MipsISelLowering.cpp revision 3fef29d88100881e7a52e570c30052e0d44c62ee
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "MipsMachineFunction.h"
18#include "MipsTargetMachine.h"
19#include "MipsTargetObjectFile.h"
20#include "MipsSubtarget.h"
21#include "InstPrinter/MipsInstPrinter.h"
22#include "MCTargetDesc/MipsBaseInfo.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/CallingConv.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41// If I is a shifted mask, set the size (Size) and the first bit of the
42// mask (Pos), and return true.
43// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
44static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
45  if (!isShiftedMask_64(I))
46     return false;
47
48  Size = CountPopulation_64(I);
49  Pos = CountTrailingZeros_64(I);
50  return true;
51}
52
53static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
54  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
55  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
56}
57
58const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
59  switch (Opcode) {
60  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
61  case MipsISD::Hi:                return "MipsISD::Hi";
62  case MipsISD::Lo:                return "MipsISD::Lo";
63  case MipsISD::GPRel:             return "MipsISD::GPRel";
64  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
65  case MipsISD::Ret:               return "MipsISD::Ret";
66  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
67  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
68  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
69  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
70  case MipsISD::FPRound:           return "MipsISD::FPRound";
71  case MipsISD::MAdd:              return "MipsISD::MAdd";
72  case MipsISD::MAddu:             return "MipsISD::MAddu";
73  case MipsISD::MSub:              return "MipsISD::MSub";
74  case MipsISD::MSubu:             return "MipsISD::MSubu";
75  case MipsISD::DivRem:            return "MipsISD::DivRem";
76  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
77  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
78  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
79  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
80  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
81  case MipsISD::Sync:              return "MipsISD::Sync";
82  case MipsISD::Ext:               return "MipsISD::Ext";
83  case MipsISD::Ins:               return "MipsISD::Ins";
84  case MipsISD::LWL:               return "MipsISD::LWL";
85  case MipsISD::LWR:               return "MipsISD::LWR";
86  case MipsISD::SWL:               return "MipsISD::SWL";
87  case MipsISD::SWR:               return "MipsISD::SWR";
88  case MipsISD::LDL:               return "MipsISD::LDL";
89  case MipsISD::LDR:               return "MipsISD::LDR";
90  case MipsISD::SDL:               return "MipsISD::SDL";
91  case MipsISD::SDR:               return "MipsISD::SDR";
92  default:                         return NULL;
93  }
94}
95
96MipsTargetLowering::
97MipsTargetLowering(MipsTargetMachine &TM)
98  : TargetLowering(TM, new MipsTargetObjectFile()),
99    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
100    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
101    IsO32(Subtarget->isABI_O32()) {
102
103  // Mips does not have i1 type, so use i32 for
104  // setcc operations results (slt, sgt, ...).
105  setBooleanContents(ZeroOrOneBooleanContent);
106  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
107
108  // Set up the register classes
109  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
110
111  if (HasMips64)
112    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
113
114  if (Subtarget->inMips16Mode()) {
115    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
116    addRegisterClass(MVT::i32, &Mips::CPURARegRegClass);
117  }
118
119  if (!TM.Options.UseSoftFloat) {
120    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
121
122    // When dealing with single precision only, use libcalls
123    if (!Subtarget->isSingleFloat()) {
124      if (HasMips64)
125        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
126      else
127        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
128    }
129  }
130
131  // Load extented operations for i1 types must be promoted
132  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
133  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
134  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
135
136  // MIPS doesn't have extending float->double load/store
137  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
138  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
139
140  // Used by legalize types to correctly generate the setcc result.
141  // Without this, every float setcc comes with a AND/OR with the result,
142  // we don't want this, since the fpcmp result goes to a flag register,
143  // which is used implicitly by brcond and select operations.
144  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
145
146  // Mips Custom Operations
147  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
148  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
149  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
150  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
151  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
152  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
153  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
154  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
155  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
156  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
157  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
158  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
159  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
160  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Custom);
161  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
162  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
163  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
164  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
165  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
166  setOperationAction(ISD::LOAD,               MVT::i32, Custom);
167  setOperationAction(ISD::STORE,              MVT::i32, Custom);
168
169  if (!TM.Options.NoNaNsFPMath) {
170    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
171    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
172  }
173
174  if (HasMips64) {
175    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
176    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
177    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
178    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
179    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
180    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
181    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,   Custom);
182    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
183    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
184  }
185
186  if (!HasMips64) {
187    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
188    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
189    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
190  }
191
192  setOperationAction(ISD::SDIV, MVT::i32, Expand);
193  setOperationAction(ISD::SREM, MVT::i32, Expand);
194  setOperationAction(ISD::UDIV, MVT::i32, Expand);
195  setOperationAction(ISD::UREM, MVT::i32, Expand);
196  setOperationAction(ISD::SDIV, MVT::i64, Expand);
197  setOperationAction(ISD::SREM, MVT::i64, Expand);
198  setOperationAction(ISD::UDIV, MVT::i64, Expand);
199  setOperationAction(ISD::UREM, MVT::i64, Expand);
200
201  // Operations not directly supported by Mips.
202  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
203  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
204  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
205  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
206  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
207  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
208  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
209  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
210  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
211  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
212  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
213  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
214  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
215  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
216  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
217  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
218  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
219  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
220
221  if (!Subtarget->hasMips32r2())
222    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
223
224  if (!Subtarget->hasMips64r2())
225    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
226
227  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
228  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
229  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
230  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
231  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
232  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
233  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
234  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
235  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
236  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
237  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
238  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
239  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
240  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
241  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
242
243  if (!TM.Options.NoNaNsFPMath) {
244    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
245    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
246  }
247
248  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
249  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
250  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
251  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
252
253  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
254  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
255  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
256
257  // Use the default for now
258  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
259  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
260
261  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
262  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
263  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
264  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
265
266  setInsertFencesForAtomic(true);
267
268  if (!Subtarget->hasSEInReg()) {
269    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
270    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
271  }
272
273  if (!Subtarget->hasBitCount()) {
274    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
275    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
276  }
277
278  if (!Subtarget->hasSwap()) {
279    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
280    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
281  }
282
283  if (HasMips64) {
284    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
285    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
286    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
287    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
288  }
289
290  setTargetDAGCombine(ISD::ADDE);
291  setTargetDAGCombine(ISD::SUBE);
292  setTargetDAGCombine(ISD::SDIVREM);
293  setTargetDAGCombine(ISD::UDIVREM);
294  setTargetDAGCombine(ISD::SELECT);
295  setTargetDAGCombine(ISD::AND);
296  setTargetDAGCombine(ISD::OR);
297  setTargetDAGCombine(ISD::ADD);
298
299  setMinFunctionAlignment(HasMips64 ? 3 : 2);
300
301  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
302  computeRegisterProperties();
303
304  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
305  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
306
307  maxStoresPerMemcpy = 16;
308}
309
310bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
311  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
312
313  switch (SVT) {
314  case MVT::i64:
315  case MVT::i32:
316    return true;
317  case MVT::f32:
318    return Subtarget->hasMips32r2Or64();
319  default:
320    return false;
321  }
322}
323
324EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
325  return MVT::i32;
326}
327
328// SelectMadd -
329// Transforms a subgraph in CurDAG if the following pattern is found:
330//  (addc multLo, Lo0), (adde multHi, Hi0),
331// where,
332//  multHi/Lo: product of multiplication
333//  Lo0: initial value of Lo register
334//  Hi0: initial value of Hi register
335// Return true if pattern matching was successful.
336static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
337  // ADDENode's second operand must be a flag output of an ADDC node in order
338  // for the matching to be successful.
339  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
340
341  if (ADDCNode->getOpcode() != ISD::ADDC)
342    return false;
343
344  SDValue MultHi = ADDENode->getOperand(0);
345  SDValue MultLo = ADDCNode->getOperand(0);
346  SDNode *MultNode = MultHi.getNode();
347  unsigned MultOpc = MultHi.getOpcode();
348
349  // MultHi and MultLo must be generated by the same node,
350  if (MultLo.getNode() != MultNode)
351    return false;
352
353  // and it must be a multiplication.
354  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
355    return false;
356
357  // MultLo amd MultHi must be the first and second output of MultNode
358  // respectively.
359  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
360    return false;
361
362  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
363  // of the values of MultNode, in which case MultNode will be removed in later
364  // phases.
365  // If there exist users other than ADDENode or ADDCNode, this function returns
366  // here, which will result in MultNode being mapped to a single MULT
367  // instruction node rather than a pair of MULT and MADD instructions being
368  // produced.
369  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
370    return false;
371
372  SDValue Chain = CurDAG->getEntryNode();
373  DebugLoc dl = ADDENode->getDebugLoc();
374
375  // create MipsMAdd(u) node
376  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
377
378  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
379                                 MultNode->getOperand(0),// Factor 0
380                                 MultNode->getOperand(1),// Factor 1
381                                 ADDCNode->getOperand(1),// Lo0
382                                 ADDENode->getOperand(1));// Hi0
383
384  // create CopyFromReg nodes
385  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
386                                              MAdd);
387  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
388                                              Mips::HI, MVT::i32,
389                                              CopyFromLo.getValue(2));
390
391  // replace uses of adde and addc here
392  if (!SDValue(ADDCNode, 0).use_empty())
393    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
394
395  if (!SDValue(ADDENode, 0).use_empty())
396    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
397
398  return true;
399}
400
401// SelectMsub -
402// Transforms a subgraph in CurDAG if the following pattern is found:
403//  (addc Lo0, multLo), (sube Hi0, multHi),
404// where,
405//  multHi/Lo: product of multiplication
406//  Lo0: initial value of Lo register
407//  Hi0: initial value of Hi register
408// Return true if pattern matching was successful.
409static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
410  // SUBENode's second operand must be a flag output of an SUBC node in order
411  // for the matching to be successful.
412  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
413
414  if (SUBCNode->getOpcode() != ISD::SUBC)
415    return false;
416
417  SDValue MultHi = SUBENode->getOperand(1);
418  SDValue MultLo = SUBCNode->getOperand(1);
419  SDNode *MultNode = MultHi.getNode();
420  unsigned MultOpc = MultHi.getOpcode();
421
422  // MultHi and MultLo must be generated by the same node,
423  if (MultLo.getNode() != MultNode)
424    return false;
425
426  // and it must be a multiplication.
427  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
428    return false;
429
430  // MultLo amd MultHi must be the first and second output of MultNode
431  // respectively.
432  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
433    return false;
434
435  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
436  // of the values of MultNode, in which case MultNode will be removed in later
437  // phases.
438  // If there exist users other than SUBENode or SUBCNode, this function returns
439  // here, which will result in MultNode being mapped to a single MULT
440  // instruction node rather than a pair of MULT and MSUB instructions being
441  // produced.
442  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
443    return false;
444
445  SDValue Chain = CurDAG->getEntryNode();
446  DebugLoc dl = SUBENode->getDebugLoc();
447
448  // create MipsSub(u) node
449  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
450
451  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
452                                 MultNode->getOperand(0),// Factor 0
453                                 MultNode->getOperand(1),// Factor 1
454                                 SUBCNode->getOperand(0),// Lo0
455                                 SUBENode->getOperand(0));// Hi0
456
457  // create CopyFromReg nodes
458  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
459                                              MSub);
460  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
461                                              Mips::HI, MVT::i32,
462                                              CopyFromLo.getValue(2));
463
464  // replace uses of sube and subc here
465  if (!SDValue(SUBCNode, 0).use_empty())
466    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
467
468  if (!SDValue(SUBENode, 0).use_empty())
469    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
470
471  return true;
472}
473
474static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
475                                  TargetLowering::DAGCombinerInfo &DCI,
476                                  const MipsSubtarget *Subtarget) {
477  if (DCI.isBeforeLegalize())
478    return SDValue();
479
480  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
481      SelectMadd(N, &DAG))
482    return SDValue(N, 0);
483
484  return SDValue();
485}
486
487static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
488                                  TargetLowering::DAGCombinerInfo &DCI,
489                                  const MipsSubtarget *Subtarget) {
490  if (DCI.isBeforeLegalize())
491    return SDValue();
492
493  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
494      SelectMsub(N, &DAG))
495    return SDValue(N, 0);
496
497  return SDValue();
498}
499
500static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
501                                    TargetLowering::DAGCombinerInfo &DCI,
502                                    const MipsSubtarget *Subtarget) {
503  if (DCI.isBeforeLegalizeOps())
504    return SDValue();
505
506  EVT Ty = N->getValueType(0);
507  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
508  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
509  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
510                                                  MipsISD::DivRemU;
511  DebugLoc dl = N->getDebugLoc();
512
513  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
514                               N->getOperand(0), N->getOperand(1));
515  SDValue InChain = DAG.getEntryNode();
516  SDValue InGlue = DivRem;
517
518  // insert MFLO
519  if (N->hasAnyUseOfValue(0)) {
520    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
521                                            InGlue);
522    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
523    InChain = CopyFromLo.getValue(1);
524    InGlue = CopyFromLo.getValue(2);
525  }
526
527  // insert MFHI
528  if (N->hasAnyUseOfValue(1)) {
529    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
530                                            HI, Ty, InGlue);
531    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
532  }
533
534  return SDValue();
535}
536
537static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
538  switch (CC) {
539  default: llvm_unreachable("Unknown fp condition code!");
540  case ISD::SETEQ:
541  case ISD::SETOEQ: return Mips::FCOND_OEQ;
542  case ISD::SETUNE: return Mips::FCOND_UNE;
543  case ISD::SETLT:
544  case ISD::SETOLT: return Mips::FCOND_OLT;
545  case ISD::SETGT:
546  case ISD::SETOGT: return Mips::FCOND_OGT;
547  case ISD::SETLE:
548  case ISD::SETOLE: return Mips::FCOND_OLE;
549  case ISD::SETGE:
550  case ISD::SETOGE: return Mips::FCOND_OGE;
551  case ISD::SETULT: return Mips::FCOND_ULT;
552  case ISD::SETULE: return Mips::FCOND_ULE;
553  case ISD::SETUGT: return Mips::FCOND_UGT;
554  case ISD::SETUGE: return Mips::FCOND_UGE;
555  case ISD::SETUO:  return Mips::FCOND_UN;
556  case ISD::SETO:   return Mips::FCOND_OR;
557  case ISD::SETNE:
558  case ISD::SETONE: return Mips::FCOND_ONE;
559  case ISD::SETUEQ: return Mips::FCOND_UEQ;
560  }
561}
562
563
564// Returns true if condition code has to be inverted.
