MipsISelLowering.cpp revision 459d35cb7975804048684261f2358eedbd2209c1
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include <set>
16#include "MipsISelLowering.h"
17#include "InstPrinter/MipsInstPrinter.h"
18#include "MCTargetDesc/MipsBaseInfo.h"
19#include "MipsMachineFunction.h"
20#include "MipsSubtarget.h"
21#include "MipsTargetMachine.h"
22#include "MipsTargetObjectFile.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/CallingConvLower.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/SelectionDAGISel.h"
30#include "llvm/CodeGen/ValueTypes.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumTailCalls, "Number of tail calls");
44
45static cl::opt<bool>
46EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
47                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
48
49static cl::opt<bool>
50LargeGOT("mxgot", cl::Hidden,
51         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
52
53static cl::opt<bool>
54Mips16HardFloat("mips16-hard-float", cl::NotHidden,
55                cl::desc("MIPS: mips16 hard float enable."),
56                cl::init(false));
57
58static cl::opt<bool> DontExpandCondPseudos16(
59  "mips16-dont-expand-cond-pseudo",
60  cl::init(false),
61  cl::desc("Dont expand conditional move related "
62           "pseudos for Mips 16"),
63  cl::Hidden);
64
65
66static const uint16_t O32IntRegs[4] = {
67  Mips::A0, Mips::A1, Mips::A2, Mips::A3
68};
69
70static const uint16_t Mips64IntRegs[8] = {
71  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
72  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
73};
74
75static const uint16_t Mips64DPRegs[8] = {
76  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
77  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
78};
79
80// If I is a shifted mask, set the size (Size) and the first bit of the
81// mask (Pos), and return true.
82// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
83static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
84  if (!isShiftedMask_64(I))
85     return false;
86
87  Size = CountPopulation_64(I);
88  Pos = CountTrailingZeros_64(I);
89  return true;
90}
91
92static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
93  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
94  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
95}
96
97static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
98  EVT Ty = Op.getValueType();
99
100  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
101    return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
102                                      Flag);
103  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
104    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
105  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
106    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
107  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
108    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
109  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
110    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
111                                     N->getOffset(), Flag);
112
113  llvm_unreachable("Unexpected node type.");
114  return SDValue();
115}
116
117static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
118  DebugLoc DL = Op.getDebugLoc();
119  EVT Ty = Op.getValueType();
120  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
121  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
122  return DAG.getNode(ISD::ADD, DL, Ty,
123                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
124                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
125}
126
127static SDValue getAddrLocal(SDValue Op, SelectionDAG &DAG, bool HasMips64) {
128  DebugLoc DL = Op.getDebugLoc();
129  EVT Ty = Op.getValueType();
130  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
131  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
132                            getTargetNode(Op, DAG, GOTFlag));
133  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
134                             MachinePointerInfo::getGOT(), false, false, false,
135                             0);
136  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
137  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
138  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
139}
140
141static SDValue getAddrGlobal(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
142  DebugLoc DL = Op.getDebugLoc();
143  EVT Ty = Op.getValueType();
144  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
145                            getTargetNode(Op, DAG, Flag));
146  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
147                     MachinePointerInfo::getGOT(), false, false, false, 0);
148}
149
150static SDValue getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
151                                     unsigned HiFlag, unsigned LoFlag) {
152  DebugLoc DL = Op.getDebugLoc();
153  EVT Ty = Op.getValueType();
154  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
155  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, GetGlobalReg(DAG, Ty));
156  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
157                                getTargetNode(Op, DAG, LoFlag));
158  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
159                     MachinePointerInfo::getGOT(), false, false, false, 0);
160}
161
162const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
163  switch (Opcode) {
164  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
165  case MipsISD::TailCall:          return "MipsISD::TailCall";
166  case MipsISD::Hi:                return "MipsISD::Hi";
167  case MipsISD::Lo:                return "MipsISD::Lo";
168  case MipsISD::GPRel:             return "MipsISD::GPRel";
169  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
170  case MipsISD::Ret:               return "MipsISD::Ret";
171  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
172  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
173  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
174  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
175  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
176  case MipsISD::FPRound:           return "MipsISD::FPRound";
177  case MipsISD::MAdd:              return "MipsISD::MAdd";
178  case MipsISD::MAddu:             return "MipsISD::MAddu";
179  case MipsISD::MSub:              return "MipsISD::MSub";
180  case MipsISD::MSubu:             return "MipsISD::MSubu";
181  case MipsISD::DivRem:            return "MipsISD::DivRem";
182  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
183  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
184  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
185  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
186  case MipsISD::Sync:              return "MipsISD::Sync";
187  case MipsISD::Ext:               return "MipsISD::Ext";
188  case MipsISD::Ins:               return "MipsISD::Ins";
189  case MipsISD::LWL:               return "MipsISD::LWL";
190  case MipsISD::LWR:               return "MipsISD::LWR";
191  case MipsISD::SWL:               return "MipsISD::SWL";
192  case MipsISD::SWR:               return "MipsISD::SWR";
193  case MipsISD::LDL:               return "MipsISD::LDL";
194  case MipsISD::LDR:               return "MipsISD::LDR";
195  case MipsISD::SDL:               return "MipsISD::SDL";
196  case MipsISD::SDR:               return "MipsISD::SDR";
197  case MipsISD::EXTP:              return "MipsISD::EXTP";
198  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
199  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
200  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
201  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
202  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
203  case MipsISD::SHILO:             return "MipsISD::SHILO";
204  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
205  case MipsISD::MULT:              return "MipsISD::MULT";
206  case MipsISD::MULTU:             return "MipsISD::MULTU";
207  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSPDSP";
208  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
209  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
210  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
211  default:                         return NULL;
212  }
213}
214
215namespace {
216  struct ltstr {
217    bool operator()(const char *s1, const char *s2) const
218    {
219      return strcmp(s1, s2) < 0;
220    }
221  };
222
223  std::set<const char*, ltstr> noHelperNeeded;
224}
225
226void MipsTargetLowering::SetMips16LibcallName
227  (RTLIB::Libcall l, const char *Name) {
228  setLibcallName(l, Name);
229  noHelperNeeded.insert(Name);
230}
231
232void MipsTargetLowering::setMips16HardFloatLibCalls() {
233  SetMips16LibcallName(RTLIB::ADD_F32, "__mips16_addsf3");
234  SetMips16LibcallName(RTLIB::ADD_F64, "__mips16_adddf3");
235  SetMips16LibcallName(RTLIB::SUB_F32, "__mips16_subsf3");
236  SetMips16LibcallName(RTLIB::SUB_F64, "__mips16_subdf3");
237  SetMips16LibcallName(RTLIB::MUL_F32, "__mips16_mulsf3");
238  SetMips16LibcallName(RTLIB::MUL_F64, "__mips16_muldf3");
239  SetMips16LibcallName(RTLIB::DIV_F32, "__mips16_divsf3");
240  SetMips16LibcallName(RTLIB::DIV_F64, "__mips16_divdf3");
241  SetMips16LibcallName(RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2");
242  SetMips16LibcallName(RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2");
243  SetMips16LibcallName(RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi");
244  SetMips16LibcallName(RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi");
245  SetMips16LibcallName(RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf");
246  SetMips16LibcallName(RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf");
247  SetMips16LibcallName(RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf");
248  SetMips16LibcallName(RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf");
249  SetMips16LibcallName(RTLIB::OEQ_F32, "__mips16_eqsf2");
250  SetMips16LibcallName(RTLIB::OEQ_F64, "__mips16_eqdf2");
251  SetMips16LibcallName(RTLIB::UNE_F32, "__mips16_nesf2");
252  SetMips16LibcallName(RTLIB::UNE_F64, "__mips16_nedf2");
253  SetMips16LibcallName(RTLIB::OGE_F32, "__mips16_gesf2");
254  SetMips16LibcallName(RTLIB::OGE_F64, "__mips16_gedf2");
255  SetMips16LibcallName(RTLIB::OLT_F32, "__mips16_ltsf2");
256  SetMips16LibcallName(RTLIB::OLT_F64, "__mips16_ltdf2");
257  SetMips16LibcallName(RTLIB::OLE_F32, "__mips16_lesf2");
258  SetMips16LibcallName(RTLIB::OLE_F64, "__mips16_ledf2");
259  SetMips16LibcallName(RTLIB::OGT_F32, "__mips16_gtsf2");
260  SetMips16LibcallName(RTLIB::OGT_F64, "__mips16_gtdf2");
261  SetMips16LibcallName(RTLIB::UO_F32, "__mips16_unordsf2");
262  SetMips16LibcallName(RTLIB::UO_F64, "__mips16_unorddf2");
263  SetMips16LibcallName(RTLIB::O_F32, "__mips16_unordsf2");
264  SetMips16LibcallName(RTLIB::O_F64, "__mips16_unorddf2");
265}
266
267MipsTargetLowering::
268MipsTargetLowering(MipsTargetMachine &TM)
269  : TargetLowering(TM, new MipsTargetObjectFile()),
270    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
271    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
272    IsO32(Subtarget->isABI_O32()) {
273
274  // Mips does not have i1 type, so use i32 for
275  // setcc operations results (slt, sgt, ...).
276  setBooleanContents(ZeroOrOneBooleanContent);
277  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
278
279  // Set up the register classes
280  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
281
282  if (HasMips64)
283    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
284
285  if (Subtarget->inMips16Mode()) {
286    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
287    if (Mips16HardFloat)
288      setMips16HardFloatLibCalls();
289  }
290
291  if (Subtarget->hasDSP()) {
292    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
293
294    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
295      addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass);
296
297      // Expand all builtin opcodes.
298      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
299        setOperationAction(Opc, VecTys[i], Expand);
300
301      setOperationAction(ISD::LOAD, VecTys[i], Legal);
302      setOperationAction(ISD::STORE, VecTys[i], Legal);
303      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
304    }
305  }
306
307  if (!TM.Options.UseSoftFloat) {
308    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
309
310    // When dealing with single precision only, use libcalls
311    if (!Subtarget->isSingleFloat()) {
312      if (HasMips64)
313        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
314      else
315        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
316    }
317  }
318
319  // Load extented operations for i1 types must be promoted
320  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
321  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
322  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
323
324  // MIPS doesn't have extending float->double load/store
325  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
326  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
327
328  // Used by legalize types to correctly generate the setcc result.
329  // Without this, every float setcc comes with a AND/OR with the result,
330  // we don't want this, since the fpcmp result goes to a flag register,
331  // which is used implicitly by brcond and select operations.
332  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
333
334  // Mips Custom Operations
335  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
336  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
337  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
338  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
339  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
340  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
341  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
342  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
343  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
344  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
345  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
346  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
347  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
348  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
349  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
350  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
351  if (Subtarget->inMips16Mode()) {
352    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
353    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
354  }
355  else {
356    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
357    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
358  }
359  if (!Subtarget->inMips16Mode()) {
360    setOperationAction(ISD::LOAD,               MVT::i32, Custom);
361    setOperationAction(ISD::STORE,              MVT::i32, Custom);
362  }
363
364  if (!TM.Options.NoNaNsFPMath) {
365    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
366    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
367  }
368
369  if (HasMips64) {
370    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
371    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
372    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
373    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
374    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
375    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
376    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
377    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
378  }
379
380  if (!HasMips64) {
381    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
382    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
383    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
384  }
385
386  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
387  if (HasMips64)
388    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
389
390  setOperationAction(ISD::SDIV, MVT::i32, Expand);
391  setOperationAction(ISD::SREM, MVT::i32, Expand);
392  setOperationAction(ISD::UDIV, MVT::i32, Expand);
393  setOperationAction(ISD::UREM, MVT::i32, Expand);
394  setOperationAction(ISD::SDIV, MVT::i64, Expand);
395  setOperationAction(ISD::SREM, MVT::i64, Expand);
396  setOperationAction(ISD::UDIV, MVT::i64, Expand);
397  setOperationAction(ISD::UREM, MVT::i64, Expand);
398
399  // Operations not directly supported by Mips.
400  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
401  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
402  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
403  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
404  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
405  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
406  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
407  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
408  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
409  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
410  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
411  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
412  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
413  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
414  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
415  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
416  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
417  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
418  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
419  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
420
421  if (!Subtarget->hasMips32r2())
422    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
423
424  if (!Subtarget->hasMips64r2())
425    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
426
427  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
428  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
429  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
430  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
431  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
432  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
433  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
434  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
435  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
436  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
437  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
438  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
439  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
440  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
441  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
442  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
443  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
444
445  if (!TM.Options.NoNaNsFPMath) {
446    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
447    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
448  }
449
450  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
451  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
452  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
453  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
454
455  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
456
457  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
458  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
459  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
460
461  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
462  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
463
464  // Use the default for now
465  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
466  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
467
468  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
469  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
470  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
471  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
472
473  if (Subtarget->inMips16Mode()) {
474    setOperationAction(ISD::ATOMIC_CMP_SWAP,       MVT::i32,    Expand);
475    setOperationAction(ISD::ATOMIC_SWAP,           MVT::i32,    Expand);
476    setOperationAction(ISD::ATOMIC_LOAD_ADD,       MVT::i32,    Expand);
477    setOperationAction(ISD::ATOMIC_LOAD_SUB,       MVT::i32,    Expand);
478    setOperationAction(ISD::ATOMIC_LOAD_AND,       MVT::i32,    Expand);
479    setOperationAction(ISD::ATOMIC_LOAD_OR,        MVT::i32,    Expand);
480    setOperationAction(ISD::ATOMIC_LOAD_XOR,       MVT::i32,    Expand);
481    setOperationAction(ISD::ATOMIC_LOAD_NAND,      MVT::i32,    Expand);
482    setOperationAction(ISD::ATOMIC_LOAD_MIN,       MVT::i32,    Expand);
483    setOperationAction(ISD::ATOMIC_LOAD_MAX,       MVT::i32,    Expand);
484    setOperationAction(ISD::ATOMIC_LOAD_UMIN,      MVT::i32,    Expand);
485    setOperationAction(ISD::ATOMIC_LOAD_UMAX,      MVT::i32,    Expand);
486  }
487
488  setInsertFencesForAtomic(true);
489
490  if (!Subtarget->hasSEInReg()) {
491    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
492    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
493  }
494
495  if (!Subtarget->hasBitCount()) {
496    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
497    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
498  }
499
500  if (!Subtarget->hasSwap()) {
501    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
502    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
503  }
504
505  if (HasMips64) {
506    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
507    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
508    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
509    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
510  }
511
512  setTargetDAGCombine(ISD::ADDE);
513  setTargetDAGCombine(ISD::SUBE);
514  setTargetDAGCombine(ISD::SDIVREM);
515  setTargetDAGCombine(ISD::UDIVREM);
516  setTargetDAGCombine(ISD::SELECT);
517  setTargetDAGCombine(ISD::AND);
518  setTargetDAGCombine(ISD::OR);
519  setTargetDAGCombine(ISD::ADD);
520
521  setMinFunctionAlignment(HasMips64 ? 3 : 2);
522
523  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
524  computeRegisterProperties();
525
526  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
527  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
528
529  MaxStoresPerMemcpy = 16;
530}
531
532bool
533MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
534  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
535
536  if (Subtarget->inMips16Mode())
537    return false;
538
539  switch (SVT) {
540  case MVT::i64:
541  case MVT::i32:
542    if (Fast)
543      *Fast = true;
544    return true;
545  default:
546    return false;
547  }
548}
549
550EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
551  if (!VT.isVector())
552    return MVT::i32;
553  return VT.changeVectorElementTypeToInteger();
554}
555
556// SelectMadd -
557// Transforms a subgraph in CurDAG if the following pattern is found:
558//  (addc multLo, Lo0), (adde multHi, Hi0),
559// where,
560//  multHi/Lo: product of multiplication
561//  Lo0: initial value of Lo register
562//  Hi0: initial value of Hi register
563// Return true if pattern matching was successful.
564static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
565  // ADDENode's second operand must be a flag output of an ADDC node in order
566  // for the matching to be successful.
567  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
568
569  if (ADDCNode->getOpcode() != ISD::ADDC)
570    return false;
571
572  SDValue MultHi = ADDENode->getOperand(0);
573  SDValue MultLo = ADDCNode->getOperand(0);
574  SDNode *MultNode = MultHi.getNode();
575  unsigned MultOpc = MultHi.getOpcode();
576
577  // MultHi and MultLo must be generated by the same node,
578  if (MultLo.getNode() != MultNode)
579    return false;
580
581  // and it must be a multiplication.
582  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
583    return false;
584
585  // MultLo amd MultHi must be the first and second output of MultNode
586  // respectively.
587  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
588    return false;
589
590  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
591  // of the values of MultNode, in which case MultNode will be removed in later
592  // phases.
593  // If there exist users other than ADDENode or ADDCNode, this function returns
594  // here, which will result in MultNode being mapped to a single MULT
595  // instruction node rather than a pair of MULT and MADD instructions being
596  // produced.
