MipsISelLowering.cpp revision 544cc21cf4807116251a699d8b1d3d4bace21597
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include <set>
16#include "MipsISelLowering.h"
17#include "InstPrinter/MipsInstPrinter.h"
18#include "MCTargetDesc/MipsBaseInfo.h"
19#include "MipsMachineFunction.h"
20#include "MipsSubtarget.h"
21#include "MipsTargetMachine.h"
22#include "MipsTargetObjectFile.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/CallingConvLower.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/SelectionDAGISel.h"
30#include "llvm/CodeGen/ValueTypes.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumTailCalls, "Number of tail calls");
44
45static cl::opt<bool>
46EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
47                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
48
49static cl::opt<bool>
50LargeGOT("mxgot", cl::Hidden,
51         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
52
53static cl::opt<bool>
54Mips16HardFloat("mips16-hard-float", cl::NotHidden,
55                cl::desc("MIPS: mips16 hard float enable."),
56                cl::init(false));
57
58
59
60static const uint16_t O32IntRegs[4] = {
61  Mips::A0, Mips::A1, Mips::A2, Mips::A3
62};
63
64static const uint16_t Mips64IntRegs[8] = {
65  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
66  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
67};
68
69static const uint16_t Mips64DPRegs[8] = {
70  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
71  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
72};
73
74// If I is a shifted mask, set the size (Size) and the first bit of the
75// mask (Pos), and return true.
76// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
77static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
78  if (!isShiftedMask_64(I))
79     return false;
80
81  Size = CountPopulation_64(I);
82  Pos = CountTrailingZeros_64(I);
83  return true;
84}
85
86static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
87  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
88  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
89}
90
91static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
92  EVT Ty = Op.getValueType();
93
94  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
95    return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
96                                      Flag);
97  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
98    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
99  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
100    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
101  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
102    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
103  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
104    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
105                                     N->getOffset(), Flag);
106
107  llvm_unreachable("Unexpected node type.");
108  return SDValue();
109}
110
111static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
112  DebugLoc DL = Op.getDebugLoc();
113  EVT Ty = Op.getValueType();
114  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
115  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
116  return DAG.getNode(ISD::ADD, DL, Ty,
117                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
118                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
119}
120
121static SDValue getAddrLocal(SDValue Op, SelectionDAG &DAG, bool HasMips64) {
122  DebugLoc DL = Op.getDebugLoc();
123  EVT Ty = Op.getValueType();
124  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
125  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
126                            getTargetNode(Op, DAG, GOTFlag));
127  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
128                             MachinePointerInfo::getGOT(), false, false, false,
129                             0);
130  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
131  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
132  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
133}
134
135static SDValue getAddrGlobal(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
136  DebugLoc DL = Op.getDebugLoc();
137  EVT Ty = Op.getValueType();
138  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
139                            getTargetNode(Op, DAG, Flag));
140  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
141                     MachinePointerInfo::getGOT(), false, false, false, 0);
142}
143
144static SDValue getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
145                                     unsigned HiFlag, unsigned LoFlag) {
146  DebugLoc DL = Op.getDebugLoc();
147  EVT Ty = Op.getValueType();
148  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
149  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, GetGlobalReg(DAG, Ty));
150  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
151                                getTargetNode(Op, DAG, LoFlag));
152  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
153                     MachinePointerInfo::getGOT(), false, false, false, 0);
154}
155
156const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
157  switch (Opcode) {
158  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
159  case MipsISD::TailCall:          return "MipsISD::TailCall";
160  case MipsISD::Hi:                return "MipsISD::Hi";
161  case MipsISD::Lo:                return "MipsISD::Lo";
162  case MipsISD::GPRel:             return "MipsISD::GPRel";