565static bool InvertFPCondCode(Mips::CondCode CC) {
566  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
567    return false;
568
569  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
570         "Illegal Condition Code");
571
572  return true;
573}
574
575// Creates and returns an FPCmp node from a setcc node.
576// Returns Op if setcc is not a floating point comparison.
577static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
578  // must be a SETCC node
579  if (Op.getOpcode() != ISD::SETCC)
580    return Op;
581
582  SDValue LHS = Op.getOperand(0);
583
584  if (!LHS.getValueType().isFloatingPoint())
585    return Op;
586
587  SDValue RHS = Op.getOperand(1);
588  DebugLoc dl = Op.getDebugLoc();
589
590  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
591  // node if necessary.
592  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
593
594  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
595                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
596}
597
598// Creates and returns a CMovFPT/F node.
599static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
600                            SDValue False, DebugLoc DL) {
601  bool invert = InvertFPCondCode((Mips::CondCode)
602                                 cast<ConstantSDNode>(Cond.getOperand(2))
603                                 ->getSExtValue());
604
605  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
606                     True.getValueType(), True, False, Cond);
607}
608
609static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
610                                    TargetLowering::DAGCombinerInfo &DCI,
611                                    const MipsSubtarget *Subtarget) {
612  if (DCI.isBeforeLegalizeOps())
613    return SDValue();
614
615  SDValue SetCC = N->getOperand(0);
616
617  if ((SetCC.getOpcode() != ISD::SETCC) ||
618      !SetCC.getOperand(0).getValueType().isInteger())
619    return SDValue();
620
621  SDValue False = N->getOperand(2);
622  EVT FalseTy = False.getValueType();
623
624  if (!FalseTy.isInteger())
625    return SDValue();
626
627  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
628
629  if (!CN || CN->getZExtValue())
630    return SDValue();
631
632  const DebugLoc DL = N->getDebugLoc();
633  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
634  SDValue True = N->getOperand(1);
635
636  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
637                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
638
639  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
640}
641
642static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
643                                 TargetLowering::DAGCombinerInfo &DCI,
644                                 const MipsSubtarget *Subtarget) {
645  // Pattern match EXT.
646  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
647  //  => ext $dst, $src, size, pos
648  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
649    return SDValue();
650
651  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
652  unsigned ShiftRightOpc = ShiftRight.getOpcode();
653
654  // Op's first operand must be a shift right.
655  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
656    return SDValue();
657
658  // The second operand of the shift must be an immediate.
659  ConstantSDNode *CN;
660  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
661    return SDValue();
662
663  uint64_t Pos = CN->getZExtValue();
664  uint64_t SMPos, SMSize;
665
666  // Op's second operand must be a shifted mask.
667  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
668      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
669    return SDValue();
670
671  // Return if the shifted mask does not start at bit 0 or the sum of its size
672  // and Pos exceeds the word's size.
673  EVT ValTy = N->getValueType(0);
674  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
675    return SDValue();
676
677  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
678                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
679                     DAG.getConstant(SMSize, MVT::i32));
680}
681
682static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
683                                TargetLowering::DAGCombinerInfo &DCI,
684                                const MipsSubtarget *Subtarget) {
685  // Pattern match INS.
686  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
687  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
688  //  => ins $dst, $src, size, pos, $src1
689  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
690    return SDValue();
691
692  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
693  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
694  ConstantSDNode *CN;
695
696  // See if Op's first operand matches (and $src1 , mask0).
697  if (And0.getOpcode() != ISD::AND)
698    return SDValue();
699
700  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
701      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
702    return SDValue();
703
704  // See if Op's second operand matches (and (shl $src, pos), mask1).
705  if (And1.getOpcode() != ISD::AND)
706    return SDValue();
707
708  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
709      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
710    return SDValue();
711
712  // The shift masks must have the same position and size.
713  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
714    return SDValue();
715
716  SDValue Shl = And1.getOperand(0);
717  if (Shl.getOpcode() != ISD::SHL)
718    return SDValue();
719
720  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
721    return SDValue();
722
723  unsigned Shamt = CN->getZExtValue();
724
725  // Return if the shift amount and the first bit position of mask are not the
726  // same.
727  EVT ValTy = N->getValueType(0);
728  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
729    return SDValue();
730
731  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
732                     DAG.getConstant(SMPos0, MVT::i32),
733                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
734}
735
736static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
737                                 TargetLowering::DAGCombinerInfo &DCI,
738                                 const MipsSubtarget *Subtarget) {
739  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
740
741  if (DCI.isBeforeLegalizeOps())
742    return SDValue();
743
744  SDValue Add = N->getOperand(1);
745
746  if (Add.getOpcode() != ISD::ADD)
747    return SDValue();
748
749  SDValue Lo = Add.getOperand(1);
750
751  if ((Lo.getOpcode() != MipsISD::Lo) ||
752      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
753    return SDValue();
754
755  EVT ValTy = N->getValueType(0);
756  DebugLoc DL = N->getDebugLoc();
757
758  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
759                             Add.getOperand(0));
760  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
761}
762
763SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
764  const {
765  SelectionDAG &DAG = DCI.DAG;
766  unsigned opc = N->getOpcode();
767
768  switch (opc) {
769  default: break;
770  case ISD::ADDE:
771    return PerformADDECombine(N, DAG, DCI, Subtarget);
772  case ISD::SUBE:
773    return PerformSUBECombine(N, DAG, DCI, Subtarget);
774  case ISD::SDIVREM:
775  case ISD::UDIVREM:
776    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
777  case ISD::SELECT:
778    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
779  case ISD::AND:
780    return PerformANDCombine(N, DAG, DCI, Subtarget);
781  case ISD::OR:
782    return PerformORCombine(N, DAG, DCI, Subtarget);
783  case ISD::ADD:
784    return PerformADDCombine(N, DAG, DCI, Subtarget);
785  }
786
787  return SDValue();
788}
789
790SDValue MipsTargetLowering::
791LowerOperation(SDValue Op, SelectionDAG &DAG) const
792{
793  switch (Op.getOpcode())
794  {
795    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
796    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
797    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
798    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
799    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
800    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
801    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
802    case ISD::SELECT:             return LowerSELECT(Op, DAG);
803    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
804    case ISD::SETCC:              return LowerSETCC(Op, DAG);
805    case ISD::VASTART:            return LowerVASTART(Op, DAG);
806    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
807    case ISD::FABS:               return LowerFABS(Op, DAG);
808    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
809    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
810    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
811    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
812    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
813    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
814    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
815    case ISD::LOAD:               return LowerLOAD(Op, DAG);
816    case ISD::STORE:              return LowerSTORE(Op, DAG);
817  }
818  return SDValue();
819}
820
821//===----------------------------------------------------------------------===//
822//  Lower helper functions
823//===----------------------------------------------------------------------===//
824
825// AddLiveIn - This helper function adds the specified physical register to the
826// MachineFunction as a live in value.  It also creates a corresponding
827// virtual register for it.
828static unsigned
829AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
830{
831  assert(RC->contains(PReg) && "Not the correct regclass!");
832  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
833  MF.getRegInfo().addLiveIn(PReg, VReg);
834  return VReg;
835}
836
837// Get fp branch code (not opcode) from condition code.
838static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
839  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
840    return Mips::BRANCH_T;
841
842  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
843         "Invalid CondCode.");
844
845  return Mips::BRANCH_F;
846}
847
848/*
849static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
850                                        DebugLoc dl,
851                                        const MipsSubtarget *Subtarget,
852                                        const TargetInstrInfo *TII,
853                                        bool isFPCmp, unsigned Opc) {
854  // There is no need to expand CMov instructions if target has
855  // conditional moves.
856  if (Subtarget->hasCondMov())
857    return BB;
858
859  // To "insert" a SELECT_CC instruction, we actually have to insert the
860  // diamond control-flow pattern.  The incoming instruction knows the
861  // destination vreg to set, the condition code register to branch on, the
862  // true/false values to select between, and a branch opcode to use.
863  const BasicBlock *LLVM_BB = BB->getBasicBlock();
864  MachineFunction::iterator It = BB;
865  ++It;
866
867  //  thisMBB:
868  //  ...
869  //   TrueVal = ...
870  //   setcc r1, r2, r3
871  //   bNE   r1, r0, copy1MBB
872  //   fallthrough --> copy0MBB
873  MachineBasicBlock *thisMBB  = BB;
874  MachineFunction *F = BB->getParent();
875  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
876  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
877  F->insert(It, copy0MBB);
878  F->insert(It, sinkMBB);
879
880  // Transfer the remainder of BB and its successor edges to sinkMBB.
881  sinkMBB->splice(sinkMBB->begin(), BB,
882                  llvm::next(MachineBasicBlock::iterator(MI)),
883                  BB->end());
884  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
885
886  // Next, add the true and fallthrough blocks as its successors.
887  BB->addSuccessor(copy0MBB);
888  BB->addSuccessor(sinkMBB);
889
890  // Emit the right instruction according to the type of the operands compared
891  if (isFPCmp)
892    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
893  else
894    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
895      .addReg(Mips::ZERO).addMBB(sinkMBB);
896
897  //  copy0MBB:
898  //   %FalseValue = ...
899  //   # fallthrough to sinkMBB
900  BB = copy0MBB;
901
902  // Update machine-CFG edges
903  BB->addSuccessor(sinkMBB);
904
905  //  sinkMBB:
906  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
907  //  ...
908  BB = sinkMBB;
909
910  if (isFPCmp)