597  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
598    return false;
599
600  SDValue Chain = CurDAG->getEntryNode();
601  DebugLoc dl = ADDENode->getDebugLoc();
602
603  // create MipsMAdd(u) node
604  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
605
606  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
607                                 MultNode->getOperand(0),// Factor 0
608                                 MultNode->getOperand(1),// Factor 1
609                                 ADDCNode->getOperand(1),// Lo0
610                                 ADDENode->getOperand(1));// Hi0
611
612  // create CopyFromReg nodes
613  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
614                                              MAdd);
615  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
616                                              Mips::HI, MVT::i32,
617                                              CopyFromLo.getValue(2));
618
619  // replace uses of adde and addc here
620  if (!SDValue(ADDCNode, 0).use_empty())
621    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
622
623  if (!SDValue(ADDENode, 0).use_empty())
624    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
625
626  return true;
627}
628
629// SelectMsub -
630// Transforms a subgraph in CurDAG if the following pattern is found:
631//  (addc Lo0, multLo), (sube Hi0, multHi),
632// where,
633//  multHi/Lo: product of multiplication
634//  Lo0: initial value of Lo register
635//  Hi0: initial value of Hi register
636// Return true if pattern matching was successful.
637static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
638  // SUBENode's second operand must be a flag output of an SUBC node in order
639  // for the matching to be successful.
640  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
641
642  if (SUBCNode->getOpcode() != ISD::SUBC)
643    return false;
644
645  SDValue MultHi = SUBENode->getOperand(1);
646  SDValue MultLo = SUBCNode->getOperand(1);
647  SDNode *MultNode = MultHi.getNode();
648  unsigned MultOpc = MultHi.getOpcode();
649
650  // MultHi and MultLo must be generated by the same node,
651  if (MultLo.getNode() != MultNode)
652    return false;
653
654  // and it must be a multiplication.
655  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
656    return false;
657
658  // MultLo amd MultHi must be the first and second output of MultNode
659  // respectively.
660  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
661    return false;
662
663  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
664  // of the values of MultNode, in which case MultNode will be removed in later
665  // phases.
666  // If there exist users other than SUBENode or SUBCNode, this function returns
667  // here, which will result in MultNode being mapped to a single MULT
668  // instruction node rather than a pair of MULT and MSUB instructions being
669  // produced.
670  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
671    return false;
672
673  SDValue Chain = CurDAG->getEntryNode();
674  DebugLoc dl = SUBENode->getDebugLoc();
675
676  // create MipsSub(u) node
677  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
678
679  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
680                                 MultNode->getOperand(0),// Factor 0
681                                 MultNode->getOperand(1),// Factor 1
682                                 SUBCNode->getOperand(0),// Lo0
683                                 SUBENode->getOperand(0));// Hi0
684
685  // create CopyFromReg nodes
686  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
687                                              MSub);
688  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
689                                              Mips::HI, MVT::i32,
690                                              CopyFromLo.getValue(2));
691
692  // replace uses of sube and subc here
693  if (!SDValue(SUBCNode, 0).use_empty())
694    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
695
696  if (!SDValue(SUBENode, 0).use_empty())
697    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
698
699  return true;
700}
701
702static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
703                                  TargetLowering::DAGCombinerInfo &DCI,
704                                  const MipsSubtarget *Subtarget) {
705  if (DCI.isBeforeLegalize())
706    return SDValue();
707
708  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
709      SelectMadd(N, &DAG))
710    return SDValue(N, 0);
711
712  return SDValue();
713}
714
715static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
716                                  TargetLowering::DAGCombinerInfo &DCI,
717                                  const MipsSubtarget *Subtarget) {
718  if (DCI.isBeforeLegalize())
719    return SDValue();
720
721  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
722      SelectMsub(N, &DAG))
723    return SDValue(N, 0);
724
725  return SDValue();
726}
727
728static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
729                                    TargetLowering::DAGCombinerInfo &DCI,
730                                    const MipsSubtarget *Subtarget) {
731  if (DCI.isBeforeLegalizeOps())
732    return SDValue();
733
734  EVT Ty = N->getValueType(0);
735  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
736  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
737  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
738                                                  MipsISD::DivRemU;
739  DebugLoc dl = N->getDebugLoc();
740
741  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
742                               N->getOperand(0), N->getOperand(1));
743  SDValue InChain = DAG.getEntryNode();
744  SDValue InGlue = DivRem;
745
746  // insert MFLO
747  if (N->hasAnyUseOfValue(0)) {
748    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
749                                            InGlue);
750    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
751    InChain = CopyFromLo.getValue(1);
752    InGlue = CopyFromLo.getValue(2);
753  }
754
755  // insert MFHI
756  if (N->hasAnyUseOfValue(1)) {
757    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
758                                            HI, Ty, InGlue);
759    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
760  }
761
762  return SDValue();
763}
764
765static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
766  switch (CC) {
767  default: llvm_unreachable("Unknown fp condition code!");
768  case ISD::SETEQ:
769  case ISD::SETOEQ: return Mips::FCOND_OEQ;
770  case ISD::SETUNE: return Mips::FCOND_UNE;
771  case ISD::SETLT:
772  case ISD::SETOLT: return Mips::FCOND_OLT;
773  case ISD::SETGT:
774  case ISD::SETOGT: return Mips::FCOND_OGT;
775  case ISD::SETLE:
776  case ISD::SETOLE: return Mips::FCOND_OLE;
777  case ISD::SETGE:
778  case ISD::SETOGE: return Mips::FCOND_OGE;
779  case ISD::SETULT: return Mips::FCOND_ULT;
780  case ISD::SETULE: return Mips::FCOND_ULE;
781  case ISD::SETUGT: return Mips::FCOND_UGT;
782  case ISD::SETUGE: return Mips::FCOND_UGE;
783  case ISD::SETUO:  return Mips::FCOND_UN;
784  case ISD::SETO:   return Mips::FCOND_OR;
785  case ISD::SETNE:
786  case ISD::SETONE: return Mips::FCOND_ONE;
787  case ISD::SETUEQ: return Mips::FCOND_UEQ;
788  }
789}
790
791
792// Returns true if condition code has to be inverted.
793static bool InvertFPCondCode(Mips::CondCode CC) {
794  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
795    return false;
796
797  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
798         "Illegal Condition Code");
799
800  return true;
801}
802
803// Creates and returns an FPCmp node from a setcc node.
804// Returns Op if setcc is not a floating point comparison.
805static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
806  // must be a SETCC node
807  if (Op.getOpcode() != ISD::SETCC)
808    return Op;
809
810  SDValue LHS = Op.getOperand(0);
811
812  if (!LHS.getValueType().isFloatingPoint())
813    return Op;
814
815  SDValue RHS = Op.getOperand(1);
816  DebugLoc dl = Op.getDebugLoc();
817
818  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
819  // node if necessary.
820  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
821
822  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
823                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
824}
825
826// Creates and returns a CMovFPT/F node.
827static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
828                            SDValue False, DebugLoc DL) {
829  bool invert = InvertFPCondCode((Mips::CondCode)
830                                 cast<ConstantSDNode>(Cond.getOperand(2))
831                                 ->getSExtValue());
832
833  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
834                     True.getValueType(), True, False, Cond);
835}
836
837static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
838                                    TargetLowering::DAGCombinerInfo &DCI,
839                                    const MipsSubtarget *Subtarget) {
840  if (DCI.isBeforeLegalizeOps())
841    return SDValue();
842
843  SDValue SetCC = N->getOperand(0);
844
845  if ((SetCC.getOpcode() != ISD::SETCC) ||
846      !SetCC.getOperand(0).getValueType().isInteger())
847    return SDValue();
848
849  SDValue False = N->getOperand(2);
850  EVT FalseTy = False.getValueType();
851
852  if (!FalseTy.isInteger())
853    return SDValue();
854
855  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
856
857  if (!CN || CN->getZExtValue())
858    return SDValue();
859
860  const DebugLoc DL = N->getDebugLoc();
861  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
862  SDValue True = N->getOperand(1);
863
864  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
865                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
866
867  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
868}
869
870static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
871                                 TargetLowering::DAGCombinerInfo &DCI,
872                                 const MipsSubtarget *Subtarget) {
873  // Pattern match EXT.
874  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
875  //  => ext $dst, $src, size, pos
876  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
877    return SDValue();
878
879  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
880  unsigned ShiftRightOpc = ShiftRight.getOpcode();
881
882  // Op's first operand must be a shift right.
883  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
884    return SDValue();
885
886  // The second operand of the shift must be an immediate.
887  ConstantSDNode *CN;
888  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
889    return SDValue();
890
891  uint64_t Pos = CN->getZExtValue();
892  uint64_t SMPos, SMSize;
893
894  // Op's second operand must be a shifted mask.
895  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
896      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
897    return SDValue();
898
899  // Return if the shifted mask does not start at bit 0 or the sum of its size
900  // and Pos exceeds the word's size.
901  EVT ValTy = N->getValueType(0);
902  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
903    return SDValue();
904
905  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
906                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
907                     DAG.getConstant(SMSize, MVT::i32));
908}
909
910static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
911                                TargetLowering::DAGCombinerInfo &DCI,
912                                const MipsSubtarget *Subtarget) {
913  // Pattern match INS.
914  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
915  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
916  //  => ins $dst, $src, size, pos, $src1
917  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
918    return SDValue();
919
920  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
921  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
922  ConstantSDNode *CN;
923
924  // See if Op's first operand matches (and $src1 , mask0).
925  if (And0.getOpcode() != ISD::AND)
926    return SDValue();
927
928  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
929      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
930    return SDValue();
931
932  // See if Op's second operand matches (and (shl $src, pos), mask1).
933  if (And1.getOpcode() != ISD::AND)
934    return SDValue();
935
936  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
937      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
938    return SDValue();
939
940  // The shift masks must have the same position and size.
941  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
942    return SDValue();
943
944  SDValue Shl = And1.getOperand(0);
945  if (Shl.getOpcode() != ISD::SHL)
946    return SDValue();
947
948  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
949    return SDValue();
950
951  unsigned Shamt = CN->getZExtValue();
952
953  // Return if the shift amount and the first bit position of mask are not the
954  // same.
955  EVT ValTy = N->getValueType(0);
956  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
957    return SDValue();
958
959  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
960                     DAG.getConstant(SMPos0, MVT::i32),
961                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
962}
963
964static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
965                                 TargetLowering::DAGCombinerInfo &DCI,
966                                 const MipsSubtarget *Subtarget) {
967  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
968
969  if (DCI.isBeforeLegalizeOps())
970    return SDValue();
971
972  SDValue Add = N->getOperand(1);
973
974  if (Add.getOpcode() != ISD::ADD)
975    return SDValue();
976
977  SDValue Lo = Add.getOperand(1);
978
979  if ((Lo.getOpcode() != MipsISD::Lo) ||
980      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
981    return SDValue();
982
983  EVT ValTy = N->getValueType(0);
984  DebugLoc DL = N->getDebugLoc();
985
986  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
987                             Add.getOperand(0));
988  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
989}
990
991SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
992  const {
993  SelectionDAG &DAG = DCI.DAG;
994  unsigned opc = N->getOpcode();
995
996  switch (opc) {
997  default: break;
998  case ISD::ADDE:
999    return PerformADDECombine(N, DAG, DCI, Subtarget);
1000  case ISD::SUBE:
1001    return PerformSUBECombine(N, DAG, DCI, Subtarget);
1002  case ISD::SDIVREM:
1003  case ISD::UDIVREM:
1004    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
1005  case ISD::SELECT:
1006    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
1007  case ISD::AND:
1008    return PerformANDCombine(N, DAG, DCI, Subtarget);
1009  case ISD::OR:
1010    return PerformORCombine(N, DAG, DCI, Subtarget);
1011  case ISD::ADD:
1012    return PerformADDCombine(N, DAG, DCI, Subtarget);
1013  }
1014
1015  return SDValue();
1016}
1017
1018void
1019MipsTargetLowering::LowerOperationWrapper(SDNode *N,
1020                                          SmallVectorImpl<SDValue> &Results,
1021                                          SelectionDAG &DAG) const {
1022  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1023
1024  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1025    Results.push_back(Res.getValue(I));
1026}
1027
1028void
1029MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1030                                       SmallVectorImpl<SDValue> &Results,
1031                                       SelectionDAG &DAG) const {
1032  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1033
1034  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1035    Results.push_back(Res.getValue(I));
1036}
1037
1038SDValue MipsTargetLowering::
1039LowerOperation(SDValue Op, SelectionDAG &DAG) const
1040{
1041  switch (Op.getOpcode())
1042  {
1043    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
1044    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
1045    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
1046    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
1047    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
1048    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
1049    case ISD::SELECT:             return LowerSELECT(Op, DAG);
1050    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
1051    case ISD::SETCC:              return LowerSETCC(Op, DAG);
1052    case ISD::VASTART:            return LowerVASTART(Op, DAG);
1053    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
1054    case ISD::FABS:               return LowerFABS(Op, DAG);
1055    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
1056    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
1057    case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
1058    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
1059    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
1060    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
1061    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
1062    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
1063    case ISD::LOAD:               return LowerLOAD(Op, DAG);
1064    case ISD::STORE:              return LowerSTORE(Op, DAG);
1065    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1066    case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
1067    case ISD::ADD:                return LowerADD(Op, DAG);
1068  }
1069  return SDValue();
1070}
1071
1072//===----------------------------------------------------------------------===//
1073//  Lower helper functions
1074//===----------------------------------------------------------------------===//
1075
1076// AddLiveIn - This helper function adds the specified physical register to the
1077// MachineFunction as a live in value.  It also creates a corresponding
1078// virtual register for it.
1079static unsigned
1080AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1081{
1082  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1083  MF.getRegInfo().addLiveIn(PReg, VReg);
1084  return VReg;
1085}
1086
1087// Get fp branch code (not opcode) from condition code.
1088static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
1089  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
1090    return Mips::BRANCH_T;
1091
1092  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
1093         "Invalid CondCode.");
1094
1095  return Mips::BRANCH_F;
1096}
1097
1098/*
1099static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
1100                                        DebugLoc dl,
1101                                        const MipsSubtarget *Subtarget,
1102                                        const TargetInstrInfo *TII,
1103                                        bool isFPCmp, unsigned Opc) {
1104  // There is no need to expand CMov instructions if target has
1105  // conditional moves.
1106  if (Subtarget->hasCondMov())
1107    return BB;
1108
1109  // To "insert" a SELECT_CC instruction, we actually have to insert the
1110  // diamond control-flow pattern.  The incoming instruction knows the
1111  // destination vreg to set, the condition code register to branch on, the
1112  // true/false values to select between, and a branch opcode to use.
1113  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1114  MachineFunction::iterator It = BB;
1115  ++It;
1116
1117  //  thisMBB:
1118  //  ...
1119  //   TrueVal = ...
1120  //   setcc r1, r2, r3
1121  //   bNE   r1, r0, copy1MBB
1122  //   fallthrough --> copy0MBB
1123  MachineBasicBlock *thisMBB  = BB;
1124  MachineFunction *F = BB->getParent();
1125  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1126  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1127  F->insert(It, copy0MBB);
1128  F->insert(It, sinkMBB);
1129
1130  // Transfer the remainder of BB and its successor edges to sinkMBB.
1131  sinkMBB->splice(sinkMBB->begin(), BB,
1132                  llvm::next(MachineBasicBlock::iterator(MI)),
1133                  BB->end());
1134  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1135
1136  // Next, add the true and fallthrough blocks as its successors.
1137  BB->addSuccessor(copy0MBB);
1138  BB->addSuccessor(sinkMBB);
1139
1140  // Emit the right instruction according to the type of the operands compared
1141  if (isFPCmp)
1142    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
1143  else
1144    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
1145      .addReg(Mips::ZERO).addMBB(sinkMBB);
1146
1147  //  copy0MBB:
1148  //   %FalseValue = ...
1149  //   # fallthrough to sinkMBB
1150  BB = copy0MBB;
1151
1152  // Update machine-CFG edges
1153  BB->addSuccessor(sinkMBB);
1154
1155  //  sinkMBB:
1156  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1157  //  ...
1158  BB = sinkMBB;
1159
1160  if (isFPCmp)
1161    BuildMI(*BB, BB->begin(), dl,
1162            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1163      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
1164      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1165  else
1166    BuildMI(*BB, BB->begin(), dl,
1167            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1168      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
1169      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1170
1171  MI->eraseFromParent();   // The pseudo instruction is gone now.
1172  return BB;
1173}
1174*/
1175
1176MachineBasicBlock *
1177MipsTargetLowering::EmitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
1178  // $bb:
1179  //  bposge32_pseudo $vr0
1180  //  =>
1181  // $bb:
1182  //  bposge32 $tbb
1183  // $fbb:
1184  //  li $vr2, 0
1185  //  b $sink
1186  // $tbb:
1187  //  li $vr1, 1
1188  // $sink:
1189  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
1190
1191  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
1192  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1193  const TargetRegisterClass *RC = &Mips::CPURegsRegClass;
1194  DebugLoc DL = MI->getDebugLoc();
1195  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1196  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
1197  MachineFunction *F = BB->getParent();
1198  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
1199  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
1200  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
1201  F->insert(It, FBB);
1202  F->insert(It, TBB);
1203  F->insert(It, Sink);
1204
1205  // Transfer the remainder of BB and its successor edges to Sink.
