MipsISelLowering.cpp revision 1d165f1c252d1541b4788bf81092a9299cc764e5
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "MipsMachineFunction.h"
18#include "MipsTargetMachine.h"
19#include "MipsTargetObjectFile.h"
20#include "MipsSubtarget.h"
21#include "InstPrinter/MipsInstPrinter.h"
22#include "MCTargetDesc/MipsBaseInfo.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/CallingConv.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41// If I is a shifted mask, set the size (Size) and the first bit of the
42// mask (Pos), and return true.
43// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
44static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
45  if (!isShiftedMask_64(I))
46     return false;
47
48  Size = CountPopulation_64(I);
49  Pos = CountTrailingZeros_64(I);
50  return true;
51}
52
53static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
54  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
55  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
56}
57
58const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
59  switch (Opcode) {
60  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
61  case MipsISD::Hi:                return "MipsISD::Hi";
62  case MipsISD::Lo:                return "MipsISD::Lo";
63  case MipsISD::GPRel:             return "MipsISD::GPRel";
64  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
65  case MipsISD::Ret:               return "MipsISD::Ret";
66  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
67  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
68  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
69  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
70  case MipsISD::FPRound:           return "MipsISD::FPRound";
71  case MipsISD::MAdd:              return "MipsISD::MAdd";
72  case MipsISD::MAddu:             return "MipsISD::MAddu";
73  case MipsISD::MSub:              return "MipsISD::MSub";
74  case MipsISD::MSubu:             return "MipsISD::MSubu";
75  case MipsISD::DivRem:            return "MipsISD::DivRem";
76  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
77  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
78  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
79  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
80  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
81  case MipsISD::Sync:              return "MipsISD::Sync";
82  case MipsISD::Ext:               return "MipsISD::Ext";
83  case MipsISD::Ins:               return "MipsISD::Ins";
84  case MipsISD::LWL:               return "MipsISD::LWL";
85  case MipsISD::LWR:               return "MipsISD::LWR";
86  case MipsISD::SWL:               return "MipsISD::SWL";
87  case MipsISD::SWR:               return "MipsISD::SWR";
88  case MipsISD::LDL:               return "MipsISD::LDL";
89  case MipsISD::LDR:               return "MipsISD::LDR";
90  case MipsISD::SDL:               return "MipsISD::SDL";
91  case MipsISD::SDR:               return "MipsISD::SDR";
92  default:                         return NULL;
93  }
94}
95
96MipsTargetLowering::
97MipsTargetLowering(MipsTargetMachine &TM)
98  : TargetLowering(TM, new MipsTargetObjectFile()),
99    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
100    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
101    IsO32(Subtarget->isABI_O32()) {
102
103  // Mips does not have i1 type, so use i32 for
104  // setcc operations results (slt, sgt, ...).
105  setBooleanContents(ZeroOrOneBooleanContent);
106  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
107
108  // Set up the register classes
109  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
110
111  if (HasMips64)
112    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
113
114  if (Subtarget->inMips16Mode()) {
115    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
116    addRegisterClass(MVT::i32, &Mips::CPURARegRegClass);
117  }
118
119  if (!TM.Options.UseSoftFloat) {
120    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
121
122    // When dealing with single precision only, use libcalls
123    if (!Subtarget->isSingleFloat()) {
124      if (HasMips64)
125        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
126      else
127        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
128    }
129  }
130
131  // Load extented operations for i1 types must be promoted
132  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
133  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
134  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
135
136  // MIPS doesn't have extending float->double load/store
137  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
138  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
139
140  // Used by legalize types to correctly generate the setcc result.
141  // Without this, every float setcc comes with a AND/OR with the result,
142  // we don't want this, since the fpcmp result goes to a flag register,
143  // which is used implicitly by brcond and select operations.
144  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
145
146  // Mips Custom Operations
147  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
148  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
149  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
150  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
151  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
152  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
153  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
154  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
155  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
156  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
157  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
158  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
159  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
160  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
161  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
162  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
163  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
164  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
165  setOperationAction(ISD::LOAD,               MVT::i32, Custom);
166  setOperationAction(ISD::STORE,              MVT::i32, Custom);
167
168  if (!TM.Options.NoNaNsFPMath) {
169    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
170    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
171  }
172
173  if (HasMips64) {
174    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
175    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
176    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
177    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
178    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
179    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
180    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
181    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
182  }
183
184  if (!HasMips64) {
185    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
186    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
187    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
188  }
189
190  setOperationAction(ISD::SDIV, MVT::i32, Expand);
191  setOperationAction(ISD::SREM, MVT::i32, Expand);
192  setOperationAction(ISD::UDIV, MVT::i32, Expand);
193  setOperationAction(ISD::UREM, MVT::i32, Expand);
194  setOperationAction(ISD::SDIV, MVT::i64, Expand);
195  setOperationAction(ISD::SREM, MVT::i64, Expand);
196  setOperationAction(ISD::UDIV, MVT::i64, Expand);
197  setOperationAction(ISD::UREM, MVT::i64, Expand);
198
199  // Operations not directly supported by Mips.
200  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
201  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
202  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
203  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
204  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
205  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
206  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
207  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
208  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
209  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
210  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
211  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
212  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
213  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
214  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
215  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
216  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
217  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
218  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
219  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
220
221  if (!Subtarget->hasMips32r2())
222    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
223
224  if (!Subtarget->hasMips64r2())
225    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
226
227  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
228  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
229  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
230  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
231  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
232  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
233  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
234  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
235  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
236  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
237  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
238  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
239  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
240  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
241  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
242
243  if (!TM.Options.NoNaNsFPMath) {
244    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
245    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
246  }
247
248  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
249  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
250  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
251  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
252
253  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
254  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
255  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
256
257  // Use the default for now
258  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
259  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
260
261  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
262  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
263  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
264  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
265
266  setInsertFencesForAtomic(true);
267
268  if (!Subtarget->hasSEInReg()) {
269    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
270    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
271  }
272
273  if (!Subtarget->hasBitCount()) {
274    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
275    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
276  }
277
278  if (!Subtarget->hasSwap()) {
279    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
280    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
281  }
282
283  if (HasMips64) {
284    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
285    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
286    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
287    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
288  }
289
290  setTargetDAGCombine(ISD::ADDE);
291  setTargetDAGCombine(ISD::SUBE);
292  setTargetDAGCombine(ISD::SDIVREM);
293  setTargetDAGCombine(ISD::UDIVREM);
294  setTargetDAGCombine(ISD::SELECT);
295  setTargetDAGCombine(ISD::AND);
296  setTargetDAGCombine(ISD::OR);
297  setTargetDAGCombine(ISD::ADD);
298
299  setMinFunctionAlignment(HasMips64 ? 3 : 2);
300
301  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
302  computeRegisterProperties();
303
304  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
305  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
306
307  maxStoresPerMemcpy = 16;
308}
309
310bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
311  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
312
313  switch (SVT) {
314  case MVT::i64:
315  case MVT::i32:
316    return true;
317  default:
318    return false;
319  }
320}
321
322EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
323  return MVT::i32;
324}
325
326// SelectMadd -
327// Transforms a subgraph in CurDAG if the following pattern is found:
328//  (addc multLo, Lo0), (adde multHi, Hi0),
329// where,
330//  multHi/Lo: product of multiplication
331//  Lo0: initial value of Lo register
332//  Hi0: initial value of Hi register
333// Return true if pattern matching was successful.
334static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
335  // ADDENode's second operand must be a flag output of an ADDC node in order
336  // for the matching to be successful.
337  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
338
339  if (ADDCNode->getOpcode() != ISD::ADDC)
340    return false;
341
342  SDValue MultHi = ADDENode->getOperand(0);
343  SDValue MultLo = ADDCNode->getOperand(0);
344  SDNode *MultNode = MultHi.getNode();
345  unsigned MultOpc = MultHi.getOpcode();
346
347  // MultHi and MultLo must be generated by the same node,
348  if (MultLo.getNode() != MultNode)
349    return false;
350
351  // and it must be a multiplication.
352  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
353    return false;
354
355  // MultLo amd MultHi must be the first and second output of MultNode
356  // respectively.
357  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
358    return false;
359
360  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
361  // of the values of MultNode, in which case MultNode will be removed in later
362  // phases.
363  // If there exist users other than ADDENode or ADDCNode, this function returns
364  // here, which will result in MultNode being mapped to a single MULT
365  // instruction node rather than a pair of MULT and MADD instructions being
366  // produced.
367  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
368    return false;
369
370  SDValue Chain = CurDAG->getEntryNode();
371  DebugLoc dl = ADDENode->getDebugLoc();
372
373  // create MipsMAdd(u) node
374  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
375
376  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
377                                 MultNode->getOperand(0),// Factor 0
378                                 MultNode->getOperand(1),// Factor 1
379                                 ADDCNode->getOperand(1),// Lo0
380                                 ADDENode->getOperand(1));// Hi0
381
382  // create CopyFromReg nodes
383  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
384                                              MAdd);
385  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
386                                              Mips::HI, MVT::i32,
387                                              CopyFromLo.getValue(2));
388
389  // replace uses of adde and addc here
390  if (!SDValue(ADDCNode, 0).use_empty())
391    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
392
393  if (!SDValue(ADDENode, 0).use_empty())
394    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
395
396  return true;
397}
398
399// SelectMsub -
400// Transforms a subgraph in CurDAG if the following pattern is found:
401//  (addc Lo0, multLo), (sube Hi0, multHi),
402// where,
403//  multHi/Lo: product of multiplication
404//  Lo0: initial value of Lo register
405//  Hi0: initial value of Hi register
406// Return true if pattern matching was successful.
407static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
408  // SUBENode's second operand must be a flag output of an SUBC node in order
409  // for the matching to be successful.
410  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
411
412  if (SUBCNode->getOpcode() != ISD::SUBC)
413    return false;
414
415  SDValue MultHi = SUBENode->getOperand(1);
416  SDValue MultLo = SUBCNode->getOperand(1);
417  SDNode *MultNode = MultHi.getNode();
418  unsigned MultOpc = MultHi.getOpcode();
419
420  // MultHi and MultLo must be generated by the same node,
421  if (MultLo.getNode() != MultNode)
422    return false;
423
424  // and it must be a multiplication.
425  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
426    return false;
427
428  // MultLo amd MultHi must be the first and second output of MultNode
429  // respectively.
430  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
431    return false;
432
433  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
434  // of the values of MultNode, in which case MultNode will be removed in later
435  // phases.
436  // If there exist users other than SUBENode or SUBCNode, this function returns
437  // here, which will result in MultNode being mapped to a single MULT
438  // instruction node rather than a pair of MULT and MSUB instructions being
439  // produced.
440  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
441    return false;
442
443  SDValue Chain = CurDAG->getEntryNode();
444  DebugLoc dl = SUBENode->getDebugLoc();
445
446  // create MipsSub(u) node
447  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
448
449  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
450                                 MultNode->getOperand(0),// Factor 0
451                                 MultNode->getOperand(1),// Factor 1
452                                 SUBCNode->getOperand(0),// Lo0
453                                 SUBENode->getOperand(0));// Hi0
454
455  // create CopyFromReg nodes
456  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
457                                              MSub);
458  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
459                                              Mips::HI, MVT::i32,
460                                              CopyFromLo.getValue(2));
461
462  // replace uses of sube and subc here
463  if (!SDValue(SUBCNode, 0).use_empty())
464    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
465
466  if (!SDValue(SUBENode, 0).use_empty())
467    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
468
469  return true;
470}
471
472static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
473                                  TargetLowering::DAGCombinerInfo &DCI,
474                                  const MipsSubtarget *Subtarget) {
475  if (DCI.isBeforeLegalize())
476    return SDValue();
477
478  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
479      SelectMadd(N, &DAG))
480    return SDValue(N, 0);
481
482  return SDValue();
483}
484
485static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
486                                  TargetLowering::DAGCombinerInfo &DCI,
487                                  const MipsSubtarget *Subtarget) {
488  if (DCI.isBeforeLegalize())
489    return SDValue();
490
491  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
492      SelectMsub(N, &DAG))
493    return SDValue(N, 0);
494
495  return SDValue();
496}
497
498static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
499                                    TargetLowering::DAGCombinerInfo &DCI,
500                                    const MipsSubtarget *Subtarget) {
501  if (DCI.isBeforeLegalizeOps())
502    return SDValue();
503
504  EVT Ty = N->getValueType(0);
505  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
506  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
507  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
508                                                  MipsISD::DivRemU;
509  DebugLoc dl = N->getDebugLoc();
510
511  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
512                               N->getOperand(0), N->getOperand(1));
513  SDValue InChain = DAG.getEntryNode();
514  SDValue InGlue = DivRem;
515
516  // insert MFLO
517  if (N->hasAnyUseOfValue(0)) {
518    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
519                                            InGlue);
520    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
521    InChain = CopyFromLo.getValue(1);
522    InGlue = CopyFromLo.getValue(2);
523  }
524
525  // insert MFHI
526  if (N->hasAnyUseOfValue(1)) {
527    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
528                                            HI, Ty, InGlue);
529    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
530  }
531
532  return SDValue();
533}
534
535static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
536  switch (CC) {
537  default: llvm_unreachable("Unknown fp condition code!");
538  case ISD::SETEQ:
539  case ISD::SETOEQ: return Mips::FCOND_OEQ;
540  case ISD::SETUNE: return Mips::FCOND_UNE;
541  case ISD::SETLT:
542  case ISD::SETOLT: return Mips::FCOND_OLT;
543  case ISD::SETGT:
544  case ISD::SETOGT: return Mips::FCOND_OGT;
545  case ISD::SETLE:
546  case ISD::SETOLE: return Mips::FCOND_OLE;
547  case ISD::SETGE:
548  case ISD::SETOGE: return Mips::FCOND_OGE;
549  case ISD::SETULT: return Mips::FCOND_ULT;
550  case ISD::SETULE: return Mips::FCOND_ULE;
551  case ISD::SETUGT: return Mips::FCOND_UGT;
552  case ISD::SETUGE: return Mips::FCOND_UGE;
553  case ISD::SETUO:  return Mips::FCOND_UN;
554  case ISD::SETO:   return Mips::FCOND_OR;
555  case ISD::SETNE:
556  case ISD::SETONE: return Mips::FCOND_ONE;
557  case ISD::SETUEQ: return Mips::FCOND_UEQ;
558  }
559}
560
561
562// Returns true if condition code has to be inverted.
