    .addReg(MaskUpper).addReg(ShiftAmt);
1040  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1041  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1042
1043  // atomic.load.binop
1044  // loopMBB:
1045  //   ll      oldval,0(alignedaddr)
1046  //   binop   binopres,oldval,incr2
1047  //   and     newval,binopres,mask
1048  //   and     maskedoldval0,oldval,mask2
1049  //   or      storeval,maskedoldval0,newval
1050  //   sc      success,storeval,0(alignedaddr)
1051  //   beq     success,$0,loopMBB
1052
1053  // atomic.swap
1054  // loopMBB:
1055  //   ll      oldval,0(alignedaddr)
1056  //   and     newval,incr2,mask
1057  //   and     maskedoldval0,oldval,mask2
1058  //   or      storeval,maskedoldval0,newval
1059  //   sc      success,storeval,0(alignedaddr)
1060  //   beq     success,$0,loopMBB
1061
1062  BB = loopMBB;
1063  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1064  if (Nand) {
1065    //  and andres, oldval, incr2
1066    //  nor binopres, $0, andres
1067    //  and newval, binopres, mask
1068    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1069    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1070      .addReg(Mips::ZERO).addReg(AndRes);
1071    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1072  } else if (BinOpcode) {
1073    //  <binop> binopres, oldval, incr2
1074    //  and newval, binopres, mask
1075    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1076    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1077  } else { // atomic.swap
1078    //  and newval, incr2, mask
1079    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1080  }
1081
1082  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1083    .addReg(OldVal).addReg(Mask2);
1084  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1085    .addReg(MaskedOldVal0).addReg(NewVal);
1086  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1087    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1088  BuildMI(BB, DL, TII->get(Mips::BEQ))
1089    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1090
1091  //  sinkMBB:
1092  //    and     maskedoldval1,oldval,mask
1093  //    srl     srlres,maskedoldval1,shiftamt
1094  //    sll     sllres,srlres,24
1095  //    sra     dest,sllres,24
1096  BB = sinkMBB;
1097  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1098
1099  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1100    .addReg(OldVal).addReg(Mask);
1101  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1102      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1103  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1104      .addReg(SrlRes).addImm(ShiftImm);
1105  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1106      .addReg(SllRes).addImm(ShiftImm);
1107
1108  MI->eraseFromParent(); // The instruction is gone now.
1109
1110  return exitMBB;
1111}
1112
1113MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1114                                                          MachineBasicBlock *BB,
1115                                                          unsigned Size) const {
1116  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1117
1118  MachineFunction *MF = BB->getParent();
1119  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1120  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1121  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1122  DebugLoc DL = MI->getDebugLoc();
1123  unsigned LL, SC, ZERO, BNE, BEQ;
1124
1125  if (Size == 4) {
1126    LL = Mips::LL;
1127    SC = Mips::SC;
1128    ZERO = Mips::ZERO;
1129    BNE = Mips::BNE;
1130    BEQ = Mips::BEQ;
1131  } else {
1132    LL = Mips::LLD;
1133    SC = Mips::SCD;
1134    ZERO = Mips::ZERO_64;
1135    BNE = Mips::BNE64;
1136    BEQ = Mips::BEQ64;
1137  }
1138
1139  unsigned Dest    = MI->getOperand(0).getReg();
1140  unsigned Ptr     = MI->getOperand(1).getReg();
1141  unsigned OldVal  = MI->getOperand(2).getReg();
1142  unsigned NewVal  = MI->getOperand(3).getReg();
1143
1144  unsigned Success = RegInfo.createVirtualRegister(RC);
1145
1146  // insert new blocks after the current block
1147  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1148  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1149  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1150  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1151  MachineFunction::iterator It = BB;
1152  ++It;
1153  MF->insert(It, loop1MBB);
1154  MF->insert(It, loop2MBB);
1155  MF->insert(It, exitMBB);
1156
1157  // Transfer the remainder of BB and its successor edges to exitMBB.
1158  exitMBB->splice(exitMBB->begin(), BB,
1159                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1160  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1161
1162  //  thisMBB:
1163  //    ...
1164  //    fallthrough --> loop1MBB
1165  BB->addSuccessor(loop1MBB);
1166  loop1MBB->addSuccessor(exitMBB);
1167  loop1MBB->addSuccessor(loop2MBB);
1168  loop2MBB->addSuccessor(loop1MBB);
1169  loop2MBB->addSuccessor(exitMBB);
1170
1171  // loop1MBB:
1172  //   ll dest, 0(ptr)
1173  //   bne dest, oldval, exitMBB
1174  BB = loop1MBB;
1175  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1176  BuildMI(BB, DL, TII->get(BNE))
1177    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1178
1179  // loop2MBB:
1180  //   sc success, newval, 0(ptr)
1181  //   beq success, $0, loop1MBB
1182  BB = loop2MBB;
1183  BuildMI(BB, DL, TII->get(SC), Success)
1184    .addReg(NewVal).addReg(Ptr).addImm(0);
1185  BuildMI(BB, DL, TII->get(BEQ))
1186    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1187
1188  MI->eraseFromParent(); // The instruction is gone now.
1189
1190  return exitMBB;
1191}
1192
1193MachineBasicBlock *
1194MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1195                                              MachineBasicBlock *BB,
1196                                              unsigned Size) const {
1197  assert((Size == 1 || Size == 2) &&
1198      "Unsupported size for EmitAtomicCmpSwapPartial.");
1199
1200  MachineFunction *MF = BB->getParent();
1201  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1202  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1203  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1204  DebugLoc DL = MI->getDebugLoc();
1205
1206  unsigned Dest    = MI->getOperand(0).getReg();
1207  unsigned Ptr     = MI->getOperand(1).getReg();
1208  unsigned CmpVal  = MI->getOperand(2).getReg();
1209  unsigned NewVal  = MI->getOperand(3).getReg();
1210
1211  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1212  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1213  unsigned Mask = RegInfo.createVirtualRegister(RC);
1214  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1215  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1216  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1217  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1218  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1219  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1220  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1221  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1222  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1223  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1224  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1225  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1226  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1227  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1228  unsigned Success = RegInfo.createVirtualRegister(RC);
1229
1230  // insert new blocks after the current block
1231  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1232  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1233  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1234  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1235  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1236  MachineFunction::iterator It = BB;
1237  ++It;
1238  MF->insert(It, loop1MBB);
1239  MF->insert(It, loop2MBB);
1240  MF->insert(It, sinkMBB);
1241  MF->insert(It, exitMBB);
1242
1243  // Transfer the remainder of BB and its successor edges to exitMBB.
1244  exitMBB->splice(exitMBB->begin(), BB,
1245                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1246  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1247
1248  BB->addSuccessor(loop1MBB);
1249  loop1MBB->addSuccessor(sinkMBB);
1250  loop1MBB->addSuccessor(loop2MBB);
1251  loop2MBB->addSuccessor(loop1MBB);
1252  loop2MBB->addSuccessor(sinkMBB);
1253  sinkMBB->addSuccessor(exitMBB);
1254
1255  // FIXME: computation of newval2 can be moved to loop2MBB.
1256  //  thisMBB:
1257  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1258  //    and     alignedaddr,ptr,masklsb2
1259  //    andi    ptrlsb2,ptr,3
1260  //    sll     shiftamt,ptrlsb2,3
1261  //    ori     maskupper,$0,255               # 0xff
1262  //    sll     mask,maskupper,shiftamt
1263  //    nor     mask2,$0,mask
1264  //    andi    maskedcmpval,cmpval,255
1265  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1266  //    andi    maskednewval,newval,255
1267  //    sll     shiftednewval,maskednewval,shiftamt
1268  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1269  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1270    .addReg(Mips::ZERO).addImm(-4);
1271  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1272    .addReg(Ptr).addReg(MaskLSB2);
1273  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1274  if (Subtarget->isLittle()) {
1275    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1276  } else {
1277    unsigned Off = RegInfo.createVirtualRegister(RC);
1278    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1279      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1280    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1281  }
1282  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1283    .addReg(Mips::ZERO).addImm(MaskImm);
1284  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1285    .addReg(MaskUpper).addReg(ShiftAmt);
1286  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1287  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1288    .addReg(CmpVal).addImm(MaskImm);
1289  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1290    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1291  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1292    .addReg(NewVal).addImm(MaskImm);
1293  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1294    .addReg(MaskedNewVal).addReg(ShiftAmt);
1295
1296  //  loop1MBB:
1297  //    ll      oldval,0(alginedaddr)
1298  //    and     maskedoldval0,oldval,mask
1299  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1300  BB = loop1MBB;
1301  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1302  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1303    .addReg(OldVal).addReg(Mask);
1304  BuildMI(BB, DL, TII->get(Mips::BNE))
1305    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1306
1307  //  loop2MBB:
1308  //    and     maskedoldval1,oldval,mask2
1309  //    or      storeval,maskedoldval1,shiftednewval
1310  //    sc      success,storeval,0(alignedaddr)
1311  //    beq     success,$0,loop1MBB
1312  BB = loop2MBB;
1313  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1314    .addReg(OldVal).addReg(Mask2);
1315  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1316    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1317  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1318      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1319  BuildMI(BB, DL, TII->get(Mips::BEQ))
1320      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1321
1322  //  sinkMBB:
1323  //    srl     srlres,maskedoldval0,shiftamt
1324  //    sll     sllres,srlres,24
1325  //    sra     dest,sllres,24
1326  BB = sinkMBB;
1327  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1328
1329  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1330      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1331  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1332      .addReg(SrlRes).addImm(ShiftImm);
1333  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1334      .addReg(SllRes).addImm(ShiftImm);
1335
1336  MI->eraseFromParent();   // The instruction is gone now.
1337
1338  return exitMBB;
1339}
1340
1341//===----------------------------------------------------------------------===//
1342//  Misc Lower Operation implementation
1343//===----------------------------------------------------------------------===//
1344SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1345  SDValue Chain = Op.getOperand(0);
1346  SDValue Table = Op.getOperand(1);
1347  SDValue Index = Op.getOperand(2);
1348  SDLoc DL(Op);
1349  EVT PTy = getPointerTy();
1350  unsigned EntrySize =
1351    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1352
1353  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1354                      DAG.getConstant(EntrySize, PTy));
1355  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1356
1357  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1358  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1359                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1360                        0);
1361  Chain = Addr.getValue(1);
1362
1363  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1364    // For PIC, the sequence is:
1365    // BRIND(load(Jumptable + index) + RelocBase)
1366    // RelocBase can be JumpTable, GOT or some sort of global base.