911    BuildMI(*BB, BB->begin(), dl,
912            TII->get(Mips::PHI), MI->getOperand(0).getReg())
913      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
914      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
915  else
916    BuildMI(*BB, BB->begin(), dl,
917            TII->get(Mips::PHI), MI->getOperand(0).getReg())
918      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
919      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
920
921  MI->eraseFromParent();   // The pseudo instruction is gone now.
922  return BB;
923}
924*/
925MachineBasicBlock *
926MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
927                                                MachineBasicBlock *BB) const {
928  switch (MI->getOpcode()) {
929  default: llvm_unreachable("Unexpected instr type to insert");
930  case Mips::ATOMIC_LOAD_ADD_I8:
931  case Mips::ATOMIC_LOAD_ADD_I8_P8:
932    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
933  case Mips::ATOMIC_LOAD_ADD_I16:
934  case Mips::ATOMIC_LOAD_ADD_I16_P8:
935    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
936  case Mips::ATOMIC_LOAD_ADD_I32:
937  case Mips::ATOMIC_LOAD_ADD_I32_P8:
938    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
939  case Mips::ATOMIC_LOAD_ADD_I64:
940  case Mips::ATOMIC_LOAD_ADD_I64_P8:
941    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
942
943  case Mips::ATOMIC_LOAD_AND_I8:
944  case Mips::ATOMIC_LOAD_AND_I8_P8:
945    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
946  case Mips::ATOMIC_LOAD_AND_I16:
947  case Mips::ATOMIC_LOAD_AND_I16_P8:
948    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
949  case Mips::ATOMIC_LOAD_AND_I32:
950  case Mips::ATOMIC_LOAD_AND_I32_P8:
951    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
952  case Mips::ATOMIC_LOAD_AND_I64:
953  case Mips::ATOMIC_LOAD_AND_I64_P8:
954    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
955
956  case Mips::ATOMIC_LOAD_OR_I8:
957  case Mips::ATOMIC_LOAD_OR_I8_P8:
958    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
959  case Mips::ATOMIC_LOAD_OR_I16:
960  case Mips::ATOMIC_LOAD_OR_I16_P8:
961    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
962  case Mips::ATOMIC_LOAD_OR_I32:
963  case Mips::ATOMIC_LOAD_OR_I32_P8:
964    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
965  case Mips::ATOMIC_LOAD_OR_I64:
966  case Mips::ATOMIC_LOAD_OR_I64_P8:
967    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
968
969  case Mips::ATOMIC_LOAD_XOR_I8:
970  case Mips::ATOMIC_LOAD_XOR_I8_P8:
971    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
972  case Mips::ATOMIC_LOAD_XOR_I16:
973  case Mips::ATOMIC_LOAD_XOR_I16_P8:
974    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
975  case Mips::ATOMIC_LOAD_XOR_I32:
976  case Mips::ATOMIC_LOAD_XOR_I32_P8:
977    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
978  case Mips::ATOMIC_LOAD_XOR_I64:
979  case Mips::ATOMIC_LOAD_XOR_I64_P8:
980    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
981
982  case Mips::ATOMIC_LOAD_NAND_I8:
983  case Mips::ATOMIC_LOAD_NAND_I8_P8:
984    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
985  case Mips::ATOMIC_LOAD_NAND_I16:
986  case Mips::ATOMIC_LOAD_NAND_I16_P8:
987    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
988  case Mips::ATOMIC_LOAD_NAND_I32:
989  case Mips::ATOMIC_LOAD_NAND_I32_P8:
990    return EmitAtomicBinary(MI, BB, 4, 0, true);
991  case Mips::ATOMIC_LOAD_NAND_I64:
992  case Mips::ATOMIC_LOAD_NAND_I64_P8:
993    return EmitAtomicBinary(MI, BB, 8, 0, true);
994
995  case Mips::ATOMIC_LOAD_SUB_I8:
996  case Mips::ATOMIC_LOAD_SUB_I8_P8:
997    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
998  case Mips::ATOMIC_LOAD_SUB_I16:
999  case Mips::ATOMIC_LOAD_SUB_I16_P8:
1000    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1001  case Mips::ATOMIC_LOAD_SUB_I32:
1002  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1003    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1004  case Mips::ATOMIC_LOAD_SUB_I64:
1005  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1006    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1007
1008  case Mips::ATOMIC_SWAP_I8:
1009  case Mips::ATOMIC_SWAP_I8_P8:
1010    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1011  case Mips::ATOMIC_SWAP_I16:
1012  case Mips::ATOMIC_SWAP_I16_P8:
1013    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1014  case Mips::ATOMIC_SWAP_I32:
1015  case Mips::ATOMIC_SWAP_I32_P8:
1016    return EmitAtomicBinary(MI, BB, 4, 0);
1017  case Mips::ATOMIC_SWAP_I64:
1018  case Mips::ATOMIC_SWAP_I64_P8:
1019    return EmitAtomicBinary(MI, BB, 8, 0);
1020
1021  case Mips::ATOMIC_CMP_SWAP_I8:
1022  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1023    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1024  case Mips::ATOMIC_CMP_SWAP_I16:
1025  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1026    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1027  case Mips::ATOMIC_CMP_SWAP_I32:
1028  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1029    return EmitAtomicCmpSwap(MI, BB, 4);
1030  case Mips::ATOMIC_CMP_SWAP_I64:
1031  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1032    return EmitAtomicCmpSwap(MI, BB, 8);
1033  }
1034}
1035
1036// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1037// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1038MachineBasicBlock *
1039MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1040                                     unsigned Size, unsigned BinOpcode,
1041                                     bool Nand) const {
1042  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1043
1044  MachineFunction *MF = BB->getParent();
1045  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1046  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1047  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1048  DebugLoc dl = MI->getDebugLoc();
1049  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1050
1051  if (Size == 4) {
1052    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1053    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1054    AND = Mips::AND;
1055    NOR = Mips::NOR;
1056    ZERO = Mips::ZERO;
1057    BEQ = Mips::BEQ;
1058  }
1059  else {
1060    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1061    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1062    AND = Mips::AND64;
1063    NOR = Mips::NOR64;
1064    ZERO = Mips::ZERO_64;
1065    BEQ = Mips::BEQ64;
1066  }
1067
1068  unsigned OldVal = MI->getOperand(0).getReg();
1069  unsigned Ptr = MI->getOperand(1).getReg();
1070  unsigned Incr = MI->getOperand(2).getReg();
1071
1072  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1073  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1074  unsigned Success = RegInfo.createVirtualRegister(RC);
1075
1076  // insert new blocks after the current block
1077  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1078  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1079  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1080  MachineFunction::iterator It = BB;
1081  ++It;
1082  MF->insert(It, loopMBB);
1083  MF->insert(It, exitMBB);
1084
1085  // Transfer the remainder of BB and its successor edges to exitMBB.
1086  exitMBB->splice(exitMBB->begin(), BB,
1087                  llvm::next(MachineBasicBlock::iterator(MI)),
1088                  BB->end());
1089  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1090
1091  //  thisMBB:
1092  //    ...
1093  //    fallthrough --> loopMBB
1094  BB->addSuccessor(loopMBB);
1095  loopMBB->addSuccessor(loopMBB);
1096  loopMBB->addSuccessor(exitMBB);
1097
1098  //  loopMBB:
1099  //    ll oldval, 0(ptr)
1100  //    <binop> storeval, oldval, incr
1101  //    sc success, storeval, 0(ptr)
1102  //    beq success, $0, loopMBB
1103  BB = loopMBB;
1104  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1105  if (Nand) {
1106    //  and andres, oldval, incr
1107    //  nor storeval, $0, andres
1108    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1109    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1110  } else if (BinOpcode) {
1111    //  <binop> storeval, oldval, incr
1112    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1113  } else {
1114    StoreVal = Incr;
1115  }
1116  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1117  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1118
1119  MI->eraseFromParent();   // The instruction is gone now.
1120
1121  return exitMBB;
1122}
1123
1124MachineBasicBlock *
1125MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1126                                             MachineBasicBlock *BB,
1127                                             unsigned Size, unsigned BinOpcode,
1128                                             bool Nand) const {
1129  assert((Size == 1 || Size == 2) &&
1130      "Unsupported size for EmitAtomicBinaryPartial.");
1131
1132  MachineFunction *MF = BB->getParent();
1133  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1134  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1135  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1136  DebugLoc dl = MI->getDebugLoc();
1137  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1138  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1139
1140  unsigned Dest = MI->getOperand(0).getReg();
1141  unsigned Ptr = MI->getOperand(1).getReg();
1142  unsigned Incr = MI->getOperand(2).getReg();
1143
1144  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1145  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1146  unsigned Mask = RegInfo.createVirtualRegister(RC);
1147  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1148  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1149  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1150  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1151  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1152  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1153  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1154  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1155  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1156  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1157  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1158  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1159  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1160  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1161  unsigned Success = RegInfo.createVirtualRegister(RC);
1162
1163  // insert new blocks after the current block
1164  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1165  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1166  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1167  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1168  MachineFunction::iterator It = BB;
1169  ++It;
1170  MF->insert(It, loopMBB);
1171  MF->insert(It, sinkMBB);
1172  MF->insert(It, exitMBB);
1173
1174  // Transfer the remainder of BB and its successor edges to exitMBB.
1175  exitMBB->splice(exitMBB->begin(), BB,
1176                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1177  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1178
1179  BB->addSuccessor(loopMBB);
1180  loopMBB->addSuccessor(loopMBB);
1181  loopMBB->addSuccessor(sinkMBB);
1182  sinkMBB->addSuccessor(exitMBB);
1183
1184  //  thisMBB:
1185  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1186  //    and     alignedaddr,ptr,masklsb2
1187  //    andi    ptrlsb2,ptr,3
1188  //    sll     shiftamt,ptrlsb2,3
1189  //    ori     maskupper,$0,255               # 0xff
1190  //    sll     mask,maskupper,shiftamt
1191  //    nor     mask2,$0,mask
1192  //    sll     incr2,incr,shiftamt
1193
1194  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1195  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1196    .addReg(Mips::ZERO).addImm(-4);
1197  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1198    .addReg(Ptr).addReg(MaskLSB2);
1199  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1200  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1201  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1202    .addReg(Mips::ZERO).addImm(MaskImm);
1203  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1204    .addReg(ShiftAmt).addReg(MaskUpper);
1205  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1206  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1207
1208  // atomic.load.binop
1209  // loopMBB:
1210  //   ll      oldval,0(alignedaddr)
1211  //   binop   binopres,oldval,incr2
1212  //   and     newval,binopres,mask
1213  //   and     maskedoldval0,oldval,mask2
1214  //   or      storeval,maskedoldval0,newval
1215  //   sc      success,storeval,0(alignedaddr)
1216  //   beq     success,$0,loopMBB
1217
1218  // atomic.swap
1219  // loopMBB:
1220  //   ll      oldval,0(alignedaddr)
1221  //   and     newval,incr2,mask
1222  //   and     maskedoldval0,oldval,mask2
1223  //   or      storeval,maskedoldval0,newval
1224  //   sc      success,storeval,0(alignedaddr)
1225  //   beq     success,$0,loopMBB
1226
1227  BB = loopMBB;
1228  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1229  if (Nand) {
1230    //  and andres, oldval, incr2
1231    //  nor binopres, $0, andres
1232    //  and newval, binopres, mask
1233    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1234    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1235      .addReg(Mips::ZERO).addReg(AndRes);
1236    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1237  } else if (BinOpcode) {
1238    //  <binop> binopres, oldval, incr2
1239    //  and newval, binopres, mask
1240    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1241    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1242  } else {// atomic.swap
1243    //  and newval, incr2, mask
1244    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1245  }
1246
1247  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1248    .addReg(OldVal).addReg(Mask2);
1249  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1250    .addReg(MaskedOldVal0).addReg(NewVal);
1251  BuildMI(BB, dl, TII->get(SC), Success)
1252    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1253  BuildMI(BB, dl, TII->get(Mips::BEQ))
1254    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1255
1256  //  sinkMBB:
1257  //    and     maskedoldval1,oldval,mask
1258  //    srl     srlres,maskedoldval1,shiftamt
1259  //    sll     sllres,srlres,24
1260  //    sra     dest,sllres,24
1261  BB = sinkMBB;
1262  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1263
1264  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1265    .addReg(OldVal).addReg(Mask);
1266  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1267      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1268  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1269      .addReg(SrlRes).addImm(ShiftImm);
1270  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1271      .addReg(SllRes).addImm(ShiftImm);
1272
1273  MI->eraseFromParent();   // The instruction is gone now.
1274
1275  return exitMBB;
1276}
1277
1278MachineBasicBlock *
1279MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1280                                      MachineBasicBlock *BB,
1281                                      unsigned Size) const {
1282  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1283
1284  MachineFunction *MF = BB->getParent();
1285  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1286  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1287  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1288  DebugLoc dl = MI->getDebugLoc();
1289  unsigned LL, SC, ZERO, BNE, BEQ;
1290
1291  if (Size == 4) {
1292    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1293    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1294    ZERO = Mips::ZERO;
1295    BNE = Mips::BNE;
1296    BEQ = Mips::BEQ;
1297  }
1298  else {
1299    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1300    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1301    ZERO = Mips::ZERO_64;
1302    BNE = Mips::BNE64;
1303    BEQ = Mips::BEQ64;
1304  }
1305
1306  unsigned Dest    = MI->getOperand(0).getReg();
1307  unsigned Ptr     = MI->getOperand(1).getReg();
1308  unsigned OldVal  = MI->getOperand(2).getReg();
1309  unsigned NewVal  = MI->getOperand(3).getReg();
1310
1311  unsigned Success = RegInfo.createVirtualRegister(RC);
1312
1313  // insert new blocks after the current block
1314  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1315  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1316  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1317  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1318  MachineFunction::iterator It = BB;
1319  ++It;
1320  MF->insert(It, loop1MBB);
1321  MF->insert(It, loop2MBB);
1322  MF->insert(It, exitMBB);
1323
1324  // Transfer the remainder of BB and its successor edges to exitMBB.
1325  exitMBB->splice(exitMBB->begin(), BB,
1326                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1327  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1328
1329  //  thisMBB:
1330  //    ...
1331  //    fallthrough --> loop1MBB
1332  BB->addSuccessor(loop1MBB);
1333  loop1MBB->addSuccessor(exitMBB);
1334  loop1MBB->addSuccessor(loop2MBB);
1335  loop2MBB->addSuccessor(loop1MBB);
1336  loop2MBB->addSuccessor(exitMBB);
1337
1338  // loop1MBB:
1339  //   ll dest, 0(ptr)
1340  //   bne dest, oldval, exitMBB
1341  BB = loop1MBB;
1342  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1343  BuildMI(BB, dl, TII->get(BNE))
1344    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1345
1346  // loop2MBB:
1347  //   sc success, newval, 0(ptr)
1348  //   beq success, $0, loop1MBB
1349  BB = loop2MBB;
1350  BuildMI(BB, dl, TII->get(SC), Success)
1351    .addReg(NewVal).addReg(Ptr).addImm(0);
1352  BuildMI(BB, dl, TII->get(BEQ))
1353    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1354
1355  MI->eraseFromParent();   // The instruction is gone now.
1356
1357  return exitMBB;
1358}
1359
1360MachineBasicBlock *
1361MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1362                                              MachineBasicBlock *BB,
1363                                              unsigned Size) const {
1364  assert((Size == 1 || Size == 2) &&
1365      "Unsupported size for EmitAtomicCmpSwapPartial.");
1366
1367  MachineFunction *MF = BB->getParent();
1368  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1369  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1370  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1371  DebugLoc dl = MI->getDebugLoc();
1372  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1373  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1374
1375  unsigned Dest    = MI->getOperand(0).getReg();
1376  unsigned Ptr     = MI->getOperand(1).getReg();
1377  unsigned CmpVal  = MI->getOperand(2).getReg();
1378  unsigned NewVal  = MI->getOperand(3).getReg();
1379
1380  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1381  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1382  unsigned Mask = RegInfo.createVirtualRegister(RC);
1383  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1384  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1385  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1386  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1387  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1388  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1389  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1390  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1391  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1392  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1393  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1394  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1395  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1396  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1397  unsigned Success = RegInfo.createVirtualRegister(RC);
1398
1399  // insert new blocks after the current block
1400  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1401  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1402  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1403  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1404  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1405  MachineFunction::iterator It = BB;
1406  ++It;
1407  MF->insert(It, loop1MBB);
1408  MF->insert(It, loop2MBB);
1409  MF->insert(It, sinkMBB);
1410  MF->insert(It, exitMBB);
1411
1412  // Transfer the remainder of BB and its successor edges to exitMBB.