563static bool InvertFPCondCode(Mips::CondCode CC) {
564  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
565    return false;
566
567  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
568         "Illegal Condition Code");
569
570  return true;
571}
572
573// Creates and returns an FPCmp node from a setcc node.
574// Returns Op if setcc is not a floating point comparison.
575static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
576  // must be a SETCC node
577  if (Op.getOpcode() != ISD::SETCC)
578    return Op;
579
580  SDValue LHS = Op.getOperand(0);
581
582  if (!LHS.getValueType().isFloatingPoint())
583    return Op;
584
585  SDValue RHS = Op.getOperand(1);
586  DebugLoc dl = Op.getDebugLoc();
587
588  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
589  // node if necessary.
590  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
591
592  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
593                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
594}
595
596// Creates and returns a CMovFPT/F node.
597static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
598                            SDValue False, DebugLoc DL) {
599  bool invert = InvertFPCondCode((Mips::CondCode)
600                                 cast<ConstantSDNode>(Cond.getOperand(2))
601                                 ->getSExtValue());
602
603  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
604                     True.getValueType(), True, False, Cond);
605}
606
607static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
608                                    TargetLowering::DAGCombinerInfo &DCI,
609                                    const MipsSubtarget *Subtarget) {
610  if (DCI.isBeforeLegalizeOps())
611    return SDValue();
612
613  SDValue SetCC = N->getOperand(0);
614
615  if ((SetCC.getOpcode() != ISD::SETCC) ||
616      !SetCC.getOperand(0).getValueType().isInteger())
617    return SDValue();
618
619  SDValue False = N->getOperand(2);
620  EVT FalseTy = False.getValueType();
621
622  if (!FalseTy.isInteger())
623    return SDValue();
624
625  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
626
627  if (!CN || CN->getZExtValue())
628    return SDValue();
629
630  const DebugLoc DL = N->getDebugLoc();
631  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
632  SDValue True = N->getOperand(1);
633
634  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
635                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
636
637  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
638}
639
640static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
641                                 TargetLowering::DAGCombinerInfo &DCI,
642                                 const MipsSubtarget *Subtarget) {
643  // Pattern match EXT.
644  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
645  //  => ext $dst, $src, size, pos
646  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
647    return SDValue();
648
649  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
650  unsigned ShiftRightOpc = ShiftRight.getOpcode();
651
652  // Op's first operand must be a shift right.
653  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
654    return SDValue();
655
656  // The second operand of the shift must be an immediate.
657  ConstantSDNode *CN;
658  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
659    return SDValue();
660
661  uint64_t Pos = CN->getZExtValue();
662  uint64_t SMPos, SMSize;
663
664  // Op's second operand must be a shifted mask.
665  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
666      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
667    return SDValue();
668
669  // Return if the shifted mask does not start at bit 0 or the sum of its size
670  // and Pos exceeds the word's size.
671  EVT ValTy = N->getValueType(0);
672  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
673    return SDValue();
674
675  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
676                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
677                     DAG.getConstant(SMSize, MVT::i32));
678}
679
680static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
681                                TargetLowering::DAGCombinerInfo &DCI,
682                                const MipsSubtarget *Subtarget) {
683  // Pattern match INS.
684  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
685  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
686  //  => ins $dst, $src, size, pos, $src1
687  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
688    return SDValue();
689
690  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
691  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
692  ConstantSDNode *CN;
693
694  // See if Op's first operand matches (and $src1 , mask0).
695  if (And0.getOpcode() != ISD::AND)
696    return SDValue();
697
698  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
699      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
700    return SDValue();
701
702  // See if Op's second operand matches (and (shl $src, pos), mask1).
703  if (And1.getOpcode() != ISD::AND)
704    return SDValue();
705
706  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
707      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
708    return SDValue();
709
710  // The shift masks must have the same position and size.
711  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
712    return SDValue();
713
714  SDValue Shl = And1.getOperand(0);
715  if (Shl.getOpcode() != ISD::SHL)
716    return SDValue();
717
718  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
719    return SDValue();
720
721  unsigned Shamt = CN->getZExtValue();
722
723  // Return if the shift amount and the first bit position of mask are not the
724  // same.
725  EVT ValTy = N->getValueType(0);
726  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
727    return SDValue();
728
729  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
730                     DAG.getConstant(SMPos0, MVT::i32),
731                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
732}
733
734static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
735                                 TargetLowering::DAGCombinerInfo &DCI,
736                                 const MipsSubtarget *Subtarget) {
737  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
738
739  if (DCI.isBeforeLegalizeOps())
740    return SDValue();
741
742  SDValue Add = N->getOperand(1);
743
744  if (Add.getOpcode() != ISD::ADD)
745    return SDValue();
746
747  SDValue Lo = Add.getOperand(1);
748
749  if ((Lo.getOpcode() != MipsISD::Lo) ||
750      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
751    return SDValue();
752
753  EVT ValTy = N->getValueType(0);
754  DebugLoc DL = N->getDebugLoc();
755
756  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
757                             Add.getOperand(0));
758  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
759}
760
761SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
762  const {
763  SelectionDAG &DAG = DCI.DAG;
764  unsigned opc = N->getOpcode();
765
766  switch (opc) {
767  default: break;
768  case ISD::ADDE:
769    return PerformADDECombine(N, DAG, DCI, Subtarget);
770  case ISD::SUBE:
771    return PerformSUBECombine(N, DAG, DCI, Subtarget);
772  case ISD::SDIVREM:
773  case ISD::UDIVREM:
774    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
775  case ISD::SELECT:
776    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
777  case ISD::AND:
778    return PerformANDCombine(N, DAG, DCI, Subtarget);
779  case ISD::OR:
780    return PerformORCombine(N, DAG, DCI, Subtarget);
781  case ISD::ADD:
782    return PerformADDCombine(N, DAG, DCI, Subtarget);
783  }
784
785  return SDValue();
786}
787
788SDValue MipsTargetLowering::
789LowerOperation(SDValue Op, SelectionDAG &DAG) const
790{
791  switch (Op.getOpcode())
792  {
793    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
794    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
795    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
796    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
797    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
798    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
799    case ISD::SELECT:             return LowerSELECT(Op, DAG);
800    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
801    case ISD::SETCC:              return LowerSETCC(Op, DAG);
802    case ISD::VASTART:            return LowerVASTART(Op, DAG);
803    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
804    case ISD::FABS:               return LowerFABS(Op, DAG);
805    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
806    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
807    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
808    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
809    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
810    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
811    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
812    case ISD::LOAD:               return LowerLOAD(Op, DAG);
813    case ISD::STORE:              return LowerSTORE(Op, DAG);
814  }
815  return SDValue();
816}
817
818//===----------------------------------------------------------------------===//
819//  Lower helper functions
820//===----------------------------------------------------------------------===//
821
822// AddLiveIn - This helper function adds the specified physical register to the
823// MachineFunction as a live in value.  It also creates a corresponding
824// virtual register for it.
825static unsigned
826AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
827{
828  assert(RC->contains(PReg) && "Not the correct regclass!");
829  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
830  MF.getRegInfo().addLiveIn(PReg, VReg);
831  return VReg;
832}
833
834// Get fp branch code (not opcode) from condition code.
835static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
836  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
837    return Mips::BRANCH_T;
838
839  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
840         "Invalid CondCode.");
841
842  return Mips::BRANCH_F;
843}
844
845/*
846static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
847                                        DebugLoc dl,
848                                        const MipsSubtarget *Subtarget,
849                                        const TargetInstrInfo *TII,
850                                        bool isFPCmp, unsigned Opc) {
851  // There is no need to expand CMov instructions if target has
852  // conditional moves.
853  if (Subtarget->hasCondMov())
854    return BB;
855
856  // To "insert" a SELECT_CC instruction, we actually have to insert the
857  // diamond control-flow pattern.  The incoming instruction knows the
858  // destination vreg to set, the condition code register to branch on, the
859  // true/false values to select between, and a branch opcode to use.
860  const BasicBlock *LLVM_BB = BB->getBasicBlock();
861  MachineFunction::iterator It = BB;
862  ++It;
863
864  //  thisMBB:
865  //  ...
866  //   TrueVal = ...
867  //   setcc r1, r2, r3
868  //   bNE   r1, r0, copy1MBB
869  //   fallthrough --> copy0MBB
870  MachineBasicBlock *thisMBB  = BB;
871  MachineFunction *F = BB->getParent();
872  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
873  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
874  F->insert(It, copy0MBB);
875  F->insert(It, sinkMBB);
876
877  // Transfer the remainder of BB and its successor edges to sinkMBB.
878  sinkMBB->splice(sinkMBB->begin(), BB,
879                  llvm::next(MachineBasicBlock::iterator(MI)),
880                  BB->end());
881  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
882
883  // Next, add the true and fallthrough blocks as its successors.
884  BB->addSuccessor(copy0MBB);
885  BB->addSuccessor(sinkMBB);
886
887  // Emit the right instruction according to the type of the operands compared
888  if (isFPCmp)
889    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
890  else
891    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
892      .addReg(Mips::ZERO).addMBB(sinkMBB);
893
894  //  copy0MBB:
895  //   %FalseValue = ...
896  //   # fallthrough to sinkMBB
897  BB = copy0MBB;
898
899  // Update machine-CFG edges
900  BB->addSuccessor(sinkMBB);
901
902  //  sinkMBB:
903  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
904  //  ...
905  BB = sinkMBB;
906
907  if (isFPCmp)