1367    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1368                       getPICJumpTableRelocBase(Table, DAG));
1369  }
1370
1371  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1372}
1373
1374SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1375  // The first operand is the chain, the second is the condition, the third is
1376  // the block to branch to if the condition is true.
1377  SDValue Chain = Op.getOperand(0);
1378  SDValue Dest = Op.getOperand(2);
1379  SDLoc DL(Op);
1380
1381  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1382
1383  // Return if flag is not set by a floating point comparison.
1384  if (CondRes.getOpcode() != MipsISD::FPCmp)
1385    return Op;
1386
1387  SDValue CCNode  = CondRes.getOperand(2);
1388  Mips::CondCode CC =
1389    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1390  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1391  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1392  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1393  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1394                     FCC0, Dest, CondRes);
1395}
1396
1397SDValue MipsTargetLowering::
1398lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1399{
1400  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1401
1402  // Return if flag is not set by a floating point comparison.
1403  if (Cond.getOpcode() != MipsISD::FPCmp)
1404    return Op;
1405
1406  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1407                      SDLoc(Op));
1408}
1409
1410SDValue MipsTargetLowering::
1411lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1412{
1413  SDLoc DL(Op);
1414  EVT Ty = Op.getOperand(0).getValueType();
1415  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1416                             getSetCCResultType(*DAG.getContext(), Ty),
1417                             Op.getOperand(0), Op.getOperand(1),
1418                             Op.getOperand(4));
1419
1420  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1421                     Op.getOperand(3));
1422}
1423
1424SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1425  SDValue Cond = createFPCmp(DAG, Op);
1426
1427  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1428         "Floating point operand expected.");
1429
1430  SDValue True  = DAG.getConstant(1, MVT::i32);
1431  SDValue False = DAG.getConstant(0, MVT::i32);
1432
1433  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1434}
1435
1436SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1437                                               SelectionDAG &DAG) const {
1438  // FIXME there isn't actually debug info here
1439  SDLoc DL(Op);
1440  EVT Ty = Op.getValueType();
1441  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1442  const GlobalValue *GV = N->getGlobal();
1443
1444  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1445    const MipsTargetObjectFile &TLOF =
1446      (const MipsTargetObjectFile&)getObjFileLowering();
1447
1448    // %gp_rel relocation
1449    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1450      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1451                                              MipsII::MO_GPREL);
1452      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1453                                      DAG.getVTList(MVT::i32), &GA, 1);
1454      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1455      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1456    }
1457
1458    // %hi/%lo relocation
1459    return getAddrNonPIC(N, Ty, DAG);
1460  }
1461
1462  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1463    return getAddrLocal(N, Ty, DAG, HasMips64);
1464
1465  if (LargeGOT)
1466    return getAddrGlobalLargeGOT(N, Ty, DAG, MipsII::MO_GOT_HI16,
1467                                 MipsII::MO_GOT_LO16, DAG.getEntryNode(),
1468                                 MachinePointerInfo::getGOT());
1469
1470  return getAddrGlobal(N, Ty, DAG,
1471                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16,
1472                       DAG.getEntryNode(), MachinePointerInfo::getGOT());
1473}
1474
1475SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1476                                              SelectionDAG &DAG) const {
1477  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1478  EVT Ty = Op.getValueType();
1479
1480  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1481    return getAddrNonPIC(N, Ty, DAG);
1482
1483  return getAddrLocal(N, Ty, DAG, HasMips64);
1484}
1485
1486SDValue MipsTargetLowering::
1487lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1488{
1489  // If the relocation model is PIC, use the General Dynamic TLS Model or
1490  // Local Dynamic TLS model, otherwise use the Initial Exec or
1491  // Local Exec TLS Model.
1492
1493  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1494  SDLoc DL(GA);
1495  const GlobalValue *GV = GA->getGlobal();
1496  EVT PtrVT = getPointerTy();
1497
1498  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1499
1500  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1501    // General Dynamic and Local Dynamic TLS Model.
1502    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1503                                                      : MipsII::MO_TLSGD;
1504
1505    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1506    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1507                                   getGlobalReg(DAG, PtrVT), TGA);
1508    unsigned PtrSize = PtrVT.getSizeInBits();
1509    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1510
1511    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1512
1513    ArgListTy Args;
1514    ArgListEntry Entry;
1515    Entry.Node = Argument;
1516    Entry.Ty = PtrTy;
1517    Args.push_back(Entry);
1518
1519    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1520                  false, false, false, false, 0, CallingConv::C,
1521                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1522                  /*isReturnValueUsed=*/true,
1523                  TlsGetAddr, Args, DAG, DL);
1524    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1525
1526    SDValue Ret = CallResult.first;
1527
1528    if (model != TLSModel::LocalDynamic)
1529      return Ret;
1530
1531    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1532                                               MipsII::MO_DTPREL_HI);
1533    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1534    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1535                                               MipsII::MO_DTPREL_LO);
1536    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1537    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1538    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1539  }
1540
1541  SDValue Offset;
1542  if (model == TLSModel::InitialExec) {
1543    // Initial Exec TLS Model
1544    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1545                                             MipsII::MO_GOTTPREL);
1546    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1547                      TGA);
1548    Offset = DAG.getLoad(PtrVT, DL,
1549                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1550                         false, false, false, 0);
1551  } else {
1552    // Local Exec TLS Model
1553    assert(model == TLSModel::LocalExec);
1554    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1555                                               MipsII::MO_TPREL_HI);
1556    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1557                                               MipsII::MO_TPREL_LO);
1558    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1559    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1560    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1561  }
1562
1563  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1564  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1565}
1566
1567SDValue MipsTargetLowering::
1568lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1569{
1570  JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
1571  EVT Ty = Op.getValueType();
1572
1573  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1574    return getAddrNonPIC(N, Ty, DAG);
1575
1576  return getAddrLocal(N, Ty, DAG, HasMips64);
1577}
1578
1579SDValue MipsTargetLowering::
1580lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1581{
1582  // gp_rel relocation
1583  // FIXME: we should reference the constant pool using small data sections,
1584  // but the asm printer currently doesn't support this feature without
1585  // hacking it. This feature should come soon so we can uncomment the
1586  // stuff below.
1587  //if (IsInSmallSection(C->getType())) {
1588  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1589  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1590  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1591  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1592  EVT Ty = Op.getValueType();
1593
1594  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1595    return getAddrNonPIC(N, Ty, DAG);
1596
1597  return getAddrLocal(N, Ty, DAG, HasMips64);
1598}
1599
1600SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1601  MachineFunction &MF = DAG.getMachineFunction();
1602  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1603
1604  SDLoc DL(Op);
1605  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1606                                 getPointerTy());
1607
1608  // vastart just stores the address of the VarArgsFrameIndex slot into the
1609  // memory location argument.
1610  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1611  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1612                      MachinePointerInfo(SV), false, false, 0);
1613}
1614
1615static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1616  EVT TyX = Op.getOperand(0).getValueType();
1617  EVT TyY = Op.getOperand(1).getValueType();
1618  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1619  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1620  SDLoc DL(Op);
1621  SDValue Res;
1622
1623  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1624  // to i32.
1625  SDValue X = (TyX == MVT::f32) ?
1626    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1627    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1628                Const1);
1629  SDValue Y = (TyY == MVT::f32) ?
1630    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1631    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1632                Const1);
1633
1634  if (HasR2) {
1635    // ext  E, Y, 31, 1  ; extract bit31 of Y
1636    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1637    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1638    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1639  } else {
1640    // sll SllX, X, 1
1641    // srl SrlX, SllX, 1
1642    // srl SrlY, Y, 31
1643    // sll SllY, SrlX, 31
1644    // or  Or, SrlX, SllY
1645    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1646    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1647    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1648    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1649    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1650  }
1651
1652  if (TyX == MVT::f32)
1653    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1654
1655  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1656                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1657  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1658}
1659
1660static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1661  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1662  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1663  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1664  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1665  SDLoc DL(Op);
1666
1667  // Bitcast to integer nodes.