1206  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
1207               BB->end());
1208  Sink->transferSuccessorsAndUpdatePHIs(BB);
1209
1210  // Add successors.
1211  BB->addSuccessor(FBB);
1212  BB->addSuccessor(TBB);
1213  FBB->addSuccessor(Sink);
1214  TBB->addSuccessor(Sink);
1215
1216  // Insert the real bposge32 instruction to $BB.
1217  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
1218
1219  // Fill $FBB.
1220  unsigned VR2 = RegInfo.createVirtualRegister(RC);
1221  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
1222    .addReg(Mips::ZERO).addImm(0);
1223  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
1224
1225  // Fill $TBB.
1226  unsigned VR1 = RegInfo.createVirtualRegister(RC);
1227  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
1228    .addReg(Mips::ZERO).addImm(1);
1229
1230  // Insert phi function to $Sink.
1231  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
1232          MI->getOperand(0).getReg())
1233    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
1234
1235  MI->eraseFromParent();   // The pseudo instruction is gone now.
1236  return Sink;
1237}
1238
1239MachineBasicBlock *MipsTargetLowering::EmitSel16(unsigned Opc, MachineInstr *MI,
1240                             MachineBasicBlock *BB) const {
1241  if (DontExpandCondPseudos16)
1242    return BB;
1243  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1244  DebugLoc dl = MI->getDebugLoc();
1245  // To "insert" a SELECT_CC instruction, we actually have to insert the
1246  // diamond control-flow pattern.  The incoming instruction knows the
1247  // destination vreg to set, the condition code register to branch on, the
1248  // true/false values to select between, and a branch opcode to use.
1249  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1250  MachineFunction::iterator It = BB;
1251  ++It;
1252
1253  //  thisMBB:
1254  //  ...
1255  //   TrueVal = ...
1256  //   setcc r1, r2, r3
1257  //   bNE   r1, r0, copy1MBB
1258  //   fallthrough --> copy0MBB
1259  MachineBasicBlock *thisMBB  = BB;
1260  MachineFunction *F = BB->getParent();
1261  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1262  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1263  F->insert(It, copy0MBB);
1264  F->insert(It, sinkMBB);
1265
1266  // Transfer the remainder of BB and its successor edges to sinkMBB.
1267  sinkMBB->splice(sinkMBB->begin(), BB,
1268                  llvm::next(MachineBasicBlock::iterator(MI)),
1269                  BB->end());
1270  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1271
1272  // Next, add the true and fallthrough blocks as its successors.
1273  BB->addSuccessor(copy0MBB);
1274  BB->addSuccessor(sinkMBB);
1275
1276  BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
1277    .addMBB(sinkMBB);
1278
1279  //  copy0MBB:
1280  //   %FalseValue = ...
1281  //   # fallthrough to sinkMBB
1282  BB = copy0MBB;
1283
1284  // Update machine-CFG edges
1285  BB->addSuccessor(sinkMBB);
1286
1287  //  sinkMBB:
1288  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1289  //  ...
1290  BB = sinkMBB;
1291
1292  BuildMI(*BB, BB->begin(), dl,
1293          TII->get(Mips::PHI), MI->getOperand(0).getReg())
1294    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
1295    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
1296
1297  MI->eraseFromParent();   // The pseudo instruction is gone now.
1298  return BB;
1299}
1300
1301MachineBasicBlock *MipsTargetLowering::EmitSelT16
1302  (unsigned Opc1, unsigned Opc2,
1303   MachineInstr *MI, MachineBasicBlock *BB) const {
1304  if (DontExpandCondPseudos16)
1305    return BB;
1306  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1307  DebugLoc dl = MI->getDebugLoc();
1308  // To "insert" a SELECT_CC instruction, we actually have to insert the
1309  // diamond control-flow pattern.  The incoming instruction knows the
1310  // destination vreg to set, the condition code register to branch on, the
1311  // true/false values to select between, and a branch opcode to use.
1312  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1313  MachineFunction::iterator It = BB;
1314  ++It;
1315
1316  //  thisMBB:
1317  //  ...
1318  //   TrueVal = ...
1319  //   setcc r1, r2, r3
1320  //   bNE   r1, r0, copy1MBB
1321  //   fallthrough --> copy0MBB
1322  MachineBasicBlock *thisMBB  = BB;
1323  MachineFunction *F = BB->getParent();
1324  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1325  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1326  F->insert(It, copy0MBB);
1327  F->insert(It, sinkMBB);
1328
1329  // Transfer the remainder of BB and its successor edges to sinkMBB.
1330  sinkMBB->splice(sinkMBB->begin(), BB,
1331                  llvm::next(MachineBasicBlock::iterator(MI)),
1332                  BB->end());
1333  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1334
1335  // Next, add the true and fallthrough blocks as its successors.
1336  BB->addSuccessor(copy0MBB);
1337  BB->addSuccessor(sinkMBB);
1338
1339  BuildMI(BB, dl, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
1340    .addReg(MI->getOperand(4).getReg());
1341  BuildMI(BB, dl, TII->get(Opc1)).addMBB(sinkMBB);
1342
1343  //  copy0MBB:
1344  //   %FalseValue = ...
1345  //   # fallthrough to sinkMBB
1346  BB = copy0MBB;
1347
1348  // Update machine-CFG edges
1349  BB->addSuccessor(sinkMBB);
1350
1351  //  sinkMBB:
1352  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1353  //  ...
1354  BB = sinkMBB;
1355
1356  BuildMI(*BB, BB->begin(), dl,
1357          TII->get(Mips::PHI), MI->getOperand(0).getReg())
1358    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
1359    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
1360
1361  MI->eraseFromParent();   // The pseudo instruction is gone now.
1362  return BB;
1363
1364}
1365
1366
1367MachineBasicBlock *MipsTargetLowering::EmitSeliT16
1368  (unsigned Opc1, unsigned Opc2,
1369   MachineInstr *MI, MachineBasicBlock *BB) const {
1370  if (DontExpandCondPseudos16)
1371    return BB;
1372  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1373  DebugLoc dl = MI->getDebugLoc();
1374  // To "insert" a SELECT_CC instruction, we actually have to insert the
1375  // diamond control-flow pattern.  The incoming instruction knows the
1376  // destination vreg to set, the condition code register to branch on, the
1377  // true/false values to select between, and a branch opcode to use.
1378  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1379  MachineFunction::iterator It = BB;
1380  ++It;
1381
1382  //  thisMBB:
1383  //  ...
1384  //   TrueVal = ...
1385  //   setcc r1, r2, r3
1386  //   bNE   r1, r0, copy1MBB
1387  //   fallthrough --> copy0MBB
1388  MachineBasicBlock *thisMBB  = BB;
1389  MachineFunction *F = BB->getParent();
1390  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1391  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1392  F->insert(It, copy0MBB);
1393  F->insert(It, sinkMBB);
1394
1395  // Transfer the remainder of BB and its successor edges to sinkMBB.
1396  sinkMBB->splice(sinkMBB->begin(), BB,
1397                  llvm::next(MachineBasicBlock::iterator(MI)),
1398                  BB->end());
1399  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1400
1401  // Next, add the true and fallthrough blocks as its successors.
1402  BB->addSuccessor(copy0MBB);
1403  BB->addSuccessor(sinkMBB);
1404
1405  BuildMI(BB, dl, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
1406    .addImm(MI->getOperand(4).getImm());
1407  BuildMI(BB, dl, TII->get(Opc1)).addMBB(sinkMBB);
1408
1409  //  copy0MBB:
1410  //   %FalseValue = ...
1411  //   # fallthrough to sinkMBB
1412  BB = copy0MBB;
1413
1414  // Update machine-CFG edges
1415  BB->addSuccessor(sinkMBB);
1416
1417  //  sinkMBB:
1418  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1419  //  ...
1420  BB = sinkMBB;
1421
1422  BuildMI(*BB, BB->begin(), dl,
1423          TII->get(Mips::PHI), MI->getOperand(0).getReg())
1424    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
1425    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
1426
1427  MI->eraseFromParent();   // The pseudo instruction is gone now.
1428  return BB;
1429
1430}
1431
1432
1433MachineBasicBlock
1434  *MipsTargetLowering::EmitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
1435                           MachineInstr *MI,
1436                           MachineBasicBlock *BB) const {
1437  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1438  unsigned regX = MI->getOperand(0).getReg();
1439  unsigned regY = MI->getOperand(1).getReg();
1440  MachineBasicBlock *target = MI->getOperand(2).getMBB();
1441  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX).addReg(regY);
1442  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
1443  MI->eraseFromParent();   // The pseudo instruction is gone now.
1444  return BB;
1445}
1446MachineBasicBlock *
1447MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1448                                                MachineBasicBlock *BB) const {
1449  switch (MI->getOpcode()) {
1450  default:
1451    llvm_unreachable("Unexpected instr type to insert");
1452  case Mips::ATOMIC_LOAD_ADD_I8:
1453  case Mips::ATOMIC_LOAD_ADD_I8_P8:
1454    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
1455  case Mips::ATOMIC_LOAD_ADD_I16:
1456  case Mips::ATOMIC_LOAD_ADD_I16_P8:
1457    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
1458  case Mips::ATOMIC_LOAD_ADD_I32:
1459  case Mips::ATOMIC_LOAD_ADD_I32_P8:
1460    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
1461  case Mips::ATOMIC_LOAD_ADD_I64:
1462  case Mips::ATOMIC_LOAD_ADD_I64_P8:
1463    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
1464
1465  case Mips::ATOMIC_LOAD_AND_I8:
1466  case Mips::ATOMIC_LOAD_AND_I8_P8:
1467    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
1468  case Mips::ATOMIC_LOAD_AND_I16:
1469  case Mips::ATOMIC_LOAD_AND_I16_P8:
1470    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
1471  case Mips::ATOMIC_LOAD_AND_I32:
1472  case Mips::ATOMIC_LOAD_AND_I32_P8:
1473    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
1474  case Mips::ATOMIC_LOAD_AND_I64:
1475  case Mips::ATOMIC_LOAD_AND_I64_P8:
1476    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
1477
1478  case Mips::ATOMIC_LOAD_OR_I8:
1479  case Mips::ATOMIC_LOAD_OR_I8_P8:
1480    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
1481  case Mips::ATOMIC_LOAD_OR_I16:
1482  case Mips::ATOMIC_LOAD_OR_I16_P8:
1483    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
1484  case Mips::ATOMIC_LOAD_OR_I32:
1485  case Mips::ATOMIC_LOAD_OR_I32_P8:
1486    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
1487  case Mips::ATOMIC_LOAD_OR_I64:
1488  case Mips::ATOMIC_LOAD_OR_I64_P8:
1489    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
1490
1491  case Mips::ATOMIC_LOAD_XOR_I8:
1492  case Mips::ATOMIC_LOAD_XOR_I8_P8:
1493    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
1494  case Mips::ATOMIC_LOAD_XOR_I16:
1495  case Mips::ATOMIC_LOAD_XOR_I16_P8:
1496    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
1497  case Mips::ATOMIC_LOAD_XOR_I32:
1498  case Mips::ATOMIC_LOAD_XOR_I32_P8:
1499    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
1500  case Mips::ATOMIC_LOAD_XOR_I64:
1501  case Mips::ATOMIC_LOAD_XOR_I64_P8:
1502    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
1503
1504  case Mips::ATOMIC_LOAD_NAND_I8:
1505  case Mips::ATOMIC_LOAD_NAND_I8_P8:
1506    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
1507  case Mips::ATOMIC_LOAD_NAND_I16:
1508  case Mips::ATOMIC_LOAD_NAND_I16_P8:
1509    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
1510  case Mips::ATOMIC_LOAD_NAND_I32:
1511  case Mips::ATOMIC_LOAD_NAND_I32_P8:
1512    return EmitAtomicBinary(MI, BB, 4, 0, true);
1513  case Mips::ATOMIC_LOAD_NAND_I64:
1514  case Mips::ATOMIC_LOAD_NAND_I64_P8:
1515    return EmitAtomicBinary(MI, BB, 8, 0, true);
1516
1517  case Mips::ATOMIC_LOAD_SUB_I8:
1518  case Mips::ATOMIC_LOAD_SUB_I8_P8:
1519    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
1520  case Mips::ATOMIC_LOAD_SUB_I16:
1521  case Mips::ATOMIC_LOAD_SUB_I16_P8:
1522    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1523  case Mips::ATOMIC_LOAD_SUB_I32:
1524  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1525    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1526  case Mips::ATOMIC_LOAD_SUB_I64:
1527  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1528    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1529
1530  case Mips::ATOMIC_SWAP_I8:
1531  case Mips::ATOMIC_SWAP_I8_P8:
1532    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1533  case Mips::ATOMIC_SWAP_I16:
1534  case Mips::ATOMIC_SWAP_I16_P8:
1535    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1536  case Mips::ATOMIC_SWAP_I32:
1537  case Mips::ATOMIC_SWAP_I32_P8:
1538    return EmitAtomicBinary(MI, BB, 4, 0);
1539  case Mips::ATOMIC_SWAP_I64:
1540  case Mips::ATOMIC_SWAP_I64_P8:
1541    return EmitAtomicBinary(MI, BB, 8, 0);
1542
1543  case Mips::ATOMIC_CMP_SWAP_I8:
1544  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1545    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1546  case Mips::ATOMIC_CMP_SWAP_I16:
1547  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1548    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1549  case Mips::ATOMIC_CMP_SWAP_I32:
1550  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1551    return EmitAtomicCmpSwap(MI, BB, 4);
1552  case Mips::ATOMIC_CMP_SWAP_I64:
1553  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1554    return EmitAtomicCmpSwap(MI, BB, 8);
1555  case Mips::BPOSGE32_PSEUDO:
1556    return EmitBPOSGE32(MI, BB);
1557  case Mips::SelBeqZ:
1558    return EmitSel16(Mips::BeqzRxImm16, MI, BB);
1559  case Mips::SelBneZ:
1560    return EmitSel16(Mips::BnezRxImm16, MI, BB);
1561  case Mips::SelTBteqZCmpi:
1562    return EmitSeliT16(Mips::BteqzX16, Mips::CmpiRxImmX16, MI, BB);
1563  case Mips::SelTBteqZSlti:
1564    return EmitSeliT16(Mips::BteqzX16, Mips::SltiRxImmX16, MI, BB);
1565  case Mips::SelTBteqZSltiu:
1566    return EmitSeliT16(Mips::BteqzX16, Mips::SltiuRxImmX16, MI, BB);
1567  case Mips::SelTBtneZCmpi:
1568    return EmitSeliT16(Mips::BtnezX16, Mips::CmpiRxImmX16, MI, BB);
1569  case Mips::SelTBtneZSlti:
1570    return EmitSeliT16(Mips::BtnezX16, Mips::SltiRxImmX16, MI, BB);
1571  case Mips::SelTBtneZSltiu:
1572    return EmitSeliT16(Mips::BtnezX16, Mips::SltiuRxImmX16, MI, BB);
1573  case Mips::SelTBteqZCmp:
1574    return EmitSelT16(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
1575  case Mips::SelTBteqZSlt:
1576    return EmitSelT16(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
1577  case Mips::SelTBteqZSltu:
1578    return EmitSelT16(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
1579  case Mips::SelTBtneZCmp:
1580    return EmitSelT16(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
1581  case Mips::SelTBtneZSlt:
1582    return EmitSelT16(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
1583  case Mips::SelTBtneZSltu:
1584    return EmitSelT16(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
1585  case Mips::BteqzT8CmpX16:
1586    return EmitFEXT_T8I816_ins(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
1587  case Mips::BteqzT8SltX16:
1588    return EmitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
1589  case Mips::BteqzT8SltuX16:
1590    // TBD: figure out a way to get this or remove the instruction
1591    // altogether.
1592    return EmitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
1593  case Mips::BtnezT8CmpX16:
1594    return EmitFEXT_T8I816_ins(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
1595  case Mips::BtnezT8SltX16:
1596    return EmitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
1597  case Mips::BtnezT8SltuX16:
1598    // TBD: figure out a way to get this or remove the instruction
1599    // altogether.