908    BuildMI(*BB, BB->begin(), dl,
909            TII->get(Mips::PHI), MI->getOperand(0).getReg())
910      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
911      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
912  else
913    BuildMI(*BB, BB->begin(), dl,
914            TII->get(Mips::PHI), MI->getOperand(0).getReg())
915      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
916      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
917
918  MI->eraseFromParent();   // The pseudo instruction is gone now.
919  return BB;
920}
921*/
922MachineBasicBlock *
923MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
924                                                MachineBasicBlock *BB) const {
925  switch (MI->getOpcode()) {
926  default: llvm_unreachable("Unexpected instr type to insert");
927  case Mips::ATOMIC_LOAD_ADD_I8:
928  case Mips::ATOMIC_LOAD_ADD_I8_P8:
929    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
930  case Mips::ATOMIC_LOAD_ADD_I16:
931  case Mips::ATOMIC_LOAD_ADD_I16_P8:
932    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
933  case Mips::ATOMIC_LOAD_ADD_I32:
934  case Mips::ATOMIC_LOAD_ADD_I32_P8:
935    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
936  case Mips::ATOMIC_LOAD_ADD_I64:
937  case Mips::ATOMIC_LOAD_ADD_I64_P8:
938    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
939
940  case Mips::ATOMIC_LOAD_AND_I8:
941  case Mips::ATOMIC_LOAD_AND_I8_P8:
942    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
943  case Mips::ATOMIC_LOAD_AND_I16:
944  case Mips::ATOMIC_LOAD_AND_I16_P8:
945    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
946  case Mips::ATOMIC_LOAD_AND_I32:
947  case Mips::ATOMIC_LOAD_AND_I32_P8:
948    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
949  case Mips::ATOMIC_LOAD_AND_I64:
950  case Mips::ATOMIC_LOAD_AND_I64_P8:
951    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
952
953  case Mips::ATOMIC_LOAD_OR_I8:
954  case Mips::ATOMIC_LOAD_OR_I8_P8:
955    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
956  case Mips::ATOMIC_LOAD_OR_I16:
957  case Mips::ATOMIC_LOAD_OR_I16_P8:
958    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
959  case Mips::ATOMIC_LOAD_OR_I32:
960  case Mips::ATOMIC_LOAD_OR_I32_P8:
961    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
962  case Mips::ATOMIC_LOAD_OR_I64:
963  case Mips::ATOMIC_LOAD_OR_I64_P8:
964    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
965
966  case Mips::ATOMIC_LOAD_XOR_I8:
967  case Mips::ATOMIC_LOAD_XOR_I8_P8:
968    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
969  case Mips::ATOMIC_LOAD_XOR_I16:
970  case Mips::ATOMIC_LOAD_XOR_I16_P8:
971    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
972  case Mips::ATOMIC_LOAD_XOR_I32:
973  case Mips::ATOMIC_LOAD_XOR_I32_P8:
974    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
975  case Mips::ATOMIC_LOAD_XOR_I64:
976  case Mips::ATOMIC_LOAD_XOR_I64_P8:
977    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
978
979  case Mips::ATOMIC_LOAD_NAND_I8:
980  case Mips::ATOMIC_LOAD_NAND_I8_P8:
981    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
982  case Mips::ATOMIC_LOAD_NAND_I16:
983  case Mips::ATOMIC_LOAD_NAND_I16_P8:
984    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
985  case Mips::ATOMIC_LOAD_NAND_I32:
986  case Mips::ATOMIC_LOAD_NAND_I32_P8:
987    return EmitAtomicBinary(MI, BB, 4, 0, true);
988  case Mips::ATOMIC_LOAD_NAND_I64:
989  case Mips::ATOMIC_LOAD_NAND_I64_P8:
990    return EmitAtomicBinary(MI, BB, 8, 0, true);
991
992  case Mips::ATOMIC_LOAD_SUB_I8:
993  case Mips::ATOMIC_LOAD_SUB_I8_P8:
994    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
995  case Mips::ATOMIC_LOAD_SUB_I16:
996  case Mips::ATOMIC_LOAD_SUB_I16_P8:
997    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
998  case Mips::ATOMIC_LOAD_SUB_I32:
999  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1000    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1001  case Mips::ATOMIC_LOAD_SUB_I64:
1002  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1003    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1004
1005  case Mips::ATOMIC_SWAP_I8:
1006  case Mips::ATOMIC_SWAP_I8_P8:
1007    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1008  case Mips::ATOMIC_SWAP_I16:
1009  case Mips::ATOMIC_SWAP_I16_P8:
1010    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1011  case Mips::ATOMIC_SWAP_I32:
1012  case Mips::ATOMIC_SWAP_I32_P8:
1013    return EmitAtomicBinary(MI, BB, 4, 0);
1014  case Mips::ATOMIC_SWAP_I64:
1015  case Mips::ATOMIC_SWAP_I64_P8:
1016    return EmitAtomicBinary(MI, BB, 8, 0);
1017
1018  case Mips::ATOMIC_CMP_SWAP_I8:
1019  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1020    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1021  case Mips::ATOMIC_CMP_SWAP_I16:
1022  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1023    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1024  case Mips::ATOMIC_CMP_SWAP_I32:
1025  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1026    return EmitAtomicCmpSwap(MI, BB, 4);
1027  case Mips::ATOMIC_CMP_SWAP_I64:
1028  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1029    return EmitAtomicCmpSwap(MI, BB, 8);
1030  }
1031}
1032
1033// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1034// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1035MachineBasicBlock *
1036MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1037                                     unsigned Size, unsigned BinOpcode,
1038                                     bool Nand) const {
1039  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1040
1041  MachineFunction *MF = BB->getParent();
1042  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1043  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1044  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1045  DebugLoc dl = MI->getDebugLoc();
1046  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1047
1048  if (Size == 4) {
1049    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1050    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1051    AND = Mips::AND;
1052    NOR = Mips::NOR;
1053    ZERO = Mips::ZERO;
1054    BEQ = Mips::BEQ;
1055  }
1056  else {
1057    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1058    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1059    AND = Mips::AND64;
1060    NOR = Mips::NOR64;
1061    ZERO = Mips::ZERO_64;
1062    BEQ = Mips::BEQ64;
1063  }
1064
1065  unsigned OldVal = MI->getOperand(0).getReg();
1066  unsigned Ptr = MI->getOperand(1).getReg();
1067  unsigned Incr = MI->getOperand(2).getReg();
1068
1069  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1070  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1071  unsigned Success = RegInfo.createVirtualRegister(RC);
1072
1073  // insert new blocks after the current block
1074  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1075  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1076  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1077  MachineFunction::iterator It = BB;
1078  ++It;
1079  MF->insert(It, loopMBB);
1080  MF->insert(It, exitMBB);
1081
1082  // Transfer the remainder of BB and its successor edges to exitMBB.
1083  exitMBB->splice(exitMBB->begin(), BB,
1084                  llvm::next(MachineBasicBlock::iterator(MI)),
1085                  BB->end());
1086  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1087
1088  //  thisMBB:
1089  //    ...
1090  //    fallthrough --> loopMBB
1091  BB->addSuccessor(loopMBB);
1092  loopMBB->addSuccessor(loopMBB);
1093  loopMBB->addSuccessor(exitMBB);
1094
1095  //  loopMBB:
1096  //    ll oldval, 0(ptr)
1097  //    <binop> storeval, oldval, incr
1098  //    sc success, storeval, 0(ptr)
1099  //    beq success, $0, loopMBB
1100  BB = loopMBB;
1101  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1102  if (Nand) {
1103    //  and andres, oldval, incr
1104    //  nor storeval, $0, andres
1105    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1106    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1107  } else if (BinOpcode) {
1108    //  <binop> storeval, oldval, incr
1109    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1110  } else {
1111    StoreVal = Incr;
1112  }
1113  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1114  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1115
1116  MI->eraseFromParent();   // The instruction is gone now.
1117
1118  return exitMBB;
1119}
1120
1121MachineBasicBlock *
1122MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1123                                             MachineBasicBlock *BB,
1124                                             unsigned Size, unsigned BinOpcode,
1125                                             bool Nand) const {
1126  assert((Size == 1 || Size == 2) &&
1127      "Unsupported size for EmitAtomicBinaryPartial.");
1128
1129  MachineFunction *MF = BB->getParent();
1130  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1131  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1132  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1133  DebugLoc dl = MI->getDebugLoc();
1134  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1135  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1136
1137  unsigned Dest = MI->getOperand(0).getReg();
1138  unsigned Ptr = MI->getOperand(1).getReg();
1139  unsigned Incr = MI->getOperand(2).getReg();
1140
1141  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1142  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1143  unsigned Mask = RegInfo.createVirtualRegister(RC);
1144  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1145  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1146  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1147  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1148  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1149  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1150  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1151  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1152  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1153  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1154  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1155  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1156  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1157  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1158  unsigned Success = RegInfo.createVirtualRegister(RC);
1159
1160  // insert new blocks after the current block
1161  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1162  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1163  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1164  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1165  MachineFunction::iterator It = BB;
1166  ++It;
1167  MF->insert(It, loopMBB);
1168  MF->insert(It, sinkMBB);
1169  MF->insert(It, exitMBB);
1170
1171  // Transfer the remainder of BB and its successor edges to exitMBB.
1172  exitMBB->splice(exitMBB->begin(), BB,
1173                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1174  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1175
1176  BB->addSuccessor(loopMBB);
1177  loopMBB->addSuccessor(loopMBB);
1178  loopMBB->addSuccessor(sinkMBB);
1179  sinkMBB->addSuccessor(exitMBB);
1180
1181  //  thisMBB:
1182  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1183  //    and     alignedaddr,ptr,masklsb2
1184  //    andi    ptrlsb2,ptr,3
1185  //    sll     shiftamt,ptrlsb2,3
1186  //    ori     maskupper,$0,255               # 0xff
1187  //    sll     mask,maskupper,shiftamt
1188  //    nor     mask2,$0,mask
1189  //    sll     incr2,incr,shiftamt
1190
1191  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1192  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1193    .addReg(Mips::ZERO).addImm(-4);
1194  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1195    .addReg(Ptr).addReg(MaskLSB2);
1196  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1197  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1198  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1199    .addReg(Mips::ZERO).addImm(MaskImm);
1200  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1201    .addReg(ShiftAmt).addReg(MaskUpper);
1202  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1203  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1204
1205  // atomic.load.binop
1206  // loopMBB:
1207  //   ll      oldval,0(alignedaddr)
1208  //   binop   binopres,oldval,incr2
1209  //   and     newval,binopres,mask
1210  //   and     maskedoldval0,oldval,mask2
1211  //   or      storeval,maskedoldval0,newval
1212  //   sc      success,storeval,0(alignedaddr)
1213  //   beq     success,$0,loopMBB
1214
1215  // atomic.swap
1216  // loopMBB:
1217  //   ll      oldval,0(alignedaddr)
1218  //   and     newval,incr2,mask
1219  //   and     maskedoldval0,oldval,mask2
1220  //   or      storeval,maskedoldval0,newval
1221  //   sc      success,storeval,0(alignedaddr)
1222  //   beq     success,$0,loopMBB
1223
1224  BB = loopMBB;
1225  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1226  if (Nand) {
1227    //  and andres, oldval, incr2
1228    //  nor binopres, $0, andres
1229    //  and newval, binopres, mask
1230    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1231    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1232      .addReg(Mips::ZERO).addReg(AndRes);
1233    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1234  } else if (BinOpcode) {
1235    //  <binop> binopres, oldval, incr2
1236    //  and newval, binopres, mask
1237    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1238    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1239  } else {// atomic.swap
1240    //  and newval, incr2, mask
1241    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1242  }
1243
1244  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1245    .addReg(OldVal).addReg(Mask2);
1246  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1247    .addReg(MaskedOldVal0).addReg(NewVal);
1248  BuildMI(BB, dl, TII->get(SC), Success)
1249    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1250  BuildMI(BB, dl, TII->get(Mips::BEQ))
1251    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1252
1253  //  sinkMBB:
1254  //    and     maskedoldval1,oldval,mask
1255  //    srl     srlres,maskedoldval1,shiftamt
1256  //    sll     sllres,srlres,24
1257  //    sra     dest,sllres,24
1258  BB = sinkMBB;
1259  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1260
1261  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1262    .addReg(OldVal).addReg(Mask);
1263  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1264      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1265  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1266      .addReg(SrlRes).addImm(ShiftImm);
1267  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1268      .addReg(SllRes).addImm(ShiftImm);
1269
1270  MI->eraseFromParent();   // The instruction is gone now.
1271
1272  return exitMBB;
1273}
1274
1275MachineBasicBlock *
1276MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1277                                      MachineBasicBlock *BB,
1278                                      unsigned Size) const {
1279  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1280
1281  MachineFunction *MF = BB->getParent();
1282  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1283  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1284  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1285  DebugLoc dl = MI->getDebugLoc();
1286  unsigned LL, SC, ZERO, BNE, BEQ;
1287
1288  if (Size == 4) {
1289    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1290    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1291    ZERO = Mips::ZERO;
1292    BNE = Mips::BNE;
1293    BEQ = Mips::BEQ;
1294  }
1295  else {
1296    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1297    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1298    ZERO = Mips::ZERO_64;
1299    BNE = Mips::BNE64;
1300    BEQ = Mips::BEQ64;
1301  }
1302
1303  unsigned Dest    = MI->getOperand(0).getReg();
1304  unsigned Ptr     = MI->getOperand(1).getReg();
1305  unsigned OldVal  = MI->getOperand(2).getReg();
1306  unsigned NewVal  = MI->getOperand(3).getReg();
1307
1308  unsigned Success = RegInfo.createVirtualRegister(RC);
1309
1310  // insert new blocks after the current block
1311  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1312  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1313  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1314  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1315  MachineFunction::iterator It = BB;
1316  ++It;
1317  MF->insert(It, loop1MBB);
1318  MF->insert(It, loop2MBB);
1319  MF->insert(It, exitMBB);
1320
1321  // Transfer the remainder of BB and its successor edges to exitMBB.
1322  exitMBB->splice(exitMBB->begin(), BB,
1323                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1324  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1325
1326  //  thisMBB:
1327  //    ...