1668  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1669  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1670
1671  if (HasR2) {
1672    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1673    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1674    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1675                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1676
1677    if (WidthX > WidthY)
1678      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1679    else if (WidthY > WidthX)
1680      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1681
1682    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1683                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1684    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1685  }
1686
1687  // (d)sll SllX, X, 1
1688  // (d)srl SrlX, SllX, 1
1689  // (d)srl SrlY, Y, width(Y)-1
1690  // (d)sll SllY, SrlX, width(Y)-1
1691  // or     Or, SrlX, SllY
1692  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1693  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1694  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1695                             DAG.getConstant(WidthY - 1, MVT::i32));
1696
1697  if (WidthX > WidthY)
1698    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1699  else if (WidthY > WidthX)
1700    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1701
1702  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1703                             DAG.getConstant(WidthX - 1, MVT::i32));
1704  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1705  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1706}
1707
1708SDValue
1709MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1710  if (Subtarget->hasMips64())
1711    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1712
1713  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1714}
1715
1716static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1717  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1718  SDLoc DL(Op);
1719
1720  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1721  // to i32.
1722  SDValue X = (Op.getValueType() == MVT::f32) ?
1723    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1724    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1725                Const1);
1726
1727  // Clear MSB.
1728  if (HasR2)
1729    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1730                      DAG.getRegister(Mips::ZERO, MVT::i32),
1731                      DAG.getConstant(31, MVT::i32), Const1, X);
1732  else {
1733    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1734    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1735  }
1736
1737  if (Op.getValueType() == MVT::f32)
1738    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1739
1740  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1741                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1742  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1743}
1744
1745static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1746  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1747  SDLoc DL(Op);
1748
1749  // Bitcast to integer node.
1750  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1751
1752  // Clear MSB.
1753  if (HasR2)
1754    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1755                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1756                      DAG.getConstant(63, MVT::i32), Const1, X);
1757  else {
1758    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1759    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1760  }
1761
1762  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1763}
1764
1765SDValue
1766MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1767  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1768    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1769
1770  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1771}
1772
1773SDValue MipsTargetLowering::
1774lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1775  // check the depth
1776  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1777         "Frame address can only be determined for current frame.");
1778
1779  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1780  MFI->setFrameAddressIsTaken(true);
1781  EVT VT = Op.getValueType();
1782  SDLoc DL(Op);
1783  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1784                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1785  return FrameAddr;
1786}
1787
1788SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1789                                            SelectionDAG &DAG) const {
1790  // check the depth
1791  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1792         "Return address can be determined only for current frame.");
1793
1794  MachineFunction &MF = DAG.getMachineFunction();
1795  MachineFrameInfo *MFI = MF.getFrameInfo();
1796  MVT VT = Op.getSimpleValueType();
1797  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1798  MFI->setReturnAddressIsTaken(true);
1799
1800  // Return RA, which contains the return address. Mark it an implicit live-in.
1801  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1802  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1803}
1804
1805// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1806// generated from __builtin_eh_return (offset, handler)
1807// The effect of this is to adjust the stack pointer by "offset"
1808// and then branch to "handler".
1809SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1810                                                                     const {
1811  MachineFunction &MF = DAG.getMachineFunction();
1812  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1813
1814  MipsFI->setCallsEhReturn();
1815  SDValue Chain     = Op.getOperand(0);
1816  SDValue Offset    = Op.getOperand(1);
1817  SDValue Handler   = Op.getOperand(2);
1818  SDLoc DL(Op);
1819  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1820
1821  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1822  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1823  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1824  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1825  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1826  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1827  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1828                     DAG.getRegister(OffsetReg, Ty),
1829                     DAG.getRegister(AddrReg, getPointerTy()),
1830                     Chain.getValue(1));
1831}
1832
1833SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1834                                              SelectionDAG &DAG) const {
1835  // FIXME: Need pseudo-fence for 'singlethread' fences
1836  // FIXME: Set SType for weaker fences where supported/appropriate.
1837  unsigned SType = 0;
1838  SDLoc DL(Op);
1839  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1840                     DAG.getConstant(SType, MVT::i32));
1841}
1842
1843SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1844                                                SelectionDAG &DAG) const {
1845  SDLoc DL(Op);
1846  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1847  SDValue Shamt = Op.getOperand(2);
1848
1849  // if shamt < 32:
1850  //  lo = (shl lo, shamt)
1851  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1852  // else:
1853  //  lo = 0
1854  //  hi = (shl lo, shamt[4:0])
1855  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1856                            DAG.getConstant(-1, MVT::i32));
1857  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1858                                      DAG.getConstant(1, MVT::i32));
1859  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1860                                     Not);
1861  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1862  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1863  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1864  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1865                             DAG.getConstant(0x20, MVT::i32));
1866  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1867                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1868  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1869
1870  SDValue Ops[2] = {Lo, Hi};
1871  return DAG.getMergeValues(Ops, 2, DL);
1872}
1873
1874SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1875                                                 bool IsSRA) const {
1876  SDLoc DL(Op);
1877  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1878  SDValue Shamt = Op.getOperand(2);
1879
1880  // if shamt < 32:
1881  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1882  //  if isSRA:
1883  //    hi = (sra hi, shamt)
1884  //  else:
1885  //    hi = (srl hi, shamt)
1886  // else:
1887  //  if isSRA:
1888  //   lo = (sra hi, shamt[4:0])
1889  //   hi = (sra hi, 31)
1890  //  else:
1891  //   lo = (srl hi, shamt[4:0])
1892  //   hi = 0
1893  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1894                            DAG.getConstant(-1, MVT::i32));
1895  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1896                                     DAG.getConstant(1, MVT::i32));
1897  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1898  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1899  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1900  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1901                                     Hi, Shamt);
1902  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1903                             DAG.getConstant(0x20, MVT::i32));
1904  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1905                                DAG.getConstant(31, MVT::i32));
1906  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1907  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1908                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1909                   ShiftRightHi);
1910
1911  SDValue Ops[2] = {Lo, Hi};
1912  return DAG.getMergeValues(Ops, 2, DL);
1913}
1914
1915static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1916                            SDValue Chain, SDValue Src, unsigned Offset) {
1917  SDValue Ptr = LD->getBasePtr();
1918  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1919  EVT BasePtrVT = Ptr.getValueType();
1920  SDLoc DL(LD);
1921  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1922
1923  if (Offset)
1924    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1925                      DAG.getConstant(Offset, BasePtrVT));
1926
1927  SDValue Ops[] = { Chain, Ptr, Src };
1928  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1929                                 LD->getMemOperand());
1930}
1931
1932// Expand an unaligned 32 or 64-bit integer load node.
1933SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1934  LoadSDNode *LD = cast<LoadSDNode>(Op);
1935  EVT MemVT = LD->getMemoryVT();
1936
1937  // Return if load is aligned or if MemVT is neither i32 nor i64.
1938  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1939      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1940    return SDValue();
1941
1942  bool IsLittle = Subtarget->isLittle();
1943  EVT VT = Op.getValueType();
1944  ISD::LoadExtType ExtType = LD->getExtensionType();
1945  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1946
1947  assert((VT == MVT::i32) || (VT == MVT::i64));
1948
1949  // Expand
1950  //  (set dst, (i64 (load baseptr)))
1951  // to
1952  //  (set tmp, (ldl (add baseptr, 7), undef))
1953  //  (set dst, (ldr baseptr, tmp))
1954  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1955    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1956                               IsLittle ? 7 : 0);
1957    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1958                        IsLittle ? 0 : 7);
1959  }
1960
1961  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1962                             IsLittle ? 3 : 0);
1963  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1964                             IsLittle ? 0 : 3);
1965
1966  // Expand
1967  //  (set dst, (i32 (load baseptr))) or
1968  //  (set dst, (i64 (sextload baseptr))) or
1969  //  (set dst, (i64 (extload baseptr)))
1970  // to
1971  //  (set tmp, (lwl (add baseptr, 3), undef))
1972  //  (set dst, (lwr baseptr, tmp))
1973  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1974      (ExtType == ISD::EXTLOAD))
1975    return LWR;
1976
1977  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
1978
1979  // Expand
1980  //  (set dst, (i64 (zextload baseptr)))
1981  // to
1982  //  (set tmp0, (lwl (add baseptr, 3), undef))
1983  //  (set tmp1, (lwr baseptr, tmp0))
1984  //  (set tmp2, (shl tmp1, 32))
1985  //  (set dst, (srl tmp2, 32))
1986  SDLoc DL(LD);
1987  SDValue Const32 = DAG.getConstant(32, MVT::i32);
1988  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
1989  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
1990  SDValue Ops[] = { SRL, LWR.getValue(1) };
1991  return DAG.getMergeValues(Ops, 2, DL);
1992}
1993
1994static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
1995                             SDValue Chain, unsigned Offset) {
1996  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
1997  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
1998  SDLoc DL(SD);
1999  SDVTList VTList = DAG.getVTList(MVT::Other);
2000
2001  if (Offset)
2002    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2003                      DAG.getConstant(Offset, BasePtrVT));
2004
2005  SDValue Ops[] = { Chain, Value, Ptr };
2006  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2007                                 SD->getMemOperand());
2008}
2009
2010// Expand an unaligned 32 or 64-bit integer store node.