1600    return EmitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
1601  }
1602}
1603
1604// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1605// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1606MachineBasicBlock *
1607MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1608                                     unsigned Size, unsigned BinOpcode,
1609                                     bool Nand) const {
1610  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1611
1612  MachineFunction *MF = BB->getParent();
1613  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1614  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1615  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1616  DebugLoc dl = MI->getDebugLoc();
1617  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1618
1619  if (Size == 4) {
1620    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1621    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1622    AND = Mips::AND;
1623    NOR = Mips::NOR;
1624    ZERO = Mips::ZERO;
1625    BEQ = Mips::BEQ;
1626  }
1627  else {
1628    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1629    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1630    AND = Mips::AND64;
1631    NOR = Mips::NOR64;
1632    ZERO = Mips::ZERO_64;
1633    BEQ = Mips::BEQ64;
1634  }
1635
1636  unsigned OldVal = MI->getOperand(0).getReg();
1637  unsigned Ptr = MI->getOperand(1).getReg();
1638  unsigned Incr = MI->getOperand(2).getReg();
1639
1640  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1641  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1642  unsigned Success = RegInfo.createVirtualRegister(RC);
1643
1644  // insert new blocks after the current block
1645  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1646  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1647  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1648  MachineFunction::iterator It = BB;
1649  ++It;
1650  MF->insert(It, loopMBB);
1651  MF->insert(It, exitMBB);
1652
1653  // Transfer the remainder of BB and its successor edges to exitMBB.
1654  exitMBB->splice(exitMBB->begin(), BB,
1655                  llvm::next(MachineBasicBlock::iterator(MI)),
1656                  BB->end());
1657  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1658
1659  //  thisMBB:
1660  //    ...
1661  //    fallthrough --> loopMBB
1662  BB->addSuccessor(loopMBB);
1663  loopMBB->addSuccessor(loopMBB);
1664  loopMBB->addSuccessor(exitMBB);
1665
1666  //  loopMBB:
1667  //    ll oldval, 0(ptr)
1668  //    <binop> storeval, oldval, incr
1669  //    sc success, storeval, 0(ptr)
1670  //    beq success, $0, loopMBB
1671  BB = loopMBB;
1672  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1673  if (Nand) {
1674    //  and andres, oldval, incr
1675    //  nor storeval, $0, andres
1676    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1677    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1678  } else if (BinOpcode) {
1679    //  <binop> storeval, oldval, incr
1680    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1681  } else {
1682    StoreVal = Incr;
1683  }
1684  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1685  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1686
1687  MI->eraseFromParent();   // The instruction is gone now.
1688
1689  return exitMBB;
1690}
1691
1692MachineBasicBlock *
1693MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1694                                             MachineBasicBlock *BB,
1695                                             unsigned Size, unsigned BinOpcode,
1696                                             bool Nand) const {
1697  assert((Size == 1 || Size == 2) &&
1698      "Unsupported size for EmitAtomicBinaryPartial.");
1699
1700  MachineFunction *MF = BB->getParent();
1701  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1702  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1703  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1704  DebugLoc dl = MI->getDebugLoc();
1705  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1706  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1707
1708  unsigned Dest = MI->getOperand(0).getReg();
1709  unsigned Ptr = MI->getOperand(1).getReg();
1710  unsigned Incr = MI->getOperand(2).getReg();
1711
1712  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1713  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1714  unsigned Mask = RegInfo.createVirtualRegister(RC);
1715  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1716  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1717  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1718  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1719  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1720  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1721  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1722  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1723  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1724  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1725  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1726  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1727  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1728  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1729  unsigned Success = RegInfo.createVirtualRegister(RC);
1730
1731  // insert new blocks after the current block
1732  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1733  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1734  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1735  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1736  MachineFunction::iterator It = BB;
1737  ++It;
1738  MF->insert(It, loopMBB);
1739  MF->insert(It, sinkMBB);
1740  MF->insert(It, exitMBB);
1741
1742  // Transfer the remainder of BB and its successor edges to exitMBB.
1743  exitMBB->splice(exitMBB->begin(), BB,
1744                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1745  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1746
1747  BB->addSuccessor(loopMBB);
1748  loopMBB->addSuccessor(loopMBB);
1749  loopMBB->addSuccessor(sinkMBB);
1750  sinkMBB->addSuccessor(exitMBB);
1751
1752  //  thisMBB:
1753  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1754  //    and     alignedaddr,ptr,masklsb2
1755  //    andi    ptrlsb2,ptr,3
1756  //    sll     shiftamt,ptrlsb2,3
1757  //    ori     maskupper,$0,255               # 0xff
1758  //    sll     mask,maskupper,shiftamt
1759  //    nor     mask2,$0,mask
1760  //    sll     incr2,incr,shiftamt
1761
1762  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1763  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1764    .addReg(Mips::ZERO).addImm(-4);
1765  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1766    .addReg(Ptr).addReg(MaskLSB2);
1767  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1768  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1769  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1770    .addReg(Mips::ZERO).addImm(MaskImm);
1771  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1772    .addReg(ShiftAmt).addReg(MaskUpper);
1773  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1774  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1775
1776  // atomic.load.binop
1777  // loopMBB:
1778  //   ll      oldval,0(alignedaddr)
1779  //   binop   binopres,oldval,incr2
1780  //   and     newval,binopres,mask
1781  //   and     maskedoldval0,oldval,mask2
1782  //   or      storeval,maskedoldval0,newval
1783  //   sc      success,storeval,0(alignedaddr)
1784  //   beq     success,$0,loopMBB
1785
1786  // atomic.swap
1787  // loopMBB:
1788  //   ll      oldval,0(alignedaddr)
1789  //   and     newval,incr2,mask
1790  //   and     maskedoldval0,oldval,mask2
1791  //   or      storeval,maskedoldval0,newval
1792  //   sc      success,storeval,0(alignedaddr)
1793  //   beq     success,$0,loopMBB
1794
1795  BB = loopMBB;
1796  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1797  if (Nand) {
1798    //  and andres, oldval, incr2
1799    //  nor binopres, $0, andres
1800    //  and newval, binopres, mask
1801    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1802    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1803      .addReg(Mips::ZERO).addReg(AndRes);
1804    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1805  } else if (BinOpcode) {
1806    //  <binop> binopres, oldval, incr2
1807    //  and newval, binopres, mask
1808    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1809    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1810  } else {// atomic.swap
1811    //  and newval, incr2, mask
1812    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1813  }
1814
1815  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1816    .addReg(OldVal).addReg(Mask2);
1817  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1818    .addReg(MaskedOldVal0).addReg(NewVal);
1819  BuildMI(BB, dl, TII->get(SC), Success)
1820    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1821  BuildMI(BB, dl, TII->get(Mips::BEQ))
1822    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1823
1824  //  sinkMBB:
1825  //    and     maskedoldval1,oldval,mask
1826  //    srl     srlres,maskedoldval1,shiftamt
1827  //    sll     sllres,srlres,24
1828  //    sra     dest,sllres,24
1829  BB = sinkMBB;
1830  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1831
1832  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1833    .addReg(OldVal).addReg(Mask);
1834  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1835      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1836  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1837      .addReg(SrlRes).addImm(ShiftImm);
1838  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1839      .addReg(SllRes).addImm(ShiftImm);
1840
1841  MI->eraseFromParent();   // The instruction is gone now.
1842
1843  return exitMBB;
1844}
1845
1846MachineBasicBlock *
1847MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1848                                      MachineBasicBlock *BB,
1849                                      unsigned Size) const {
1850  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1851
1852  MachineFunction *MF = BB->getParent();
1853  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1854  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1855  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1856  DebugLoc dl = MI->getDebugLoc();
1857  unsigned LL, SC, ZERO, BNE, BEQ;
1858
1859  if (Size == 4) {
1860    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1861    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1862    ZERO = Mips::ZERO;
1863    BNE = Mips::BNE;
1864    BEQ = Mips::BEQ;
1865  }
1866  else {
1867    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1868    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1869    ZERO = Mips::ZERO_64;
1870    BNE = Mips::BNE64;
1871    BEQ = Mips::BEQ64;
1872  }
1873
1874  unsigned Dest    = MI->getOperand(0).getReg();
1875  unsigned Ptr     = MI->getOperand(1).getReg();
1876  unsigned OldVal  = MI->getOperand(2).getReg();
1877  unsigned NewVal  = MI->getOperand(3).getReg();
1878
1879  unsigned Success = RegInfo.createVirtualRegister(RC);
1880
1881  // insert new blocks after the current block
1882  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1883  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1884  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1885  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1886  MachineFunction::iterator It = BB;
1887  ++It;
1888  MF->insert(It, loop1MBB);
1889  MF->insert(It, loop2MBB);
1890  MF->insert(It, exitMBB);
1891
1892  // Transfer the remainder of BB and its successor edges to exitMBB.
1893  exitMBB->splice(exitMBB->begin(), BB,
1894                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1895  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1896
1897  //  thisMBB:
1898  //    ...
1899  //    fallthrough --> loop1MBB
1900  BB->addSuccessor(loop1MBB);
1901  loop1MBB->addSuccessor(exitMBB);
1902  loop1MBB->addSuccessor(loop2MBB);
1903  loop2MBB->addSuccessor(loop1MBB);
1904  loop2MBB->addSuccessor(exitMBB);
1905
1906  // loop1MBB:
1907  //   ll dest, 0(ptr)
1908  //   bne dest, oldval, exitMBB
1909  BB = loop1MBB;
1910  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1911  BuildMI(BB, dl, TII->get(BNE))
1912    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1913
1914  // loop2MBB:
1915  //   sc success, newval, 0(ptr)
1916  //   beq success, $0, loop1MBB
1917  BB = loop2MBB;
1918  BuildMI(BB, dl, TII->get(SC), Success)
1919    .addReg(NewVal).addReg(Ptr).addImm(0);
1920  BuildMI(BB, dl, TII->get(BEQ))
1921    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1922
1923  MI->eraseFromParent();   // The instruction is gone now.
1924
1925  return exitMBB;
1926}
1927
1928MachineBasicBlock *
1929MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1930                                              MachineBasicBlock *BB,
1931                                              unsigned Size) const {
1932  assert((Size == 1 || Size == 2) &&
1933      "Unsupported size for EmitAtomicCmpSwapPartial.");
1934
1935  MachineFunction *MF = BB->getParent();
1936  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1937  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1938  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1939  DebugLoc dl = MI->getDebugLoc();
1940  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1941  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1942
1943  unsigned Dest    = MI->getOperand(0).getReg();
1944  unsigned Ptr     = MI->getOperand(1).getReg();
1945  unsigned CmpVal  = MI->getOperand(2).getReg();
1946  unsigned NewVal  = MI->getOperand(3).getReg();
1947
1948  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1949  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1950  unsigned Mask = RegInfo.createVirtualRegister(RC);
1951  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1952  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1953  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1954  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1955  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1956  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1957  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1958  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1959  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1960  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1961  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1962  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1963  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1964  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1965  unsigned Success = RegInfo.createVirtualRegister(RC);
1966
1967  // insert new blocks after the current block
1968  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1969  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1970  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1971  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1972  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1973  MachineFunction::iterator It = BB;
1974  ++It;
1975  MF->insert(It, loop1MBB);
1976  MF->insert(It, loop2MBB);
1977  MF->insert(It, sinkMBB);
1978  MF->insert(It, exitMBB);
1979
1980  // Transfer the remainder of BB and its successor edges to exitMBB.
1981  exitMBB->splice(exitMBB->begin(), BB,
1982                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1983  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1984
1985  BB->addSuccessor(loop1MBB);
1986  loop1MBB->addSuccessor(sinkMBB);
1987  loop1MBB->addSuccessor(loop2MBB);
1988  loop2MBB->addSuccessor(loop1MBB);
1989  loop2MBB->addSuccessor(sinkMBB);
1990  sinkMBB->addSuccessor(exitMBB);
1991
1992  // FIXME: computation of newval2 can be moved to loop2MBB.
1993  //  thisMBB:
1994  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1995  //    and     alignedaddr,ptr,masklsb2
1996  //    andi    ptrlsb2,ptr,3
1997  //    sll     shiftamt,ptrlsb2,3
1998  //    ori     maskupper,$0,255               # 0xff
1999  //    sll     mask,maskupper,shiftamt
2000  //    nor     mask2,$0,mask
2001  //    andi    maskedcmpval,cmpval,255
2002  //    sll     shiftedcmpval,maskedcmpval,shiftamt
2003  //    andi    maskednewval,newval,255
2004  //    sll     shiftednewval,maskednewval,shiftamt
2005  int64_t MaskImm = (Size == 1) ? 255 : 65535;
2006  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
2007    .addReg(Mips::ZERO).addImm(-4);
2008  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
2009    .addReg(Ptr).addReg(MaskLSB2);
2010  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
2011  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
2012  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
2013    .addReg(Mips::ZERO).addImm(MaskImm);
2014  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
2015    .addReg(ShiftAmt).addReg(MaskUpper);
2016  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
2017  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
2018    .addReg(CmpVal).addImm(MaskImm);
2019  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
2020    .addReg(ShiftAmt).addReg(MaskedCmpVal);
2021  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
2022    .addReg(NewVal).addImm(MaskImm);
2023  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
2024    .addReg(ShiftAmt).addReg(MaskedNewVal);
2025
2026  //  loop1MBB:
2027  //    ll      oldval,0(alginedaddr)
2028  //    and     maskedoldval0,oldval,mask
2029  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
2030  BB = loop1MBB;
2031  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
2032  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
2033    .addReg(OldVal).addReg(Mask);
2034  BuildMI(BB, dl, TII->get(Mips::BNE))
2035    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
2036
2037  //  loop2MBB:
2038  //    and     maskedoldval1,oldval,mask2
2039  //    or      storeval,maskedoldval1,shiftednewval
2040  //    sc      success,storeval,0(alignedaddr)
2041  //    beq     success,$0,loop1MBB
2042  BB = loop2MBB;
2043  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
2044    .addReg(OldVal).addReg(Mask2);
2045  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
2046    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
2047  BuildMI(BB, dl, TII->get(SC), Success)
2048      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
2049  BuildMI(BB, dl, TII->get(Mips::BEQ))
2050      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
2051
2052  //  sinkMBB:
2053  //    srl     srlres,maskedoldval0,shiftamt
2054  //    sll     sllres,srlres,24
2055  //    sra     dest,sllres,24
2056  BB = sinkMBB;
2057  int64_t ShiftImm = (Size == 1) ? 24 : 16;
2058
2059  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
2060      .addReg(ShiftAmt).addReg(MaskedOldVal0);
2061  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
2062      .addReg(SrlRes).addImm(ShiftImm);
2063  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
2064      .addReg(SllRes).addImm(ShiftImm);
2065
2066  MI->eraseFromParent();   // The instruction is gone now.
2067
2068  return exitMBB;
2069}
2070
2071//===----------------------------------------------------------------------===//
2072//  Misc Lower Operation implementation
2073//===----------------------------------------------------------------------===//
2074SDValue MipsTargetLowering::
2075LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
2076{
2077  // The first operand is the chain, the second is the condition, the third is
2078  // the block to branch to if the condition is true.
2079  SDValue Chain = Op.getOperand(0);
2080  SDValue Dest = Op.getOperand(2);
2081  DebugLoc dl = Op.getDebugLoc();
2082
2083  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
2084
2085  // Return if flag is not set by a floating point comparison.
2086  if (CondRes.getOpcode() != MipsISD::FPCmp)
2087    return Op;
2088
2089  SDValue CCNode  = CondRes.getOperand(2);
2090  Mips::CondCode CC =
2091    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
2092  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
2093
2094  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
2095                     Dest, CondRes);
2096}
2097
2098SDValue MipsTargetLowering::
2099LowerSELECT(SDValue Op, SelectionDAG &DAG) const
2100{
2101  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
2102
2103  // Return if flag is not set by a floating point comparison.
2104  if (Cond.getOpcode() != MipsISD::FPCmp)
2105    return Op;
2106
2107  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
2108                      Op.getDebugLoc());
2109}
2110
2111SDValue MipsTargetLowering::
2112LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
2113{
2114  DebugLoc DL = Op.getDebugLoc();
2115  EVT Ty = Op.getOperand(0).getValueType();
2116  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
2117                             Op.getOperand(0), Op.getOperand(1),
2118                             Op.getOperand(4));
2119
2120  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
2121                     Op.getOperand(3));
2122}
2123
2124SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2125  SDValue Cond = CreateFPCmp(DAG, Op);
2126
2127  assert(Cond.getOpcode() == MipsISD::FPCmp &&
2128         "Floating point operand expected.");
2129
2130  SDValue True  = DAG.getConstant(1, MVT::i32);
2131  SDValue False = DAG.getConstant(0, MVT::i32);
2132
2133  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
2134}
2135
2136SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
2137                                               SelectionDAG &DAG) const {
2138  // FIXME there isn't actually debug info here
2139  DebugLoc dl = Op.getDebugLoc();
2140  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2141
2142  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
2143    const MipsTargetObjectFile &TLOF =
2144      (const MipsTargetObjectFile&)getObjFileLowering();
2145
2146    // %gp_rel relocation
2147    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
2148      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
2149                                              MipsII::MO_GPREL);
2150      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl,
2151                                      DAG.getVTList(MVT::i32), &GA, 1);
2152      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
2153      return DAG.getNode(ISD::ADD, dl, MVT::i32, GPReg, GPRelNode);
2154    }
2155
2156    // %hi/%lo relocation
2157    return getAddrNonPIC(Op, DAG);
2158  }
2159
2160  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
2161    return getAddrLocal(Op, DAG, HasMips64);
2162
2163  if (LargeGOT)
2164    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
2165                                 MipsII::MO_GOT_LO16);
2166
2167  return getAddrGlobal(Op, DAG,
2168                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
2169}
2170
2171SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
2172                                              SelectionDAG &DAG) const {
2173  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2174    return getAddrNonPIC(Op, DAG);
2175
2176  return getAddrLocal(Op, DAG, HasMips64);
2177}
2178
2179SDValue MipsTargetLowering::
2180LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
2181{
2182  // If the relocation model is PIC, use the General Dynamic TLS Model or
2183  // Local Dynamic TLS model, otherwise use the Initial Exec or
2184  // Local Exec TLS Model.