1328  //    fallthrough --> loop1MBB
1329  BB->addSuccessor(loop1MBB);
1330  loop1MBB->addSuccessor(exitMBB);
1331  loop1MBB->addSuccessor(loop2MBB);
1332  loop2MBB->addSuccessor(loop1MBB);
1333  loop2MBB->addSuccessor(exitMBB);
1334
1335  // loop1MBB:
1336  //   ll dest, 0(ptr)
1337  //   bne dest, oldval, exitMBB
1338  BB = loop1MBB;
1339  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1340  BuildMI(BB, dl, TII->get(BNE))
1341    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1342
1343  // loop2MBB:
1344  //   sc success, newval, 0(ptr)
1345  //   beq success, $0, loop1MBB
1346  BB = loop2MBB;
1347  BuildMI(BB, dl, TII->get(SC), Success)
1348    .addReg(NewVal).addReg(Ptr).addImm(0);
1349  BuildMI(BB, dl, TII->get(BEQ))
1350    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1351
1352  MI->eraseFromParent();   // The instruction is gone now.
1353
1354  return exitMBB;
1355}
1356
1357MachineBasicBlock *
1358MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1359                                              MachineBasicBlock *BB,
1360                                              unsigned Size) const {
1361  assert((Size == 1 || Size == 2) &&
1362      "Unsupported size for EmitAtomicCmpSwapPartial.");
1363
1364  MachineFunction *MF = BB->getParent();
1365  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1366  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1367  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1368  DebugLoc dl = MI->getDebugLoc();
1369  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1370  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1371
1372  unsigned Dest    = MI->getOperand(0).getReg();
1373  unsigned Ptr     = MI->getOperand(1).getReg();
1374  unsigned CmpVal  = MI->getOperand(2).getReg();
1375  unsigned NewVal  = MI->getOperand(3).getReg();
1376
1377  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1378  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1379  unsigned Mask = RegInfo.createVirtualRegister(RC);
1380  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1381  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1382  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1383  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1384  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1385  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1386  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1387  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1388  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1389  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1390  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1391  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1392  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1393  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1394  unsigned Success = RegInfo.createVirtualRegister(RC);
1395
1396  // insert new blocks after the current block
1397  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1398  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1399  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1400  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1401  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1402  MachineFunction::iterator It = BB;
1403  ++It;
1404  MF->insert(It, loop1MBB);
1405  MF->insert(It, loop2MBB);
1406  MF->insert(It, sinkMBB);
1407  MF->insert(It, exitMBB);
1408
1409  // Transfer the remainder of BB and its successor edges to exitMBB.
1410  exitMBB->splice(exitMBB->begin(), BB,
1411                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1412  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1413
1414  BB->addSuccessor(loop1MBB);
1415  loop1MBB->addSuccessor(sinkMBB);
1416  loop1MBB->addSuccessor(loop2MBB);
1417  loop2MBB->addSuccessor(loop1MBB);
1418  loop2MBB->addSuccessor(sinkMBB);
1419  sinkMBB->addSuccessor(exitMBB);
1420
1421  // FIXME: computation of newval2 can be moved to loop2MBB.
1422  //  thisMBB:
1423  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1424  //    and     alignedaddr,ptr,masklsb2
1425  //    andi    ptrlsb2,ptr,3
1426  //    sll     shiftamt,ptrlsb2,3
1427  //    ori     maskupper,$0,255               # 0xff
1428  //    sll     mask,maskupper,shiftamt
1429  //    nor     mask2,$0,mask
1430  //    andi    maskedcmpval,cmpval,255
1431  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1432  //    andi    maskednewval,newval,255
1433  //    sll     shiftednewval,maskednewval,shiftamt
1434  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1435  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1436    .addReg(Mips::ZERO).addImm(-4);
1437  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1438    .addReg(Ptr).addReg(MaskLSB2);
1439  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1440  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1441  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1442    .addReg(Mips::ZERO).addImm(MaskImm);
1443  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1444    .addReg(ShiftAmt).addReg(MaskUpper);
1445  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1446  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1447    .addReg(CmpVal).addImm(MaskImm);
1448  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1449    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1450  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1451    .addReg(NewVal).addImm(MaskImm);
1452  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1453    .addReg(ShiftAmt).addReg(MaskedNewVal);
1454
1455  //  loop1MBB:
1456  //    ll      oldval,0(alginedaddr)
1457  //    and     maskedoldval0,oldval,mask
1458  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1459  BB = loop1MBB;
1460  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1461  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1462    .addReg(OldVal).addReg(Mask);
1463  BuildMI(BB, dl, TII->get(Mips::BNE))
1464    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1465
1466  //  loop2MBB:
1467  //    and     maskedoldval1,oldval,mask2
1468  //    or      storeval,maskedoldval1,shiftednewval
1469  //    sc      success,storeval,0(alignedaddr)
1470  //    beq     success,$0,loop1MBB
1471  BB = loop2MBB;
1472  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1473    .addReg(OldVal).addReg(Mask2);
1474  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1475    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1476  BuildMI(BB, dl, TII->get(SC), Success)
1477      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1478  BuildMI(BB, dl, TII->get(Mips::BEQ))
1479      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1480
1481  //  sinkMBB:
1482  //    srl     srlres,maskedoldval0,shiftamt
1483  //    sll     sllres,srlres,24
1484  //    sra     dest,sllres,24
1485  BB = sinkMBB;
1486  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1487
1488  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1489      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1490  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1491      .addReg(SrlRes).addImm(ShiftImm);
1492  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1493      .addReg(SllRes).addImm(ShiftImm);
1494
1495  MI->eraseFromParent();   // The instruction is gone now.
1496
1497  return exitMBB;
1498}
1499
1500//===----------------------------------------------------------------------===//
1501//  Misc Lower Operation implementation
1502//===----------------------------------------------------------------------===//
1503SDValue MipsTargetLowering::
1504LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1505{
1506  // The first operand is the chain, the second is the condition, the third is
1507  // the block to branch to if the condition is true.
1508  SDValue Chain = Op.getOperand(0);
1509  SDValue Dest = Op.getOperand(2);
1510  DebugLoc dl = Op.getDebugLoc();
1511
1512  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1513
1514  // Return if flag is not set by a floating point comparison.
1515  if (CondRes.getOpcode() != MipsISD::FPCmp)
1516    return Op;
1517
1518  SDValue CCNode  = CondRes.getOperand(2);
1519  Mips::CondCode CC =
1520    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1521  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1522
1523  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1524                     Dest, CondRes);
1525}
1526
1527SDValue MipsTargetLowering::
1528LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1529{
1530  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1531
1532  // Return if flag is not set by a floating point comparison.
1533  if (Cond.getOpcode() != MipsISD::FPCmp)
1534    return Op;
1535
1536  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1537                      Op.getDebugLoc());
1538}
1539
1540SDValue MipsTargetLowering::
1541LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1542{
1543  DebugLoc DL = Op.getDebugLoc();
1544  EVT Ty = Op.getOperand(0).getValueType();
1545  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1546                             Op.getOperand(0), Op.getOperand(1),
1547                             Op.getOperand(4));
1548
1549  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1550                     Op.getOperand(3));
1551}
1552
1553SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1554  SDValue Cond = CreateFPCmp(DAG, Op);
1555
1556  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1557         "Floating point operand expected.");
1558
1559  SDValue True  = DAG.getConstant(1, MVT::i32);
1560  SDValue False = DAG.getConstant(0, MVT::i32);
1561
1562  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1563}
1564
1565SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1566                                               SelectionDAG &DAG) const {
1567  // FIXME there isn't actually debug info here
1568  DebugLoc dl = Op.getDebugLoc();
1569  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1570
1571  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1572    SDVTList VTs = DAG.getVTList(MVT::i32);
1573
1574    MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
1575
1576    // %gp_rel relocation
1577    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1578      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1579                                              MipsII::MO_GPREL);
1580      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1581      SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1582      return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
1583    }
1584    // %hi/%lo relocation
1585    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1586                                              MipsII::MO_ABS_HI);
1587    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1588                                              MipsII::MO_ABS_LO);
1589    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1590    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1591    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1592  }
1593
1594  EVT ValTy = Op.getValueType();
1595  bool HasGotOfst = (GV->hasInternalLinkage() ||
1596                     (GV->hasLocalLinkage() && !isa<Function>(GV)));
1597  unsigned GotFlag = HasMips64 ?
1598                     (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1599                     (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16);
1600  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1601  GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA);
1602  SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA,
1603                                MachinePointerInfo(), false, false, false, 0);
1604  // On functions and global targets not internal linked only
1605  // a load from got/GP is necessary for PIC to work.
1606  if (!HasGotOfst)
1607    return ResNode;
1608  SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1609                                            HasMips64 ? MipsII::MO_GOT_OFST :
1610                                                        MipsII::MO_ABS_LO);
1611  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1612  return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1613}
1614
1615SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1616                                              SelectionDAG &DAG) const {
1617  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1618  // FIXME there isn't actually debug info here
1619  DebugLoc dl = Op.getDebugLoc();
1620
1621  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1622    // %hi/%lo relocation
1623    SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_HI);
1624    SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_LO);
1625    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1626    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1627    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1628  }
1629
1630  EVT ValTy = Op.getValueType();
1631  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1632  unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1633  SDValue BAGOTOffset = DAG.getBlockAddress(BA, ValTy, true, GOTFlag);
1634  BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy,
1635                            GetGlobalReg(DAG, ValTy), BAGOTOffset);
1636  SDValue BALOOffset = DAG.getBlockAddress(BA, ValTy, true, OFSTFlag);
1637  SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset,
1638                             MachinePointerInfo(), false, false, false, 0);
1639  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset);
1640  return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1641}
1642
1643SDValue MipsTargetLowering::
1644LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1645{
1646  // If the relocation model is PIC, use the General Dynamic TLS Model or
1647  // Local Dynamic TLS model, otherwise use the Initial Exec or
1648  // Local Exec TLS Model.
1649
1650  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1651  DebugLoc dl = GA->getDebugLoc();
1652  const GlobalValue *GV = GA->getGlobal();
1653  EVT PtrVT = getPointerTy();
1654
1655  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1656
1657  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1658    // General Dynamic and Local Dynamic TLS Model.
1659    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1660                                                      : MipsII::MO_TLSGD;
1661
1662    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1663    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1664                                   GetGlobalReg(DAG, PtrVT), TGA);
1665    unsigned PtrSize = PtrVT.getSizeInBits();
1666    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1667
1668    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1669
1670    ArgListTy Args;
1671    ArgListEntry Entry;
1672    Entry.Node = Argument;
1673    Entry.Ty = PtrTy;
1674    Args.push_back(Entry);
1675
1676    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1677                  false, false, false, false, 0, CallingConv::C,
1678                  /*isTailCall=*/false, /*doesNotRet=*/false,
1679                  /*isReturnValueUsed=*/true,
1680                  TlsGetAddr, Args, DAG, dl);
1681    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1682
1683    SDValue Ret = CallResult.first;
1684
1685    if (model != TLSModel::LocalDynamic)
1686      return Ret;
1687
1688    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1689                                               MipsII::MO_DTPREL_HI);
1690    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1691    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1692                                               MipsII::MO_DTPREL_LO);
1693    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1694    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1695    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1696  }
1697
1698  SDValue Offset;
1699  if (model == TLSModel::InitialExec) {
1700    // Initial Exec TLS Model
1701    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1702                                             MipsII::MO_GOTTPREL);
1703    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1704                      TGA);
1705    Offset = DAG.getLoad(PtrVT, dl,
1706                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1707                         false, false, false, 0);
1708  } else {
1709    // Local Exec TLS Model
1710    assert(model == TLSModel::LocalExec);
1711    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1712                                               MipsII::MO_TPREL_HI);
1713    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1714                                               MipsII::MO_TPREL_LO);
1715    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1716    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1717    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1718  }
1719
1720  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1721  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1722}
1723
1724SDValue MipsTargetLowering::
1725LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1726{
1727  SDValue HiPart, JTI, JTILo;
1728  // FIXME there isn't actually debug info here
1729  DebugLoc dl = Op.getDebugLoc();
1730  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1731  EVT PtrVT = Op.getValueType();
1732  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1733
1734  if (!IsPIC && !IsN64) {
1735    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI);
1736    HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI);
1737    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO);
1738  } else {// Emit Load from Global Pointer
1739    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1740    unsigned OfstFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1741    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag);
1742    JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1743                      JTI);
1744    HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI,
1745                         MachinePointerInfo(), false, false, false, 0);
1746    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag);
1747  }
1748
1749  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo);
1750  return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo);
1751}
1752
1753SDValue MipsTargetLowering::
1754LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1755{
1756  SDValue ResNode;
1757  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1758  const Constant *C = N->getConstVal();
1759  // FIXME there isn't actually debug info here
1760  DebugLoc dl = Op.getDebugLoc();
1761
1762  // gp_rel relocation
1763  // FIXME: we should reference the constant pool using small data sections,
1764  // but the asm printer currently doesn't support this feature without
1765  // hacking it. This feature should come soon so we can uncomment the
1766  // stuff below.
1767  //if (IsInSmallSection(C->getType())) {
1768  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1769  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1770  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1771
1772  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1773    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1774                                             N->getOffset(), MipsII::MO_ABS_HI);
1775    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1776                                             N->getOffset(), MipsII::MO_ABS_LO);
1777    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1778    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1779    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1780  } else {
1781    EVT ValTy = Op.getValueType();
1782    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1783    unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1784    SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1785                                           N->getOffset(), GOTFlag);
1786    CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP);
1787    SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP,
1788                               MachinePointerInfo::getConstantPool(), false,
1789                               false, false, 0);
1790    SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1791                                             N->getOffset(), OFSTFlag);
1792    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo);
1793    ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1794  }
1795
1796  return ResNode;
1797}
1798
1799SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1800  MachineFunction &MF = DAG.getMachineFunction();
1801  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1802
1803  DebugLoc dl = Op.getDebugLoc();
1804  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1805                                 getPointerTy());
1806
1807  // vastart just stores the address of the VarArgsFrameIndex slot into the
1808  // memory location argument.