2011static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2012                                      bool IsLittle) {
2013  SDValue Value = SD->getValue(), Chain = SD->getChain();
2014  EVT VT = Value.getValueType();
2015
2016  // Expand
2017  //  (store val, baseptr) or
2018  //  (truncstore val, baseptr)
2019  // to
2020  //  (swl val, (add baseptr, 3))
2021  //  (swr val, baseptr)
2022  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2023    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2024                                IsLittle ? 3 : 0);
2025    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2026  }
2027
2028  assert(VT == MVT::i64);
2029
2030  // Expand
2031  //  (store val, baseptr)
2032  // to
2033  //  (sdl val, (add baseptr, 7))
2034  //  (sdr val, baseptr)
2035  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2036  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2037}
2038
2039// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2040static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2041  SDValue Val = SD->getValue();
2042
2043  if (Val.getOpcode() != ISD::FP_TO_SINT)
2044    return SDValue();
2045
2046  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2047  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2048                           Val.getOperand(0));
2049
2050  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2051                      SD->getPointerInfo(), SD->isVolatile(),
2052                      SD->isNonTemporal(), SD->getAlignment());
2053}
2054
2055SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2056  StoreSDNode *SD = cast<StoreSDNode>(Op);
2057  EVT MemVT = SD->getMemoryVT();
2058
2059  // Lower unaligned integer stores.
2060  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2061      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2062    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2063
2064  return lowerFP_TO_SINT_STORE(SD, DAG);
2065}
2066
2067SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2068  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2069      || cast<ConstantSDNode>
2070        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2071      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2072    return SDValue();
2073
2074  // The pattern
2075  //   (add (frameaddr 0), (frame_to_args_offset))
2076  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2077  //   (add FrameObject, 0)
2078  // where FrameObject is a fixed StackObject with offset 0 which points to
2079  // the old stack pointer.
2080  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2081  EVT ValTy = Op->getValueType(0);
2082  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2083  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2084  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2085                     DAG.getConstant(0, ValTy));
2086}
2087
2088SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2089                                            SelectionDAG &DAG) const {
2090  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2091  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2092                              Op.getOperand(0));
2093  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2094}
2095
2096//===----------------------------------------------------------------------===//
2097//                      Calling Convention Implementation
2098//===----------------------------------------------------------------------===//
2099
2100//===----------------------------------------------------------------------===//
2101// TODO: Implement a generic logic using tblgen that can support this.
2102// Mips O32 ABI rules:
2103// ---
2104// i32 - Passed in A0, A1, A2, A3 and stack
2105// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2106//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2107// f64 - Only passed in two aliased f32 registers if no int reg has been used
2108//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2109//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2110//       go to stack.
2111//
2112//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2113//===----------------------------------------------------------------------===//
2114
2115static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2116                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2117                       CCState &State, const uint16_t *F64Regs) {
2118
2119  static const unsigned IntRegsSize = 4, FloatRegsSize = 2;
2120
2121  static const uint16_t IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2122  static const uint16_t F32Regs[] = { Mips::F12, Mips::F14 };
2123
2124  // Do not process byval args here.
2125  if (ArgFlags.isByVal())
2126    return true;
2127
2128  // Promote i8 and i16
2129  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2130    LocVT = MVT::i32;
2131    if (ArgFlags.isSExt())
2132      LocInfo = CCValAssign::SExt;
2133    else if (ArgFlags.isZExt())
2134      LocInfo = CCValAssign::ZExt;
2135    else
2136      LocInfo = CCValAssign::AExt;
2137  }
2138
2139  unsigned Reg;
2140
2141  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2142  // is true: function is vararg, argument is 3rd or higher, there is previous
2143  // argument which is not f32 or f64.
2144  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2145      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2146  unsigned OrigAlign = ArgFlags.getOrigAlign();
2147  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2148
2149  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2150    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2151    // If this is the first part of an i64 arg,
2152    // the allocated register must be either A0 or A2.
2153    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2154      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2155    LocVT = MVT::i32;
2156  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2157    // Allocate int register and shadow next int register. If first
2158    // available register is Mips::A1 or Mips::A3, shadow it too.
2159    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2160    if (Reg == Mips::A1 || Reg == Mips::A3)
2161      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2162    State.AllocateReg(IntRegs, IntRegsSize);
2163    LocVT = MVT::i32;
2164  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2165    // we are guaranteed to find an available float register
2166    if (ValVT == MVT::f32) {
2167      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2168      // Shadow int register
2169      State.AllocateReg(IntRegs, IntRegsSize);
2170    } else {
2171      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2172      // Shadow int registers
2173      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2174      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2175        State.AllocateReg(IntRegs, IntRegsSize);
2176      State.AllocateReg(IntRegs, IntRegsSize);
2177    }
2178  } else
2179    llvm_unreachable("Cannot handle this ValVT.");
2180
2181  if (!Reg) {
2182    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2183                                          OrigAlign);
2184    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2185  } else
2186    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2187
2188  return false;
2189}
2190
2191static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2192                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2193                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2194  static const uint16_t F64Regs[] = { Mips::D6, Mips::D7 };
2195
2196  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2197}
2198
2199static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2200                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2201                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2202  static const uint16_t F64Regs[] = { Mips::D12_64, Mips::D12_64 };
2203
2204  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2205}
2206
2207#include "MipsGenCallingConv.inc"
2208
2209//===----------------------------------------------------------------------===//
2210//                  Call Calling Convention Implementation
2211//===----------------------------------------------------------------------===//
2212
2213// Return next O32 integer argument register.
2214static unsigned getNextIntArgReg(unsigned Reg) {
2215  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2216  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2217}
2218
2219SDValue
2220MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2221                                   SDValue Chain, SDValue Arg, SDLoc DL,
2222                                   bool IsTailCall, SelectionDAG &DAG) const {
2223  if (!IsTailCall) {
2224    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2225                                 DAG.getIntPtrConstant(Offset));
2226    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2227                        false, 0);
2228  }
2229
2230  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2231  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2232  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2233  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2234                      /*isVolatile=*/ true, false, 0);
2235}
2236
2237void MipsTargetLowering::
2238getOpndList(SmallVectorImpl<SDValue> &Ops,
2239            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2240            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2241            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2242  // Insert node "GP copy globalreg" before call to function.
2243  //
2244  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2245  // in PIC mode) allow symbols to be resolved via lazy binding.
2246  // The lazy binding stub requires GP to point to the GOT.
2247  if (IsPICCall && !InternalLinkage) {
2248    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2249    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2250    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2251  }
2252
2253  // Build a sequence of copy-to-reg nodes chained together with token
2254  // chain and flag operands which copy the outgoing args into registers.
2255  // The InFlag in necessary since all emitted instructions must be
2256  // stuck together.
2257  SDValue InFlag;
2258
2259  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2260    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2261                                 RegsToPass[i].second, InFlag);
2262    InFlag = Chain.getValue(1);
2263  }
2264
2265  // Add argument registers to the end of the list so that they are
2266  // known live into the call.
2267  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2268    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2269                                      RegsToPass[i].second.getValueType()));
2270
2271  // Add a register mask operand representing the call-preserved registers.
2272  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2273  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2274  assert(Mask && "Missing call preserved mask for calling convention");
2275  if (Subtarget->inMips16HardFloat()) {
2276    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2277      llvm::StringRef Sym = G->getGlobal()->getName();
2278      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2279      if (F->hasFnAttribute("__Mips16RetHelper")) {
2280        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2281      }
2282    }
2283  }
2284  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2285
2286  if (InFlag.getNode())
2287    Ops.push_back(InFlag);
2288}
2289
2290/// LowerCall - functions arguments are copied from virtual regs to
2291/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2292SDValue
2293MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2294                              SmallVectorImpl<SDValue> &InVals) const {
2295  SelectionDAG &DAG                     = CLI.DAG;
2296  SDLoc DL                              = CLI.DL;
2297  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2298  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2299  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2300  SDValue Chain                         = CLI.Chain;
2301  SDValue Callee                        = CLI.Callee;
2302  bool &IsTailCall                      = CLI.IsTailCall;
2303  CallingConv::ID CallConv              = CLI.CallConv;
2304  bool IsVarArg                         = CLI.IsVarArg;
2305
2306  MachineFunction &MF = DAG.getMachineFunction();
2307  MachineFrameInfo *MFI = MF.getFrameInfo();
2308  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2309  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2310  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2311
2312  // Analyze operands of the call, assigning locations to each operand.
2313  SmallVector<CCValAssign, 16> ArgLocs;
2314  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2315                 getTargetMachine(), ArgLocs, *DAG.getContext());
2316  MipsCC::SpecialCallingConvType SpecialCallingConv =
2317    getSpecialCallingConv(Callee);
2318  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo,
2319                    SpecialCallingConv);
2320
2321  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2322                                 Subtarget->mipsSEUsesSoftFloat(),
2323                                 Callee.getNode(), CLI.Args);
2324
2325  // Get a count of how many bytes are to be pushed on the stack.
2326  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2327
2328  // Check if it's really possible to do a tail call.
2329  if (IsTailCall)
2330    IsTailCall =
2331      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2332                                        *MF.getInfo<MipsFunctionInfo>());
2333
2334  if (IsTailCall)
2335    ++NumTailCalls;
2336
2337  // Chain is the output chain of the last Load/Store or CopyToReg node.