2185
2186  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2187  DebugLoc dl = GA->getDebugLoc();
2188  const GlobalValue *GV = GA->getGlobal();
2189  EVT PtrVT = getPointerTy();
2190
2191  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2192
2193  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2194    // General Dynamic and Local Dynamic TLS Model.
2195    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
2196                                                      : MipsII::MO_TLSGD;
2197
2198    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
2199    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
2200                                   GetGlobalReg(DAG, PtrVT), TGA);
2201    unsigned PtrSize = PtrVT.getSizeInBits();
2202    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
2203
2204    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
2205
2206    ArgListTy Args;
2207    ArgListEntry Entry;
2208    Entry.Node = Argument;
2209    Entry.Ty = PtrTy;
2210    Args.push_back(Entry);
2211
2212    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
2213                  false, false, false, false, 0, CallingConv::C,
2214                  /*isTailCall=*/false, /*doesNotRet=*/false,
2215                  /*isReturnValueUsed=*/true,
2216                  TlsGetAddr, Args, DAG, dl);
2217    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2218
2219    SDValue Ret = CallResult.first;
2220
2221    if (model != TLSModel::LocalDynamic)
2222      return Ret;
2223
2224    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2225                                               MipsII::MO_DTPREL_HI);
2226    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
2227    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2228                                               MipsII::MO_DTPREL_LO);
2229    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
2230    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
2231    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
2232  }
2233
2234  SDValue Offset;
2235  if (model == TLSModel::InitialExec) {
2236    // Initial Exec TLS Model
2237    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2238                                             MipsII::MO_GOTTPREL);
2239    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
2240                      TGA);
2241    Offset = DAG.getLoad(PtrVT, dl,
2242                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
2243                         false, false, false, 0);
2244  } else {
2245    // Local Exec TLS Model
2246    assert(model == TLSModel::LocalExec);
2247    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2248                                               MipsII::MO_TPREL_HI);
2249    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2250                                               MipsII::MO_TPREL_LO);
2251    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
2252    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
2253    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
2254  }
2255
2256  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
2257  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2258}
2259
2260SDValue MipsTargetLowering::
2261LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2262{
2263  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2264    return getAddrNonPIC(Op, DAG);
2265
2266  return getAddrLocal(Op, DAG, HasMips64);
2267}
2268
2269SDValue MipsTargetLowering::
2270LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2271{
2272  // gp_rel relocation
2273  // FIXME: we should reference the constant pool using small data sections,
2274  // but the asm printer currently doesn't support this feature without
2275  // hacking it. This feature should come soon so we can uncomment the
2276  // stuff below.
2277  //if (IsInSmallSection(C->getType())) {
2278  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
2279  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
2280  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
2281
2282  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2283    return getAddrNonPIC(Op, DAG);
2284
2285  return getAddrLocal(Op, DAG, HasMips64);
2286}
2287
2288SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2289  MachineFunction &MF = DAG.getMachineFunction();
2290  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2291
2292  DebugLoc dl = Op.getDebugLoc();
2293  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2294                                 getPointerTy());
2295
2296  // vastart just stores the address of the VarArgsFrameIndex slot into the
2297  // memory location argument.
2298  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2299  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
2300                      MachinePointerInfo(SV), false, false, 0);
2301}
2302
2303static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2304  EVT TyX = Op.getOperand(0).getValueType();
2305  EVT TyY = Op.getOperand(1).getValueType();
2306  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2307  SDValue Const31 = DAG.getConstant(31, MVT::i32);
2308  DebugLoc DL = Op.getDebugLoc();
2309  SDValue Res;
2310
2311  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2312  // to i32.
2313  SDValue X = (TyX == MVT::f32) ?
2314    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2315    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2316                Const1);
2317  SDValue Y = (TyY == MVT::f32) ?
2318    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2319    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2320                Const1);
2321
2322  if (HasR2) {
2323    // ext  E, Y, 31, 1  ; extract bit31 of Y
2324    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
2325    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2326    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2327  } else {
2328    // sll SllX, X, 1
2329    // srl SrlX, SllX, 1
2330    // srl SrlY, Y, 31
2331    // sll SllY, SrlX, 31
2332    // or  Or, SrlX, SllY
2333    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2334    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2335    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2336    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2337    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2338  }
2339
2340  if (TyX == MVT::f32)
2341    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2342
2343  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2344                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2345  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2346}
2347
2348static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2349  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2350  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2351  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2352  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2353  DebugLoc DL = Op.getDebugLoc();
2354
2355  // Bitcast to integer nodes.
2356  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2357  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2358
2359  if (HasR2) {
2360    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2361    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2362    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2363                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
2364
2365    if (WidthX > WidthY)
2366      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2367    else if (WidthY > WidthX)
2368      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2369
2370    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2371                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
2372    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2373  }
2374
2375  // (d)sll SllX, X, 1
2376  // (d)srl SrlX, SllX, 1
2377  // (d)srl SrlY, Y, width(Y)-1
2378  // (d)sll SllY, SrlX, width(Y)-1
2379  // or     Or, SrlX, SllY
2380  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2381  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2382  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2383                             DAG.getConstant(WidthY - 1, MVT::i32));
2384
2385  if (WidthX > WidthY)
2386    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2387  else if (WidthY > WidthX)
2388    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2389
2390  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2391                             DAG.getConstant(WidthX - 1, MVT::i32));
2392  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2393  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2394}
2395
2396SDValue
2397MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2398  if (Subtarget->hasMips64())
2399    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
2400
2401  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
2402}
2403
2404static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2405  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2406  DebugLoc DL = Op.getDebugLoc();
2407
2408  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2409  // to i32.
2410  SDValue X = (Op.getValueType() == MVT::f32) ?
2411    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2412    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2413                Const1);
2414
2415  // Clear MSB.
2416  if (HasR2)
2417    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2418                      DAG.getRegister(Mips::ZERO, MVT::i32),
2419                      DAG.getConstant(31, MVT::i32), Const1, X);
2420  else {
2421    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2422    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2423  }
2424
2425  if (Op.getValueType() == MVT::f32)
2426    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2427
2428  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2429                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2430  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2431}
2432
2433static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2434  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2435  DebugLoc DL = Op.getDebugLoc();
2436
2437  // Bitcast to integer node.
2438  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2439
2440  // Clear MSB.
2441  if (HasR2)
2442    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2443                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
2444                      DAG.getConstant(63, MVT::i32), Const1, X);
2445  else {
2446    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2447    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2448  }
2449
2450  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2451}
2452
2453SDValue
2454MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
2455  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
2456    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
2457
2458  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
2459}
2460
2461SDValue MipsTargetLowering::
2462LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2463  // check the depth
2464  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2465         "Frame address can only be determined for current frame.");
2466
2467  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2468  MFI->setFrameAddressIsTaken(true);
2469  EVT VT = Op.getValueType();
2470  DebugLoc dl = Op.getDebugLoc();
2471  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2472                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
2473  return FrameAddr;
2474}
2475
2476SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
2477                                            SelectionDAG &DAG) const {
2478  // check the depth
2479  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2480         "Return address can be determined only for current frame.");
2481
2482  MachineFunction &MF = DAG.getMachineFunction();
2483  MachineFrameInfo *MFI = MF.getFrameInfo();
2484  MVT VT = Op.getSimpleValueType();
2485  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
2486  MFI->setReturnAddressIsTaken(true);
2487
2488  // Return RA, which contains the return address. Mark it an implicit live-in.
2489  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2490  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2491}
2492
2493// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2494// generated from __builtin_eh_return (offset, handler)
2495// The effect of this is to adjust the stack pointer by "offset"
2496// and then branch to "handler".
2497SDValue MipsTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2498                                                                     const {
2499  MachineFunction &MF = DAG.getMachineFunction();
2500  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2501
2502  MipsFI->setCallsEhReturn();
2503  SDValue Chain     = Op.getOperand(0);
2504  SDValue Offset    = Op.getOperand(1);
2505  SDValue Handler   = Op.getOperand(2);
2506  DebugLoc DL       = Op.getDebugLoc();
2507  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2508
2509  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2510  // EH_RETURN nodes, so that instructions are emitted back-to-back.
2511  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
2512  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
2513  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2514  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2515  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2516                     DAG.getRegister(OffsetReg, Ty),
2517                     DAG.getRegister(AddrReg, getPointerTy()),
2518                     Chain.getValue(1));
2519}
2520
2521// TODO: set SType according to the desired memory barrier behavior.
2522SDValue
2523MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2524  unsigned SType = 0;
2525  DebugLoc dl = Op.getDebugLoc();
2526  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2527                     DAG.getConstant(SType, MVT::i32));
2528}
2529
2530SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2531                                              SelectionDAG &DAG) const {
2532  // FIXME: Need pseudo-fence for 'singlethread' fences
2533  // FIXME: Set SType for weaker fences where supported/appropriate.
2534  unsigned SType = 0;
2535  DebugLoc dl = Op.getDebugLoc();
2536  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2537                     DAG.getConstant(SType, MVT::i32));
2538}
2539
2540SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2541                                                SelectionDAG &DAG) const {
2542  DebugLoc DL = Op.getDebugLoc();
2543  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2544  SDValue Shamt = Op.getOperand(2);
2545
2546  // if shamt < 32:
2547  //  lo = (shl lo, shamt)
2548  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2549  // else:
2550  //  lo = 0
2551  //  hi = (shl lo, shamt[4:0])
2552  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2553                            DAG.getConstant(-1, MVT::i32));
2554  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2555                                      DAG.getConstant(1, MVT::i32));
2556  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2557                                     Not);
2558  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2559  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2560  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2561  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2562                             DAG.getConstant(0x20, MVT::i32));
2563  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2564                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2565  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2566
2567  SDValue Ops[2] = {Lo, Hi};
2568  return DAG.getMergeValues(Ops, 2, DL);
2569}
2570
2571SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2572                                                 bool IsSRA) const {
2573  DebugLoc DL = Op.getDebugLoc();
2574  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2575  SDValue Shamt = Op.getOperand(2);
2576
2577  // if shamt < 32:
2578  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2579  //  if isSRA:
2580  //    hi = (sra hi, shamt)
2581  //  else:
2582  //    hi = (srl hi, shamt)
2583  // else:
2584  //  if isSRA:
2585  //   lo = (sra hi, shamt[4:0])
2586  //   hi = (sra hi, 31)
2587  //  else:
2588  //   lo = (srl hi, shamt[4:0])
2589  //   hi = 0
2590  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2591                            DAG.getConstant(-1, MVT::i32));
2592  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2593                                     DAG.getConstant(1, MVT::i32));
2594  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2595  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2596  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2597  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2598                                     Hi, Shamt);
2599  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2600                             DAG.getConstant(0x20, MVT::i32));
2601  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2602                                DAG.getConstant(31, MVT::i32));
2603  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2604  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2605                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2606                   ShiftRightHi);
2607
2608  SDValue Ops[2] = {Lo, Hi};
2609  return DAG.getMergeValues(Ops, 2, DL);
2610}
2611
2612static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2613                            SDValue Chain, SDValue Src, unsigned Offset) {
2614  SDValue Ptr = LD->getBasePtr();
2615  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2616  EVT BasePtrVT = Ptr.getValueType();
2617  DebugLoc DL = LD->getDebugLoc();
2618  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2619
2620  if (Offset)
2621    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2622                      DAG.getConstant(Offset, BasePtrVT));
2623
2624  SDValue Ops[] = { Chain, Ptr, Src };
2625  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2626                                 LD->getMemOperand());
2627}
2628
2629// Expand an unaligned 32 or 64-bit integer load node.
2630SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2631  LoadSDNode *LD = cast<LoadSDNode>(Op);
2632  EVT MemVT = LD->getMemoryVT();
2633
2634  // Return if load is aligned or if MemVT is neither i32 nor i64.
2635  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2636      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2637    return SDValue();
2638
2639  bool IsLittle = Subtarget->isLittle();
2640  EVT VT = Op.getValueType();
2641  ISD::LoadExtType ExtType = LD->getExtensionType();
2642  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2643
2644  assert((VT == MVT::i32) || (VT == MVT::i64));
2645
2646  // Expand
2647  //  (set dst, (i64 (load baseptr)))
2648  // to
2649  //  (set tmp, (ldl (add baseptr, 7), undef))
2650  //  (set dst, (ldr baseptr, tmp))
2651  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2652    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2653                               IsLittle ? 7 : 0);
2654    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2655                        IsLittle ? 0 : 7);
2656  }
2657
2658  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2659                             IsLittle ? 3 : 0);
2660  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2661                             IsLittle ? 0 : 3);
2662
2663  // Expand
2664  //  (set dst, (i32 (load baseptr))) or
2665  //  (set dst, (i64 (sextload baseptr))) or
2666  //  (set dst, (i64 (extload baseptr)))
2667  // to
2668  //  (set tmp, (lwl (add baseptr, 3), undef))
2669  //  (set dst, (lwr baseptr, tmp))
2670  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2671      (ExtType == ISD::EXTLOAD))
2672    return LWR;
2673
2674  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2675
2676  // Expand
2677  //  (set dst, (i64 (zextload baseptr)))
2678  // to
2679  //  (set tmp0, (lwl (add baseptr, 3), undef))
2680  //  (set tmp1, (lwr baseptr, tmp0))
2681  //  (set tmp2, (shl tmp1, 32))
2682  //  (set dst, (srl tmp2, 32))
2683  DebugLoc DL = LD->getDebugLoc();
2684  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2685  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2686  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2687  SDValue Ops[] = { SRL, LWR.getValue(1) };
2688  return DAG.getMergeValues(Ops, 2, DL);
2689}
2690
2691static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2692                             SDValue Chain, unsigned Offset) {
2693  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2694  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2695  DebugLoc DL = SD->getDebugLoc();
2696  SDVTList VTList = DAG.getVTList(MVT::Other);
2697
2698  if (Offset)
2699    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2700                      DAG.getConstant(Offset, BasePtrVT));
2701
2702  SDValue Ops[] = { Chain, Value, Ptr };
2703  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2704                                 SD->getMemOperand());
2705}
2706
2707// Expand an unaligned 32 or 64-bit integer store node.
2708SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2709  StoreSDNode *SD = cast<StoreSDNode>(Op);
2710  EVT MemVT = SD->getMemoryVT();
2711
2712  // Return if store is aligned or if MemVT is neither i32 nor i64.
2713  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2714      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2715    return SDValue();
2716
2717  bool IsLittle = Subtarget->isLittle();
2718  SDValue Value = SD->getValue(), Chain = SD->getChain();
2719  EVT VT = Value.getValueType();
2720
2721  // Expand
2722  //  (store val, baseptr) or
2723  //  (truncstore val, baseptr)
2724  // to
2725  //  (swl val, (add baseptr, 3))
2726  //  (swr val, baseptr)
2727  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2728    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2729                                IsLittle ? 3 : 0);
2730    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2731  }
2732
2733  assert(VT == MVT::i64);
2734
2735  // Expand
2736  //  (store val, baseptr)
2737  // to
2738  //  (sdl val, (add baseptr, 7))
2739  //  (sdr val, baseptr)
2740  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2741  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2742}
2743
2744// This function expands mips intrinsic nodes which have 64-bit input operands
2745// or output values.