163  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
164  case MipsISD::Ret:               return "MipsISD::Ret";
165  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
166  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
167  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
168  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
169  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
170  case MipsISD::FPRound:           return "MipsISD::FPRound";
171  case MipsISD::MAdd:              return "MipsISD::MAdd";
172  case MipsISD::MAddu:             return "MipsISD::MAddu";
173  case MipsISD::MSub:              return "MipsISD::MSub";
174  case MipsISD::MSubu:             return "MipsISD::MSubu";
175  case MipsISD::DivRem:            return "MipsISD::DivRem";
176  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
177  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
178  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
179  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
180  case MipsISD::Sync:              return "MipsISD::Sync";
181  case MipsISD::Ext:               return "MipsISD::Ext";
182  case MipsISD::Ins:               return "MipsISD::Ins";
183  case MipsISD::LWL:               return "MipsISD::LWL";
184  case MipsISD::LWR:               return "MipsISD::LWR";
185  case MipsISD::SWL:               return "MipsISD::SWL";
186  case MipsISD::SWR:               return "MipsISD::SWR";
187  case MipsISD::LDL:               return "MipsISD::LDL";
188  case MipsISD::LDR:               return "MipsISD::LDR";
189  case MipsISD::SDL:               return "MipsISD::SDL";
190  case MipsISD::SDR:               return "MipsISD::SDR";
191  case MipsISD::EXTP:              return "MipsISD::EXTP";
192  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
193  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
194  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
195  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
196  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
197  case MipsISD::SHILO:             return "MipsISD::SHILO";
198  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
199  case MipsISD::MULT:              return "MipsISD::MULT";
200  case MipsISD::MULTU:             return "MipsISD::MULTU";
201  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSPDSP";
202  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
203  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
204  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
205  default:                         return NULL;
206  }
207}
208
209namespace {
210  struct ltstr {
211    bool operator()(const char *s1, const char *s2) const
212    {
213      return strcmp(s1, s2) < 0;
214    }
215  };
216
217  std::set<const char*, ltstr> noHelperNeeded;
218}
219
220void MipsTargetLowering::SetMips16LibcallName
221  (RTLIB::Libcall l, const char *Name) {
222  setLibcallName(l, Name);
223  noHelperNeeded.insert(Name);
224}
225
226void MipsTargetLowering::setMips16HardFloatLibCalls() {
227  SetMips16LibcallName(RTLIB::ADD_F32, "__mips16_addsf3");
228  SetMips16LibcallName(RTLIB::ADD_F64, "__mips16_adddf3");
229  SetMips16LibcallName(RTLIB::SUB_F32, "__mips16_subsf3");
230  SetMips16LibcallName(RTLIB::SUB_F64, "__mips16_subdf3");
231  SetMips16LibcallName(RTLIB::MUL_F32, "__mips16_mulsf3");
232  SetMips16LibcallName(RTLIB::MUL_F64, "__mips16_muldf3");
233  SetMips16LibcallName(RTLIB::DIV_F32, "__mips16_divsf3");
234  SetMips16LibcallName(RTLIB::DIV_F64, "__mips16_divdf3");
235  SetMips16LibcallName(RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2");
236  SetMips16LibcallName(RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2");
237  SetMips16LibcallName(RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi");
238  SetMips16LibcallName(RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi");
239  SetMips16LibcallName(RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf");
240  SetMips16LibcallName(RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf");
241  SetMips16LibcallName(RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf");
242  SetMips16LibcallName(RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf");
243  SetMips16LibcallName(RTLIB::OEQ_F32, "__mips16_eqsf2");
244  SetMips16LibcallName(RTLIB::OEQ_F64, "__mips16_eqdf2");
245  SetMips16LibcallName(RTLIB::UNE_F32, "__mips16_nesf2");
246  SetMips16LibcallName(RTLIB::UNE_F64, "__mips16_nedf2");
247  SetMips16LibcallName(RTLIB::OGE_F32, "__mips16_gesf2");
248  SetMips16LibcallName(RTLIB::OGE_F64, "__mips16_gedf2");
249  SetMips16LibcallName(RTLIB::OLT_F32, "__mips16_ltsf2");
250  SetMips16LibcallName(RTLIB::OLT_F64, "__mips16_ltdf2");
251  SetMips16LibcallName(RTLIB::OLE_F32, "__mips16_lesf2");
252  SetMips16LibcallName(RTLIB::OLE_F64, "__mips16_ledf2");
253  SetMips16LibcallName(RTLIB::OGT_F32, "__mips16_gtsf2");
254  SetMips16LibcallName(RTLIB::OGT_F64, "__mips16_gtdf2");
255  SetMips16LibcallName(RTLIB::UO_F32, "__mips16_unordsf2");
256  SetMips16LibcallName(RTLIB::UO_F64, "__mips16_unorddf2");
257  SetMips16LibcallName(RTLIB::O_F32, "__mips16_unordsf2");
258  SetMips16LibcallName(RTLIB::O_F64, "__mips16_unorddf2");
259}
260
261MipsTargetLowering::
262MipsTargetLowering(MipsTargetMachine &TM)
263  : TargetLowering(TM, new MipsTargetObjectFile()),
264    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
265    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
266    IsO32(Subtarget->isABI_O32()) {
267
268  // Mips does not have i1 type, so use i32 for
269  // setcc operations results (slt, sgt, ...).