2338  // ByValChain is the output chain of the last Memcpy node created for copying
2339  // byval arguments to the stack.
2340  unsigned StackAlignment = TFL->getStackAlignment();
2341  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2342  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2343
2344  if (!IsTailCall)
2345    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2346
2347  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2348                                        IsN64 ? Mips::SP_64 : Mips::SP,
2349                                        getPointerTy());
2350
2351  // With EABI is it possible to have 16 args on registers.
2352  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2353  SmallVector<SDValue, 8> MemOpChains;
2354  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2355
2356  // Walk the register/memloc assignments, inserting copies/loads.
2357  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2358    SDValue Arg = OutVals[i];
2359    CCValAssign &VA = ArgLocs[i];
2360    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2361    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2362
2363    // ByVal Arg.
2364    if (Flags.isByVal()) {
2365      assert(Flags.getByValSize() &&
2366             "ByVal args of size 0 should have been ignored by front-end.");
2367      assert(ByValArg != MipsCCInfo.byval_end());
2368      assert(!IsTailCall &&
2369             "Do not tail-call optimize if there is a byval argument.");
2370      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2371                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2372      ++ByValArg;
2373      continue;
2374    }
2375
2376    // Promote the value if needed.
2377    switch (VA.getLocInfo()) {
2378    default: llvm_unreachable("Unknown loc info!");
2379    case CCValAssign::Full:
2380      if (VA.isRegLoc()) {
2381        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2382            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2383            (ValVT == MVT::i64 && LocVT == MVT::f64))
2384          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2385        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2386          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2387                                   Arg, DAG.getConstant(0, MVT::i32));
2388          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2389                                   Arg, DAG.getConstant(1, MVT::i32));
2390          if (!Subtarget->isLittle())
2391            std::swap(Lo, Hi);
2392          unsigned LocRegLo = VA.getLocReg();
2393          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2394          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2395          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2396          continue;
2397        }
2398      }
2399      break;
2400    case CCValAssign::SExt:
2401      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2402      break;
2403    case CCValAssign::ZExt:
2404      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2405      break;
2406    case CCValAssign::AExt:
2407      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2408      break;
2409    }
2410
2411    // Arguments that can be passed on register must be kept at
2412    // RegsToPass vector
2413    if (VA.isRegLoc()) {
2414      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2415      continue;
2416    }
2417
2418    // Register can't get to this point...
2419    assert(VA.isMemLoc());
2420
2421    // emit ISD::STORE whichs stores the
2422    // parameter value to a stack Location
2423    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2424                                         Chain, Arg, DL, IsTailCall, DAG));
2425  }
2426
2427  // Transform all store nodes into one single node because all store
2428  // nodes are independent of each other.
2429  if (!MemOpChains.empty())
2430    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2431                        &MemOpChains[0], MemOpChains.size());
2432
2433  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2434  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2435  // node so that legalize doesn't hack it.
2436  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2437  bool GlobalOrExternal = false, InternalLinkage = false;
2438  SDValue CalleeLo;
2439  EVT Ty = Callee.getValueType();
2440
2441  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2442    if (IsPICCall) {
2443      const GlobalValue *Val = G->getGlobal();
2444      InternalLinkage = Val->hasInternalLinkage();
2445
2446      if (InternalLinkage)
2447        Callee = getAddrLocal(G, Ty, DAG, HasMips64);
2448      else if (LargeGOT)
2449        Callee = getAddrGlobalLargeGOT(G, Ty, DAG, MipsII::MO_CALL_HI16,
2450                                       MipsII::MO_CALL_LO16, Chain,
2451                                       FuncInfo->callPtrInfo(Val));
2452      else
2453        Callee = getAddrGlobal(G, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2454                               FuncInfo->callPtrInfo(Val));
2455    } else
2456      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2457                                          MipsII::MO_NO_FLAG);
2458    GlobalOrExternal = true;
2459  }
2460  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2461    const char *Sym = S->getSymbol();
2462
2463    if (!IsN64 && !IsPIC) // !N64 && static
2464      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(),
2465                                            MipsII::MO_NO_FLAG);
2466    else if (LargeGOT)
2467      Callee = getAddrGlobalLargeGOT(S, Ty, DAG, MipsII::MO_CALL_HI16,
2468                                     MipsII::MO_CALL_LO16, Chain,
2469                                     FuncInfo->callPtrInfo(Sym));
2470    else // N64 || PIC
2471      Callee = getAddrGlobal(S, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2472                             FuncInfo->callPtrInfo(Sym));
2473
2474    GlobalOrExternal = true;
2475  }
2476
2477  SmallVector<SDValue, 8> Ops(1, Chain);
2478  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2479
2480  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2481              CLI, Callee, Chain);
2482
2483  if (IsTailCall)
2484    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2485
2486  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2487  SDValue InFlag = Chain.getValue(1);
2488
2489  // Create the CALLSEQ_END node.
2490  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2491                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2492  InFlag = Chain.getValue(1);
2493
2494  // Handle result values, copying them out of physregs into vregs that we
2495  // return.
2496  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2497                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2498}
2499
2500/// LowerCallResult - Lower the result values of a call into the
2501/// appropriate copies out of appropriate physical registers.
2502SDValue
2503MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2504                                    CallingConv::ID CallConv, bool IsVarArg,
2505                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2506                                    SDLoc DL, SelectionDAG &DAG,
2507                                    SmallVectorImpl<SDValue> &InVals,
2508                                    const SDNode *CallNode,
2509                                    const Type *RetTy) const {
2510  // Assign locations to each value returned by this call.
2511  SmallVector<CCValAssign, 16> RVLocs;
2512  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2513                 getTargetMachine(), RVLocs, *DAG.getContext());
2514  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2515
2516  MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
2517                               CallNode, RetTy);
2518
2519  // Copy all of the result registers out of their specified physreg.
2520  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2521    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2522                                     RVLocs[i].getLocVT(), InFlag);
2523    Chain = Val.getValue(1);
2524    InFlag = Val.getValue(2);
2525
2526    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2527      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2528
2529    InVals.push_back(Val);
2530  }
2531
2532  return Chain;
2533}
2534
2535//===----------------------------------------------------------------------===//
2536//             Formal Arguments Calling Convention Implementation
2537//===----------------------------------------------------------------------===//
2538/// LowerFormalArguments - transform physical registers into virtual registers
2539/// and generate load operations for arguments places on the stack.
2540SDValue
2541MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2542                                         CallingConv::ID CallConv,
2543                                         bool IsVarArg,
2544                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2545                                         SDLoc DL, SelectionDAG &DAG,
2546                                         SmallVectorImpl<SDValue> &InVals)
2547                                          const {
2548  MachineFunction &MF = DAG.getMachineFunction();
2549  MachineFrameInfo *MFI = MF.getFrameInfo();
2550  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2551
2552  MipsFI->setVarArgsFrameIndex(0);
2553
2554  // Used with vargs to acumulate store chains.
2555  std::vector<SDValue> OutChains;
2556
2557  // Assign locations to all of the incoming arguments.
2558  SmallVector<CCValAssign, 16> ArgLocs;
2559  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2560                 getTargetMachine(), ArgLocs, *DAG.getContext());
2561  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2562  Function::const_arg_iterator FuncArg =
2563    DAG.getMachineFunction().getFunction()->arg_begin();
2564  bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
2565
2566  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2567  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2568                           MipsCCInfo.hasByValArg());
2569
2570  unsigned CurArgIdx = 0;
2571  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2572
2573  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2574    CCValAssign &VA = ArgLocs[i];
2575    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2576    CurArgIdx = Ins[i].OrigArgIndex;
2577    EVT ValVT = VA.getValVT();
2578    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2579    bool IsRegLoc = VA.isRegLoc();
2580
2581    if (Flags.isByVal()) {
2582      assert(Flags.getByValSize() &&
2583             "ByVal args of size 0 should have been ignored by front-end.");
2584      assert(ByValArg != MipsCCInfo.byval_end());
2585      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2586                    MipsCCInfo, *ByValArg);
2587      ++ByValArg;
2588      continue;
2589    }
2590
2591    // Arguments stored on registers
2592    if (IsRegLoc) {
2593      EVT RegVT = VA.getLocVT();
2594      unsigned ArgReg = VA.getLocReg();
2595      const TargetRegisterClass *RC;
2596
2597      if (RegVT == MVT::i32)
2598        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2599                                        &Mips::GPR32RegClass;
2600      else if (RegVT == MVT::i64)
2601        RC = &Mips::GPR64RegClass;
2602      else if (RegVT == MVT::f32)
2603        RC = &Mips::FGR32RegClass;
2604      else if (RegVT == MVT::f64)
2605        RC = Subtarget->isFP64bit() ? &Mips::FGR64RegClass :
2606                                      &Mips::AFGR64RegClass;
2607      else
2608        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2609
2610      // Transform the arguments stored on
2611      // physical registers into virtual ones
2612      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2613      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2614
2615      // If this is an 8 or 16-bit value, it has been passed promoted
2616      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2617      // truncate to the right size.