1413  exitMBB->splice(exitMBB->begin(), BB,
1414                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1415  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1416
1417  BB->addSuccessor(loop1MBB);
1418  loop1MBB->addSuccessor(sinkMBB);
1419  loop1MBB->addSuccessor(loop2MBB);
1420  loop2MBB->addSuccessor(loop1MBB);
1421  loop2MBB->addSuccessor(sinkMBB);
1422  sinkMBB->addSuccessor(exitMBB);
1423
1424  // FIXME: computation of newval2 can be moved to loop2MBB.
1425  //  thisMBB:
1426  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1427  //    and     alignedaddr,ptr,masklsb2
1428  //    andi    ptrlsb2,ptr,3
1429  //    sll     shiftamt,ptrlsb2,3
1430  //    ori     maskupper,$0,255               # 0xff
1431  //    sll     mask,maskupper,shiftamt
1432  //    nor     mask2,$0,mask
1433  //    andi    maskedcmpval,cmpval,255
1434  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1435  //    andi    maskednewval,newval,255
1436  //    sll     shiftednewval,maskednewval,shiftamt
1437  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1438  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1439    .addReg(Mips::ZERO).addImm(-4);
1440  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1441    .addReg(Ptr).addReg(MaskLSB2);
1442  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1443  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1444  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1445    .addReg(Mips::ZERO).addImm(MaskImm);
1446  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1447    .addReg(ShiftAmt).addReg(MaskUpper);
1448  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1449  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1450    .addReg(CmpVal).addImm(MaskImm);
1451  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1452    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1453  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1454    .addReg(NewVal).addImm(MaskImm);
1455  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1456    .addReg(ShiftAmt).addReg(MaskedNewVal);
1457
1458  //  loop1MBB:
1459  //    ll      oldval,0(alginedaddr)
1460  //    and     maskedoldval0,oldval,mask
1461  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1462  BB = loop1MBB;
1463  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1464  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1465    .addReg(OldVal).addReg(Mask);
1466  BuildMI(BB, dl, TII->get(Mips::BNE))
1467    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1468
1469  //  loop2MBB:
1470  //    and     maskedoldval1,oldval,mask2
1471  //    or      storeval,maskedoldval1,shiftednewval
1472  //    sc      success,storeval,0(alignedaddr)
1473  //    beq     success,$0,loop1MBB
1474  BB = loop2MBB;
1475  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1476    .addReg(OldVal).addReg(Mask2);
1477  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1478    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1479  BuildMI(BB, dl, TII->get(SC), Success)
1480      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1481  BuildMI(BB, dl, TII->get(Mips::BEQ))
1482      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1483
1484  //  sinkMBB:
1485  //    srl     srlres,maskedoldval0,shiftamt
1486  //    sll     sllres,srlres,24
1487  //    sra     dest,sllres,24
1488  BB = sinkMBB;
1489  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1490
1491  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1492      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1493  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1494      .addReg(SrlRes).addImm(ShiftImm);
1495  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1496      .addReg(SllRes).addImm(ShiftImm);
1497
1498  MI->eraseFromParent();   // The instruction is gone now.
1499
1500  return exitMBB;
1501}
1502
1503//===----------------------------------------------------------------------===//
1504//  Misc Lower Operation implementation
1505//===----------------------------------------------------------------------===//
1506SDValue MipsTargetLowering::
1507LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
1508{
1509  MachineFunction &MF = DAG.getMachineFunction();
1510  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1511  unsigned SP = IsN64 ? Mips::SP_64 : Mips::SP;
1512
1513  assert(getTargetMachine().getFrameLowering()->getStackAlignment() >=
1514         cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue() &&
1515         "Cannot lower if the alignment of the allocated space is larger than \
1516          that of the stack.");
1517
1518  SDValue Chain = Op.getOperand(0);
1519  SDValue Size = Op.getOperand(1);
1520  DebugLoc dl = Op.getDebugLoc();
1521
1522  // Get a reference from Mips stack pointer
1523  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SP, getPointerTy());
1524
1525  // Subtract the dynamic size from the actual stack size to
1526  // obtain the new stack size.
1527  SDValue Sub = DAG.getNode(ISD::SUB, dl, getPointerTy(), StackPointer, Size);
1528
1529  // The Sub result contains the new stack start address, so it
1530  // must be placed in the stack pointer register.
1531  Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, SP, Sub, SDValue());
1532
1533  // This node always has two return values: a new stack pointer
1534  // value and a chain
1535  SDVTList VTLs = DAG.getVTList(getPointerTy(), MVT::Other);
1536  SDValue Ptr = DAG.getFrameIndex(MipsFI->getDynAllocFI(), getPointerTy());
1537  SDValue Ops[] = { Chain, Ptr, Chain.getValue(1) };
1538
1539  return DAG.getNode(MipsISD::DynAlloc, dl, VTLs, Ops, 3);
1540}
1541
1542SDValue MipsTargetLowering::
1543LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1544{
1545  // The first operand is the chain, the second is the condition, the third is
1546  // the block to branch to if the condition is true.
1547  SDValue Chain = Op.getOperand(0);
1548  SDValue Dest = Op.getOperand(2);
1549  DebugLoc dl = Op.getDebugLoc();
1550
1551  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1552
1553  // Return if flag is not set by a floating point comparison.
1554  if (CondRes.getOpcode() != MipsISD::FPCmp)
1555    return Op;
1556
1557  SDValue CCNode  = CondRes.getOperand(2);
1558  Mips::CondCode CC =
1559    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1560  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1561
1562  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1563                     Dest, CondRes);
1564}
1565
1566SDValue MipsTargetLowering::
1567LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1568{
1569  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1570
1571  // Return if flag is not set by a floating point comparison.
1572  if (Cond.getOpcode() != MipsISD::FPCmp)
1573    return Op;
1574
1575  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1576                      Op.getDebugLoc());
1577}
1578
1579SDValue MipsTargetLowering::
1580LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1581{
1582  DebugLoc DL = Op.getDebugLoc();
1583  EVT Ty = Op.getOperand(0).getValueType();
1584  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1585                             Op.getOperand(0), Op.getOperand(1),
1586                             Op.getOperand(4));
1587
1588  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1589                     Op.getOperand(3));
1590}
1591
1592SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1593  SDValue Cond = CreateFPCmp(DAG, Op);
1594
1595  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1596         "Floating point operand expected.");
1597
1598  SDValue True  = DAG.getConstant(1, MVT::i32);
1599  SDValue False = DAG.getConstant(0, MVT::i32);
1600
1601  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1602}
1603
1604SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1605                                               SelectionDAG &DAG) const {
1606  // FIXME there isn't actually debug info here
1607  DebugLoc dl = Op.getDebugLoc();
1608  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1609
1610  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1611    SDVTList VTs = DAG.getVTList(MVT::i32);
1612
1613    MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
1614
1615    // %gp_rel relocation
1616    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1617      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1618                                              MipsII::MO_GPREL);
1619      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1620      SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1621      return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
1622    }
1623    // %hi/%lo relocation
1624    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1625                                              MipsII::MO_ABS_HI);
1626    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1627                                              MipsII::MO_ABS_LO);
1628    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1629    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1630    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1631  }
1632
1633  EVT ValTy = Op.getValueType();
1634  bool HasGotOfst = (GV->hasInternalLinkage() ||
1635                     (GV->hasLocalLinkage() && !isa<Function>(GV)));
1636  unsigned GotFlag = HasMips64 ?
1637                     (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1638                     (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16);
1639  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1640  GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA);
1641  SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA,
1642                                MachinePointerInfo(), false, false, false, 0);
1643  // On functions and global targets not internal linked only
1644  // a load from got/GP is necessary for PIC to work.
1645  if (!HasGotOfst)
1646    return ResNode;
1647  SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1648                                            HasMips64 ? MipsII::MO_GOT_OFST :
1649                                                        MipsII::MO_ABS_LO);
1650  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1651  return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1652}
1653
1654SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1655                                              SelectionDAG &DAG) const {
1656  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1657  // FIXME there isn't actually debug info here
1658  DebugLoc dl = Op.getDebugLoc();
1659
1660  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1661    // %hi/%lo relocation
1662    SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_HI);
1663    SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_LO);
1664    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1665    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1666    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1667  }
1668
1669  EVT ValTy = Op.getValueType();
1670  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1671  unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1672  SDValue BAGOTOffset = DAG.getBlockAddress(BA, ValTy, true, GOTFlag);
1673  BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy,
1674                            GetGlobalReg(DAG, ValTy), BAGOTOffset);
1675  SDValue BALOOffset = DAG.getBlockAddress(BA, ValTy, true, OFSTFlag);
1676  SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset,
1677                             MachinePointerInfo(), false, false, false, 0);
1678  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset);
1679  return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1680}
1681
1682SDValue MipsTargetLowering::
1683LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1684{
1685  // If the relocation model is PIC, use the General Dynamic TLS Model or
1686  // Local Dynamic TLS model, otherwise use the Initial Exec or
1687  // Local Exec TLS Model.
1688
1689  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1690  DebugLoc dl = GA->getDebugLoc();
1691  const GlobalValue *GV = GA->getGlobal();
1692  EVT PtrVT = getPointerTy();
1693
1694  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1695
1696  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1697    // General Dynamic and Local Dynamic TLS Model.
1698    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1699                                                      : MipsII::MO_TLSGD;
1700
1701    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1702    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1703                                   GetGlobalReg(DAG, PtrVT), TGA);
1704    unsigned PtrSize = PtrVT.getSizeInBits();
1705    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1706
1707    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1708
1709    ArgListTy Args;
1710    ArgListEntry Entry;
1711    Entry.Node = Argument;
1712    Entry.Ty = PtrTy;
1713    Args.push_back(Entry);
1714
1715    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1716                  false, false, false, false, 0, CallingConv::C,
1717                  /*isTailCall=*/false, /*doesNotRet=*/false,
1718                  /*isReturnValueUsed=*/true,
1719                  TlsGetAddr, Args, DAG, dl);
1720    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1721
1722    SDValue Ret = CallResult.first;
1723
1724    if (model != TLSModel::LocalDynamic)
1725      return Ret;
1726
1727    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1728                                               MipsII::MO_DTPREL_HI);
1729    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1730    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1731                                               MipsII::MO_DTPREL_LO);
1732    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1733    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1734    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1735  }
1736
1737  SDValue Offset;
1738  if (model == TLSModel::InitialExec) {
1739    // Initial Exec TLS Model
1740    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1741                                             MipsII::MO_GOTTPREL);
1742    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1743                      TGA);
1744    Offset = DAG.getLoad(PtrVT, dl,
1745                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1746                         false, false, false, 0);
1747  } else {
1748    // Local Exec TLS Model
1749    assert(model == TLSModel::LocalExec);
1750    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1751                                               MipsII::MO_TPREL_HI);
1752    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1753                                               MipsII::MO_TPREL_LO);
1754    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1755    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1756    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1757  }
1758
1759  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1760  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1761}
1762
1763SDValue MipsTargetLowering::
1764LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1765{
1766  SDValue HiPart, JTI, JTILo;
1767  // FIXME there isn't actually debug info here
1768  DebugLoc dl = Op.getDebugLoc();
1769  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1770  EVT PtrVT = Op.getValueType();
1771  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1772
1773  if (!IsPIC && !IsN64) {
1774    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI);
1775    HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI);
1776    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO);
1777  } else {// Emit Load from Global Pointer
1778    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1779    unsigned OfstFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1780    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag);
1781    JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1782                      JTI);
1783    HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI,
1784                         MachinePointerInfo(), false, false, false, 0);
1785    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag);
1786  }
1787
1788  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo);
1789  return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo);
1790}
1791
1792SDValue MipsTargetLowering::
1793LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1794{
1795  SDValue ResNode;
1796  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1797  const Constant *C = N->getConstVal();
1798  // FIXME there isn't actually debug info here
1799  DebugLoc dl = Op.getDebugLoc();
1800
1801  // gp_rel relocation
1802  // FIXME: we should reference the constant pool using small data sections,
1803  // but the asm printer currently doesn't support this feature without
1804  // hacking it. This feature should come soon so we can uncomment the
1805  // stuff below.
1806  //if (IsInSmallSection(C->getType())) {
1807  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1808  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1809  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1810
1811  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1812    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1813                                             N->getOffset(), MipsII::MO_ABS_HI);
1814    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1815                                             N->getOffset(), MipsII::MO_ABS_LO);
1816    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1817    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1818    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1819  } else {
1820    EVT ValTy = Op.getValueType();
1821    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1822    unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1823    SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1824                                           N->getOffset(), GOTFlag);
1825    CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP);
1826    SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP,
1827                               MachinePointerInfo::getConstantPool(), false,
1828                               false, false, 0);
1829    SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1830                                             N->getOffset(), OFSTFlag);
1831    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo);
1832    ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1833  }
1834
1835  return ResNode;
1836}
1837
1838SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1839  MachineFunction &MF = DAG.getMachineFunction();
1840  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1841
1842  DebugLoc dl = Op.getDebugLoc();
1843  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1844                                 getPointerTy());
1845
1846  // vastart just stores the address of the VarArgsFrameIndex slot into the
1847  // memory location argument.