270  setBooleanContents(ZeroOrOneBooleanContent);
271  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
272
273  // Set up the register classes
274  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
275
276  if (HasMips64)
277    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
278
279  if (Subtarget->inMips16Mode()) {
280    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
281    if (Mips16HardFloat)
282      setMips16HardFloatLibCalls();
283  }
284
285  if (Subtarget->hasDSP()) {
286    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
287
288    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
289      addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass);
290
291      // Expand all builtin opcodes.
292      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
293        setOperationAction(Opc, VecTys[i], Expand);
294
295      setOperationAction(ISD::LOAD, VecTys[i], Legal);
296      setOperationAction(ISD::STORE, VecTys[i], Legal);
297      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
298    }
299  }
300
301  if (!TM.Options.UseSoftFloat) {
302    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
303
304    // When dealing with single precision only, use libcalls
305    if (!Subtarget->isSingleFloat()) {
306      if (HasMips64)
307        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
308      else
309        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
310    }
311  }
312
313  // Load extented operations for i1 types must be promoted
314  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
315  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
316  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
317
318  // MIPS doesn't have extending float->double load/store
319  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
320  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
321
322  // Used by legalize types to correctly generate the setcc result.
323  // Without this, every float setcc comes with a AND/OR with the result,
324  // we don't want this, since the fpcmp result goes to a flag register,
325  // which is used implicitly by brcond and select operations.
326  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
327
328  // Mips Custom Operations
329  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
330  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
331  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
332  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
333  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
334  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
335  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
336  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
337  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
338  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
339  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
340  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
341  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
342  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
343  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
344  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
345  if (Subtarget->inMips16Mode()) {
346    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
347    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
348  }
349  else {
350    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
351    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
352  }
353  if (!Subtarget->inMips16Mode()) {
354    setOperationAction(ISD::LOAD,               MVT::i32, Custom);
355    setOperationAction(ISD::STORE,              MVT::i32, Custom);
356  }
357
358  if (!TM.Options.NoNaNsFPMath) {
359    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
360    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
361  }
362
363  if (HasMips64) {
364    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
365    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
366    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
367    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
368    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
369    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
370    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
371    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
372  }
373
374  if (!HasMips64) {
375    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
376    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
377    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
378  }
379
380  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
381  if (HasMips64)
382    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
383
384  setOperationAction(ISD::SDIV, MVT::i32, Expand);
385  setOperationAction(ISD::SREM, MVT::i32, Expand);
386  setOperationAction(ISD::UDIV, MVT::i32, Expand);
387  setOperationAction(ISD::UREM, MVT::i32, Expand);
388  setOperationAction(ISD::SDIV, MVT::i64, Expand);
389  setOperationAction(ISD::SREM, MVT::i64, Expand);
390  setOperationAction(ISD::UDIV, MVT::i64, Expand);
391  setOperationAction(ISD::UREM, MVT::i64, Expand);
392
393  // Operations not directly supported by Mips.
394  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
395  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
396  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
397  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
398  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
399  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
400  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
401  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
402  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
403  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
404  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
405  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
406  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
407  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
408  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
409  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
410  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
411  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
412  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
413  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
414
415  if (!Subtarget->hasMips32r2())
416    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
417
418  if (!Subtarget->hasMips64r2())
419    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
420
421  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
422  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
423  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
424  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
425  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
426  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
427  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
428  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
429  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
430  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
431  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
432  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
433  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
434  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
435  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