1809  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1810  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1811                      MachinePointerInfo(SV), false, false, 0);
1812}
1813
1814static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1815  EVT TyX = Op.getOperand(0).getValueType();
1816  EVT TyY = Op.getOperand(1).getValueType();
1817  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1818  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1819  DebugLoc DL = Op.getDebugLoc();
1820  SDValue Res;
1821
1822  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1823  // to i32.
1824  SDValue X = (TyX == MVT::f32) ?
1825    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1826    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1827                Const1);
1828  SDValue Y = (TyY == MVT::f32) ?
1829    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1830    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1831                Const1);
1832
1833  if (HasR2) {
1834    // ext  E, Y, 31, 1  ; extract bit31 of Y
1835    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1836    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1837    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1838  } else {
1839    // sll SllX, X, 1
1840    // srl SrlX, SllX, 1
1841    // srl SrlY, Y, 31
1842    // sll SllY, SrlX, 31
1843    // or  Or, SrlX, SllY
1844    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1845    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1846    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1847    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1848    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1849  }
1850
1851  if (TyX == MVT::f32)
1852    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1853
1854  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1855                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1856  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1857}
1858
1859static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1860  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1861  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1862  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1863  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1864  DebugLoc DL = Op.getDebugLoc();
1865
1866  // Bitcast to integer nodes.
1867  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1868  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1869
1870  if (HasR2) {
1871    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1872    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1873    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1874                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1875
1876    if (WidthX > WidthY)
1877      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1878    else if (WidthY > WidthX)
1879      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1880
1881    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1882                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1883    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1884  }
1885
1886  // (d)sll SllX, X, 1
1887  // (d)srl SrlX, SllX, 1
1888  // (d)srl SrlY, Y, width(Y)-1
1889  // (d)sll SllY, SrlX, width(Y)-1
1890  // or     Or, SrlX, SllY
1891  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1892  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1893  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1894                             DAG.getConstant(WidthY - 1, MVT::i32));
1895
1896  if (WidthX > WidthY)
1897    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1898  else if (WidthY > WidthX)
1899    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1900
1901  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1902                             DAG.getConstant(WidthX - 1, MVT::i32));
1903  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1904  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1905}
1906
1907SDValue
1908MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1909  if (Subtarget->hasMips64())
1910    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1911
1912  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1913}
1914
1915static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1916  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1917  DebugLoc DL = Op.getDebugLoc();
1918
1919  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1920  // to i32.
1921  SDValue X = (Op.getValueType() == MVT::f32) ?
1922    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1923    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1924                Const1);
1925
1926  // Clear MSB.
1927  if (HasR2)
1928    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1929                      DAG.getRegister(Mips::ZERO, MVT::i32),
1930                      DAG.getConstant(31, MVT::i32), Const1, X);
1931  else {
1932    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1933    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1934  }
1935
1936  if (Op.getValueType() == MVT::f32)
1937    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1938
1939  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1940                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1941  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1942}
1943
1944static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1945  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1946  DebugLoc DL = Op.getDebugLoc();
1947
1948  // Bitcast to integer node.
1949  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1950
1951  // Clear MSB.
1952  if (HasR2)
1953    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1954                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1955                      DAG.getConstant(63, MVT::i32), Const1, X);
1956  else {
1957    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1958    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1959  }
1960
1961  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1962}
1963
1964SDValue
1965MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
1966  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1967    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1968
1969  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1970}
1971
1972SDValue MipsTargetLowering::
1973LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1974  // check the depth
1975  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1976         "Frame address can only be determined for current frame.");
1977
1978  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1979  MFI->setFrameAddressIsTaken(true);
1980  EVT VT = Op.getValueType();
1981  DebugLoc dl = Op.getDebugLoc();
1982  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1983                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1984  return FrameAddr;
1985}
1986
1987SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
1988                                            SelectionDAG &DAG) const {
1989  // check the depth
1990  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1991         "Return address can be determined only for current frame.");
1992
1993  MachineFunction &MF = DAG.getMachineFunction();
1994  MachineFrameInfo *MFI = MF.getFrameInfo();
1995  EVT VT = Op.getValueType();
1996  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1997  MFI->setReturnAddressIsTaken(true);
1998
1999  // Return RA, which contains the return address. Mark it an implicit live-in.
2000  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2001  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2002}
2003
2004// TODO: set SType according to the desired memory barrier behavior.
2005SDValue
2006MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2007  unsigned SType = 0;
2008  DebugLoc dl = Op.getDebugLoc();
2009  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2010                     DAG.getConstant(SType, MVT::i32));
2011}
2012
2013SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2014                                              SelectionDAG &DAG) const {
2015  // FIXME: Need pseudo-fence for 'singlethread' fences
2016  // FIXME: Set SType for weaker fences where supported/appropriate.
2017  unsigned SType = 0;
2018  DebugLoc dl = Op.getDebugLoc();
2019  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2020                     DAG.getConstant(SType, MVT::i32));
2021}
2022
2023SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2024                                                SelectionDAG &DAG) const {
2025  DebugLoc DL = Op.getDebugLoc();
2026  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2027  SDValue Shamt = Op.getOperand(2);
2028
2029  // if shamt < 32:
2030  //  lo = (shl lo, shamt)
2031  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2032  // else:
2033  //  lo = 0
2034  //  hi = (shl lo, shamt[4:0])
2035  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2036                            DAG.getConstant(-1, MVT::i32));
2037  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2038                                      DAG.getConstant(1, MVT::i32));
2039  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2040                                     Not);
2041  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2042  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2043  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2044  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2045                             DAG.getConstant(0x20, MVT::i32));
2046  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2047                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2048  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2049
2050  SDValue Ops[2] = {Lo, Hi};
2051  return DAG.getMergeValues(Ops, 2, DL);
2052}
2053
2054SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2055                                                 bool IsSRA) const {
2056  DebugLoc DL = Op.getDebugLoc();
2057  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2058  SDValue Shamt = Op.getOperand(2);
2059
2060  // if shamt < 32:
2061  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2062  //  if isSRA:
2063  //    hi = (sra hi, shamt)
2064  //  else:
2065  //    hi = (srl hi, shamt)
2066  // else:
2067  //  if isSRA:
2068  //   lo = (sra hi, shamt[4:0])
2069  //   hi = (sra hi, 31)
2070  //  else:
2071  //   lo = (srl hi, shamt[4:0])
2072  //   hi = 0
2073  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2074                            DAG.getConstant(-1, MVT::i32));
2075  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2076                                     DAG.getConstant(1, MVT::i32));
2077  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2078  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2079  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2080  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2081                                     Hi, Shamt);
2082  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2083                             DAG.getConstant(0x20, MVT::i32));
2084  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2085                                DAG.getConstant(31, MVT::i32));
2086  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2087  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2088                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2089                   ShiftRightHi);
2090
2091  SDValue Ops[2] = {Lo, Hi};
2092  return DAG.getMergeValues(Ops, 2, DL);
2093}
2094
2095static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2096                            SDValue Chain, SDValue Src, unsigned Offset) {
2097  SDValue Ptr = LD->getBasePtr();
2098  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2099  EVT BasePtrVT = Ptr.getValueType();
2100  DebugLoc DL = LD->getDebugLoc();
2101  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2102
2103  if (Offset)
2104    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2105                      DAG.getConstant(Offset, BasePtrVT));
2106
2107  SDValue Ops[] = { Chain, Ptr, Src };
2108  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2109                                 LD->getMemOperand());
2110}
2111
2112// Expand an unaligned 32 or 64-bit integer load node.
2113SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2114  LoadSDNode *LD = cast<LoadSDNode>(Op);
2115  EVT MemVT = LD->getMemoryVT();
2116
2117  // Return if load is aligned or if MemVT is neither i32 nor i64.
2118  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2119      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2120    return SDValue();
2121
2122  bool IsLittle = Subtarget->isLittle();
2123  EVT VT = Op.getValueType();
2124  ISD::LoadExtType ExtType = LD->getExtensionType();
2125  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2126
2127  assert((VT == MVT::i32) || (VT == MVT::i64));
2128
2129  // Expand
2130  //  (set dst, (i64 (load baseptr)))
2131  // to
2132  //  (set tmp, (ldl (add baseptr, 7), undef))
2133  //  (set dst, (ldr baseptr, tmp))
2134  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2135    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2136                               IsLittle ? 7 : 0);
2137    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2138                        IsLittle ? 0 : 7);
2139  }
2140
2141  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2142                             IsLittle ? 3 : 0);
2143  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2144                             IsLittle ? 0 : 3);
2145
2146  // Expand
2147  //  (set dst, (i32 (load baseptr))) or
2148  //  (set dst, (i64 (sextload baseptr))) or
2149  //  (set dst, (i64 (extload baseptr)))
2150  // to
2151  //  (set tmp, (lwl (add baseptr, 3), undef))
2152  //  (set dst, (lwr baseptr, tmp))
2153  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2154      (ExtType == ISD::EXTLOAD))
2155    return LWR;
2156
2157  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2158
2159  // Expand
2160  //  (set dst, (i64 (zextload baseptr)))
2161  // to
2162  //  (set tmp0, (lwl (add baseptr, 3), undef))
2163  //  (set tmp1, (lwr baseptr, tmp0))
2164  //  (set tmp2, (shl tmp1, 32))
2165  //  (set dst, (srl tmp2, 32))
2166  DebugLoc DL = LD->getDebugLoc();
2167  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2168  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2169  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2170  SDValue Ops[] = { SRL, LWR.getValue(1) };
2171  return DAG.getMergeValues(Ops, 2, DL);
2172}
2173
2174static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2175                             SDValue Chain, unsigned Offset) {
2176  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2177  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2178  DebugLoc DL = SD->getDebugLoc();
2179  SDVTList VTList = DAG.getVTList(MVT::Other);
2180
2181  if (Offset)
2182    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2183                      DAG.getConstant(Offset, BasePtrVT));
2184
2185  SDValue Ops[] = { Chain, Value, Ptr };
2186  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2187                                 SD->getMemOperand());
2188}
2189
2190// Expand an unaligned 32 or 64-bit integer store node.
2191SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2192  StoreSDNode *SD = cast<StoreSDNode>(Op);
2193  EVT MemVT = SD->getMemoryVT();
2194
2195  // Return if store is aligned or if MemVT is neither i32 nor i64.
2196  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2197      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2198    return SDValue();
2199
2200  bool IsLittle = Subtarget->isLittle();
2201  SDValue Value = SD->getValue(), Chain = SD->getChain();
2202  EVT VT = Value.getValueType();
2203
2204  // Expand
2205  //  (store val, baseptr) or
2206  //  (truncstore val, baseptr)
2207  // to
2208  //  (swl val, (add baseptr, 3))
2209  //  (swr val, baseptr)
2210  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2211    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2212                                IsLittle ? 3 : 0);
2213    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2214  }
2215
2216  assert(VT == MVT::i64);
2217
2218  // Expand
2219  //  (store val, baseptr)
2220  // to
2221  //  (sdl val, (add baseptr, 7))
2222  //  (sdr val, baseptr)
2223  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2224  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2225}
2226
2227//===----------------------------------------------------------------------===//
2228//                      Calling Convention Implementation
2229//===----------------------------------------------------------------------===//
2230
2231//===----------------------------------------------------------------------===//
2232// TODO: Implement a generic logic using tblgen that can support this.
2233// Mips O32 ABI rules:
2234// ---
2235// i32 - Passed in A0, A1, A2, A3 and stack
2236// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2237//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2238// f64 - Only passed in two aliased f32 registers if no int reg has been used
2239//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2240//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2241//       go to stack.
2242//
2243//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2244//===----------------------------------------------------------------------===//
2245
2246static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2247                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2248                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2249
2250  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2251
2252  static const uint16_t IntRegs[] = {
2253      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2254  };
2255  static const uint16_t F32Regs[] = {
2256      Mips::F12, Mips::F14
2257  };
2258  static const uint16_t F64Regs[] = {
2259      Mips::D6, Mips::D7
2260  };
2261
2262  // ByVal Args
2263  if (ArgFlags.isByVal()) {
2264    State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
2265                      1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
2266    unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
2267    for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
2268         r < std::min(IntRegsSize, NextReg); ++r)
2269      State.AllocateReg(IntRegs[r]);
2270    return false;
2271  }
2272
2273  // Promote i8 and i16
2274  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2275    LocVT = MVT::i32;
2276    if (ArgFlags.isSExt())
2277      LocInfo = CCValAssign::SExt;
2278    else if (ArgFlags.isZExt())
2279      LocInfo = CCValAssign::ZExt;
2280    else
2281      LocInfo = CCValAssign::AExt;
2282  }
2283
2284  unsigned Reg;
2285
2286  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2287  // is true: function is vararg, argument is 3rd or higher, there is previous
2288  // argument which is not f32 or f64.