1848  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1849  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1850                      MachinePointerInfo(SV), false, false, 0);
1851}
1852
1853static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1854  EVT TyX = Op.getOperand(0).getValueType();
1855  EVT TyY = Op.getOperand(1).getValueType();
1856  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1857  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1858  DebugLoc DL = Op.getDebugLoc();
1859  SDValue Res;
1860
1861  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1862  // to i32.
1863  SDValue X = (TyX == MVT::f32) ?
1864    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1865    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1866                Const1);
1867  SDValue Y = (TyY == MVT::f32) ?
1868    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1869    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1870                Const1);
1871
1872  if (HasR2) {
1873    // ext  E, Y, 31, 1  ; extract bit31 of Y
1874    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1875    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1876    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1877  } else {
1878    // sll SllX, X, 1
1879    // srl SrlX, SllX, 1
1880    // srl SrlY, Y, 31
1881    // sll SllY, SrlX, 31
1882    // or  Or, SrlX, SllY
1883    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1884    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1885    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1886    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1887    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1888  }
1889
1890  if (TyX == MVT::f32)
1891    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1892
1893  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1894                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1895  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1896}
1897
1898static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1899  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1900  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1901  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1902  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1903  DebugLoc DL = Op.getDebugLoc();
1904
1905  // Bitcast to integer nodes.
1906  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1907  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1908
1909  if (HasR2) {
1910    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1911    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1912    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1913                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1914
1915    if (WidthX > WidthY)
1916      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1917    else if (WidthY > WidthX)
1918      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1919
1920    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1921                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1922    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1923  }
1924
1925  // (d)sll SllX, X, 1
1926  // (d)srl SrlX, SllX, 1
1927  // (d)srl SrlY, Y, width(Y)-1
1928  // (d)sll SllY, SrlX, width(Y)-1
1929  // or     Or, SrlX, SllY
1930  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1931  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1932  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1933                             DAG.getConstant(WidthY - 1, MVT::i32));
1934
1935  if (WidthX > WidthY)
1936    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1937  else if (WidthY > WidthX)
1938    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1939
1940  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1941                             DAG.getConstant(WidthX - 1, MVT::i32));
1942  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1943  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1944}
1945
1946SDValue
1947MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1948  if (Subtarget->hasMips64())
1949    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1950
1951  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1952}
1953
1954static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1955  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1956  DebugLoc DL = Op.getDebugLoc();
1957
1958  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1959  // to i32.
1960  SDValue X = (Op.getValueType() == MVT::f32) ?
1961    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1962    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1963                Const1);
1964
1965  // Clear MSB.
1966  if (HasR2)
1967    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1968                      DAG.getRegister(Mips::ZERO, MVT::i32),
1969                      DAG.getConstant(31, MVT::i32), Const1, X);
1970  else {
1971    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1972    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1973  }
1974
1975  if (Op.getValueType() == MVT::f32)
1976    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1977
1978  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1979                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1980  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1981}
1982
1983static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1984  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1985  DebugLoc DL = Op.getDebugLoc();
1986
1987  // Bitcast to integer node.
1988  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1989
1990  // Clear MSB.
1991  if (HasR2)
1992    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1993                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1994                      DAG.getConstant(63, MVT::i32), Const1, X);
1995  else {
1996    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1997    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1998  }
1999
2000  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2001}
2002
2003SDValue
2004MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
2005  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
2006    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
2007
2008  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
2009}
2010
2011SDValue MipsTargetLowering::
2012LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2013  // check the depth
2014  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2015         "Frame address can only be determined for current frame.");
2016
2017  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2018  MFI->setFrameAddressIsTaken(true);
2019  EVT VT = Op.getValueType();
2020  DebugLoc dl = Op.getDebugLoc();
2021  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2022                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
2023  return FrameAddr;
2024}
2025
2026SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
2027                                            SelectionDAG &DAG) const {
2028  // check the depth
2029  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2030         "Return address can be determined only for current frame.");
2031
2032  MachineFunction &MF = DAG.getMachineFunction();
2033  MachineFrameInfo *MFI = MF.getFrameInfo();
2034  EVT VT = Op.getValueType();
2035  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
2036  MFI->setReturnAddressIsTaken(true);
2037
2038  // Return RA, which contains the return address. Mark it an implicit live-in.
2039  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2040  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2041}
2042
2043// TODO: set SType according to the desired memory barrier behavior.
2044SDValue
2045MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2046  unsigned SType = 0;
2047  DebugLoc dl = Op.getDebugLoc();
2048  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2049                     DAG.getConstant(SType, MVT::i32));
2050}
2051
2052SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2053                                              SelectionDAG &DAG) const {
2054  // FIXME: Need pseudo-fence for 'singlethread' fences
2055  // FIXME: Set SType for weaker fences where supported/appropriate.
2056  unsigned SType = 0;
2057  DebugLoc dl = Op.getDebugLoc();
2058  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2059                     DAG.getConstant(SType, MVT::i32));
2060}
2061
2062SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2063                                                SelectionDAG &DAG) const {
2064  DebugLoc DL = Op.getDebugLoc();
2065  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2066  SDValue Shamt = Op.getOperand(2);
2067
2068  // if shamt < 32:
2069  //  lo = (shl lo, shamt)
2070  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2071  // else:
2072  //  lo = 0
2073  //  hi = (shl lo, shamt[4:0])
2074  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2075                            DAG.getConstant(-1, MVT::i32));
2076  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2077                                      DAG.getConstant(1, MVT::i32));
2078  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2079                                     Not);
2080  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2081  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2082  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2083  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2084                             DAG.getConstant(0x20, MVT::i32));
2085  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2086                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2087  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2088
2089  SDValue Ops[2] = {Lo, Hi};
2090  return DAG.getMergeValues(Ops, 2, DL);
2091}
2092
2093SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2094                                                 bool IsSRA) const {
2095  DebugLoc DL = Op.getDebugLoc();
2096  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2097  SDValue Shamt = Op.getOperand(2);
2098
2099  // if shamt < 32:
2100  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2101  //  if isSRA:
2102  //    hi = (sra hi, shamt)
2103  //  else:
2104  //    hi = (srl hi, shamt)
2105  // else:
2106  //  if isSRA:
2107  //   lo = (sra hi, shamt[4:0])
2108  //   hi = (sra hi, 31)
2109  //  else:
2110  //   lo = (srl hi, shamt[4:0])
2111  //   hi = 0
2112  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2113                            DAG.getConstant(-1, MVT::i32));
2114  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2115                                     DAG.getConstant(1, MVT::i32));
2116  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2117  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2118  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2119  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2120                                     Hi, Shamt);
2121  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2122                             DAG.getConstant(0x20, MVT::i32));
2123  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2124                                DAG.getConstant(31, MVT::i32));
2125  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2126  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2127                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2128                   ShiftRightHi);
2129
2130  SDValue Ops[2] = {Lo, Hi};
2131  return DAG.getMergeValues(Ops, 2, DL);
2132}
2133
2134static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2135                            SDValue Chain, SDValue Src, unsigned Offset) {
2136  SDValue Ptr = LD->getBasePtr();
2137  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2138  EVT BasePtrVT = Ptr.getValueType();
2139  DebugLoc DL = LD->getDebugLoc();
2140  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2141
2142  if (Offset)
2143    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2144                      DAG.getConstant(Offset, BasePtrVT));
2145
2146  SDValue Ops[] = { Chain, Ptr, Src };
2147  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2148                                 LD->getMemOperand());
2149}
2150
2151// Expand an unaligned 32 or 64-bit integer load node.
2152SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2153  LoadSDNode *LD = cast<LoadSDNode>(Op);
2154  EVT MemVT = LD->getMemoryVT();
2155
2156  // Return if load is aligned or if MemVT is neither i32 nor i64.
2157  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2158      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2159    return SDValue();
2160
2161  bool IsLittle = Subtarget->isLittle();
2162  EVT VT = Op.getValueType();
2163  ISD::LoadExtType ExtType = LD->getExtensionType();
2164  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2165
2166  assert((VT == MVT::i32) || (VT == MVT::i64));
2167
2168  // Expand
2169  //  (set dst, (i64 (load baseptr)))
2170  // to
2171  //  (set tmp, (ldl (add baseptr, 7), undef))
2172  //  (set dst, (ldr baseptr, tmp))
2173  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2174    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2175                               IsLittle ? 7 : 0);
2176    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2177                        IsLittle ? 0 : 7);
2178  }
2179
2180  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2181                             IsLittle ? 3 : 0);
2182  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2183                             IsLittle ? 0 : 3);
2184
2185  // Expand
2186  //  (set dst, (i32 (load baseptr))) or
2187  //  (set dst, (i64 (sextload baseptr))) or
2188  //  (set dst, (i64 (extload baseptr)))
2189  // to
2190  //  (set tmp, (lwl (add baseptr, 3), undef))
2191  //  (set dst, (lwr baseptr, tmp))
2192  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2193      (ExtType == ISD::EXTLOAD))
2194    return LWR;
2195
2196  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2197
2198  // Expand
2199  //  (set dst, (i64 (zextload baseptr)))
2200  // to
2201  //  (set tmp0, (lwl (add baseptr, 3), undef))
2202  //  (set tmp1, (lwr baseptr, tmp0))
2203  //  (set tmp2, (shl tmp1, 32))
2204  //  (set dst, (srl tmp2, 32))
2205  DebugLoc DL = LD->getDebugLoc();
2206  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2207  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2208  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2209  SDValue Ops[] = { SRL, LWR.getValue(1) };
2210  return DAG.getMergeValues(Ops, 2, DL);
2211}
2212
2213static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2214                             SDValue Chain, unsigned Offset) {
2215  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2216  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2217  DebugLoc DL = SD->getDebugLoc();
2218  SDVTList VTList = DAG.getVTList(MVT::Other);
2219
2220  if (Offset)
2221    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2222                      DAG.getConstant(Offset, BasePtrVT));
2223
2224  SDValue Ops[] = { Chain, Value, Ptr };
2225  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2226                                 SD->getMemOperand());
2227}
2228
2229// Expand an unaligned 32 or 64-bit integer store node.
2230SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2231  StoreSDNode *SD = cast<StoreSDNode>(Op);
2232  EVT MemVT = SD->getMemoryVT();
2233
2234  // Return if store is aligned or if MemVT is neither i32 nor i64.
2235  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2236      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2237    return SDValue();
2238
2239  bool IsLittle = Subtarget->isLittle();
2240  SDValue Value = SD->getValue(), Chain = SD->getChain();
2241  EVT VT = Value.getValueType();
2242
2243  // Expand
2244  //  (store val, baseptr) or
2245  //  (truncstore val, baseptr)
2246  // to
2247  //  (swl val, (add baseptr, 3))
2248  //  (swr val, baseptr)
2249  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2250    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2251                                IsLittle ? 3 : 0);
2252    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2253  }
2254
2255  assert(VT == MVT::i64);
2256
2257  // Expand
2258  //  (store val, baseptr)
2259  // to
2260  //  (sdl val, (add baseptr, 7))
2261  //  (sdr val, baseptr)
2262  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2263  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2264}
2265
2266//===----------------------------------------------------------------------===//
2267//                      Calling Convention Implementation
2268//===----------------------------------------------------------------------===//
2269
2270//===----------------------------------------------------------------------===//
2271// TODO: Implement a generic logic using tblgen that can support this.
2272// Mips O32 ABI rules:
2273// ---
2274// i32 - Passed in A0, A1, A2, A3 and stack
2275// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2276//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2277// f64 - Only passed in two aliased f32 registers if no int reg has been used
2278//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2279//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2280//       go to stack.
2281//
2282//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2283//===----------------------------------------------------------------------===//
2284
2285static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2286                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2287                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2288
2289  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2290
2291  static const uint16_t IntRegs[] = {
2292      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2293  };
2294  static const uint16_t F32Regs[] = {
2295      Mips::F12, Mips::F14
2296  };
2297  static const uint16_t F64Regs[] = {
2298      Mips::D6, Mips::D7
2299  };
2300
2301  // ByVal Args
2302  if (ArgFlags.isByVal()) {
2303    State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
2304                      1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
2305    unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
2306    for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
2307         r < std::min(IntRegsSize, NextReg); ++r)
2308      State.AllocateReg(IntRegs[r]);
2309    return false;
2310  }
2311
2312  // Promote i8 and i16
2313  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2314    LocVT = MVT::i32;
2315    if (ArgFlags.isSExt())
2316      LocInfo = CCValAssign::SExt;
2317    else if (ArgFlags.isZExt())
2318      LocInfo = CCValAssign::ZExt;
2319    else
2320      LocInfo = CCValAssign::AExt;
2321  }
2322
2323  unsigned Reg;
2324
2325  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2326  // is true: function is vararg, argument is 3rd or higher, there is previous
2327  // argument which is not f32 or f64.
2328  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2329      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2330  unsigned OrigAlign = ArgFlags.getOrigAlign();
2331  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2332
2333  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2334    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2335    // If this is the first part of an i64 arg,
2336    // the allocated register must be either A0 or A2.
2337    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2338      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2339    LocVT = MVT::i32;
2340  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2341    // Allocate int register and shadow next int register. If first
2342    // available register is Mips::A1 or Mips::A3, shadow it too.