436  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
437  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
438
439  if (!TM.Options.NoNaNsFPMath) {
440    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
441    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
442  }
443
444  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
445  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
446  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
447  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
448
449  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
450
451  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
452  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
453  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
454
455  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
456  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
457
458  // Use the default for now
459  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
460  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
461
462  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
463  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
464  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
465  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
466
467  if (Subtarget->inMips16Mode()) {
468    setOperationAction(ISD::ATOMIC_CMP_SWAP,       MVT::i32,    Expand);
469    setOperationAction(ISD::ATOMIC_SWAP,           MVT::i32,    Expand);
470    setOperationAction(ISD::ATOMIC_LOAD_ADD,       MVT::i32,    Expand);
471    setOperationAction(ISD::ATOMIC_LOAD_SUB,       MVT::i32,    Expand);
472    setOperationAction(ISD::ATOMIC_LOAD_AND,       MVT::i32,    Expand);
473    setOperationAction(ISD::ATOMIC_LOAD_OR,        MVT::i32,    Expand);
474    setOperationAction(ISD::ATOMIC_LOAD_XOR,       MVT::i32,    Expand);
475    setOperationAction(ISD::ATOMIC_LOAD_NAND,      MVT::i32,    Expand);
476    setOperationAction(ISD::ATOMIC_LOAD_MIN,       MVT::i32,    Expand);
477    setOperationAction(ISD::ATOMIC_LOAD_MAX,       MVT::i32,    Expand);
478    setOperationAction(ISD::ATOMIC_LOAD_UMIN,      MVT::i32,    Expand);
479    setOperationAction(ISD::ATOMIC_LOAD_UMAX,      MVT::i32,    Expand);
480  }
481
482  setInsertFencesForAtomic(true);
483
484  if (!Subtarget->hasSEInReg()) {
485    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
486    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
487  }
488
489  if (!Subtarget->hasBitCount()) {
490    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
491    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
492  }
493
494  if (!Subtarget->hasSwap()) {
495    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
496    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
497  }
498
499  if (HasMips64) {
500    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
501    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
502    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
503    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
504  }
505
506  setTargetDAGCombine(ISD::ADDE);
507  setTargetDAGCombine(ISD::SUBE);
508  setTargetDAGCombine(ISD::SDIVREM);
509  setTargetDAGCombine(ISD::UDIVREM);
510  setTargetDAGCombine(ISD::SELECT);
511  setTargetDAGCombine(ISD::AND);
512  setTargetDAGCombine(ISD::OR);
513  setTargetDAGCombine(ISD::ADD);
514
515  setMinFunctionAlignment(HasMips64 ? 3 : 2);
516
517  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
518  computeRegisterProperties();
519
520  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
521  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
522
523  maxStoresPerMemcpy = 16;
524}
525
526bool
527MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
528  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
529
530  if (Subtarget->inMips16Mode())
531    return false;
532
533  switch (SVT) {
534  case MVT::i64:
535  case MVT::i32:
536    if (Fast)
537      *Fast = true;
538    return true;
539  default:
540    return false;
541  }
542}
543
544EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
545  if (!VT.isVector())
546    return MVT::i32;
547  return VT.changeVectorElementTypeToInteger();
548}
549
550// SelectMadd -
551// Transforms a subgraph in CurDAG if the following pattern is found:
552//  (addc multLo, Lo0), (adde multHi, Hi0),
553// where,
554//  multHi/Lo: product of multiplication
555//  Lo0: initial value of Lo register
556//  Hi0: initial value of Hi register
557// Return true if pattern matching was successful.
558static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
559  // ADDENode's second operand must be a flag output of an ADDC node in order
560  // for the matching to be successful.
561  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
562
563  if (ADDCNode->getOpcode() != ISD::ADDC)
564    return false;
565
566  SDValue MultHi = ADDENode->getOperand(0);
567  SDValue MultLo = ADDCNode->getOperand(0);
568  SDNode *MultNode = MultHi.getNode();
569  unsigned MultOpc = MultHi.getOpcode();
570
571  // MultHi and MultLo must be generated by the same node,
572  if (MultLo.getNode() != MultNode)
573    return false;
574
575  // and it must be a multiplication.
576  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
577    return false;
578
579  // MultLo amd MultHi must be the first and second output of MultNode
580  // respectively.
581  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
582    return false;
583
584  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
585  // of the values of MultNode, in which case MultNode will be removed in later
586  // phases.
587  // If there exist users other than ADDENode or ADDCNode, this function returns
588  // here, which will result in MultNode being mapped to a single MULT
589  // instruction node rather than a pair of MULT and MADD instructions being
590  // produced.
591  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
592    return false;
593
594  SDValue Chain = CurDAG->getEntryNode();
595  DebugLoc dl = ADDENode->getDebugLoc();
596
597  // create MipsMAdd(u) node
598  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
599
600  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
601                                 MultNode->getOperand(0),// Factor 0
602                                 MultNode->getOperand(1),// Factor 1
603                                 ADDCNode->getOperand(1),// Lo0
604                                 ADDENode->getOperand(1));// Hi0
605
606  // create CopyFromReg nodes
607  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
608                                              MAdd);
609  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
610                                              Mips::HI, MVT::i32,
611                                              CopyFromLo.getValue(2));
612
613  // replace uses of adde and addc here
614  if (!SDValue(ADDCNode, 0).use_empty())
615    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
616
617  if (!SDValue(ADDENode, 0).use_empty())
618    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
619
620  return true;
621}
622
623// SelectMsub -
624// Transforms a subgraph in CurDAG if the following pattern is found:
625//  (addc Lo0, multLo), (sube Hi0, multHi),
626// where,
627//  multHi/Lo: product of multiplication
628//  Lo0: initial value of Lo register
629//  Hi0: initial value of Hi register
630// Return true if pattern matching was successful.