2289  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2290      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2291  unsigned OrigAlign = ArgFlags.getOrigAlign();
2292  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2293
2294  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2295    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2296    // If this is the first part of an i64 arg,
2297    // the allocated register must be either A0 or A2.
2298    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2299      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2300    LocVT = MVT::i32;
2301  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2302    // Allocate int register and shadow next int register. If first
2303    // available register is Mips::A1 or Mips::A3, shadow it too.
2304    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2305    if (Reg == Mips::A1 || Reg == Mips::A3)
2306      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2307    State.AllocateReg(IntRegs, IntRegsSize);
2308    LocVT = MVT::i32;
2309  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2310    // we are guaranteed to find an available float register
2311    if (ValVT == MVT::f32) {
2312      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2313      // Shadow int register
2314      State.AllocateReg(IntRegs, IntRegsSize);
2315    } else {
2316      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2317      // Shadow int registers
2318      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2319      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2320        State.AllocateReg(IntRegs, IntRegsSize);
2321      State.AllocateReg(IntRegs, IntRegsSize);
2322    }
2323  } else
2324    llvm_unreachable("Cannot handle this ValVT.");
2325
2326  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
2327  unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
2328
2329  if (!Reg)
2330    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2331  else
2332    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2333
2334  return false; // CC must always match
2335}
2336
2337static const uint16_t Mips64IntRegs[8] =
2338  {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
2339   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64};
2340static const uint16_t Mips64DPRegs[8] =
2341  {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
2342   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64};
2343
2344static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT,
2345                           CCValAssign::LocInfo LocInfo,
2346                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
2347  unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8);
2348  unsigned Size  = (ArgFlags.getByValSize() + 7) / 8 * 8;
2349  unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8);
2350
2351  assert(Align <= 16 && "Cannot handle alignments larger than 16.");
2352
2353  // If byval is 16-byte aligned, the first arg register must be even.
2354  if ((Align == 16) && (FirstIdx % 2)) {
2355    State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]);
2356    ++FirstIdx;
2357  }
2358
2359  // Mark the registers allocated.
2360  for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I)
2361    State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]);
2362
2363  // Allocate space on caller's stack.
2364  unsigned Offset = State.AllocateStack(Size, Align);
2365
2366  if (FirstIdx < 8)
2367    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx],
2368                                     LocVT, LocInfo));
2369  else
2370    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2371
2372  return true;
2373}
2374
2375#include "MipsGenCallingConv.inc"
2376
2377static void
2378AnalyzeMips64CallOperands(CCState &CCInfo,
2379                          const SmallVectorImpl<ISD::OutputArg> &Outs) {
2380  unsigned NumOps = Outs.size();
2381  for (unsigned i = 0; i != NumOps; ++i) {
2382    MVT ArgVT = Outs[i].VT;
2383    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2384    bool R;
2385
2386    if (Outs[i].IsFixed)
2387      R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2388    else
2389      R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2390
2391    if (R) {
2392#ifndef NDEBUG
2393      dbgs() << "Call operand #" << i << " has unhandled type "
2394             << EVT(ArgVT).getEVTString();
2395#endif
2396      llvm_unreachable(0);
2397    }
2398  }
2399}
2400
2401//===----------------------------------------------------------------------===//
2402//                  Call Calling Convention Implementation
2403//===----------------------------------------------------------------------===//
2404
2405static const unsigned O32IntRegsSize = 4;
2406
2407static const uint16_t O32IntRegs[] = {
2408  Mips::A0, Mips::A1, Mips::A2, Mips::A3
2409};
2410
2411// Return next O32 integer argument register.
2412static unsigned getNextIntArgReg(unsigned Reg) {
2413  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2414  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2415}
2416
2417// Write ByVal Arg to arg registers and stack.
2418static void
2419WriteByValArg(SDValue Chain, DebugLoc dl,
2420              SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2421              SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
2422              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2423              const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2424              MVT PtrType, bool isLittle) {
2425  unsigned LocMemOffset = VA.getLocMemOffset();
2426  unsigned Offset = 0;
2427  uint32_t RemainingSize = Flags.getByValSize();
2428  unsigned ByValAlign = Flags.getByValAlign();
2429
2430  // Copy the first 4 words of byval arg to registers A0 - A3.
2431  // FIXME: Use a stricter alignment if it enables better optimization in passes
2432  //        run later.
2433  for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
2434       Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
2435    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2436                                  DAG.getConstant(Offset, MVT::i32));
2437    SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
2438                                  MachinePointerInfo(), false, false, false,
2439                                  std::min(ByValAlign, (unsigned )4));
2440    MemOpChains.push_back(LoadVal.getValue(1));
2441    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2442    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2443  }
2444
2445  if (RemainingSize == 0)
2446    return;
2447
2448  // If there still is a register available for argument passing, write the
2449  // remaining part of the structure to it using subword loads and shifts.
2450  if (LocMemOffset < 4 * 4) {
2451    assert(RemainingSize <= 3 && RemainingSize >= 1 &&
2452           "There must be one to three bytes remaining.");
2453    unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
2454    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2455                                  DAG.getConstant(Offset, MVT::i32));
2456    unsigned Alignment = std::min(ByValAlign, (unsigned )4);
2457    SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2458                                     LoadPtr, MachinePointerInfo(),
2459                                     MVT::getIntegerVT(LoadSize * 8), false,
2460                                     false, Alignment);
2461    MemOpChains.push_back(LoadVal.getValue(1));
2462
2463    // If target is big endian, shift it to the most significant half-word or
2464    // byte.
2465    if (!isLittle)
2466      LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
2467                            DAG.getConstant(32 - LoadSize * 8, MVT::i32));
2468
2469    Offset += LoadSize;
2470    RemainingSize -= LoadSize;
2471
2472    // Read second subword if necessary.
2473    if (RemainingSize != 0)  {
2474      assert(RemainingSize == 1 && "There must be one byte remaining.");
2475      LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2476                            DAG.getConstant(Offset, MVT::i32));
2477      unsigned Alignment = std::min(ByValAlign, (unsigned )2);
2478      SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2479                                       LoadPtr, MachinePointerInfo(),
2480                                       MVT::i8, false, false, Alignment);
2481      MemOpChains.push_back(Subword.getValue(1));
2482      // Insert the loaded byte to LoadVal.
2483      // FIXME: Use INS if supported by target.
2484      unsigned ShiftAmt = isLittle ? 16 : 8;
2485      SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
2486                                  DAG.getConstant(ShiftAmt, MVT::i32));
2487      LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
2488    }
2489
2490    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2491    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2492    return;
2493  }
2494
2495  // Copy remaining part of byval arg using memcpy.
2496  SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2497                            DAG.getConstant(Offset, MVT::i32));
2498  SDValue Dst = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr,
2499                            DAG.getIntPtrConstant(LocMemOffset));
2500  Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
2501                        DAG.getConstant(RemainingSize, MVT::i32),
2502                        std::min(ByValAlign, (unsigned)4),
2503                        /*isVolatile=*/false, /*AlwaysInline=*/false,
2504                        MachinePointerInfo(0), MachinePointerInfo(0));
2505  MemOpChains.push_back(Chain);
2506}
2507
2508// Copy Mips64 byVal arg to registers and stack.
2509void static
2510PassByValArg64(SDValue Chain, DebugLoc dl,
2511               SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2512               SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
2513               MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2514               const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2515               EVT PtrTy, bool isLittle) {
2516  unsigned ByValSize = Flags.getByValSize();
2517  unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8);
2518  bool IsRegLoc = VA.isRegLoc();
2519  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
2520  unsigned LocMemOffset = 0;
2521  unsigned MemCpySize = ByValSize;
2522
2523  if (!IsRegLoc)
2524    LocMemOffset = VA.getLocMemOffset();
2525  else {
2526    const uint16_t *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8,
2527                                    VA.getLocReg());
2528    const uint16_t *RegEnd = Mips64IntRegs + 8;
2529
2530    // Copy double words to registers.
2531    for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) {
2532      SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2533                                    DAG.getConstant(Offset, PtrTy));
2534      SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr,
2535                                    MachinePointerInfo(), false, false, false,
2536                                    Alignment);
2537      MemOpChains.push_back(LoadVal.getValue(1));
2538      RegsToPass.push_back(std::make_pair(*Reg, LoadVal));
2539    }
2540
2541    // Return if the struct has been fully copied.
2542    if (!(MemCpySize = ByValSize - Offset))
2543      return;
2544
2545    // If there is an argument register available, copy the remainder of the
2546    // byval argument with sub-doubleword loads and shifts.
2547    if (Reg != RegEnd) {
2548      assert((ByValSize < Offset + 8) &&
2549             "Size of the remainder should be smaller than 8-byte.");
2550      SDValue Val;
2551      for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) {
2552        unsigned RemSize = ByValSize - Offset;
2553
2554        if (RemSize < LoadSize)
2555          continue;
2556
2557        SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2558                                      DAG.getConstant(Offset, PtrTy));
2559        SDValue LoadVal =
2560          DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr,
2561                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
2562                         false, false, Alignment);
2563        MemOpChains.push_back(LoadVal.getValue(1));
2564
2565        // Offset in number of bits from double word boundary.
2566        unsigned OffsetDW = (Offset % 8) * 8;
2567        unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8);
2568        SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal,
2569                                    DAG.getConstant(Shamt, MVT::i32));
2570
2571        Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) :
2572                              Shift;
2573        Offset += LoadSize;
2574        Alignment = std::min(Alignment, LoadSize);
2575      }
2576
2577      RegsToPass.push_back(std::make_pair(*Reg, Val));
2578      return;
2579    }
2580  }
2581
2582  assert(MemCpySize && "MemCpySize must not be zero.");
2583
2584  // Copy remainder of byval arg to it with memcpy.
2585  SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2586                            DAG.getConstant(Offset, PtrTy));
2587  SDValue Dst = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr,
2588                            DAG.getIntPtrConstant(LocMemOffset));
2589  Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
2590                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
2591                        /*isVolatile=*/false, /*AlwaysInline=*/false,
2592                        MachinePointerInfo(0), MachinePointerInfo(0));
2593  MemOpChains.push_back(Chain);
2594}
2595
2596/// LowerCall - functions arguments are copied from virtual regs to
2597/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2598/// TODO: isTailCall.
2599SDValue
2600MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2601                              SmallVectorImpl<SDValue> &InVals) const {
2602  SelectionDAG &DAG                     = CLI.DAG;
2603  DebugLoc &dl                          = CLI.DL;
2604  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2605  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2606  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2607  SDValue Chain                         = CLI.Chain;
2608  SDValue Callee                        = CLI.Callee;
2609  bool &isTailCall                      = CLI.IsTailCall;
2610  CallingConv::ID CallConv              = CLI.CallConv;
2611  bool isVarArg                         = CLI.IsVarArg;
2612
2613  // MIPs target does not yet support tail call optimization.
2614  isTailCall = false;
2615
2616  MachineFunction &MF = DAG.getMachineFunction();
2617  MachineFrameInfo *MFI = MF.getFrameInfo();
2618  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2619  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2620  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2621
2622  // Analyze operands of the call, assigning locations to each operand.
2623  SmallVector<CCValAssign, 16> ArgLocs;
2624  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2625                 getTargetMachine(), ArgLocs, *DAG.getContext());
2626
2627  if (CallConv == CallingConv::Fast)
2628    CCInfo.AnalyzeCallOperands(Outs, CC_Mips_FastCC);
2629  else if (IsO32)
2630    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
2631  else if (HasMips64)
2632    AnalyzeMips64CallOperands(CCInfo, Outs);
2633  else
2634    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
2635
2636  // Get a count of how many bytes are to be pushed on the stack.
2637  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2638  unsigned StackAlignment = TFL->getStackAlignment();
2639  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2640
2641  // Update size of the maximum argument space.
2642  // For O32, a minimum of four words (16 bytes) of argument space is
2643  // allocated.
2644  if (IsO32 && (CallConv != CallingConv::Fast))
2645    NextStackOffset = std::max(NextStackOffset, (unsigned)16);
2646
2647  // Chain is the output chain of the last Load/Store or CopyToReg node.
2648  // ByValChain is the output chain of the last Memcpy node created for copying
2649  // byval arguments to the stack.
2650  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2651  Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
2652
2653  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
2654                                        IsN64 ? Mips::SP_64 : Mips::SP,
2655                                        getPointerTy());
2656
2657  if (MipsFI->getMaxCallFrameSize() < NextStackOffset)
2658    MipsFI->setMaxCallFrameSize(NextStackOffset);
2659
2660  // With EABI is it possible to have 16 args on registers.
2661  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2662  SmallVector<SDValue, 8> MemOpChains;
2663
2664  // Walk the register/memloc assignments, inserting copies/loads.
2665  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2666    SDValue Arg = OutVals[i];
2667    CCValAssign &VA = ArgLocs[i];
2668    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2669    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2670
2671    // ByVal Arg.