2746//
2747// out64 = intrinsic-node in64
2748// =>
2749// lo = copy (extract-element (in64, 0))
2750// hi = copy (extract-element (in64, 1))
2751// mips-specific-node
2752// v0 = copy lo
2753// v1 = copy hi
2754// out64 = merge-values (v0, v1)
2755//
2756static SDValue LowerDSPIntr(SDValue Op, SelectionDAG &DAG,
2757                            unsigned Opc, bool HasI64In, bool HasI64Out) {
2758  DebugLoc DL = Op.getDebugLoc();
2759  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
2760  SDValue Chain = HasChainIn ? Op->getOperand(0) : DAG.getEntryNode();
2761  SmallVector<SDValue, 3> Ops;
2762
2763  if (HasI64In) {
2764    SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2765                               Op->getOperand(1 + HasChainIn),
2766                               DAG.getConstant(0, MVT::i32));
2767    SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2768                               Op->getOperand(1 + HasChainIn),
2769                               DAG.getConstant(1, MVT::i32));
2770
2771    Chain = DAG.getCopyToReg(Chain, DL, Mips::LO, InLo, SDValue());
2772    Chain = DAG.getCopyToReg(Chain, DL, Mips::HI, InHi, Chain.getValue(1));
2773
2774    Ops.push_back(Chain);
2775    Ops.append(Op->op_begin() + HasChainIn + 2, Op->op_end());
2776    Ops.push_back(Chain.getValue(1));
2777  } else {
2778    Ops.push_back(Chain);
2779    Ops.append(Op->op_begin() + HasChainIn + 1, Op->op_end());
2780  }
2781
2782  if (!HasI64Out)
2783    return DAG.getNode(Opc, DL, Op->value_begin(), Op->getNumValues(),
2784                       Ops.begin(), Ops.size());
2785
2786  SDValue Intr = DAG.getNode(Opc, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2787                             Ops.begin(), Ops.size());
2788  SDValue OutLo = DAG.getCopyFromReg(Intr.getValue(0), DL, Mips::LO, MVT::i32,
2789                                     Intr.getValue(1));
2790  SDValue OutHi = DAG.getCopyFromReg(OutLo.getValue(1), DL, Mips::HI, MVT::i32,
2791                                     OutLo.getValue(2));
2792  SDValue Out = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, OutLo, OutHi);
2793
2794  if (!HasChainIn)
2795    return Out;
2796
2797  SDValue Vals[] = { Out, OutHi.getValue(1) };
2798  return DAG.getMergeValues(Vals, 2, DL);
2799}
2800
2801SDValue MipsTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2802                                                    SelectionDAG &DAG) const {
2803  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
2804  default:
2805    return SDValue();
2806  case Intrinsic::mips_shilo:
2807    return LowerDSPIntr(Op, DAG, MipsISD::SHILO, true, true);
2808  case Intrinsic::mips_dpau_h_qbl:
2809    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL, true, true);
2810  case Intrinsic::mips_dpau_h_qbr:
2811    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR, true, true);
2812  case Intrinsic::mips_dpsu_h_qbl:
2813    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL, true, true);
2814  case Intrinsic::mips_dpsu_h_qbr:
2815    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR, true, true);
2816  case Intrinsic::mips_dpa_w_ph:
2817    return LowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH, true, true);
2818  case Intrinsic::mips_dps_w_ph:
2819    return LowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH, true, true);
2820  case Intrinsic::mips_dpax_w_ph:
2821    return LowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH, true, true);
2822  case Intrinsic::mips_dpsx_w_ph:
2823    return LowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH, true, true);
2824  case Intrinsic::mips_mulsa_w_ph:
2825    return LowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH, true, true);
2826  case Intrinsic::mips_mult:
2827    return LowerDSPIntr(Op, DAG, MipsISD::MULT, false, true);
2828  case Intrinsic::mips_multu:
2829    return LowerDSPIntr(Op, DAG, MipsISD::MULTU, false, true);
2830  case Intrinsic::mips_madd:
2831    return LowerDSPIntr(Op, DAG, MipsISD::MADD_DSP, true, true);
2832  case Intrinsic::mips_maddu:
2833    return LowerDSPIntr(Op, DAG, MipsISD::MADDU_DSP, true, true);
2834  case Intrinsic::mips_msub:
2835    return LowerDSPIntr(Op, DAG, MipsISD::MSUB_DSP, true, true);
2836  case Intrinsic::mips_msubu:
2837    return LowerDSPIntr(Op, DAG, MipsISD::MSUBU_DSP, true, true);
2838  }
2839}
2840
2841SDValue MipsTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2842                                                   SelectionDAG &DAG) const {
2843  switch (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue()) {
2844  default:
2845    return SDValue();
2846  case Intrinsic::mips_extp:
2847    return LowerDSPIntr(Op, DAG, MipsISD::EXTP, true, false);
2848  case Intrinsic::mips_extpdp:
2849    return LowerDSPIntr(Op, DAG, MipsISD::EXTPDP, true, false);
2850  case Intrinsic::mips_extr_w:
2851    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_W, true, false);
2852  case Intrinsic::mips_extr_r_w:
2853    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W, true, false);
2854  case Intrinsic::mips_extr_rs_w:
2855    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W, true, false);
2856  case Intrinsic::mips_extr_s_h:
2857    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H, true, false);
2858  case Intrinsic::mips_mthlip:
2859    return LowerDSPIntr(Op, DAG, MipsISD::MTHLIP, true, true);
2860  case Intrinsic::mips_mulsaq_s_w_ph:
2861    return LowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH, true, true);
2862  case Intrinsic::mips_maq_s_w_phl:
2863    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL, true, true);
2864  case Intrinsic::mips_maq_s_w_phr:
2865    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR, true, true);
2866  case Intrinsic::mips_maq_sa_w_phl:
2867    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL, true, true);
2868  case Intrinsic::mips_maq_sa_w_phr:
2869    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR, true, true);
2870  case Intrinsic::mips_dpaq_s_w_ph:
2871    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH, true, true);
2872  case Intrinsic::mips_dpsq_s_w_ph:
2873    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH, true, true);
2874  case Intrinsic::mips_dpaq_sa_l_w:
2875    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W, true, true);
2876  case Intrinsic::mips_dpsq_sa_l_w:
2877    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W, true, true);
2878  case Intrinsic::mips_dpaqx_s_w_ph:
2879    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH, true, true);
2880  case Intrinsic::mips_dpaqx_sa_w_ph:
2881    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH, true, true);
2882  case Intrinsic::mips_dpsqx_s_w_ph:
2883    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH, true, true);
2884  case Intrinsic::mips_dpsqx_sa_w_ph:
2885    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH, true, true);
2886  }
2887}
2888
2889SDValue MipsTargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
2890  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2891      || cast<ConstantSDNode>
2892        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2893      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2894    return SDValue();
2895
2896  // The pattern
2897  //   (add (frameaddr 0), (frame_to_args_offset))
2898  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2899  //   (add FrameObject, 0)
2900  // where FrameObject is a fixed StackObject with offset 0 which points to
2901  // the old stack pointer.
2902  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2903  EVT ValTy = Op->getValueType(0);
2904  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2905  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2906  return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
2907                     DAG.getConstant(0, ValTy));
2908}
2909
2910//===----------------------------------------------------------------------===//
2911//                      Calling Convention Implementation
2912//===----------------------------------------------------------------------===//
2913
2914//===----------------------------------------------------------------------===//
2915// TODO: Implement a generic logic using tblgen that can support this.
2916// Mips O32 ABI rules:
2917// ---
2918// i32 - Passed in A0, A1, A2, A3 and stack
2919// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2920//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2921// f64 - Only passed in two aliased f32 registers if no int reg has been used
2922//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2923//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2924//       go to stack.
2925//
2926//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2927//===----------------------------------------------------------------------===//
2928
2929static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2930                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2931                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2932
2933  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2934
2935  static const uint16_t IntRegs[] = {
2936      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2937  };
2938  static const uint16_t F32Regs[] = {
2939      Mips::F12, Mips::F14
2940  };
2941  static const uint16_t F64Regs[] = {
2942      Mips::D6, Mips::D7
2943  };
2944
2945  // Do not process byval args here.
2946  if (ArgFlags.isByVal())
2947    return true;
2948
2949  // Promote i8 and i16
2950  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2951    LocVT = MVT::i32;
2952    if (ArgFlags.isSExt())
2953      LocInfo = CCValAssign::SExt;
2954    else if (ArgFlags.isZExt())
2955      LocInfo = CCValAssign::ZExt;
2956    else
2957      LocInfo = CCValAssign::AExt;
2958  }
2959
2960  unsigned Reg;
2961
2962  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2963  // is true: function is vararg, argument is 3rd or higher, there is previous
2964  // argument which is not f32 or f64.
2965  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2966      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2967  unsigned OrigAlign = ArgFlags.getOrigAlign();
2968  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2969
2970  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2971    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2972    // If this is the first part of an i64 arg,
2973    // the allocated register must be either A0 or A2.
2974    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2975      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2976    LocVT = MVT::i32;
2977  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2978    // Allocate int register and shadow next int register. If first
2979    // available register is Mips::A1 or Mips::A3, shadow it too.
2980    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2981    if (Reg == Mips::A1 || Reg == Mips::A3)
2982      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2983    State.AllocateReg(IntRegs, IntRegsSize);
2984    LocVT = MVT::i32;
2985  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2986    // we are guaranteed to find an available float register
2987    if (ValVT == MVT::f32) {
2988      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2989      // Shadow int register
2990      State.AllocateReg(IntRegs, IntRegsSize);
2991    } else {
2992      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2993      // Shadow int registers
2994      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2995      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2996        State.AllocateReg(IntRegs, IntRegsSize);
2997      State.AllocateReg(IntRegs, IntRegsSize);
2998    }
2999  } else
3000    llvm_unreachable("Cannot handle this ValVT.");
3001
3002  if (!Reg) {
3003    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
3004                                          OrigAlign);
3005    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
3006  } else
3007    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
3008
3009  return false;
3010}
3011
3012#include "MipsGenCallingConv.inc"
3013
3014//===----------------------------------------------------------------------===//
3015//                  Call Calling Convention Implementation
3016//===----------------------------------------------------------------------===//
3017
3018static const unsigned O32IntRegsSize = 4;
3019
3020// Return next O32 integer argument register.
3021static unsigned getNextIntArgReg(unsigned Reg) {
3022  assert((Reg == Mips::A0) || (Reg == Mips::A2));
3023  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
3024}
3025
3026/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3027/// for tail call optimization.
3028bool MipsTargetLowering::
3029IsEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
3030                                  unsigned NextStackOffset,
3031                                  const MipsFunctionInfo& FI) const {
3032  if (!EnableMipsTailCalls)
3033    return false;
3034
3035  // No tail call optimization for mips16.
3036  if (Subtarget->inMips16Mode())
3037    return false;
3038
3039  // Return false if either the callee or caller has a byval argument.
3040  if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
3041    return false;
3042
3043  // Return true if the callee's argument area is no larger than the
3044  // caller's.
3045  return NextStackOffset <= FI.getIncomingArgSize();
3046}
3047
3048SDValue
3049MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
3050                                   SDValue Chain, SDValue Arg, DebugLoc DL,
3051                                   bool IsTailCall, SelectionDAG &DAG) const {
3052  if (!IsTailCall) {
3053    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
3054                                 DAG.getIntPtrConstant(Offset));
3055    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
3056                        false, 0);
3057  }
3058
3059  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3060  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
3061  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3062  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
3063                      /*isVolatile=*/ true, false, 0);
3064}
3065
3066//
3067// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
3068// cleaner way to do all of this but it will have to wait until the traditional
3069// gcc mechanism is completed.
3070//
3071// For Pic, in order for Mips16 code to call Mips32 code which according the abi
3072// have either arguments or returned values placed in floating point registers,
3073// we use a set of helper functions. (This includes functions which return type
3074//  complex which on Mips are returned in a pair of floating point registers).
3075//
3076// This is an encoding that we inherited from gcc.
3077// In Mips traditional O32, N32 ABI, floating point numbers are passed in
3078// floating point argument registers 1,2 only when the first and optionally
3079// the second arguments are float (sf) or double (df).
3080// For Mips16 we are only concerned with the situations where floating point
3081// arguments are being passed in floating point registers by the ABI, because
3082// Mips16 mode code cannot execute floating point instructions to load those
3083// values and hence helper functions are needed.
3084// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
3085// the helper function suffixs for these are:
3086//                        0,  1,    5,        9,         2,   6,        10
3087// this suffix can then be calculated as follows:
3088// for a given argument Arg:
3089//     Arg1x, Arg2x = 1 :  Arg is sf
3090//                    2 :  Arg is df
3091//                    0:   Arg is neither sf or df
3092// So this stub is the string for number Arg1x + Arg2x*4.
3093// However not all numbers between 0 and 10 are possible, we check anyway and
3094// assert if the impossible exists.
3095//
3096
3097unsigned int MipsTargetLowering::getMips16HelperFunctionStubNumber
3098  (ArgListTy &Args) const {
3099  unsigned int resultNum = 0;
3100  if (Args.size() >= 1) {
3101    Type *t = Args[0].Ty;
3102    if (t->isFloatTy()) {
3103      resultNum = 1;
3104    }
3105    else if (t->isDoubleTy()) {
3106      resultNum = 2;
3107    }
3108  }
3109  if (resultNum) {
3110    if (Args.size() >=2) {
3111      Type *t = Args[1].Ty;
3112      if (t->isFloatTy()) {
3113        resultNum += 4;
3114      }
3115      else if (t->isDoubleTy()) {
3116        resultNum += 8;
3117      }
3118    }
3119  }
3120  return resultNum;
3121}
3122
3123//
3124// prefixs are attached to stub numbers depending on the return type .
3125// return type: float  sf_
3126//              double df_
3127//              single complex sc_
3128//              double complext dc_
3129//              others  NO PREFIX
3130//
3131//
3132// The full name of a helper function is__mips16_call_stub +
3133//    return type dependent prefix + stub number
3134//
3135//
3136// This is something that probably should be in a different source file and
3137// perhaps done differently but my main purpose is to not waste runtime
3138// on something that we can enumerate in the source. Another possibility is
3139// to have a python script to generate these mapping tables. This will do
3140// for now. There are a whole series of helper function mapping arrays, one
3141// for each return type class as outlined above. There there are 11 possible
3142//  entries. Ones with 0 are ones which should never be selected
3143//
3144// All the arrays are similar except for ones which return neither
3145// sf, df, sc, dc, in which only care about ones which have sf or df as a
3146// first parameter.
3147//
3148#define P_ "__mips16_call_stub_"
3149#define MAX_STUB_NUMBER 10
3150#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
3151#define T P "0" , T1
3152#define P P_
3153static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
3154  {0, T1 };
3155#undef P
3156#define P P_ "sf_"
3157static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
3158  { T };
3159#undef P
3160#define P P_ "df_"
3161static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
3162  { T };
3163#undef P
3164#define P P_ "sc_"
3165static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
3166  { T };
3167#undef P
3168#define P P_ "dc_"
3169static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
3170  { T };
3171#undef P
3172#undef P_
3173
3174
3175const char* MipsTargetLowering::
3176  getMips16HelperFunction
3177    (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
3178  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
3179#ifndef NDEBUG
3180  const unsigned int maxStubNum = 10;
3181  assert(stubNum <= maxStubNum);
3182  const bool validStubNum[maxStubNum+1] =
3183    {true, true, true, false, false, true, true, false, false, true, true};
3184  assert(validStubNum[stubNum]);
3185#endif
3186  const char *result;
3187  if (RetTy->isFloatTy()) {
3188    result = sfMips16Helper[stubNum];
3189  }
3190  else if (RetTy ->isDoubleTy()) {
3191    result = dfMips16Helper[stubNum];
3192  }
3193  else if (RetTy->isStructTy()) {
3194    // check if it's complex
3195    if (RetTy->getNumContainedTypes() == 2) {
3196      if ((RetTy->getContainedType(0)->isFloatTy()) &&
3197          (RetTy->getContainedType(1)->isFloatTy())) {
3198        result = scMips16Helper[stubNum];
3199      }
3200      else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
3201               (RetTy->getContainedType(1)->isDoubleTy())) {
3202        result = dcMips16Helper[stubNum];
3203      }
3204      else {
3205        llvm_unreachable("Uncovered condition");
3206      }
3207    }
3208    else {
3209      llvm_unreachable("Uncovered condition");
3210    }
3211  }
3212  else {
3213    if (stubNum == 0) {
3214      needHelper = false;
3215      return "";
3216    }
3217    result = vMips16Helper[stubNum];
3218  }
3219  needHelper = true;
3220  return result;
3221}
3222
3223/// LowerCall - functions arguments are copied from virtual regs to
3224/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3225SDValue
3226MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3227                              SmallVectorImpl<SDValue> &InVals) const {
3228  SelectionDAG &DAG                     = CLI.DAG;
3229  DebugLoc &dl                          = CLI.DL;
3230  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3231  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3232  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3233  SDValue Chain                         = CLI.Chain;
3234  SDValue Callee                        = CLI.Callee;
3235  bool &isTailCall                      = CLI.IsTailCall;
3236  CallingConv::ID CallConv              = CLI.CallConv;
3237  bool isVarArg                         = CLI.IsVarArg;
3238
3239  const char* mips16HelperFunction = 0;
3240  bool needMips16Helper = false;
3241
3242  if (Subtarget->inMips16Mode() && getTargetMachine().Options.UseSoftFloat &&
3243      Mips16HardFloat) {
3244    //
3245    // currently we don't have symbols tagged with the mips16 or mips32
3246    // qualifier so we will assume that we don't know what kind it is.
3247    // and generate the helper
3248    //
3249    bool lookupHelper = true;
3250    if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3251      if (noHelperNeeded.find(S->getSymbol()) != noHelperNeeded.end()) {
3252        lookupHelper = false;
3253      }
3254    }
3255    if (lookupHelper) mips16HelperFunction =
3256      getMips16HelperFunction(CLI.RetTy, CLI.Args, needMips16Helper);
3257
3258  }
3259  MachineFunction &MF = DAG.getMachineFunction();
3260  MachineFrameInfo *MFI = MF.getFrameInfo();
3261  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
3262  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
3263
3264  // Analyze operands of the call, assigning locations to each operand.