2343    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2344    if (Reg == Mips::A1 || Reg == Mips::A3)
2345      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2346    State.AllocateReg(IntRegs, IntRegsSize);
2347    LocVT = MVT::i32;
2348  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2349    // we are guaranteed to find an available float register
2350    if (ValVT == MVT::f32) {
2351      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2352      // Shadow int register
2353      State.AllocateReg(IntRegs, IntRegsSize);
2354    } else {
2355      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2356      // Shadow int registers
2357      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2358      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2359        State.AllocateReg(IntRegs, IntRegsSize);
2360      State.AllocateReg(IntRegs, IntRegsSize);
2361    }
2362  } else
2363    llvm_unreachable("Cannot handle this ValVT.");
2364
2365  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
2366  unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
2367
2368  if (!Reg)
2369    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2370  else
2371    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2372
2373  return false; // CC must always match
2374}
2375
2376static const uint16_t Mips64IntRegs[8] =
2377  {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
2378   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64};
2379static const uint16_t Mips64DPRegs[8] =
2380  {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
2381   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64};
2382
2383static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT,
2384                           CCValAssign::LocInfo LocInfo,
2385                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
2386  unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8);
2387  unsigned Size  = (ArgFlags.getByValSize() + 7) / 8 * 8;
2388  unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8);
2389
2390  assert(Align <= 16 && "Cannot handle alignments larger than 16.");
2391
2392  // If byval is 16-byte aligned, the first arg register must be even.
2393  if ((Align == 16) && (FirstIdx % 2)) {
2394    State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]);
2395    ++FirstIdx;
2396  }
2397
2398  // Mark the registers allocated.
2399  for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I)
2400    State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]);
2401
2402  // Allocate space on caller's stack.
2403  unsigned Offset = State.AllocateStack(Size, Align);
2404
2405  if (FirstIdx < 8)
2406    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx],
2407                                     LocVT, LocInfo));
2408  else
2409    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2410
2411  return true;
2412}
2413
2414#include "MipsGenCallingConv.inc"
2415
2416static void
2417AnalyzeMips64CallOperands(CCState &CCInfo,
2418                          const SmallVectorImpl<ISD::OutputArg> &Outs) {
2419  unsigned NumOps = Outs.size();
2420  for (unsigned i = 0; i != NumOps; ++i) {
2421    MVT ArgVT = Outs[i].VT;
2422    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2423    bool R;
2424
2425    if (Outs[i].IsFixed)
2426      R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2427    else
2428      R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2429
2430    if (R) {
2431#ifndef NDEBUG
2432      dbgs() << "Call operand #" << i << " has unhandled type "
2433             << EVT(ArgVT).getEVTString();
2434#endif
2435      llvm_unreachable(0);
2436    }
2437  }
2438}
2439
2440//===----------------------------------------------------------------------===//
2441//                  Call Calling Convention Implementation
2442//===----------------------------------------------------------------------===//
2443
2444static const unsigned O32IntRegsSize = 4;
2445
2446static const uint16_t O32IntRegs[] = {
2447  Mips::A0, Mips::A1, Mips::A2, Mips::A3
2448};
2449
2450// Return next O32 integer argument register.
2451static unsigned getNextIntArgReg(unsigned Reg) {
2452  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2453  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2454}
2455
2456// Write ByVal Arg to arg registers and stack.
2457static void
2458WriteByValArg(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
2459              SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2460              SmallVector<SDValue, 8> &MemOpChains, int &LastFI,
2461              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2462              const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2463              MVT PtrType, bool isLittle) {
2464  unsigned LocMemOffset = VA.getLocMemOffset();
2465  unsigned Offset = 0;
2466  uint32_t RemainingSize = Flags.getByValSize();
2467  unsigned ByValAlign = Flags.getByValAlign();
2468
2469  // Copy the first 4 words of byval arg to registers A0 - A3.
2470  // FIXME: Use a stricter alignment if it enables better optimization in passes
2471  //        run later.
2472  for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
2473       Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
2474    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2475                                  DAG.getConstant(Offset, MVT::i32));
2476    SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
2477                                  MachinePointerInfo(), false, false, false,
2478                                  std::min(ByValAlign, (unsigned )4));
2479    MemOpChains.push_back(LoadVal.getValue(1));
2480    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2481    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2482  }
2483
2484  if (RemainingSize == 0)
2485    return;
2486
2487  // If there still is a register available for argument passing, write the
2488  // remaining part of the structure to it using subword loads and shifts.
2489  if (LocMemOffset < 4 * 4) {
2490    assert(RemainingSize <= 3 && RemainingSize >= 1 &&
2491           "There must be one to three bytes remaining.");
2492    unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
2493    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2494                                  DAG.getConstant(Offset, MVT::i32));
2495    unsigned Alignment = std::min(ByValAlign, (unsigned )4);
2496    SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2497                                     LoadPtr, MachinePointerInfo(),
2498                                     MVT::getIntegerVT(LoadSize * 8), false,
2499                                     false, Alignment);
2500    MemOpChains.push_back(LoadVal.getValue(1));
2501
2502    // If target is big endian, shift it to the most significant half-word or
2503    // byte.
2504    if (!isLittle)
2505      LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
2506                            DAG.getConstant(32 - LoadSize * 8, MVT::i32));
2507
2508    Offset += LoadSize;
2509    RemainingSize -= LoadSize;
2510
2511    // Read second subword if necessary.
2512    if (RemainingSize != 0)  {
2513      assert(RemainingSize == 1 && "There must be one byte remaining.");
2514      LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2515                            DAG.getConstant(Offset, MVT::i32));
2516      unsigned Alignment = std::min(ByValAlign, (unsigned )2);
2517      SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2518                                       LoadPtr, MachinePointerInfo(),
2519                                       MVT::i8, false, false, Alignment);
2520      MemOpChains.push_back(Subword.getValue(1));
2521      // Insert the loaded byte to LoadVal.
2522      // FIXME: Use INS if supported by target.
2523      unsigned ShiftAmt = isLittle ? 16 : 8;
2524      SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
2525                                  DAG.getConstant(ShiftAmt, MVT::i32));
2526      LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
2527    }
2528
2529    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2530    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2531    return;
2532  }
2533
2534  // Create a fixed object on stack at offset LocMemOffset and copy
2535  // remaining part of byval arg to it using memcpy.
2536  SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2537                            DAG.getConstant(Offset, MVT::i32));
2538  LastFI = MFI->CreateFixedObject(RemainingSize, LocMemOffset, true);
2539  SDValue Dst = DAG.getFrameIndex(LastFI, PtrType);
2540  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
2541                             DAG.getConstant(RemainingSize, MVT::i32),
2542                             std::min(ByValAlign, (unsigned)4),
2543                             /*isVolatile=*/false, /*AlwaysInline=*/false,
2544                             MachinePointerInfo(0), MachinePointerInfo(0));
2545}
2546
2547// Copy Mips64 byVal arg to registers and stack.
2548void static
2549PassByValArg64(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
2550               SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2551               SmallVector<SDValue, 8> &MemOpChains, int &LastFI,
2552               MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2553               const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2554               EVT PtrTy, bool isLittle) {
2555  unsigned ByValSize = Flags.getByValSize();
2556  unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8);
2557  bool IsRegLoc = VA.isRegLoc();
2558  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
2559  unsigned LocMemOffset = 0;
2560  unsigned MemCpySize = ByValSize;
2561
2562  if (!IsRegLoc)
2563    LocMemOffset = VA.getLocMemOffset();
2564  else {
2565    const uint16_t *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8,
2566                                    VA.getLocReg());
2567    const uint16_t *RegEnd = Mips64IntRegs + 8;
2568
2569    // Copy double words to registers.
2570    for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) {
2571      SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2572                                    DAG.getConstant(Offset, PtrTy));
2573      SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr,
2574                                    MachinePointerInfo(), false, false, false,
2575                                    Alignment);
2576      MemOpChains.push_back(LoadVal.getValue(1));
2577      RegsToPass.push_back(std::make_pair(*Reg, LoadVal));
2578    }
2579
2580    // Return if the struct has been fully copied.
2581    if (!(MemCpySize = ByValSize - Offset))
2582      return;
2583
2584    // If there is an argument register available, copy the remainder of the
2585    // byval argument with sub-doubleword loads and shifts.
2586    if (Reg != RegEnd) {
2587      assert((ByValSize < Offset + 8) &&
2588             "Size of the remainder should be smaller than 8-byte.");
2589      SDValue Val;
2590      for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) {
2591        unsigned RemSize = ByValSize - Offset;
2592
2593        if (RemSize < LoadSize)
2594          continue;
2595
2596        SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2597                                      DAG.getConstant(Offset, PtrTy));
2598        SDValue LoadVal =
2599          DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr,
2600                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
2601                         false, false, Alignment);
2602        MemOpChains.push_back(LoadVal.getValue(1));
2603
2604        // Offset in number of bits from double word boundary.
2605        unsigned OffsetDW = (Offset % 8) * 8;
2606        unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8);
2607        SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal,
2608                                    DAG.getConstant(Shamt, MVT::i32));
2609
2610        Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) :
2611                              Shift;
2612        Offset += LoadSize;
2613        Alignment = std::min(Alignment, LoadSize);
2614      }
2615
2616      RegsToPass.push_back(std::make_pair(*Reg, Val));
2617      return;
2618    }
2619  }
2620
2621  assert(MemCpySize && "MemCpySize must not be zero.");
2622
2623  // Create a fixed object on stack at offset LocMemOffset and copy
2624  // remainder of byval arg to it with memcpy.
2625  SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2626                            DAG.getConstant(Offset, PtrTy));
2627  LastFI = MFI->CreateFixedObject(MemCpySize, LocMemOffset, true);
2628  SDValue Dst = DAG.getFrameIndex(LastFI, PtrTy);
2629  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
2630                             DAG.getConstant(MemCpySize, PtrTy), Alignment,
2631                             /*isVolatile=*/false, /*AlwaysInline=*/false,
2632                             MachinePointerInfo(0), MachinePointerInfo(0));
2633}
2634
2635/// LowerCall - functions arguments are copied from virtual regs to
2636/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2637/// TODO: isTailCall.
2638SDValue
2639MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2640                              SmallVectorImpl<SDValue> &InVals) const {
2641  SelectionDAG &DAG                     = CLI.DAG;
2642  DebugLoc &dl                          = CLI.DL;
2643  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2644  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2645  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2646  SDValue InChain                       = CLI.Chain;
2647  SDValue Callee                        = CLI.Callee;
2648  bool &isTailCall                      = CLI.IsTailCall;
2649  CallingConv::ID CallConv              = CLI.CallConv;
2650  bool isVarArg                         = CLI.IsVarArg;
2651
2652  // MIPs target does not yet support tail call optimization.
2653  isTailCall = false;
2654
2655  MachineFunction &MF = DAG.getMachineFunction();
2656  MachineFrameInfo *MFI = MF.getFrameInfo();
2657  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2658  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2659  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2660
2661  // Analyze operands of the call, assigning locations to each operand.
2662  SmallVector<CCValAssign, 16> ArgLocs;
2663  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2664                 getTargetMachine(), ArgLocs, *DAG.getContext());
2665
2666  if (CallConv == CallingConv::Fast)
2667    CCInfo.AnalyzeCallOperands(Outs, CC_Mips_FastCC);
2668  else if (IsO32)
2669    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
2670  else if (HasMips64)
2671    AnalyzeMips64CallOperands(CCInfo, Outs);
2672  else
2673    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
2674
2675  // Get a count of how many bytes are to be pushed on the stack.
2676  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2677
2678  // Chain is the output chain of the last Load/Store or CopyToReg node.
2679  // ByValChain is the output chain of the last Memcpy node created for copying
2680  // byval arguments to the stack.
2681  SDValue Chain, CallSeqStart, ByValChain;
2682  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2683  Chain = CallSeqStart = DAG.getCALLSEQ_START(InChain, NextStackOffsetVal);
2684  ByValChain = InChain;
2685
2686  // Get the frame index of the stack frame object that points to the location
2687  // of dynamically allocated area on the stack.
2688  int DynAllocFI = MipsFI->getDynAllocFI();
2689
2690  // Update size of the maximum argument space.
2691  // For O32, a minimum of four words (16 bytes) of argument space is
2692  // allocated.
2693  if (IsO32 && (CallConv != CallingConv::Fast))
2694    NextStackOffset = std::max(NextStackOffset, (unsigned)16);
2695
2696  unsigned MaxCallFrameSize = MipsFI->getMaxCallFrameSize();
2697
2698  if (MaxCallFrameSize < NextStackOffset) {
2699    MipsFI->setMaxCallFrameSize(NextStackOffset);
2700
2701    // Set the offsets relative to $sp of the $gp restore slot and dynamically
2702    // allocated stack space. These offsets must be aligned to a boundary
2703    // determined by the stack alignment of the ABI.
2704    unsigned StackAlignment = TFL->getStackAlignment();
2705    NextStackOffset = (NextStackOffset + StackAlignment - 1) /
2706                      StackAlignment * StackAlignment;
2707
2708    MFI->setObjectOffset(DynAllocFI, NextStackOffset);
2709  }
2710
2711  // With EABI is it possible to have 16 args on registers.
2712  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2713  SmallVector<SDValue, 8> MemOpChains;
2714
2715  int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0;
2716
2717  // Walk the register/memloc assignments, inserting copies/loads.