2672    if (Flags.isByVal()) {
2673      assert(Flags.getByValSize() &&
2674             "ByVal args of size 0 should have been ignored by front-end.");
2675      if (IsO32)
2676        WriteByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr,
2677                      MFI, DAG, Arg, VA, Flags, getPointerTy(),
2678                      Subtarget->isLittle());
2679      else
2680        PassByValArg64(Chain, dl, RegsToPass, MemOpChains, StackPtr,
2681                       MFI, DAG, Arg, VA, Flags, getPointerTy(),
2682                       Subtarget->isLittle());
2683      continue;
2684    }
2685
2686    // Promote the value if needed.
2687    switch (VA.getLocInfo()) {
2688    default: llvm_unreachable("Unknown loc info!");
2689    case CCValAssign::Full:
2690      if (VA.isRegLoc()) {
2691        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2692            (ValVT == MVT::f64 && LocVT == MVT::i64))
2693          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2694        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2695          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2696                                   Arg, DAG.getConstant(0, MVT::i32));
2697          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2698                                   Arg, DAG.getConstant(1, MVT::i32));
2699          if (!Subtarget->isLittle())
2700            std::swap(Lo, Hi);
2701          unsigned LocRegLo = VA.getLocReg();
2702          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2703          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2704          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2705          continue;
2706        }
2707      }
2708      break;
2709    case CCValAssign::SExt:
2710      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2711      break;
2712    case CCValAssign::ZExt:
2713      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2714      break;
2715    case CCValAssign::AExt:
2716      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2717      break;
2718    }
2719
2720    // Arguments that can be passed on register must be kept at
2721    // RegsToPass vector
2722    if (VA.isRegLoc()) {
2723      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2724      continue;
2725    }
2726
2727    // Register can't get to this point...
2728    assert(VA.isMemLoc());
2729
2730    // emit ISD::STORE whichs stores the
2731    // parameter value to a stack Location
2732    SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
2733                                 DAG.getIntPtrConstant(VA.getLocMemOffset()));
2734    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2735                                       MachinePointerInfo(), false, false, 0));
2736  }
2737
2738  // Transform all store nodes into one single node because all store
2739  // nodes are independent of each other.
2740  if (!MemOpChains.empty())
2741    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2742                        &MemOpChains[0], MemOpChains.size());
2743
2744  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2745  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2746  // node so that legalize doesn't hack it.
2747  unsigned char OpFlag;
2748  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2749  bool GlobalOrExternal = false;
2750  SDValue CalleeLo;
2751
2752  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2753    if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
2754      OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
2755      unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
2756      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
2757                                          OpFlag);
2758      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
2759                                            0, LoFlag);
2760    } else {
2761      OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
2762      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2763                                          getPointerTy(), 0, OpFlag);
2764    }
2765
2766    GlobalOrExternal = true;
2767  }
2768  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2769    if (IsN64 || (!IsO32 && IsPIC))
2770      OpFlag = MipsII::MO_GOT_DISP;
2771    else if (!IsPIC) // !N64 && static
2772      OpFlag = MipsII::MO_NO_FLAG;
2773    else // O32 & PIC
2774      OpFlag = MipsII::MO_GOT_CALL;
2775    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2776                                         OpFlag);
2777    GlobalOrExternal = true;
2778  }
2779
2780  SDValue InFlag;
2781
2782  // Create nodes that load address of callee and copy it to T9
2783  if (IsPICCall) {
2784    if (GlobalOrExternal) {
2785      // Load callee address
2786      Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(),
2787                           GetGlobalReg(DAG, getPointerTy()), Callee);
2788      SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
2789                                      Callee, MachinePointerInfo::getGOT(),
2790                                      false, false, false, 0);
2791
2792      // Use GOT+LO if callee has internal linkage.
2793      if (CalleeLo.getNode()) {
2794        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
2795        Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
2796      } else
2797        Callee = LoadValue;
2798    }
2799  }
2800
2801  // T9 register operand.
2802  SDValue T9;
2803
2804  // T9 should contain the address of the callee function if
2805  // -reloction-model=pic or it is an indirect call.
2806  if (IsPICCall || !GlobalOrExternal) {
2807    // copy to T9
2808    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
2809    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
2810    InFlag = Chain.getValue(1);
2811
2812    if (Subtarget->inMips16Mode())
2813      T9 = DAG.getRegister(T9Reg, getPointerTy());
2814    else
2815      Callee = DAG.getRegister(T9Reg, getPointerTy());
2816  }
2817
2818  // Insert node "GP copy globalreg" before call to function.
2819  // Lazy-binding stubs require GP to point to the GOT.
2820  if (IsPICCall) {
2821    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2822    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2823    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
2824  }
2825
2826  // Build a sequence of copy-to-reg nodes chained together with token
2827  // chain and flag operands which copy the outgoing args into registers.
2828  // The InFlag in necessary since all emitted instructions must be
2829  // stuck together.
2830  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2831    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2832                             RegsToPass[i].second, InFlag);
2833    InFlag = Chain.getValue(1);
2834  }
2835
2836  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
2837  //             = Chain, Callee, Reg#1, Reg#2, ...
2838  //
2839  // Returns a chain & a flag for retval copy to use.
2840  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2841  SmallVector<SDValue, 8> Ops;
2842  Ops.push_back(Chain);
2843  Ops.push_back(Callee);
2844
2845  // Add argument registers to the end of the list so that they are
2846  // known live into the call.
2847  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2848    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2849                                  RegsToPass[i].second.getValueType()));
2850
2851  // Add T9 register operand.
2852  if (T9.getNode())
2853    Ops.push_back(T9);
2854
2855  // Add a register mask operand representing the call-preserved registers.
2856  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2857  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2858  assert(Mask && "Missing call preserved mask for calling convention");
2859  Ops.push_back(DAG.getRegisterMask(Mask));
2860
2861  if (InFlag.getNode())
2862    Ops.push_back(InFlag);
2863
2864  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
2865  InFlag = Chain.getValue(1);
2866
2867  // Create the CALLSEQ_END node.
2868  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2869                             DAG.getIntPtrConstant(0, true), InFlag);
2870  InFlag = Chain.getValue(1);
2871
2872  // Handle result values, copying them out of physregs into vregs that we
2873  // return.
2874  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2875                         Ins, dl, DAG, InVals);
2876}
2877
2878/// LowerCallResult - Lower the result values of a call into the
2879/// appropriate copies out of appropriate physical registers.
2880SDValue
2881MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2882                                    CallingConv::ID CallConv, bool isVarArg,
2883                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2884                                    DebugLoc dl, SelectionDAG &DAG,
2885                                    SmallVectorImpl<SDValue> &InVals) const {
2886  // Assign locations to each value returned by this call.
2887  SmallVector<CCValAssign, 16> RVLocs;
2888  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2889                 getTargetMachine(), RVLocs, *DAG.getContext());
2890
2891  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
2892
2893  // Copy all of the result registers out of their specified physreg.
2894  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2895    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
2896                               RVLocs[i].getValVT(), InFlag).getValue(1);
2897    InFlag = Chain.getValue(2);
2898    InVals.push_back(Chain.getValue(0));
2899  }
2900
2901  return Chain;
2902}
2903
2904//===----------------------------------------------------------------------===//
2905//             Formal Arguments Calling Convention Implementation
2906//===----------------------------------------------------------------------===//
2907static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2908                         std::vector<SDValue> &OutChains,
2909                         SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
2910                         const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2911                         const Argument *FuncArg) {
2912  unsigned LocMem = VA.getLocMemOffset();
2913  unsigned FirstWord = LocMem / 4;
2914
2915  // copy register A0 - A3 to frame object
2916  for (unsigned i = 0; i < NumWords; ++i) {
2917    unsigned CurWord = FirstWord + i;
2918    if (CurWord >= O32IntRegsSize)
2919      break;
2920
2921    unsigned SrcReg = O32IntRegs[CurWord];
2922    unsigned Reg = AddLiveIn(MF, SrcReg, &Mips::CPURegsRegClass);
2923    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
2924                                   DAG.getConstant(i * 4, MVT::i32));
2925    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
2926                                 StorePtr, MachinePointerInfo(FuncArg, i * 4),
2927                                 false, false, 0);
2928    OutChains.push_back(Store);
2929  }
2930}
2931
2932// Create frame object on stack and copy registers used for byval passing to it.
2933static unsigned
2934CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2935                    std::vector<SDValue> &OutChains, SelectionDAG &DAG,
2936                    const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2937                    MachineFrameInfo *MFI, bool IsRegLoc,
2938                    SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI,
2939                    EVT PtrTy, const Argument *FuncArg) {
2940  const uint16_t *Reg = Mips64IntRegs + 8;
2941  int FOOffset; // Frame object offset from virtual frame pointer.
2942
2943  if (IsRegLoc) {
2944    Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg());
2945    FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8;
2946  }
2947  else
2948    FOOffset = VA.getLocMemOffset();
2949
2950  // Create frame object.
2951  unsigned NumRegs = (Flags.getByValSize() + 7) / 8;
2952  unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true);
2953  SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy);
2954  InVals.push_back(FIN);
2955
2956  // Copy arg registers.
2957  for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs);
2958       ++Reg, ++I) {
2959    unsigned VReg = AddLiveIn(MF, *Reg, &Mips::CPU64RegsRegClass);
2960    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN,
2961                                   DAG.getConstant(I * 8, PtrTy));
2962    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64),
2963                                 StorePtr, MachinePointerInfo(FuncArg, I * 8),
2964                                 false, false, 0);
2965    OutChains.push_back(Store);
2966  }
2967
2968  return LastFI;
2969}
2970
2971/// LowerFormalArguments - transform physical registers into virtual registers
2972/// and generate load operations for arguments places on the stack.
2973SDValue
2974MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2975                                         CallingConv::ID CallConv,
2976                                         bool isVarArg,
2977                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2978                                         DebugLoc dl, SelectionDAG &DAG,
2979                                         SmallVectorImpl<SDValue> &InVals)
2980                                          const {
2981  MachineFunction &MF = DAG.getMachineFunction();
2982  MachineFrameInfo *MFI = MF.getFrameInfo();
2983  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2984
2985  MipsFI->setVarArgsFrameIndex(0);
2986
2987  // Used with vargs to acumulate store chains.
2988  std::vector<SDValue> OutChains;
2989
2990  // Assign locations to all of the incoming arguments.
2991  SmallVector<CCValAssign, 16> ArgLocs;
2992  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2993                 getTargetMachine(), ArgLocs, *DAG.getContext());
2994
2995  if (CallConv == CallingConv::Fast)
2996    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FastCC);
2997  else if (IsO32)
2998    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
2999  else
3000    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
3001
3002  Function::const_arg_iterator FuncArg =
3003    DAG.getMachineFunction().getFunction()->arg_begin();
3004  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
3005
3006  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++FuncArg) {
3007    CCValAssign &VA = ArgLocs[i];
3008    EVT ValVT = VA.getValVT();
3009    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3010    bool IsRegLoc = VA.isRegLoc();
3011
3012    if (Flags.isByVal()) {
3013      assert(Flags.getByValSize() &&
3014             "ByVal args of size 0 should have been ignored by front-end.");
3015      if (IsO32) {
3016        unsigned NumWords = (Flags.getByValSize() + 3) / 4;
3017        LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
3018                                        true);
3019        SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3020        InVals.push_back(FIN);
3021        ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags,
3022                     &*FuncArg);
3023      } else // N32/64
3024        LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags,
3025                                     MFI, IsRegLoc, InVals, MipsFI,
3026                                     getPointerTy(), &*FuncArg);
3027      continue;
3028    }
3029
3030    // Arguments stored on registers
3031    if (IsRegLoc) {
3032      EVT RegVT = VA.getLocVT();
3033      unsigned ArgReg = VA.getLocReg();
3034      const TargetRegisterClass *RC;
3035
3036      if (RegVT == MVT::i32)
3037        RC = &Mips::CPURegsRegClass;
3038      else if (RegVT == MVT::i64)
3039        RC = &Mips::CPU64RegsRegClass;
3040      else if (RegVT == MVT::f32)
3041        RC = &Mips::FGR32RegClass;
3042      else if (RegVT == MVT::f64)
3043        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3044      else
3045        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3046
3047      // Transform the arguments stored on
3048      // physical registers into virtual ones
3049      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3050      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3051
3052      // If this is an 8 or 16-bit value, it has been passed promoted
3053      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3054      // truncate to the right size.
3055      if (VA.getLocInfo() != CCValAssign::Full) {
3056        unsigned Opcode = 0;
3057        if (VA.getLocInfo() == CCValAssign::SExt)
3058          Opcode = ISD::AssertSext;
3059        else if (VA.getLocInfo() == CCValAssign::ZExt)
3060          Opcode = ISD::AssertZext;
3061        if (Opcode)
3062          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3063                                 DAG.getValueType(ValVT));
3064        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3065      }
3066
3067      // Handle floating point arguments passed in integer registers.
3068      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3069          (RegVT == MVT::i64 && ValVT == MVT::f64))
3070        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3071      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3072        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3073                                  getNextIntArgReg(ArgReg), RC);
3074        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3075        if (!Subtarget->isLittle())
3076          std::swap(ArgValue, ArgValue2);
3077        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3078                               ArgValue, ArgValue2);
3079      }
3080
3081      InVals.push_back(ArgValue);
3082    } else { // VA.isRegLoc()
3083
3084      // sanity check
3085      assert(VA.isMemLoc());
3086
3087      // The stack pointer offset is relative to the caller stack frame.