2618      if (VA.getLocInfo() != CCValAssign::Full) {
2619        unsigned Opcode = 0;
2620        if (VA.getLocInfo() == CCValAssign::SExt)
2621          Opcode = ISD::AssertSext;
2622        else if (VA.getLocInfo() == CCValAssign::ZExt)
2623          Opcode = ISD::AssertZext;
2624        if (Opcode)
2625          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2626                                 DAG.getValueType(ValVT));
2627        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2628      }
2629
2630      // Handle floating point arguments passed in integer registers and
2631      // long double arguments passed in floating point registers.
2632      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2633          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2634          (RegVT == MVT::f64 && ValVT == MVT::i64))
2635        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2636      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2637        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2638                                  getNextIntArgReg(ArgReg), RC);
2639        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2640        if (!Subtarget->isLittle())
2641          std::swap(ArgValue, ArgValue2);
2642        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2643                               ArgValue, ArgValue2);
2644      }
2645
2646      InVals.push_back(ArgValue);
2647    } else { // VA.isRegLoc()
2648
2649      // sanity check
2650      assert(VA.isMemLoc());
2651
2652      // The stack pointer offset is relative to the caller stack frame.
2653      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2654                                      VA.getLocMemOffset(), true);
2655
2656      // Create load nodes to retrieve arguments from the stack
2657      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2658      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2659                                   MachinePointerInfo::getFixedStack(FI),
2660                                   false, false, false, 0));
2661    }
2662  }
2663
2664  // The mips ABIs for returning structs by value requires that we copy
2665  // the sret argument into $v0 for the return. Save the argument into
2666  // a virtual register so that we can access it from the return points.
2667  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2668    unsigned Reg = MipsFI->getSRetReturnReg();
2669    if (!Reg) {
2670      Reg = MF.getRegInfo().
2671        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2672      MipsFI->setSRetReturnReg(Reg);
2673    }
2674    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2675    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2676  }
2677
2678  if (IsVarArg)
2679    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2680
2681  // All stores are grouped in one node to allow the matching between
2682  // the size of Ins and InVals. This only happens when on varg functions
2683  if (!OutChains.empty()) {
2684    OutChains.push_back(Chain);
2685    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2686                        &OutChains[0], OutChains.size());
2687  }
2688
2689  return Chain;
2690}
2691
2692//===----------------------------------------------------------------------===//
2693//               Return Value Calling Convention Implementation
2694//===----------------------------------------------------------------------===//
2695
2696bool
2697MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2698                                   MachineFunction &MF, bool IsVarArg,
2699                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2700                                   LLVMContext &Context) const {
2701  SmallVector<CCValAssign, 16> RVLocs;
2702  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2703                 RVLocs, Context);
2704  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2705}
2706
2707SDValue
2708MipsTargetLowering::LowerReturn(SDValue Chain,
2709                                CallingConv::ID CallConv, bool IsVarArg,
2710                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2711                                const SmallVectorImpl<SDValue> &OutVals,
2712                                SDLoc DL, SelectionDAG &DAG) const {
2713  // CCValAssign - represent the assignment of
2714  // the return value to a location
2715  SmallVector<CCValAssign, 16> RVLocs;
2716  MachineFunction &MF = DAG.getMachineFunction();
2717
2718  // CCState - Info about the registers and stack slot.
2719  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2720                 *DAG.getContext());
2721  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2722
2723  // Analyze return values.
2724  MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
2725                           MF.getFunction()->getReturnType());
2726
2727  SDValue Flag;
2728  SmallVector<SDValue, 4> RetOps(1, Chain);
2729
2730  // Copy the result values into the output registers.
2731  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2732    SDValue Val = OutVals[i];
2733    CCValAssign &VA = RVLocs[i];
2734    assert(VA.isRegLoc() && "Can only return in registers!");
2735
2736    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2737      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2738
2739    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2740
2741    // Guarantee that all emitted copies are stuck together with flags.
2742    Flag = Chain.getValue(1);
2743    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2744  }
2745
2746  // The mips ABIs for returning structs by value requires that we copy
2747  // the sret argument into $v0 for the return. We saved the argument into
2748  // a virtual register in the entry block, so now we copy the value out
2749  // and into $v0.
2750  if (MF.getFunction()->hasStructRetAttr()) {
2751    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2752    unsigned Reg = MipsFI->getSRetReturnReg();
2753
2754    if (!Reg)
2755      llvm_unreachable("sret virtual register not created in the entry block");
2756    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2757    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2758
2759    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2760    Flag = Chain.getValue(1);
2761    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2762  }
2763
2764  RetOps[0] = Chain;  // Update chain.
2765
2766  // Add the flag if we have it.
2767  if (Flag.getNode())
2768    RetOps.push_back(Flag);
2769
2770  // Return on Mips is always a "jr $ra"
2771  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2772}
2773
2774//===----------------------------------------------------------------------===//
2775//                           Mips Inline Assembly Support
2776//===----------------------------------------------------------------------===//
2777
2778/// getConstraintType - Given a constraint letter, return the type of
2779/// constraint it is for this target.
2780MipsTargetLowering::ConstraintType MipsTargetLowering::
2781getConstraintType(const std::string &Constraint) const
2782{
2783  // Mips specific constrainy
2784  // GCC config/mips/constraints.md
2785  //
2786  // 'd' : An address register. Equivalent to r
2787  //       unless generating MIPS16 code.
2788  // 'y' : Equivalent to r; retained for
2789  //       backwards compatibility.
2790  // 'c' : A register suitable for use in an indirect
2791  //       jump. This will always be $25 for -mabicalls.
2792  // 'l' : The lo register. 1 word storage.
2793  // 'x' : The hilo register pair. Double word storage.
2794  if (Constraint.size() == 1) {
2795    switch (Constraint[0]) {
2796      default : break;
2797      case 'd':
2798      case 'y':
2799      case 'f':
2800      case 'c':
2801      case 'l':
2802      case 'x':
2803        return C_RegisterClass;
2804      case 'R':
2805        return C_Memory;
2806    }
2807  }
2808  return TargetLowering::getConstraintType(Constraint);
2809}
2810
2811/// Examine constraint type and operand type and determine a weight value.
2812/// This object must already have been set up with the operand type
2813/// and the current alternative constraint selected.
2814TargetLowering::ConstraintWeight
2815MipsTargetLowering::getSingleConstraintMatchWeight(
2816    AsmOperandInfo &info, const char *constraint) const {
2817  ConstraintWeight weight = CW_Invalid;
2818  Value *CallOperandVal = info.CallOperandVal;
2819    // If we don't have a value, we can't do a match,
2820    // but allow it at the lowest weight.
2821  if (CallOperandVal == NULL)
2822    return CW_Default;
2823  Type *type = CallOperandVal->getType();
2824  // Look at the constraint type.
2825  switch (*constraint) {
2826  default:
2827    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2828    break;
2829  case 'd':
2830  case 'y':
2831    if (type->isIntegerTy())
2832      weight = CW_Register;
2833    break;
2834  case 'f':
2835    if (type->isFloatTy())
2836      weight = CW_Register;
2837    break;
2838  case 'c': // $25 for indirect jumps
2839  case 'l': // lo register
2840  case 'x': // hilo register pair
2841      if (type->isIntegerTy())
2842      weight = CW_SpecificReg;
2843      break;
2844  case 'I': // signed 16 bit immediate
2845  case 'J': // integer zero
2846  case 'K': // unsigned 16 bit immediate
2847  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2848  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2849  case 'O': // signed 15 bit immediate (+- 16383)
2850  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2851    if (isa<ConstantInt>(CallOperandVal))
2852      weight = CW_Constant;
2853    break;
2854  case 'R':
2855    weight = CW_Memory;
2856    break;
2857  }
2858  return weight;
2859}
2860
2861/// This is a helper function to parse a physical register string and split it
2862/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
2863/// that is returned indicates whether parsing was successful. The second flag
2864/// is true if the numeric part exists.
2865static std::pair<bool, bool>
2866parsePhysicalReg(const StringRef &C, std::string &Prefix,
2867                 unsigned long long &Reg) {
2868  if (C.front() != '{' || C.back() != '}')
2869    return std::make_pair(false, false);
2870
2871  // Search for the first numeric character.
2872  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
2873  I = std::find_if(B, E, std::ptr_fun(isdigit));
2874
2875  Prefix.assign(B, I - B);
2876
2877  // The second flag is set to false if no numeric characters were found.
2878  if (I == E)
2879    return std::make_pair(true, false);
2880
2881  // Parse the numeric characters.
2882  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
2883                        true);
2884}
2885
2886std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
2887parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
2888  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2889  const TargetRegisterClass *RC;
2890  std::string Prefix;
2891  unsigned long long Reg;
2892
2893  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
2894
2895  if (!R.first)
2896    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2897
2898  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
2899    // No numeric characters follow "hi" or "lo".
2900    if (R.second)
2901      return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2902
2903    RC = TRI->getRegClass(Prefix == "hi" ?
2904                          Mips::HI32RegClassID : Mips::LO32RegClassID);
2905    return std::make_pair(*(RC->begin()), RC);
2906  }
2907
2908  if (!R.second)
2909    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2910
2911  if (Prefix == "$f") { // Parse $f0-$f31.
2912    // If the size of FP registers is 64-bit or Reg is an even number, select
2913    // the 64-bit register class. Otherwise, select the 32-bit register class.