3265  SmallVector<CCValAssign, 16> ArgLocs;
3266  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3267                 getTargetMachine(), ArgLocs, *DAG.getContext());
3268  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
3269
3270  MipsCCInfo.analyzeCallOperands(Outs, isVarArg);
3271
3272  // Get a count of how many bytes are to be pushed on the stack.
3273  unsigned NextStackOffset = CCInfo.getNextStackOffset();
3274
3275  // Check if it's really possible to do a tail call.
3276  if (isTailCall)
3277    isTailCall =
3278      IsEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
3279                                        *MF.getInfo<MipsFunctionInfo>());
3280
3281  if (isTailCall)
3282    ++NumTailCalls;
3283
3284  // Chain is the output chain of the last Load/Store or CopyToReg node.
3285  // ByValChain is the output chain of the last Memcpy node created for copying
3286  // byval arguments to the stack.
3287  unsigned StackAlignment = TFL->getStackAlignment();
3288  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
3289  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
3290
3291  if (!isTailCall)
3292    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
3293
3294  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
3295                                        IsN64 ? Mips::SP_64 : Mips::SP,
3296                                        getPointerTy());
3297
3298  // With EABI is it possible to have 16 args on registers.
3299  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
3300  SmallVector<SDValue, 8> MemOpChains;
3301  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3302
3303  // Walk the register/memloc assignments, inserting copies/loads.
3304  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3305    SDValue Arg = OutVals[i];
3306    CCValAssign &VA = ArgLocs[i];
3307    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3308    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3309
3310    // ByVal Arg.
3311    if (Flags.isByVal()) {
3312      assert(Flags.getByValSize() &&
3313             "ByVal args of size 0 should have been ignored by front-end.");
3314      assert(ByValArg != MipsCCInfo.byval_end());
3315      assert(!isTailCall &&
3316             "Do not tail-call optimize if there is a byval argument.");
3317      passByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3318                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
3319      ++ByValArg;
3320      continue;
3321    }
3322
3323    // Promote the value if needed.
3324    switch (VA.getLocInfo()) {
3325    default: llvm_unreachable("Unknown loc info!");
3326    case CCValAssign::Full:
3327      if (VA.isRegLoc()) {
3328        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3329            (ValVT == MVT::f64 && LocVT == MVT::i64))
3330          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
3331        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3332          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3333                                   Arg, DAG.getConstant(0, MVT::i32));
3334          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3335                                   Arg, DAG.getConstant(1, MVT::i32));
3336          if (!Subtarget->isLittle())
3337            std::swap(Lo, Hi);
3338          unsigned LocRegLo = VA.getLocReg();
3339          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3340          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3341          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3342          continue;
3343        }
3344      }
3345      break;
3346    case CCValAssign::SExt:
3347      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
3348      break;
3349    case CCValAssign::ZExt:
3350      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
3351      break;
3352    case CCValAssign::AExt:
3353      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
3354      break;
3355    }
3356
3357    // Arguments that can be passed on register must be kept at
3358    // RegsToPass vector
3359    if (VA.isRegLoc()) {
3360      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3361      continue;
3362    }
3363
3364    // Register can't get to this point...
3365    assert(VA.isMemLoc());
3366
3367    // emit ISD::STORE whichs stores the
3368    // parameter value to a stack Location
3369    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3370                                         Chain, Arg, dl, isTailCall, DAG));
3371  }
3372
3373  // Transform all store nodes into one single node because all store
3374  // nodes are independent of each other.
3375  if (!MemOpChains.empty())
3376    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3377                        &MemOpChains[0], MemOpChains.size());
3378
3379  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3380  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3381  // node so that legalize doesn't hack it.
3382  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
3383  bool GlobalOrExternal = false, InternalLinkage = false;
3384  SDValue CalleeLo;
3385
3386  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3387    if (IsPICCall) {
3388      InternalLinkage = G->getGlobal()->hasInternalLinkage();
3389
3390      if (InternalLinkage)
3391        Callee = getAddrLocal(Callee, DAG, HasMips64);
3392      else if (LargeGOT)
3393        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
3394                                       MipsII::MO_CALL_LO16);
3395      else
3396        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
3397    } else
3398      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
3399                                          MipsII::MO_NO_FLAG);
3400    GlobalOrExternal = true;
3401  }
3402  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3403    if (!IsN64 && !IsPIC) // !N64 && static
3404      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
3405                                            MipsII::MO_NO_FLAG);
3406    else if (LargeGOT)
3407      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
3408                                     MipsII::MO_CALL_LO16);
3409    else // N64 || PIC
3410      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
3411
3412    GlobalOrExternal = true;
3413  }
3414
3415  SDValue JumpTarget = Callee;
3416
3417  // T9 should contain the address of the callee function if
3418  // -reloction-model=pic or it is an indirect call.
3419  if (IsPICCall || !GlobalOrExternal) {
3420    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
3421    unsigned V0Reg = Mips::V0;
3422    if (needMips16Helper) {
3423      RegsToPass.push_front(std::make_pair(V0Reg, Callee));
3424      JumpTarget = DAG.getExternalSymbol(
3425        mips16HelperFunction, getPointerTy());
3426      JumpTarget = getAddrGlobal(JumpTarget, DAG, MipsII::MO_GOT);
3427    }
3428    else {
3429      RegsToPass.push_front(std::make_pair(T9Reg, Callee));
3430
3431      if (!Subtarget->inMips16Mode())
3432        JumpTarget = SDValue();
3433    }
3434  }
3435
3436  // Insert node "GP copy globalreg" before call to function.
3437  //
3438  // R_MIPS_CALL* operators (emitted when non-internal functions are called
3439  // in PIC mode) allow symbols to be resolved via lazy binding.
3440  // The lazy binding stub requires GP to point to the GOT.
3441  if (IsPICCall && !InternalLinkage) {
3442    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
3443    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
3444    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
3445  }
3446
3447  // Build a sequence of copy-to-reg nodes chained together with token
3448  // chain and flag operands which copy the outgoing args into registers.
3449  // The InFlag in necessary since all emitted instructions must be
3450  // stuck together.
3451  SDValue InFlag;
3452
3453  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3454    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3455                             RegsToPass[i].second, InFlag);
3456    InFlag = Chain.getValue(1);
3457  }
3458
3459  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
3460  //             = Chain, Callee, Reg#1, Reg#2, ...
3461  //
3462  // Returns a chain & a flag for retval copy to use.
3463  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3464  SmallVector<SDValue, 8> Ops(1, Chain);
3465
3466  if (JumpTarget.getNode())
3467    Ops.push_back(JumpTarget);
3468
3469  // Add argument registers to the end of the list so that they are
3470  // known live into the call.
3471  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3472    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3473                                  RegsToPass[i].second.getValueType()));
3474
3475  // Add a register mask operand representing the call-preserved registers.
3476  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3477  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3478  assert(Mask && "Missing call preserved mask for calling convention");
3479  Ops.push_back(DAG.getRegisterMask(Mask));
3480
3481  if (InFlag.getNode())
3482    Ops.push_back(InFlag);
3483
3484  if (isTailCall)
3485    return DAG.getNode(MipsISD::TailCall, dl, MVT::Other, &Ops[0], Ops.size());
3486
3487  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
3488  InFlag = Chain.getValue(1);
3489
3490  // Create the CALLSEQ_END node.
3491  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3492                             DAG.getIntPtrConstant(0, true), InFlag);
3493  InFlag = Chain.getValue(1);
3494
3495  // Handle result values, copying them out of physregs into vregs that we
3496  // return.
3497  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3498                         Ins, dl, DAG, InVals);
3499}
3500
3501/// LowerCallResult - Lower the result values of a call into the
3502/// appropriate copies out of appropriate physical registers.
3503SDValue
3504MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3505                                    CallingConv::ID CallConv, bool isVarArg,
3506                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3507                                    DebugLoc dl, SelectionDAG &DAG,
3508                                    SmallVectorImpl<SDValue> &InVals) const {
3509  // Assign locations to each value returned by this call.
3510  SmallVector<CCValAssign, 16> RVLocs;
3511  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3512                 getTargetMachine(), RVLocs, *DAG.getContext());
3513
3514  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
3515
3516  // Copy all of the result registers out of their specified physreg.
3517  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3518    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
3519                               RVLocs[i].getValVT(), InFlag).getValue(1);
3520    InFlag = Chain.getValue(2);
3521    InVals.push_back(Chain.getValue(0));
3522  }
3523
3524  return Chain;
3525}
3526
3527//===----------------------------------------------------------------------===//
3528//             Formal Arguments Calling Convention Implementation
3529//===----------------------------------------------------------------------===//
3530/// LowerFormalArguments - transform physical registers into virtual registers
3531/// and generate load operations for arguments places on the stack.
3532SDValue
3533MipsTargetLowering::LowerFormalArguments(SDValue Chain,
3534                                         CallingConv::ID CallConv,
3535                                         bool isVarArg,
3536                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3537                                         DebugLoc dl, SelectionDAG &DAG,
3538                                         SmallVectorImpl<SDValue> &InVals)
3539                                          const {
3540  MachineFunction &MF = DAG.getMachineFunction();
3541  MachineFrameInfo *MFI = MF.getFrameInfo();
3542  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3543
3544  MipsFI->setVarArgsFrameIndex(0);
3545
3546  // Used with vargs to acumulate store chains.
3547  std::vector<SDValue> OutChains;
3548
3549  // Assign locations to all of the incoming arguments.
3550  SmallVector<CCValAssign, 16> ArgLocs;
3551  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3552                 getTargetMachine(), ArgLocs, *DAG.getContext());
3553  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
3554
3555  MipsCCInfo.analyzeFormalArguments(Ins);
3556  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3557                           MipsCCInfo.hasByValArg());
3558
3559  Function::const_arg_iterator FuncArg =
3560    DAG.getMachineFunction().getFunction()->arg_begin();
3561  unsigned CurArgIdx = 0;
3562  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3563
3564  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3565    CCValAssign &VA = ArgLocs[i];
3566    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
3567    CurArgIdx = Ins[i].OrigArgIndex;
3568    EVT ValVT = VA.getValVT();
3569    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3570    bool IsRegLoc = VA.isRegLoc();
3571
3572    if (Flags.isByVal()) {
3573      assert(Flags.getByValSize() &&
3574             "ByVal args of size 0 should have been ignored by front-end.");
3575      assert(ByValArg != MipsCCInfo.byval_end());
3576      copyByValRegs(Chain, dl, OutChains, DAG, Flags, InVals, &*FuncArg,
3577                    MipsCCInfo, *ByValArg);
3578      ++ByValArg;
3579      continue;
3580    }
3581
3582    // Arguments stored on registers
3583    if (IsRegLoc) {
3584      EVT RegVT = VA.getLocVT();
3585      unsigned ArgReg = VA.getLocReg();
3586      const TargetRegisterClass *RC;
3587
3588      if (RegVT == MVT::i32)
3589        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
3590                                        &Mips::CPURegsRegClass;
3591      else if (RegVT == MVT::i64)
3592        RC = &Mips::CPU64RegsRegClass;
3593      else if (RegVT == MVT::f32)
3594        RC = &Mips::FGR32RegClass;
3595      else if (RegVT == MVT::f64)
3596        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3597      else
3598        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3599
3600      // Transform the arguments stored on
3601      // physical registers into virtual ones
3602      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3603      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3604
3605      // If this is an 8 or 16-bit value, it has been passed promoted
3606      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3607      // truncate to the right size.
3608      if (VA.getLocInfo() != CCValAssign::Full) {
3609        unsigned Opcode = 0;
3610        if (VA.getLocInfo() == CCValAssign::SExt)
3611          Opcode = ISD::AssertSext;
3612        else if (VA.getLocInfo() == CCValAssign::ZExt)
3613          Opcode = ISD::AssertZext;
3614        if (Opcode)
3615          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3616                                 DAG.getValueType(ValVT));
3617        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3618      }
3619
3620      // Handle floating point arguments passed in integer registers.
3621      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3622          (RegVT == MVT::i64 && ValVT == MVT::f64))
3623        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3624      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3625        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3626                                  getNextIntArgReg(ArgReg), RC);
3627        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3628        if (!Subtarget->isLittle())
3629          std::swap(ArgValue, ArgValue2);
3630        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3631                               ArgValue, ArgValue2);
3632      }
3633
3634      InVals.push_back(ArgValue);
3635    } else { // VA.isRegLoc()
3636
3637      // sanity check
3638      assert(VA.isMemLoc());
3639
3640      // The stack pointer offset is relative to the caller stack frame.
3641      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3642                                      VA.getLocMemOffset(), true);
3643
3644      // Create load nodes to retrieve arguments from the stack
3645      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3646      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3647                                   MachinePointerInfo::getFixedStack(FI),
3648                                   false, false, false, 0));
3649    }
3650  }
3651
3652  // The mips ABIs for returning structs by value requires that we copy
3653  // the sret argument into $v0 for the return. Save the argument into
3654  // a virtual register so that we can access it from the return points.
3655  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3656    unsigned Reg = MipsFI->getSRetReturnReg();
3657    if (!Reg) {
3658      Reg = MF.getRegInfo().
3659        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
3660      MipsFI->setSRetReturnReg(Reg);
3661    }
3662    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3663    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3664  }
3665
3666  if (isVarArg)
3667    writeVarArgRegs(OutChains, MipsCCInfo, Chain, dl, DAG);
3668
3669  // All stores are grouped in one node to allow the matching between
3670  // the size of Ins and InVals. This only happens when on varg functions
3671  if (!OutChains.empty()) {
3672    OutChains.push_back(Chain);
3673    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3674                        &OutChains[0], OutChains.size());
3675  }
3676
3677  return Chain;
3678}
3679
3680//===----------------------------------------------------------------------===//
3681//               Return Value Calling Convention Implementation
3682//===----------------------------------------------------------------------===//
3683
3684bool
3685MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3686                                   MachineFunction &MF, bool isVarArg,
3687                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3688                                   LLVMContext &Context) const {
3689  SmallVector<CCValAssign, 16> RVLocs;
3690  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3691                 RVLocs, Context);
3692  return CCInfo.CheckReturn(Outs, RetCC_Mips);
3693}
3694
3695SDValue
3696MipsTargetLowering::LowerReturn(SDValue Chain,
3697                                CallingConv::ID CallConv, bool isVarArg,
3698                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3699                                const SmallVectorImpl<SDValue> &OutVals,
3700                                DebugLoc dl, SelectionDAG &DAG) const {
3701
3702  // CCValAssign - represent the assignment of
3703  // the return value to a location
3704  SmallVector<CCValAssign, 16> RVLocs;
3705
3706  // CCState - Info about the registers and stack slot.
3707  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3708                 getTargetMachine(), RVLocs, *DAG.getContext());
3709
3710  // Analize return values.
3711  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3712
3713  SDValue Flag;
3714  SmallVector<SDValue, 4> RetOps(1, Chain);
3715
3716  // Copy the result values into the output registers.
3717  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3718    CCValAssign &VA = RVLocs[i];
3719    assert(VA.isRegLoc() && "Can only return in registers!");
3720
3721    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3722
3723    // Guarantee that all emitted copies are stuck together with flags.
3724    Flag = Chain.getValue(1);
3725    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3726  }
3727
3728  // The mips ABIs for returning structs by value requires that we copy
3729  // the sret argument into $v0 for the return. We saved the argument into
3730  // a virtual register in the entry block, so now we copy the value out
3731  // and into $v0.
3732  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3733    MachineFunction &MF      = DAG.getMachineFunction();
3734    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3735    unsigned Reg = MipsFI->getSRetReturnReg();
3736
3737    if (!Reg)
3738      llvm_unreachable("sret virtual register not created in the entry block");
3739    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3740    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
3741
3742    Chain = DAG.getCopyToReg(Chain, dl, V0, Val, Flag);
3743    Flag = Chain.getValue(1);
3744    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
3745  }
3746
3747  RetOps[0] = Chain;  // Update chain.
3748
3749  // Add the flag if we have it.
3750  if (Flag.getNode())
3751    RetOps.push_back(Flag);
3752
3753  // Return on Mips is always a "jr $ra"
3754  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, &RetOps[0], RetOps.size());
3755}
3756
3757//===----------------------------------------------------------------------===//
3758//                           Mips Inline Assembly Support
3759//===----------------------------------------------------------------------===//
3760
3761/// getConstraintType - Given a constraint letter, return the type of
3762/// constraint it is for this target.
3763MipsTargetLowering::ConstraintType MipsTargetLowering::
3764getConstraintType(const std::string &Constraint) const
3765{
3766  // Mips specific constrainy
3767  // GCC config/mips/constraints.md
3768  //
3769  // 'd' : An address register. Equivalent to r
3770  //       unless generating MIPS16 code.
3771  // 'y' : Equivalent to r; retained for
3772  //       backwards compatibility.