631static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
632  // SUBENode's second operand must be a flag output of an SUBC node in order
633  // for the matching to be successful.
634  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
635
636  if (SUBCNode->getOpcode() != ISD::SUBC)
637    return false;
638
639  SDValue MultHi = SUBENode->getOperand(1);
640  SDValue MultLo = SUBCNode->getOperand(1);
641  SDNode *MultNode = MultHi.getNode();
642  unsigned MultOpc = MultHi.getOpcode();
643
644  // MultHi and MultLo must be generated by the same node,
645  if (MultLo.getNode() != MultNode)
646    return false;
647
648  // and it must be a multiplication.
649  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
650    return false;
651
652  // MultLo amd MultHi must be the first and second output of MultNode
653  // respectively.
654  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
655    return false;
656
657  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
658  // of the values of MultNode, in which case MultNode will be removed in later
659  // phases.
660  // If there exist users other than SUBENode or SUBCNode, this function returns
661  // here, which will result in MultNode being mapped to a single MULT
662  // instruction node rather than a pair of MULT and MSUB instructions being
663  // produced.
664  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
665    return false;
666
667  SDValue Chain = CurDAG->getEntryNode();
668  DebugLoc dl = SUBENode->getDebugLoc();
669
670  // create MipsSub(u) node
671  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
672
673  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
674                                 MultNode->getOperand(0),// Factor 0
675                                 MultNode->getOperand(1),// Factor 1
676                                 SUBCNode->getOperand(0),// Lo0
677                                 SUBENode->getOperand(0));// Hi0
678
679  // create CopyFromReg nodes
680  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
681                                              MSub);
682  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
683                                              Mips::HI, MVT::i32,
684                                              CopyFromLo.getValue(2));
685
686  // replace uses of sube and subc here
687  if (!SDValue(SUBCNode, 0).use_empty())
688    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
689
690  if (!SDValue(SUBENode, 0).use_empty())
691    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
692
693  return true;
694}
695
696static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
697                                  TargetLowering::DAGCombinerInfo &DCI,
698                                  const MipsSubtarget *Subtarget) {
699  if (DCI.isBeforeLegalize())
700    return SDValue();
701
702  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
703      SelectMadd(N, &DAG))
704    return SDValue(N, 0);
705
706  return SDValue();
707}
708
709static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
710                                  TargetLowering::DAGCombinerInfo &DCI,
711                                  const MipsSubtarget *Subtarget) {
712  if (DCI.isBeforeLegalize())
713    return SDValue();
714
715  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
716      SelectMsub(N, &DAG))
717    return SDValue(N, 0);
718
719  return SDValue();
720}
721
722static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
723                                    TargetLowering::DAGCombinerInfo &DCI,
724                                    const MipsSubtarget *Subtarget) {
725  if (DCI.isBeforeLegalizeOps())
726    return SDValue();
727
728  EVT Ty = N->getValueType(0);
729  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
730  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
731  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
732                                                  MipsISD::DivRemU;
733  DebugLoc dl = N->getDebugLoc();
734
735  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
736                               N->getOperand(0), N->getOperand(1));
737  SDValue InChain = DAG.getEntryNode();
738  SDValue InGlue = DivRem;
739
740  // insert MFLO
741  if (N->hasAnyUseOfValue(0)) {
742    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
743                                            InGlue);
744    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
745    InChain = CopyFromLo.getValue(1);
746    InGlue = CopyFromLo.getValue(2);
747  }
748
749  // insert MFHI
750  if (N->hasAnyUseOfValue(1)) {
751    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
752                                            HI, Ty, InGlue);
753    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
754  }
755
756  return SDValue();
757}
758
759static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
760  switch (CC) {
761  default: llvm_unreachable("Unknown fp condition code!");
762  case ISD::SETEQ:
763  case ISD::SETOEQ: return Mips::FCOND_OEQ;
764  case ISD::SETUNE: return Mips::FCOND_UNE;
765  case ISD::SETLT:
766  case ISD::SETOLT: return Mips::FCOND_OLT;
767  case ISD::SETGT:
768  case ISD::SETOGT: return Mips::FCOND_OGT;
769  case ISD::SETLE:
770  case ISD::SETOLE: return Mips::FCOND_OLE;
771  case ISD::SETGE:
772  case ISD::SETOGE: return Mips::FCOND_OGE;
773  case ISD::SETULT: return Mips::FCOND_ULT;
774  case ISD::SETULE: return Mips::FCOND_ULE;
775  case ISD::SETUGT: return Mips::FCOND_UGT;
776  case ISD::SETUGE: return Mips::FCOND_UGE;
777  case ISD::SETUO:  return Mips::FCOND_UN;
778  case ISD::SETO:   return Mips::FCOND_OR;
779  case ISD::SETNE:
780  case ISD::SETONE: return Mips::FCOND_ONE;
781  case ISD::SETUEQ: return Mips::FCOND_UEQ;
782  }
783}
784
785
786// Returns true if condition code has to be inverted.