2914    if (VT == MVT::Other)
2915      VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
2916
2917    RC = getRegClassFor(VT);
2918
2919    if (RC == &Mips::AFGR64RegClass) {
2920      assert(Reg % 2 == 0);
2921      Reg >>= 1;
2922    }
2923  } else if (Prefix == "$fcc") { // Parse $fcc0-$fcc7.
2924    RC = TRI->getRegClass(Mips::FCCRegClassID);
2925  } else { // Parse $0-$31.
2926    assert(Prefix == "$");
2927    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
2928  }
2929
2930  assert(Reg < RC->getNumRegs());
2931  return std::make_pair(*(RC->begin() + Reg), RC);
2932}
2933
2934/// Given a register class constraint, like 'r', if this corresponds directly
2935/// to an LLVM register class, return a register of 0 and the register class
2936/// pointer.
2937std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2938getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2939{
2940  if (Constraint.size() == 1) {
2941    switch (Constraint[0]) {
2942    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2943    case 'y': // Same as 'r'. Exists for compatibility.
2944    case 'r':
2945      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2946        if (Subtarget->inMips16Mode())
2947          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2948        return std::make_pair(0U, &Mips::GPR32RegClass);
2949      }
2950      if (VT == MVT::i64 && !HasMips64)
2951        return std::make_pair(0U, &Mips::GPR32RegClass);
2952      if (VT == MVT::i64 && HasMips64)
2953        return std::make_pair(0U, &Mips::GPR64RegClass);
2954      // This will generate an error message
2955      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2956    case 'f':
2957      if (VT == MVT::f32)
2958        return std::make_pair(0U, &Mips::FGR32RegClass);
2959      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2960        if (Subtarget->isFP64bit())
2961          return std::make_pair(0U, &Mips::FGR64RegClass);
2962        return std::make_pair(0U, &Mips::AFGR64RegClass);
2963      }
2964      break;
2965    case 'c': // register suitable for indirect jump
2966      if (VT == MVT::i32)
2967        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
2968      assert(VT == MVT::i64 && "Unexpected type.");
2969      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
2970    case 'l': // register suitable for indirect jump
2971      if (VT == MVT::i32)
2972        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
2973      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
2974    case 'x': // register suitable for indirect jump
2975      // Fixme: Not triggering the use of both hi and low
2976      // This will generate an error message
2977      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2978    }
2979  }
2980
2981  std::pair<unsigned, const TargetRegisterClass *> R;
2982  R = parseRegForInlineAsmConstraint(Constraint, VT);
2983
2984  if (R.second)
2985    return R;
2986
2987  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2988}
2989
2990/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2991/// vector.  If it is invalid, don't add anything to Ops.
2992void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2993                                                     std::string &Constraint,
2994                                                     std::vector<SDValue>&Ops,
2995                                                     SelectionDAG &DAG) const {
2996  SDValue Result(0, 0);
2997
2998  // Only support length 1 constraints for now.
2999  if (Constraint.length() > 1) return;
3000
3001  char ConstraintLetter = Constraint[0];
3002  switch (ConstraintLetter) {
3003  default: break; // This will fall through to the generic implementation
3004  case 'I': // Signed 16 bit constant
3005    // If this fails, the parent routine will give an error
3006    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3007      EVT Type = Op.getValueType();
3008      int64_t Val = C->getSExtValue();
3009      if (isInt<16>(Val)) {
3010        Result = DAG.getTargetConstant(Val, Type);
3011        break;
3012      }
3013    }
3014    return;
3015  case 'J': // integer zero
3016    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3017      EVT Type = Op.getValueType();
3018      int64_t Val = C->getZExtValue();
3019      if (Val == 0) {
3020        Result = DAG.getTargetConstant(0, Type);
3021        break;
3022      }
3023    }
3024    return;
3025  case 'K': // unsigned 16 bit immediate
3026    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3027      EVT Type = Op.getValueType();
3028      uint64_t Val = (uint64_t)C->getZExtValue();
3029      if (isUInt<16>(Val)) {
3030        Result = DAG.getTargetConstant(Val, Type);
3031        break;
3032      }
3033    }
3034    return;
3035  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3036    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3037      EVT Type = Op.getValueType();
3038      int64_t Val = C->getSExtValue();
3039      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3040        Result = DAG.getTargetConstant(Val, Type);
3041        break;
3042      }
3043    }
3044    return;
3045  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3046    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3047      EVT Type = Op.getValueType();
3048      int64_t Val = C->getSExtValue();
3049      if ((Val >= -65535) && (Val <= -1)) {
3050        Result = DAG.getTargetConstant(Val, Type);
3051        break;
3052      }
3053    }
3054    return;
3055  case 'O': // signed 15 bit immediate
3056    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3057      EVT Type = Op.getValueType();
3058      int64_t Val = C->getSExtValue();
3059      if ((isInt<15>(Val))) {
3060        Result = DAG.getTargetConstant(Val, Type);
3061        break;
3062      }
3063    }
3064    return;
3065  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3066    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3067      EVT Type = Op.getValueType();
3068      int64_t Val = C->getSExtValue();
3069      if ((Val <= 65535) && (Val >= 1)) {
3070        Result = DAG.getTargetConstant(Val, Type);
3071        break;
3072      }
3073    }
3074    return;
3075  }
3076
3077  if (Result.getNode()) {
3078    Ops.push_back(Result);
3079    return;
3080  }
3081
3082  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3083}
3084
3085bool MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3086                                               Type *Ty) const {
3087  // No global is ever allowed as a base.
3088  if (AM.BaseGV)
3089    return false;
3090
3091  switch (AM.Scale) {
3092  case 0: // "r+i" or just "i", depending on HasBaseReg.
3093    break;
3094  case 1:
3095    if (!AM.HasBaseReg) // allow "r+i".
3096      break;
3097    return false; // disallow "r+r" or "r+r+i".
3098  default:
3099    return false;
3100  }
3101
3102  return true;
3103}
3104
3105bool
3106MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3107  // The Mips target isn't yet aware of offsets.
3108  return false;
3109}
3110
3111EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3112                                            unsigned SrcAlign,
3113                                            bool IsMemset, bool ZeroMemset,
3114                                            bool MemcpyStrSrc,
3115                                            MachineFunction &MF) const {
3116  if (Subtarget->hasMips64())
3117    return MVT::i64;
3118
3119  return MVT::i32;
3120}
3121
3122bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3123  if (VT != MVT::f32 && VT != MVT::f64)
3124    return false;
3125  if (Imm.isNegZero())
3126    return false;
3127  return Imm.isZero();
3128}
3129
3130unsigned MipsTargetLowering::getJumpTableEncoding() const {
3131  if (IsN64)
3132    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3133
3134  return TargetLowering::getJumpTableEncoding();
3135}
3136
3137/// This function returns true if CallSym is a long double emulation routine.
3138static bool isF128SoftLibCall(const char *CallSym) {
3139  const char *const LibCalls[] =
3140    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3141     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3142     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3143     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3144     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3145     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3146     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3147     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3148     "truncl"};
3149
3150  const char *const *End = LibCalls + array_lengthof(LibCalls);
3151
3152  // Check that LibCalls is sorted alphabetically.
3153  MipsTargetLowering::LTStr Comp;
3154
3155#ifndef NDEBUG
3156  for (const char *const *I = LibCalls; I < End - 1; ++I)
3157    assert(Comp(*I, *(I + 1)));
3158#endif
3159
3160  return std::binary_search(LibCalls, End, CallSym, Comp);
3161}
3162
3163/// This function returns true if Ty is fp128 or i128 which was originally a
3164/// fp128.
3165static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3166  if (Ty->isFP128Ty())
3167    return true;
3168
3169  const ExternalSymbolSDNode *ES =
3170    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3171
3172  // If the Ty is i128 and the function being called is a long double emulation
3173  // routine, then the original type is f128.
3174  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3175}
3176
3177MipsTargetLowering::MipsCC::SpecialCallingConvType
3178  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3179  MipsCC::SpecialCallingConvType SpecialCallingConv =
3180    MipsCC::NoSpecialCallingConv;;
3181  if (Subtarget->inMips16HardFloat()) {
3182    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3183      llvm::StringRef Sym = G->getGlobal()->getName();
3184      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3185      if (F->hasFnAttribute("__Mips16RetHelper")) {
3186        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3187      }
3188    }
3189  }
3190  return SpecialCallingConv;
3191}
3192
3193MipsTargetLowering::MipsCC::MipsCC(
3194  CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
3195  MipsCC::SpecialCallingConvType SpecialCallingConv_)
3196  : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
3197    SpecialCallingConv(SpecialCallingConv_){
3198  // Pre-allocate reserved argument area.