3088      LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3089                                      VA.getLocMemOffset(), true);
3090
3091      // Create load nodes to retrieve arguments from the stack
3092      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3093      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3094                                   MachinePointerInfo::getFixedStack(LastFI),
3095                                   false, false, false, 0));
3096    }
3097  }
3098
3099  // The mips ABIs for returning structs by value requires that we copy
3100  // the sret argument into $v0 for the return. Save the argument into
3101  // a virtual register so that we can access it from the return points.
3102  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3103    unsigned Reg = MipsFI->getSRetReturnReg();
3104    if (!Reg) {
3105      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
3106      MipsFI->setSRetReturnReg(Reg);
3107    }
3108    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3109    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3110  }
3111
3112  if (isVarArg) {
3113    unsigned NumOfRegs = IsO32 ? 4 : 8;
3114    const uint16_t *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs;
3115    unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs);
3116    int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot.
3117    const TargetRegisterClass *RC = IsO32 ?
3118      (const TargetRegisterClass*)&Mips::CPURegsRegClass :
3119      (const TargetRegisterClass*)&Mips::CPU64RegsRegClass;
3120    unsigned RegSize = RC->getSize();
3121    int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize;
3122
3123    // Offset of the first variable argument from stack pointer.
3124    int FirstVaArgOffset;
3125
3126    if (IsO32 || (Idx == NumOfRegs)) {
3127      FirstVaArgOffset =
3128        (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize;
3129    } else
3130      FirstVaArgOffset = RegSlotOffset;
3131
3132    // Record the frame index of the first variable argument
3133    // which is a value necessary to VASTART.
3134    LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true);
3135    MipsFI->setVarArgsFrameIndex(LastFI);
3136
3137    // Copy the integer registers that have not been used for argument passing
3138    // to the argument register save area. For O32, the save area is allocated
3139    // in the caller's stack frame, while for N32/64, it is allocated in the
3140    // callee's stack frame.
3141    for (int StackOffset = RegSlotOffset;
3142         Idx < NumOfRegs; ++Idx, StackOffset += RegSize) {
3143      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC);
3144      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3145                                            MVT::getIntegerVT(RegSize * 8));
3146      LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true);
3147      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
3148      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
3149                                       MachinePointerInfo(), false, false, 0));
3150    }
3151  }
3152
3153  MipsFI->setLastInArgFI(LastFI);
3154
3155  // All stores are grouped in one node to allow the matching between
3156  // the size of Ins and InVals. This only happens when on varg functions
3157  if (!OutChains.empty()) {
3158    OutChains.push_back(Chain);
3159    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3160                        &OutChains[0], OutChains.size());
3161  }
3162
3163  return Chain;
3164}
3165
3166//===----------------------------------------------------------------------===//
3167//               Return Value Calling Convention Implementation
3168//===----------------------------------------------------------------------===//
3169
3170SDValue
3171MipsTargetLowering::LowerReturn(SDValue Chain,
3172                                CallingConv::ID CallConv, bool isVarArg,
3173                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3174                                const SmallVectorImpl<SDValue> &OutVals,
3175                                DebugLoc dl, SelectionDAG &DAG) const {
3176
3177  // CCValAssign - represent the assignment of
3178  // the return value to a location
3179  SmallVector<CCValAssign, 16> RVLocs;
3180
3181  // CCState - Info about the registers and stack slot.
3182  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3183                 getTargetMachine(), RVLocs, *DAG.getContext());
3184
3185  // Analize return values.
3186  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3187
3188  // If this is the first return lowered for this function, add
3189  // the regs to the liveout set for the function.
3190  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3191    for (unsigned i = 0; i != RVLocs.size(); ++i)
3192      if (RVLocs[i].isRegLoc())
3193        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3194  }
3195
3196  SDValue Flag;
3197
3198  // Copy the result values into the output registers.
3199  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3200    CCValAssign &VA = RVLocs[i];
3201    assert(VA.isRegLoc() && "Can only return in registers!");
3202
3203    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3204
3205    // guarantee that all emitted copies are
3206    // stuck together, avoiding something bad
3207    Flag = Chain.getValue(1);
3208  }
3209
3210  // The mips ABIs for returning structs by value requires that we copy
3211  // the sret argument into $v0 for the return. We saved the argument into
3212  // a virtual register in the entry block, so now we copy the value out
3213  // and into $v0.
3214  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3215    MachineFunction &MF      = DAG.getMachineFunction();
3216    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3217    unsigned Reg = MipsFI->getSRetReturnReg();
3218
3219    if (!Reg)
3220      llvm_unreachable("sret virtual register not created in the entry block");
3221    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3222
3223    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
3224    Flag = Chain.getValue(1);
3225  }
3226
3227  // Return on Mips is always a "jr $ra"
3228  if (Flag.getNode())
3229    return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain, Flag);
3230
3231  // Return Void
3232  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain);
3233}
3234
3235//===----------------------------------------------------------------------===//
3236//                           Mips Inline Assembly Support
3237//===----------------------------------------------------------------------===//
3238
3239/// getConstraintType - Given a constraint letter, return the type of
3240/// constraint it is for this target.
3241MipsTargetLowering::ConstraintType MipsTargetLowering::
3242getConstraintType(const std::string &Constraint) const
3243{
3244  // Mips specific constrainy
3245  // GCC config/mips/constraints.md
3246  //
3247  // 'd' : An address register. Equivalent to r
3248  //       unless generating MIPS16 code.
3249  // 'y' : Equivalent to r; retained for
3250  //       backwards compatibility.
3251  // 'c' : A register suitable for use in an indirect
3252  //       jump. This will always be $25 for -mabicalls.
3253  // 'l' : The lo register. 1 word storage.
3254  // 'x' : The hilo register pair. Double word storage.
3255  if (Constraint.size() == 1) {
3256    switch (Constraint[0]) {
3257      default : break;
3258      case 'd':
3259      case 'y':
3260      case 'f':
3261      case 'c':
3262      case 'l':
3263      case 'x':
3264        return C_RegisterClass;
3265    }
3266  }
3267  return TargetLowering::getConstraintType(Constraint);
3268}
3269
3270/// Examine constraint type and operand type and determine a weight value.
3271/// This object must already have been set up with the operand type
3272/// and the current alternative constraint selected.
3273TargetLowering::ConstraintWeight
3274MipsTargetLowering::getSingleConstraintMatchWeight(
3275    AsmOperandInfo &info, const char *constraint) const {
3276  ConstraintWeight weight = CW_Invalid;
3277  Value *CallOperandVal = info.CallOperandVal;
3278    // If we don't have a value, we can't do a match,
3279    // but allow it at the lowest weight.
3280  if (CallOperandVal == NULL)
3281    return CW_Default;
3282  Type *type = CallOperandVal->getType();
3283  // Look at the constraint type.
3284  switch (*constraint) {
3285  default:
3286    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3287    break;
3288  case 'd':
3289  case 'y':
3290    if (type->isIntegerTy())
3291      weight = CW_Register;
3292    break;
3293  case 'f':
3294    if (type->isFloatTy())
3295      weight = CW_Register;
3296    break;
3297  case 'c': // $25 for indirect jumps
3298  case 'l': // lo register
3299  case 'x': // hilo register pair
3300      if (type->isIntegerTy())
3301      weight = CW_SpecificReg;
3302      break;
3303  case 'I': // signed 16 bit immediate
3304  case 'J': // integer zero
3305  case 'K': // unsigned 16 bit immediate
3306  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3307  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3308  case 'O': // signed 15 bit immediate (+- 16383)
3309  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3310    if (isa<ConstantInt>(CallOperandVal))
3311      weight = CW_Constant;
3312    break;
3313  }
3314  return weight;
3315}
3316
3317/// Given a register class constraint, like 'r', if this corresponds directly
3318/// to an LLVM register class, return a register of 0 and the register class
3319/// pointer.
3320std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3321getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3322{
3323  if (Constraint.size() == 1) {
3324    switch (Constraint[0]) {
3325    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3326    case 'y': // Same as 'r'. Exists for compatibility.
3327    case 'r':
3328      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
3329        return std::make_pair(0U, &Mips::CPURegsRegClass);
3330      if (VT == MVT::i64 && !HasMips64)
3331        return std::make_pair(0U, &Mips::CPURegsRegClass);
3332      if (VT == MVT::i64 && HasMips64)
3333        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3334      // This will generate an error message
3335      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3336    case 'f':
3337      if (VT == MVT::f32)
3338        return std::make_pair(0U, &Mips::FGR32RegClass);
3339      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3340        if (Subtarget->isFP64bit())
3341          return std::make_pair(0U, &Mips::FGR64RegClass);
3342        return std::make_pair(0U, &Mips::AFGR64RegClass);
3343      }
3344      break;
3345    case 'c': // register suitable for indirect jump
3346      if (VT == MVT::i32)
3347        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3348      assert(VT == MVT::i64 && "Unexpected type.");
3349      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3350    case 'l': // register suitable for indirect jump
3351      if (VT == MVT::i32)
3352        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3353      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3354    case 'x': // register suitable for indirect jump
3355      // Fixme: Not triggering the use of both hi and low
3356      // This will generate an error message
3357      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3358    }
3359  }
3360  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3361}
3362
3363/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3364/// vector.  If it is invalid, don't add anything to Ops.
3365void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3366                                                     std::string &Constraint,
3367                                                     std::vector<SDValue>&Ops,
3368                                                     SelectionDAG &DAG) const {
3369  SDValue Result(0, 0);
3370
3371  // Only support length 1 constraints for now.
3372  if (Constraint.length() > 1) return;
3373
3374  char ConstraintLetter = Constraint[0];
3375  switch (ConstraintLetter) {
3376  default: break; // This will fall through to the generic implementation
3377  case 'I': // Signed 16 bit constant
3378    // If this fails, the parent routine will give an error
3379    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3380      EVT Type = Op.getValueType();
3381      int64_t Val = C->getSExtValue();
3382      if (isInt<16>(Val)) {
3383        Result = DAG.getTargetConstant(Val, Type);
3384        break;
3385      }
3386    }
3387    return;
3388  case 'J': // integer zero
3389    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3390      EVT Type = Op.getValueType();
3391      int64_t Val = C->getZExtValue();
3392      if (Val == 0) {
3393        Result = DAG.getTargetConstant(0, Type);
3394        break;
3395      }
3396    }
3397    return;
3398  case 'K': // unsigned 16 bit immediate
3399    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3400      EVT Type = Op.getValueType();
3401      uint64_t Val = (uint64_t)C->getZExtValue();
3402      if (isUInt<16>(Val)) {
3403        Result = DAG.getTargetConstant(Val, Type);
3404        break;
3405      }
3406    }
3407    return;
3408  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3409    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3410      EVT Type = Op.getValueType();
3411      int64_t Val = C->getSExtValue();
3412      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3413        Result = DAG.getTargetConstant(Val, Type);
3414        break;
3415      }
3416    }
3417    return;
3418  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3419    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3420      EVT Type = Op.getValueType();
3421      int64_t Val = C->getSExtValue();
3422      if ((Val >= -65535) && (Val <= -1)) {
3423        Result = DAG.getTargetConstant(Val, Type);
3424        break;
3425      }
3426    }
3427    return;
3428  case 'O': // signed 15 bit immediate
3429    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3430      EVT Type = Op.getValueType();
3431      int64_t Val = C->getSExtValue();
3432      if ((isInt<15>(Val))) {
3433        Result = DAG.getTargetConstant(Val, Type);
3434        break;
3435      }
3436    }
3437    return;
3438  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3439    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3440      EVT Type = Op.getValueType();
3441      int64_t Val = C->getSExtValue();
3442      if ((Val <= 65535) && (Val >= 1)) {
3443        Result = DAG.getTargetConstant(Val, Type);
3444        break;
3445      }
3446    }
3447    return;
3448  }
3449
3450  if (Result.getNode()) {
3451    Ops.push_back(Result);
3452    return;
3453  }
3454
3455  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3456}
3457
3458bool
3459MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3460  // The Mips target isn't yet aware of offsets.
3461  return false;
3462}
3463
3464EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3465                                            unsigned SrcAlign, bool IsZeroVal,
3466                                            bool MemcpyStrSrc,
3467                                            MachineFunction &MF) const {
3468  if (Subtarget->hasMips64())
3469    return MVT::i64;
3470
3471  return MVT::i32;
3472}
3473
3474bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3475  if (VT != MVT::f32 && VT != MVT::f64)
3476    return false;
3477  if (Imm.isNegZero())
3478    return false;
3479  return Imm.isZero();
3480}
3481
3482unsigned MipsTargetLowering::getJumpTableEncoding() const {
3483  if (IsN64)
3484    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3485
3486  return TargetLowering::getJumpTableEncoding();
3487}
3488