2718  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2719    SDValue Arg = OutVals[i];
2720    CCValAssign &VA = ArgLocs[i];
2721    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2722    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2723
2724    // ByVal Arg.
2725    if (Flags.isByVal()) {
2726      assert(Flags.getByValSize() &&
2727             "ByVal args of size 0 should have been ignored by front-end.");
2728      if (IsO32)
2729        WriteByValArg(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI,
2730                      MFI, DAG, Arg, VA, Flags, getPointerTy(),
2731                      Subtarget->isLittle());
2732      else
2733        PassByValArg64(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI,
2734                       MFI, DAG, Arg, VA, Flags, getPointerTy(),
2735                       Subtarget->isLittle());
2736      continue;
2737    }
2738
2739    // Promote the value if needed.
2740    switch (VA.getLocInfo()) {
2741    default: llvm_unreachable("Unknown loc info!");
2742    case CCValAssign::Full:
2743      if (VA.isRegLoc()) {
2744        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2745            (ValVT == MVT::f64 && LocVT == MVT::i64))
2746          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2747        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2748          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2749                                   Arg, DAG.getConstant(0, MVT::i32));
2750          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2751                                   Arg, DAG.getConstant(1, MVT::i32));
2752          if (!Subtarget->isLittle())
2753            std::swap(Lo, Hi);
2754          unsigned LocRegLo = VA.getLocReg();
2755          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2756          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2757          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2758          continue;
2759        }
2760      }
2761      break;
2762    case CCValAssign::SExt:
2763      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2764      break;
2765    case CCValAssign::ZExt:
2766      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2767      break;
2768    case CCValAssign::AExt:
2769      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2770      break;
2771    }
2772
2773    // Arguments that can be passed on register must be kept at
2774    // RegsToPass vector
2775    if (VA.isRegLoc()) {
2776      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2777      continue;
2778    }
2779
2780    // Register can't get to this point...
2781    assert(VA.isMemLoc());
2782
2783    // Create the frame index object for this incoming parameter
2784    LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2785                                    VA.getLocMemOffset(), true);
2786    SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
2787
2788    // emit ISD::STORE whichs stores the
2789    // parameter value to a stack Location
2790    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2791                                       MachinePointerInfo(), false, false, 0));
2792  }
2793
2794  // Extend range of indices of frame objects for outgoing arguments that were
2795  // created during this function call. Skip this step if no such objects were
2796  // created.
2797  if (LastFI)
2798    MipsFI->extendOutArgFIRange(FirstFI, LastFI);
2799
2800  // If a memcpy has been created to copy a byval arg to a stack, replace the
2801  // chain input of CallSeqStart with ByValChain.
2802  if (InChain != ByValChain)
2803    DAG.UpdateNodeOperands(CallSeqStart.getNode(), ByValChain,
2804                           NextStackOffsetVal);
2805
2806  // Transform all store nodes into one single node because all store
2807  // nodes are independent of each other.
2808  if (!MemOpChains.empty())
2809    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2810                        &MemOpChains[0], MemOpChains.size());
2811
2812  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2813  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2814  // node so that legalize doesn't hack it.
2815  unsigned char OpFlag;
2816  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2817  bool GlobalOrExternal = false;
2818  SDValue CalleeLo;
2819
2820  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2821    if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
2822      OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
2823      unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
2824      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
2825                                          OpFlag);
2826      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
2827                                            0, LoFlag);
2828    } else {
2829      OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
2830      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2831                                          getPointerTy(), 0, OpFlag);
2832    }
2833
2834    GlobalOrExternal = true;
2835  }
2836  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2837    if (IsN64 || (!IsO32 && IsPIC))
2838      OpFlag = MipsII::MO_GOT_DISP;
2839    else if (!IsPIC) // !N64 && static
2840      OpFlag = MipsII::MO_NO_FLAG;
2841    else // O32 & PIC
2842      OpFlag = MipsII::MO_GOT_CALL;
2843    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2844                                         OpFlag);
2845    GlobalOrExternal = true;
2846  }
2847
2848  SDValue InFlag;
2849
2850  // Create nodes that load address of callee and copy it to T9
2851  if (IsPICCall) {
2852    if (GlobalOrExternal) {
2853      // Load callee address
2854      Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(),
2855                           GetGlobalReg(DAG, getPointerTy()), Callee);
2856      SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
2857                                      Callee, MachinePointerInfo::getGOT(),
2858                                      false, false, false, 0);
2859
2860      // Use GOT+LO if callee has internal linkage.
2861      if (CalleeLo.getNode()) {
2862        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
2863        Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
2864      } else
2865        Callee = LoadValue;
2866    }
2867  }
2868
2869  // T9 should contain the address of the callee function if
2870  // -reloction-model=pic or it is an indirect call.
2871  if (IsPICCall || !GlobalOrExternal) {
2872    // copy to T9
2873    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
2874    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
2875    InFlag = Chain.getValue(1);
2876    Callee = DAG.getRegister(T9Reg, getPointerTy());
2877  }
2878
2879  // Insert node "GP copy globalreg" before call to function.
2880  // Lazy-binding stubs require GP to point to the GOT.
2881  if (IsPICCall) {
2882    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2883    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2884    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
2885  }
2886
2887  // Build a sequence of copy-to-reg nodes chained together with token
2888  // chain and flag operands which copy the outgoing args into registers.
2889  // The InFlag in necessary since all emitted instructions must be
2890  // stuck together.
2891  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2892    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2893                             RegsToPass[i].second, InFlag);
2894    InFlag = Chain.getValue(1);
2895  }
2896
2897  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
2898  //             = Chain, Callee, Reg#1, Reg#2, ...
2899  //
2900  // Returns a chain & a flag for retval copy to use.
2901  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2902  SmallVector<SDValue, 8> Ops;
2903  Ops.push_back(Chain);
2904  Ops.push_back(Callee);
2905
2906  // Add argument registers to the end of the list so that they are
2907  // known live into the call.
2908  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2909    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2910                                  RegsToPass[i].second.getValueType()));
2911
2912  // Add a register mask operand representing the call-preserved registers.
2913  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2914  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2915  assert(Mask && "Missing call preserved mask for calling convention");
2916  Ops.push_back(DAG.getRegisterMask(Mask));
2917
2918  if (InFlag.getNode())
2919    Ops.push_back(InFlag);
2920
2921  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
2922  InFlag = Chain.getValue(1);
2923
2924  // Create the CALLSEQ_END node.
2925  Chain = DAG.getCALLSEQ_END(Chain,
2926                             DAG.getIntPtrConstant(NextStackOffset, true),
2927                             DAG.getIntPtrConstant(0, true), InFlag);
2928  InFlag = Chain.getValue(1);
2929
2930  // Handle result values, copying them out of physregs into vregs that we
2931  // return.
2932  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2933                         Ins, dl, DAG, InVals);
2934}
2935
2936/// LowerCallResult - Lower the result values of a call into the
2937/// appropriate copies out of appropriate physical registers.
2938SDValue
2939MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2940                                    CallingConv::ID CallConv, bool isVarArg,
2941                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2942                                    DebugLoc dl, SelectionDAG &DAG,
2943                                    SmallVectorImpl<SDValue> &InVals) const {
2944  // Assign locations to each value returned by this call.
2945  SmallVector<CCValAssign, 16> RVLocs;
2946  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2947                 getTargetMachine(), RVLocs, *DAG.getContext());
2948
2949  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
2950
2951  // Copy all of the result registers out of their specified physreg.
2952  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2953    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
2954                               RVLocs[i].getValVT(), InFlag).getValue(1);
2955    InFlag = Chain.getValue(2);
2956    InVals.push_back(Chain.getValue(0));
2957  }
2958
2959  return Chain;
2960}
2961
2962//===----------------------------------------------------------------------===//
2963//             Formal Arguments Calling Convention Implementation
2964//===----------------------------------------------------------------------===//
2965static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2966                         std::vector<SDValue> &OutChains,
2967                         SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
2968                         const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2969                         const Argument *FuncArg) {
2970  unsigned LocMem = VA.getLocMemOffset();
2971  unsigned FirstWord = LocMem / 4;
2972
2973  // copy register A0 - A3 to frame object
2974  for (unsigned i = 0; i < NumWords; ++i) {
2975    unsigned CurWord = FirstWord + i;
2976    if (CurWord >= O32IntRegsSize)
2977      break;
2978
2979    unsigned SrcReg = O32IntRegs[CurWord];
2980    unsigned Reg = AddLiveIn(MF, SrcReg, &Mips::CPURegsRegClass);
2981    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
2982                                   DAG.getConstant(i * 4, MVT::i32));
2983    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
2984                                 StorePtr, MachinePointerInfo(FuncArg, i * 4),
2985                                 false, false, 0);
2986    OutChains.push_back(Store);
2987  }
2988}
2989
2990// Create frame object on stack and copy registers used for byval passing to it.
2991static unsigned
2992CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2993                    std::vector<SDValue> &OutChains, SelectionDAG &DAG,
2994                    const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2995                    MachineFrameInfo *MFI, bool IsRegLoc,
2996                    SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI,
2997                    EVT PtrTy, const Argument *FuncArg) {
2998  const uint16_t *Reg = Mips64IntRegs + 8;
2999  int FOOffset; // Frame object offset from virtual frame pointer.
3000
3001  if (IsRegLoc) {
3002    Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg());
3003    FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8;
3004  }
3005  else
3006    FOOffset = VA.getLocMemOffset();
3007
3008  // Create frame object.
3009  unsigned NumRegs = (Flags.getByValSize() + 7) / 8;
3010  unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true);
3011  SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy);
3012  InVals.push_back(FIN);
3013
3014  // Copy arg registers.
3015  for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs);
3016       ++Reg, ++I) {
3017    unsigned VReg = AddLiveIn(MF, *Reg, &Mips::CPU64RegsRegClass);
3018    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN,
3019                                   DAG.getConstant(I * 8, PtrTy));
3020    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64),
3021                                 StorePtr, MachinePointerInfo(FuncArg, I * 8),
3022                                 false, false, 0);
3023    OutChains.push_back(Store);
3024  }
3025
3026  return LastFI;
3027}
3028
3029/// LowerFormalArguments - transform physical registers into virtual registers
3030/// and generate load operations for arguments places on the stack.
3031SDValue
3032MipsTargetLowering::LowerFormalArguments(SDValue Chain,
3033                                         CallingConv::ID CallConv,
3034                                         bool isVarArg,
3035                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3036                                         DebugLoc dl, SelectionDAG &DAG,
3037                                         SmallVectorImpl<SDValue> &InVals)
3038                                          const {
3039  MachineFunction &MF = DAG.getMachineFunction();
3040  MachineFrameInfo *MFI = MF.getFrameInfo();
3041  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3042
3043  MipsFI->setVarArgsFrameIndex(0);
3044
3045  // Used with vargs to acumulate store chains.
3046  std::vector<SDValue> OutChains;
3047
3048  // Assign locations to all of the incoming arguments.
3049  SmallVector<CCValAssign, 16> ArgLocs;
3050  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3051                 getTargetMachine(), ArgLocs, *DAG.getContext());
3052
3053  if (CallConv == CallingConv::Fast)
3054    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FastCC);
3055  else if (IsO32)
3056    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
3057  else
3058    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
3059
3060  Function::const_arg_iterator FuncArg =
3061    DAG.getMachineFunction().getFunction()->arg_begin();
3062  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
3063
3064  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++FuncArg) {
3065    CCValAssign &VA = ArgLocs[i];
3066    EVT ValVT = VA.getValVT();
3067    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3068    bool IsRegLoc = VA.isRegLoc();
3069
3070    if (Flags.isByVal()) {
3071      assert(Flags.getByValSize() &&
3072             "ByVal args of size 0 should have been ignored by front-end.");
3073      if (IsO32) {
3074        unsigned NumWords = (Flags.getByValSize() + 3) / 4;
3075        LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
3076                                        true);
3077        SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3078        InVals.push_back(FIN);
3079        ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags,
3080                     &*FuncArg);
3081      } else // N32/64
3082        LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags,
3083                                     MFI, IsRegLoc, InVals, MipsFI,
3084                                     getPointerTy(), &*FuncArg);
3085      continue;
3086    }
3087
3088    // Arguments stored on registers
3089    if (IsRegLoc) {
3090      EVT RegVT = VA.getLocVT();
3091      unsigned ArgReg = VA.getLocReg();
3092      const TargetRegisterClass *RC;
3093
3094      if (RegVT == MVT::i32)
3095        RC = &Mips::CPURegsRegClass;
3096      else if (RegVT == MVT::i64)
3097        RC = &Mips::CPU64RegsRegClass;
3098      else if (RegVT == MVT::f32)
3099        RC = &Mips::FGR32RegClass;
3100      else if (RegVT == MVT::f64)
3101        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3102      else
3103        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3104
3105      // Transform the arguments stored on
3106      // physical registers into virtual ones
3107      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3108      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3109
3110      // If this is an 8 or 16-bit value, it has been passed promoted
3111      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3112      // truncate to the right size.
3113      if (VA.getLocInfo() != CCValAssign::Full) {
3114        unsigned Opcode = 0;
3115        if (VA.getLocInfo() == CCValAssign::SExt)
3116          Opcode = ISD::AssertSext;
3117        else if (VA.getLocInfo() == CCValAssign::ZExt)
3118          Opcode = ISD::AssertZext;
3119        if (Opcode)
3120          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3121                                 DAG.getValueType(ValVT));
3122        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3123      }
3124
3125      // Handle floating point arguments passed in integer registers.