3199  CCInfo.AllocateStack(reservedArgArea(), 1);
3200}
3201
3202
3203void MipsTargetLowering::MipsCC::
3204analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3205                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3206                    std::vector<ArgListEntry> &FuncArgs) {
3207  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3208         "CallingConv::Fast shouldn't be used for vararg functions.");
3209
3210  unsigned NumOpnds = Args.size();
3211  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3212
3213  for (unsigned I = 0; I != NumOpnds; ++I) {
3214    MVT ArgVT = Args[I].VT;
3215    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3216    bool R;
3217
3218    if (ArgFlags.isByVal()) {
3219      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3220      continue;
3221    }
3222
3223    if (IsVarArg && !Args[I].IsFixed)
3224      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3225    else {
3226      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3227                           IsSoftFloat);
3228      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3229    }
3230
3231    if (R) {
3232#ifndef NDEBUG
3233      dbgs() << "Call operand #" << I << " has unhandled type "
3234             << EVT(ArgVT).getEVTString();
3235#endif
3236      llvm_unreachable(0);
3237    }
3238  }
3239}
3240
3241void MipsTargetLowering::MipsCC::
3242analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3243                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3244  unsigned NumArgs = Args.size();
3245  llvm::CCAssignFn *FixedFn = fixedArgFn();
3246  unsigned CurArgIdx = 0;
3247
3248  for (unsigned I = 0; I != NumArgs; ++I) {
3249    MVT ArgVT = Args[I].VT;
3250    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3251    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3252    CurArgIdx = Args[I].OrigArgIndex;
3253
3254    if (ArgFlags.isByVal()) {
3255      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3256      continue;
3257    }
3258
3259    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3260
3261    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3262      continue;
3263
3264#ifndef NDEBUG
3265    dbgs() << "Formal Arg #" << I << " has unhandled type "
3266           << EVT(ArgVT).getEVTString();
3267#endif
3268    llvm_unreachable(0);
3269  }
3270}
3271
3272template<typename Ty>
3273void MipsTargetLowering::MipsCC::
3274analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3275              const SDNode *CallNode, const Type *RetTy) const {
3276  CCAssignFn *Fn;
3277
3278  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3279    Fn = RetCC_F128Soft;
3280  else
3281    Fn = RetCC_Mips;
3282
3283  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3284    MVT VT = RetVals[I].VT;
3285    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3286    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3287
3288    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3289#ifndef NDEBUG
3290      dbgs() << "Call result #" << I << " has unhandled type "
3291             << EVT(VT).getEVTString() << '\n';
3292#endif
3293      llvm_unreachable(0);
3294    }
3295  }
3296}
3297
3298void MipsTargetLowering::MipsCC::
3299analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3300                  const SDNode *CallNode, const Type *RetTy) const {
3301  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3302}
3303
3304void MipsTargetLowering::MipsCC::
3305analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3306              const Type *RetTy) const {
3307  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3308}
3309
3310void MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3311                                                MVT LocVT,
3312                                                CCValAssign::LocInfo LocInfo,
3313                                                ISD::ArgFlagsTy ArgFlags) {
3314  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3315
3316  struct ByValArgInfo ByVal;
3317  unsigned RegSize = regSize();
3318  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3319  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3320                            RegSize * 2);
3321
3322  if (useRegsForByval())
3323    allocateRegs(ByVal, ByValSize, Align);
3324
3325  // Allocate space on caller's stack.
3326  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3327                                       Align);
3328  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3329                                    LocInfo));
3330  ByValArgs.push_back(ByVal);
3331}
3332
3333unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3334  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3335}
3336
3337unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3338  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3339}
3340
3341const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3342  return IsO32 ? O32IntRegs : Mips64IntRegs;
3343}
3344
3345llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3346  if (CallConv == CallingConv::Fast)
3347    return CC_Mips_FastCC;
3348
3349  if (SpecialCallingConv == Mips16RetHelperConv)
3350    return CC_Mips16RetHelper;
3351  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
3352}
3353
3354llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3355  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
3356}
3357
3358const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3359  return IsO32 ? O32IntRegs : Mips64DPRegs;
3360}
3361
3362void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3363                                              unsigned ByValSize,
3364                                              unsigned Align) {
3365  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3366  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3367  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3368         "Byval argument's size and alignment should be a multiple of"
3369         "RegSize.");
3370
3371  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3372
3373  // If Align > RegSize, the first arg register must be even.
3374  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3375    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3376    ++ByVal.FirstIdx;
3377  }
3378
3379  // Mark the registers allocated.
3380  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3381       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3382    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3383}
3384
3385MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3386                                         const SDNode *CallNode,
3387                                         bool IsSoftFloat) const {
3388  if (IsSoftFloat || IsO32)
3389    return VT;
3390
3391  // Check if the original type was fp128.
3392  if (originalTypeIsF128(OrigTy, CallNode)) {
3393    assert(VT == MVT::i64);
3394    return MVT::f64;
3395  }
3396
3397  return VT;
3398}
3399
3400void MipsTargetLowering::
3401copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3402              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3403              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3404              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3405  MachineFunction &MF = DAG.getMachineFunction();
3406  MachineFrameInfo *MFI = MF.getFrameInfo();
3407  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3408  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3409  int FrameObjOffset;
3410
3411  if (RegAreaSize)
3412    FrameObjOffset = (int)CC.reservedArgArea() -
3413      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3414  else
3415    FrameObjOffset = ByVal.Address;
3416
3417  // Create frame object.
3418  EVT PtrTy = getPointerTy();
3419  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3420  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3421  InVals.push_back(FIN);
3422
3423  if (!ByVal.NumRegs)
3424    return;
3425
3426  // Copy arg registers.
3427  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3428  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3429
3430  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3431    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3432    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3433    unsigned Offset = I * CC.regSize();
3434    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3435                                   DAG.getConstant(Offset, PtrTy));
3436    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3437                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3438                                 false, false, 0);
3439    OutChains.push_back(Store);
3440  }
3441}
3442
3443// Copy byVal arg to registers and stack.
3444void MipsTargetLowering::
3445passByValArg(SDValue Chain, SDLoc DL,
3446             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3447             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3448             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3449             const MipsCC &CC, const ByValArgInfo &ByVal,
3450             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3451  unsigned ByValSize = Flags.getByValSize();
3452  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3453  unsigned RegSize = CC.regSize();
3454  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3455  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3456
3457  if (ByVal.NumRegs) {
3458    const uint16_t *ArgRegs = CC.intArgRegs();
3459    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3460    unsigned I = 0;
3461
3462    // Copy words to registers.
3463    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3464      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3465                                    DAG.getConstant(Offset, PtrTy));
3466      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3467                                    MachinePointerInfo(), false, false, false,
3468                                    Alignment);
3469      MemOpChains.push_back(LoadVal.getValue(1));
3470      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3471      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3472    }
3473
3474    // Return if the struct has been fully copied.
3475    if (ByValSize == Offset)
3476      return;
3477
3478    // Copy the remainder of the byval argument with sub-word loads and shifts.
3479    if (LeftoverBytes) {
3480      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3481             "Size of the remainder should be smaller than RegSize.");
3482      SDValue Val;
3483
3484      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3485           Offset < ByValSize; LoadSize /= 2) {
3486        unsigned RemSize = ByValSize - Offset;
3487
3488        if (RemSize < LoadSize)
3489          continue;
3490
3491        // Load subword.
3492        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3493                                      DAG.getConstant(Offset, PtrTy));
3494        SDValue LoadVal =
3495          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3496                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3497                         false, false, Alignment);
3498        MemOpChains.push_back(LoadVal.getValue(1));
3499
3500        // Shift the loaded value.
3501        unsigned Shamt;
3502
3503        if (isLittle)
3504          Shamt = TotalSizeLoaded;
3505        else
3506          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3507
3508        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3509                                    DAG.getConstant(Shamt, MVT::i32));
3510
3511        if (Val.getNode())
3512          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3513        else
3514          Val = Shift;
3515
3516        Offset += LoadSize;
3517        TotalSizeLoaded += LoadSize;
3518        Alignment = std::min(Alignment, LoadSize);
3519      }
3520
3521      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3522      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3523      return;
3524    }
3525  }
3526
3527  // Copy remainder of byval arg to it with memcpy.
3528  unsigned MemCpySize = ByValSize - Offset;
3529  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3530                            DAG.getConstant(Offset, PtrTy));
3531  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3532                            DAG.getIntPtrConstant(ByVal.Address));
3533  Chain = DAG.getMemcpy(Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, PtrTy),
3534                        Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
3535                        MachinePointerInfo(0), MachinePointerInfo(0));
3536  MemOpChains.push_back(Chain);
3537}
3538
3539void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3540                                         const MipsCC &CC, SDValue Chain,
3541                                         SDLoc DL, SelectionDAG &DAG) const {
3542  unsigned NumRegs = CC.numIntArgRegs();
3543  const uint16_t *ArgRegs = CC.intArgRegs();
3544  const CCState &CCInfo = CC.getCCInfo();
3545  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3546  unsigned RegSize = CC.regSize();
3547  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3548  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3549  MachineFunction &MF = DAG.getMachineFunction();
3550  MachineFrameInfo *MFI = MF.getFrameInfo();
3551  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3552
3553  // Offset of the first variable argument from stack pointer.
3554  int VaArgOffset;
3555
3556  if (NumRegs == Idx)
3557    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3558  else
3559    VaArgOffset = (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3560
3561  // Record the frame index of the first variable argument
3562  // which is a value necessary to VASTART.
3563  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3564  MipsFI->setVarArgsFrameIndex(FI);
3565
3566  // Copy the integer registers that have not been used for argument passing
3567  // to the argument register save area. For O32, the save area is allocated
3568  // in the caller's stack frame, while for N32/64, it is allocated in the
3569  // callee's stack frame.
3570  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3571    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3572    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3573    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3574    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3575    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3576                                 MachinePointerInfo(), false, false, 0);
3577    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3578    OutChains.push_back(Store);
3579  }
3580}
3581