3773  // 'c' : A register suitable for use in an indirect
3774  //       jump. This will always be $25 for -mabicalls.
3775  // 'l' : The lo register. 1 word storage.
3776  // 'x' : The hilo register pair. Double word storage.
3777  if (Constraint.size() == 1) {
3778    switch (Constraint[0]) {
3779      default : break;
3780      case 'd':
3781      case 'y':
3782      case 'f':
3783      case 'c':
3784      case 'l':
3785      case 'x':
3786        return C_RegisterClass;
3787    }
3788  }
3789  return TargetLowering::getConstraintType(Constraint);
3790}
3791
3792/// Examine constraint type and operand type and determine a weight value.
3793/// This object must already have been set up with the operand type
3794/// and the current alternative constraint selected.
3795TargetLowering::ConstraintWeight
3796MipsTargetLowering::getSingleConstraintMatchWeight(
3797    AsmOperandInfo &info, const char *constraint) const {
3798  ConstraintWeight weight = CW_Invalid;
3799  Value *CallOperandVal = info.CallOperandVal;
3800    // If we don't have a value, we can't do a match,
3801    // but allow it at the lowest weight.
3802  if (CallOperandVal == NULL)
3803    return CW_Default;
3804  Type *type = CallOperandVal->getType();
3805  // Look at the constraint type.
3806  switch (*constraint) {
3807  default:
3808    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3809    break;
3810  case 'd':
3811  case 'y':
3812    if (type->isIntegerTy())
3813      weight = CW_Register;
3814    break;
3815  case 'f':
3816    if (type->isFloatTy())
3817      weight = CW_Register;
3818    break;
3819  case 'c': // $25 for indirect jumps
3820  case 'l': // lo register
3821  case 'x': // hilo register pair
3822      if (type->isIntegerTy())
3823      weight = CW_SpecificReg;
3824      break;
3825  case 'I': // signed 16 bit immediate
3826  case 'J': // integer zero
3827  case 'K': // unsigned 16 bit immediate
3828  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3829  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3830  case 'O': // signed 15 bit immediate (+- 16383)
3831  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3832    if (isa<ConstantInt>(CallOperandVal))
3833      weight = CW_Constant;
3834    break;
3835  }
3836  return weight;
3837}
3838
3839/// Given a register class constraint, like 'r', if this corresponds directly
3840/// to an LLVM register class, return a register of 0 and the register class
3841/// pointer.
3842std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3843getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3844{
3845  if (Constraint.size() == 1) {
3846    switch (Constraint[0]) {
3847    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3848    case 'y': // Same as 'r'. Exists for compatibility.
3849    case 'r':
3850      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3851        if (Subtarget->inMips16Mode())
3852          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3853        return std::make_pair(0U, &Mips::CPURegsRegClass);
3854      }
3855      if (VT == MVT::i64 && !HasMips64)
3856        return std::make_pair(0U, &Mips::CPURegsRegClass);
3857      if (VT == MVT::i64 && HasMips64)
3858        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3859      // This will generate an error message
3860      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3861    case 'f':
3862      if (VT == MVT::f32)
3863        return std::make_pair(0U, &Mips::FGR32RegClass);
3864      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3865        if (Subtarget->isFP64bit())
3866          return std::make_pair(0U, &Mips::FGR64RegClass);
3867        return std::make_pair(0U, &Mips::AFGR64RegClass);
3868      }
3869      break;
3870    case 'c': // register suitable for indirect jump
3871      if (VT == MVT::i32)
3872        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3873      assert(VT == MVT::i64 && "Unexpected type.");
3874      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3875    case 'l': // register suitable for indirect jump
3876      if (VT == MVT::i32)
3877        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3878      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3879    case 'x': // register suitable for indirect jump
3880      // Fixme: Not triggering the use of both hi and low
3881      // This will generate an error message
3882      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3883    }
3884  }
3885  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3886}
3887
3888/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3889/// vector.  If it is invalid, don't add anything to Ops.
3890void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3891                                                     std::string &Constraint,
3892                                                     std::vector<SDValue>&Ops,
3893                                                     SelectionDAG &DAG) const {
3894  SDValue Result(0, 0);
3895
3896  // Only support length 1 constraints for now.
3897  if (Constraint.length() > 1) return;
3898
3899  char ConstraintLetter = Constraint[0];
3900  switch (ConstraintLetter) {
3901  default: break; // This will fall through to the generic implementation
3902  case 'I': // Signed 16 bit constant
3903    // If this fails, the parent routine will give an error
3904    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3905      EVT Type = Op.getValueType();
3906      int64_t Val = C->getSExtValue();
3907      if (isInt<16>(Val)) {
3908        Result = DAG.getTargetConstant(Val, Type);
3909        break;
3910      }
3911    }
3912    return;
3913  case 'J': // integer zero
3914    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3915      EVT Type = Op.getValueType();
3916      int64_t Val = C->getZExtValue();
3917      if (Val == 0) {
3918        Result = DAG.getTargetConstant(0, Type);
3919        break;
3920      }
3921    }
3922    return;
3923  case 'K': // unsigned 16 bit immediate
3924    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3925      EVT Type = Op.getValueType();
3926      uint64_t Val = (uint64_t)C->getZExtValue();
3927      if (isUInt<16>(Val)) {
3928        Result = DAG.getTargetConstant(Val, Type);
3929        break;
3930      }
3931    }
3932    return;
3933  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3934    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3935      EVT Type = Op.getValueType();
3936      int64_t Val = C->getSExtValue();
3937      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3938        Result = DAG.getTargetConstant(Val, Type);
3939        break;
3940      }
3941    }
3942    return;
3943  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3944    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3945      EVT Type = Op.getValueType();
3946      int64_t Val = C->getSExtValue();
3947      if ((Val >= -65535) && (Val <= -1)) {
3948        Result = DAG.getTargetConstant(Val, Type);
3949        break;
3950      }
3951    }
3952    return;
3953  case 'O': // signed 15 bit immediate
3954    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3955      EVT Type = Op.getValueType();
3956      int64_t Val = C->getSExtValue();
3957      if ((isInt<15>(Val))) {
3958        Result = DAG.getTargetConstant(Val, Type);
3959        break;
3960      }
3961    }
3962    return;
3963  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3964    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3965      EVT Type = Op.getValueType();
3966      int64_t Val = C->getSExtValue();
3967      if ((Val <= 65535) && (Val >= 1)) {
3968        Result = DAG.getTargetConstant(Val, Type);
3969        break;
3970      }
3971    }
3972    return;
3973  }
3974
3975  if (Result.getNode()) {
3976    Ops.push_back(Result);
3977    return;
3978  }
3979
3980  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3981}
3982
3983bool
3984MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3985  // No global is ever allowed as a base.
3986  if (AM.BaseGV)
3987    return false;
3988
3989  switch (AM.Scale) {
3990  case 0: // "r+i" or just "i", depending on HasBaseReg.
3991    break;
3992  case 1:
3993    if (!AM.HasBaseReg) // allow "r+i".
3994      break;
3995    return false; // disallow "r+r" or "r+r+i".
3996  default:
3997    return false;
3998  }
3999
4000  return true;
4001}
4002
4003bool
4004MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4005  // The Mips target isn't yet aware of offsets.
4006  return false;
4007}
4008
4009EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
4010                                            unsigned SrcAlign,
4011                                            bool IsMemset, bool ZeroMemset,
4012                                            bool MemcpyStrSrc,
4013                                            MachineFunction &MF) const {
4014  if (Subtarget->hasMips64())
4015    return MVT::i64;
4016
4017  return MVT::i32;
4018}
4019
4020bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4021  if (VT != MVT::f32 && VT != MVT::f64)
4022    return false;
4023  if (Imm.isNegZero())
4024    return false;
4025  return Imm.isZero();
4026}
4027
4028unsigned MipsTargetLowering::getJumpTableEncoding() const {
4029  if (IsN64)
4030    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
4031
4032  return TargetLowering::getJumpTableEncoding();
4033}
4034
4035MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CC, bool IsO32_,
4036                                   CCState &Info)
4037  : CCInfo(Info), CallConv(CC), IsO32(IsO32_) {
4038  // Pre-allocate reserved argument area.
4039  CCInfo.AllocateStack(reservedArgArea(), 1);
4040}
4041
4042void MipsTargetLowering::MipsCC::
4043analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
4044                    bool IsVarArg) {
4045  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
4046         "CallingConv::Fast shouldn't be used for vararg functions.");
4047
4048  unsigned NumOpnds = Args.size();
4049  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
4050
4051  for (unsigned I = 0; I != NumOpnds; ++I) {
4052    MVT ArgVT = Args[I].VT;
4053    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
4054    bool R;
4055
4056    if (ArgFlags.isByVal()) {
4057      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
4058      continue;
4059    }
4060
4061    if (IsVarArg && !Args[I].IsFixed)
4062      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
4063    else
4064      R = FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
4065
4066    if (R) {
4067#ifndef NDEBUG
4068      dbgs() << "Call operand #" << I << " has unhandled type "
4069             << EVT(ArgVT).getEVTString();
4070#endif
4071      llvm_unreachable(0);
4072    }
4073  }
4074}
4075
4076void MipsTargetLowering::MipsCC::
4077analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args) {
4078  unsigned NumArgs = Args.size();
4079  llvm::CCAssignFn *FixedFn = fixedArgFn();
4080
4081  for (unsigned I = 0; I != NumArgs; ++I) {
4082    MVT ArgVT = Args[I].VT;
4083    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
4084
4085    if (ArgFlags.isByVal()) {
4086      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
4087      continue;
4088    }
4089
4090    if (!FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
4091      continue;
4092
4093#ifndef NDEBUG
4094    dbgs() << "Formal Arg #" << I << " has unhandled type "
4095           << EVT(ArgVT).getEVTString();
4096#endif
4097    llvm_unreachable(0);
4098  }
4099}
4100
4101void
4102MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
4103                                           MVT LocVT,
4104                                           CCValAssign::LocInfo LocInfo,
4105                                           ISD::ArgFlagsTy ArgFlags) {
4106  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
4107
4108  struct ByValArgInfo ByVal;
4109  unsigned RegSize = regSize();
4110  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
4111  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
4112                            RegSize * 2);
4113
4114  if (useRegsForByval())
4115    allocateRegs(ByVal, ByValSize, Align);
4116
4117  // Allocate space on caller's stack.
4118  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
4119                                       Align);
4120  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
4121                                    LocInfo));
4122  ByValArgs.push_back(ByVal);
4123}
4124
4125unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
4126  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
4127}
4128
4129unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
4130  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
4131}
4132
4133const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
4134  return IsO32 ? O32IntRegs : Mips64IntRegs;
4135}
4136
4137llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
4138  if (CallConv == CallingConv::Fast)
4139    return CC_Mips_FastCC;
4140
4141  return IsO32 ? CC_MipsO32 : CC_MipsN;
4142}
4143
4144llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
4145  return IsO32 ? CC_MipsO32 : CC_MipsN_VarArg;
4146}
4147
4148const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
4149  return IsO32 ? O32IntRegs : Mips64DPRegs;
4150}
4151
4152void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
4153                                              unsigned ByValSize,
4154                                              unsigned Align) {
4155  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
4156  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
4157  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
4158         "Byval argument's size and alignment should be a multiple of"
4159         "RegSize.");
4160
4161  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
4162
4163  // If Align > RegSize, the first arg register must be even.
4164  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
4165    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
4166    ++ByVal.FirstIdx;
4167  }
4168
4169  // Mark the registers allocated.
4170  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
4171       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
4172    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
4173}
4174
4175void MipsTargetLowering::
4176copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
4177              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
4178              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
4179              const MipsCC &CC, const ByValArgInfo &ByVal) const {
4180  MachineFunction &MF = DAG.getMachineFunction();
4181  MachineFrameInfo *MFI = MF.getFrameInfo();
4182  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
4183  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
4184  int FrameObjOffset;
4185
4186  if (RegAreaSize)
4187    FrameObjOffset = (int)CC.reservedArgArea() -
4188      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
4189  else
4190    FrameObjOffset = ByVal.Address;
4191
4192  // Create frame object.
4193  EVT PtrTy = getPointerTy();
4194  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
4195  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4196  InVals.push_back(FIN);
4197
4198  if (!ByVal.NumRegs)
4199    return;
4200
4201  // Copy arg registers.
4202  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
4203  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4204
4205  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
4206    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
4207    unsigned VReg = AddLiveIn(MF, ArgReg, RC);
4208    unsigned Offset = I * CC.regSize();
4209    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
4210                                   DAG.getConstant(Offset, PtrTy));
4211    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
4212                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
4213                                 false, false, 0);
4214    OutChains.push_back(Store);
4215  }
4216}
4217
4218// Copy byVal arg to registers and stack.
4219void MipsTargetLowering::
4220passByValArg(SDValue Chain, DebugLoc DL,
4221             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
4222             SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
4223             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
4224             const MipsCC &CC, const ByValArgInfo &ByVal,
4225             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
4226  unsigned ByValSize = Flags.getByValSize();
4227  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
4228  unsigned RegSize = CC.regSize();
4229  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
4230  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
4231
4232  if (ByVal.NumRegs) {
4233    const uint16_t *ArgRegs = CC.intArgRegs();
4234    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
4235    unsigned I = 0;
4236
4237    // Copy words to registers.
4238    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
4239      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4240                                    DAG.getConstant(Offset, PtrTy));
4241      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
4242                                    MachinePointerInfo(), false, false, false,
4243                                    Alignment);
4244      MemOpChains.push_back(LoadVal.getValue(1));
4245      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
4246      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
4247    }
4248
4249    // Return if the struct has been fully copied.
4250    if (ByValSize == Offset)
4251      return;
4252
4253    // Copy the remainder of the byval argument with sub-word loads and shifts.
4254    if (LeftoverBytes) {
4255      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
4256             "Size of the remainder should be smaller than RegSize.");
4257      SDValue Val;
4258
4259      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
4260           Offset < ByValSize; LoadSize /= 2) {
4261        unsigned RemSize = ByValSize - Offset;
4262
4263        if (RemSize < LoadSize)
4264          continue;
4265
4266        // Load subword.
4267        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4268                                      DAG.getConstant(Offset, PtrTy));
4269        SDValue LoadVal =
4270          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
4271                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
4272                         false, false, Alignment);
4273        MemOpChains.push_back(LoadVal.getValue(1));
4274
4275        // Shift the loaded value.
4276        unsigned Shamt;
4277
4278        if (isLittle)
4279          Shamt = TotalSizeLoaded;
4280        else
4281          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
4282
4283        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4284                                    DAG.getConstant(Shamt, MVT::i32));
4285
4286        if (Val.getNode())
4287          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4288        else
4289          Val = Shift;
4290
4291        Offset += LoadSize;
4292        TotalSizeLoaded += LoadSize;
4293        Alignment = std::min(Alignment, LoadSize);
4294      }
4295
4296      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
4297      RegsToPass.push_back(std::make_pair(ArgReg, Val));
4298      return;
4299    }
4300  }
4301
4302  // Copy remainder of byval arg to it with memcpy.
4303  unsigned MemCpySize = ByValSize - Offset;
4304  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4305                            DAG.getConstant(Offset, PtrTy));
4306  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4307                            DAG.getIntPtrConstant(ByVal.Address));
4308  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
4309                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
4310                        /*isVolatile=*/false, /*AlwaysInline=*/false,
4311                        MachinePointerInfo(0), MachinePointerInfo(0));
4312  MemOpChains.push_back(Chain);
4313}
4314
4315void
4316MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4317                                    const MipsCC &CC, SDValue Chain,
4318                                    DebugLoc DL, SelectionDAG &DAG) const {
4319  unsigned NumRegs = CC.numIntArgRegs();
4320  const uint16_t *ArgRegs = CC.intArgRegs();
4321  const CCState &CCInfo = CC.getCCInfo();
4322  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
4323  unsigned RegSize = CC.regSize();
4324  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
4325  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4326  MachineFunction &MF = DAG.getMachineFunction();
4327  MachineFrameInfo *MFI = MF.getFrameInfo();
4328  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4329
4330  // Offset of the first variable argument from stack pointer.
4331  int VaArgOffset;
4332
4333  if (NumRegs == Idx)
4334    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
4335  else
4336    VaArgOffset =
4337      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
4338
4339  // Record the frame index of the first variable argument
4340  // which is a value necessary to VASTART.
4341  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
4342  MipsFI->setVarArgsFrameIndex(FI);
4343
4344  // Copy the integer registers that have not been used for argument passing
4345  // to the argument register save area. For O32, the save area is allocated
4346  // in the caller's stack frame, while for N32/64, it is allocated in the
4347  // callee's stack frame.
4348  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
4349    unsigned Reg = AddLiveIn(MF, ArgRegs[I], RC);
4350    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4351    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
4352    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
4353    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
4354                                 MachinePointerInfo(), false, false, 0);
4355    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
4356    OutChains.push_back(Store);
4357  }
4358}
4359