3126      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3127          (RegVT == MVT::i64 && ValVT == MVT::f64))
3128        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3129      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3130        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3131                                  getNextIntArgReg(ArgReg), RC);
3132        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3133        if (!Subtarget->isLittle())
3134          std::swap(ArgValue, ArgValue2);
3135        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3136                               ArgValue, ArgValue2);
3137      }
3138
3139      InVals.push_back(ArgValue);
3140    } else { // VA.isRegLoc()
3141
3142      // sanity check
3143      assert(VA.isMemLoc());
3144
3145      // The stack pointer offset is relative to the caller stack frame.
3146      LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3147                                      VA.getLocMemOffset(), true);
3148
3149      // Create load nodes to retrieve arguments from the stack
3150      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3151      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3152                                   MachinePointerInfo::getFixedStack(LastFI),
3153                                   false, false, false, 0));
3154    }
3155  }
3156
3157  // The mips ABIs for returning structs by value requires that we copy
3158  // the sret argument into $v0 for the return. Save the argument into
3159  // a virtual register so that we can access it from the return points.
3160  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3161    unsigned Reg = MipsFI->getSRetReturnReg();
3162    if (!Reg) {
3163      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
3164      MipsFI->setSRetReturnReg(Reg);
3165    }
3166    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3167    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3168  }
3169
3170  if (isVarArg) {
3171    unsigned NumOfRegs = IsO32 ? 4 : 8;
3172    const uint16_t *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs;
3173    unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs);
3174    int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot.
3175    const TargetRegisterClass *RC = IsO32 ?
3176      (const TargetRegisterClass*)&Mips::CPURegsRegClass :
3177      (const TargetRegisterClass*)&Mips::CPU64RegsRegClass;
3178    unsigned RegSize = RC->getSize();
3179    int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize;
3180
3181    // Offset of the first variable argument from stack pointer.
3182    int FirstVaArgOffset;
3183
3184    if (IsO32 || (Idx == NumOfRegs)) {
3185      FirstVaArgOffset =
3186        (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize;
3187    } else
3188      FirstVaArgOffset = RegSlotOffset;
3189
3190    // Record the frame index of the first variable argument
3191    // which is a value necessary to VASTART.
3192    LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true);
3193    MipsFI->setVarArgsFrameIndex(LastFI);
3194
3195    // Copy the integer registers that have not been used for argument passing
3196    // to the argument register save area. For O32, the save area is allocated
3197    // in the caller's stack frame, while for N32/64, it is allocated in the
3198    // callee's stack frame.
3199    for (int StackOffset = RegSlotOffset;
3200         Idx < NumOfRegs; ++Idx, StackOffset += RegSize) {
3201      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC);
3202      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3203                                            MVT::getIntegerVT(RegSize * 8));
3204      LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true);
3205      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
3206      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
3207                                       MachinePointerInfo(), false, false, 0));
3208    }
3209  }
3210
3211  MipsFI->setLastInArgFI(LastFI);
3212
3213  // All stores are grouped in one node to allow the matching between
3214  // the size of Ins and InVals. This only happens when on varg functions
3215  if (!OutChains.empty()) {
3216    OutChains.push_back(Chain);
3217    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3218                        &OutChains[0], OutChains.size());
3219  }
3220
3221  return Chain;
3222}
3223
3224//===----------------------------------------------------------------------===//
3225//               Return Value Calling Convention Implementation
3226//===----------------------------------------------------------------------===//
3227
3228SDValue
3229MipsTargetLowering::LowerReturn(SDValue Chain,
3230                                CallingConv::ID CallConv, bool isVarArg,
3231                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3232                                const SmallVectorImpl<SDValue> &OutVals,
3233                                DebugLoc dl, SelectionDAG &DAG) const {
3234
3235  // CCValAssign - represent the assignment of
3236  // the return value to a location
3237  SmallVector<CCValAssign, 16> RVLocs;
3238
3239  // CCState - Info about the registers and stack slot.
3240  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3241                 getTargetMachine(), RVLocs, *DAG.getContext());
3242
3243  // Analize return values.
3244  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3245
3246  // If this is the first return lowered for this function, add
3247  // the regs to the liveout set for the function.
3248  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3249    for (unsigned i = 0; i != RVLocs.size(); ++i)
3250      if (RVLocs[i].isRegLoc())
3251        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3252  }
3253
3254  SDValue Flag;
3255
3256  // Copy the result values into the output registers.
3257  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3258    CCValAssign &VA = RVLocs[i];
3259    assert(VA.isRegLoc() && "Can only return in registers!");
3260
3261    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3262
3263    // guarantee that all emitted copies are
3264    // stuck together, avoiding something bad
3265    Flag = Chain.getValue(1);
3266  }
3267
3268  // The mips ABIs for returning structs by value requires that we copy
3269  // the sret argument into $v0 for the return. We saved the argument into
3270  // a virtual register in the entry block, so now we copy the value out
3271  // and into $v0.
3272  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3273    MachineFunction &MF      = DAG.getMachineFunction();
3274    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3275    unsigned Reg = MipsFI->getSRetReturnReg();
3276
3277    if (!Reg)
3278      llvm_unreachable("sret virtual register not created in the entry block");
3279    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3280
3281    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
3282    Flag = Chain.getValue(1);
3283  }
3284
3285  // Return on Mips is always a "jr $ra"
3286  if (Flag.getNode())
3287    return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain, Flag);
3288
3289  // Return Void
3290  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain);
3291}
3292
3293//===----------------------------------------------------------------------===//
3294//                           Mips Inline Assembly Support
3295//===----------------------------------------------------------------------===//
3296
3297/// getConstraintType - Given a constraint letter, return the type of
3298/// constraint it is for this target.
3299MipsTargetLowering::ConstraintType MipsTargetLowering::
3300getConstraintType(const std::string &Constraint) const
3301{
3302  // Mips specific constrainy
3303  // GCC config/mips/constraints.md
3304  //
3305  // 'd' : An address register. Equivalent to r
3306  //       unless generating MIPS16 code.
3307  // 'y' : Equivalent to r; retained for
3308  //       backwards compatibility.
3309  // 'c' : A register suitable for use in an indirect
3310  //       jump. This will always be $25 for -mabicalls.
3311  // 'l' : The lo register. 1 word storage.
3312  // 'x' : The hilo register pair. Double word storage.
3313  if (Constraint.size() == 1) {
3314    switch (Constraint[0]) {
3315      default : break;
3316      case 'd':
3317      case 'y':
3318      case 'f':
3319      case 'c':
3320      case 'l':
3321      case 'x':
3322        return C_RegisterClass;
3323    }
3324  }
3325  return TargetLowering::getConstraintType(Constraint);
3326}
3327
3328/// Examine constraint type and operand type and determine a weight value.
3329/// This object must already have been set up with the operand type
3330/// and the current alternative constraint selected.
3331TargetLowering::ConstraintWeight
3332MipsTargetLowering::getSingleConstraintMatchWeight(
3333    AsmOperandInfo &info, const char *constraint) const {
3334  ConstraintWeight weight = CW_Invalid;
3335  Value *CallOperandVal = info.CallOperandVal;
3336    // If we don't have a value, we can't do a match,
3337    // but allow it at the lowest weight.
3338  if (CallOperandVal == NULL)
3339    return CW_Default;
3340  Type *type = CallOperandVal->getType();
3341  // Look at the constraint type.
3342  switch (*constraint) {
3343  default:
3344    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3345    break;
3346  case 'd':
3347  case 'y':
3348    if (type->isIntegerTy())
3349      weight = CW_Register;
3350    break;
3351  case 'f':
3352    if (type->isFloatTy())
3353      weight = CW_Register;
3354    break;
3355  case 'c': // $25 for indirect jumps
3356  case 'l': // lo register
3357  case 'x': // hilo register pair
3358      if (type->isIntegerTy())
3359      weight = CW_SpecificReg;
3360      break;
3361  case 'I': // signed 16 bit immediate
3362  case 'J': // integer zero
3363  case 'K': // unsigned 16 bit immediate
3364  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3365  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3366  case 'O': // signed 15 bit immediate (+- 16383)
3367  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3368    if (isa<ConstantInt>(CallOperandVal))
3369      weight = CW_Constant;
3370    break;
3371  }
3372  return weight;
3373}
3374
3375/// Given a register class constraint, like 'r', if this corresponds directly
3376/// to an LLVM register class, return a register of 0 and the register class
3377/// pointer.
3378std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3379getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3380{
3381  if (Constraint.size() == 1) {
3382    switch (Constraint[0]) {
3383    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3384    case 'y': // Same as 'r'. Exists for compatibility.
3385    case 'r':
3386      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
3387        return std::make_pair(0U, &Mips::CPURegsRegClass);
3388      if (VT == MVT::i64 && !HasMips64)
3389        return std::make_pair(0U, &Mips::CPURegsRegClass);
3390      if (VT == MVT::i64 && HasMips64)
3391        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3392      // This will generate an error message
3393      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3394    case 'f':
3395      if (VT == MVT::f32)
3396        return std::make_pair(0U, &Mips::FGR32RegClass);
3397      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3398        if (Subtarget->isFP64bit())
3399          return std::make_pair(0U, &Mips::FGR64RegClass);
3400        return std::make_pair(0U, &Mips::AFGR64RegClass);
3401      }
3402      break;
3403    case 'c': // register suitable for indirect jump
3404      if (VT == MVT::i32)
3405        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3406      assert(VT == MVT::i64 && "Unexpected type.");
3407      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3408    case 'l': // register suitable for indirect jump
3409      if (VT == MVT::i32)
3410        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3411      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3412    case 'x': // register suitable for indirect jump
3413      // Fixme: Not triggering the use of both hi and low
3414      // This will generate an error message
3415      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3416    }
3417  }
3418  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3419}
3420
3421/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3422/// vector.  If it is invalid, don't add anything to Ops.
3423void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3424                                                     std::string &Constraint,
3425                                                     std::vector<SDValue>&Ops,
3426                                                     SelectionDAG &DAG) const {
3427  SDValue Result(0, 0);
3428
3429  // Only support length 1 constraints for now.
3430  if (Constraint.length() > 1) return;
3431
3432  char ConstraintLetter = Constraint[0];
3433  switch (ConstraintLetter) {
3434  default: break; // This will fall through to the generic implementation
3435  case 'I': // Signed 16 bit constant
3436    // If this fails, the parent routine will give an error
3437    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3438      EVT Type = Op.getValueType();
3439      int64_t Val = C->getSExtValue();
3440      if (isInt<16>(Val)) {
3441        Result = DAG.getTargetConstant(Val, Type);
3442        break;
3443      }
3444    }
3445    return;
3446  case 'J': // integer zero
3447    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3448      EVT Type = Op.getValueType();
3449      int64_t Val = C->getZExtValue();
3450      if (Val == 0) {
3451        Result = DAG.getTargetConstant(0, Type);
3452        break;
3453      }
3454    }
3455    return;
3456  case 'K': // unsigned 16 bit immediate
3457    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3458      EVT Type = Op.getValueType();
3459      uint64_t Val = (uint64_t)C->getZExtValue();
3460      if (isUInt<16>(Val)) {
3461        Result = DAG.getTargetConstant(Val, Type);
3462        break;
3463      }
3464    }
3465    return;
3466  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3467    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3468      EVT Type = Op.getValueType();
3469      int64_t Val = C->getSExtValue();
3470      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3471        Result = DAG.getTargetConstant(Val, Type);
3472        break;
3473      }
3474    }
3475    return;
3476  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3477    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3478      EVT Type = Op.getValueType();
3479      int64_t Val = C->getSExtValue();
3480      if ((Val >= -65535) && (Val <= -1)) {
3481        Result = DAG.getTargetConstant(Val, Type);
3482        break;
3483      }
3484    }
3485    return;
3486  case 'O': // signed 15 bit immediate
3487    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3488      EVT Type = Op.getValueType();
3489      int64_t Val = C->getSExtValue();
3490      if ((isInt<15>(Val))) {
3491        Result = DAG.getTargetConstant(Val, Type);
3492        break;
3493      }
3494    }
3495    return;
3496  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3497    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3498      EVT Type = Op.getValueType();
3499      int64_t Val = C->getSExtValue();
3500      if ((Val <= 65535) && (Val >= 1)) {
3501        Result = DAG.getTargetConstant(Val, Type);
3502        break;
3503      }
3504    }
3505    return;
3506  }
3507
3508  if (Result.getNode()) {
3509    Ops.push_back(Result);
3510    return;
3511  }
3512
3513  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3514}
3515
3516bool
3517MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3518  // The Mips target isn't yet aware of offsets.
3519  return false;
3520}
3521
3522EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3523                                            unsigned SrcAlign, bool IsZeroVal,
3524                                            bool MemcpyStrSrc,
3525                                            MachineFunction &MF) const {
3526  if (Subtarget->hasMips64())
3527    return MVT::i64;
3528
3529  return MVT::i32;
3530}
3531
3532bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3533  if (VT != MVT::f32 && VT != MVT::f64)
3534    return false;
3535  if (Imm.isNegZero())
3536    return false;
3537  return Imm.isZero();
3538}
3539
3540unsigned MipsTargetLowering::getJumpTableEncoding() const {
3541  if (IsN64)
3542    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3543
3544  return TargetLowering::getJumpTableEncoding();
3545}
3546