787static bool InvertFPCondCode(Mips::CondCode CC) {
788  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
789    return false;
790
791  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
792         "Illegal Condition Code");
793
794  return true;
795}
796
797// Creates and returns an FPCmp node from a setcc node.
798// Returns Op if setcc is not a floating point comparison.
799static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
800  // must be a SETCC node
801  if (Op.getOpcode() != ISD::SETCC)
802    return Op;
803
804  SDValue LHS = Op.getOperand(0);
805
806  if (!LHS.getValueType().isFloatingPoint())
807    return Op;
808
809  SDValue RHS = Op.getOperand(1);
810  DebugLoc dl = Op.getDebugLoc();
811
812  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
813  // node if necessary.
814  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
815
816  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
817                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
818}
819
820// Creates and returns a CMovFPT/F node.
821static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
822                            SDValue False, DebugLoc DL) {
823  bool invert = InvertFPCondCode((Mips::CondCode)
824                                 cast<ConstantSDNode>(Cond.getOperand(2))
825                                 ->getSExtValue());
826
827  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
828                     True.getValueType(), True, False, Cond);
829}
830
831static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
832                                    TargetLowering::DAGCombinerInfo &DCI,
833                                    const MipsSubtarget *Subtarget) {
834  if (DCI.isBeforeLegalizeOps())
835    return SDValue();
836
837  SDValue SetCC = N->getOperand(0);
838
839  if ((SetCC.getOpcode() != ISD::SETCC) ||
840      !SetCC.getOperand(0).getValueType().isInteger())
841    return SDValue();
842
843  SDValue False = N->getOperand(2);
844  EVT FalseTy = False.getValueType();
845
846  if (!FalseTy.isInteger())
847    return SDValue();
848
849  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
850
851  if (!CN || CN->getZExtValue())
852    return SDValue();
853
854  const DebugLoc DL = N->getDebugLoc();
855  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
856  SDValue True = N->getOperand(1);
857
858  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
859                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
860
861  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
862}
863
864static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
865                                 TargetLowering::DAGCombinerInfo &DCI,
866                                 const MipsSubtarget *Subtarget) {
867  // Pattern match EXT.
868  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
869  //  => ext $dst, $src, size, pos
870  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
871    return SDValue();
872
873  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
874  unsigned ShiftRightOpc = ShiftRight.getOpcode();
875
876  // Op's first operand must be a shift right.
877  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
878    return SDValue();
879
880  // The second operand of the shift must be an immediate.
881  ConstantSDNode *CN;
882  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
883    return SDValue();
884
885  uint64_t Pos = CN->getZExtValue();
886  uint64_t SMPos, SMSize;
887
888  // Op's second operand must be a shifted mask.
889  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
890      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
891    return SDValue();
892
893  // Return if the shifted mask does not start at bit 0 or the sum of its size
894  // and Pos exceeds the word's size.
895  EVT ValTy = N->getValueType(0);
896  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
897    return SDValue();
898
899  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
900                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
901                     DAG.getConstant(SMSize, MVT::i32));
902}
903
904static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
905                                TargetLowering::DAGCombinerInfo &DCI,
906                                const MipsSubtarget *Subtarget) {
907  // Pattern match INS.
908  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
909  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
910  //  => ins $dst, $src, size, pos, $src1
911  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
912    return SDValue();
913
914  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
915  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
916  ConstantSDNode *CN;
917
918  // See if Op's first operand matches (and $src1 , mask0).
919  if (And0.getOpcode() != ISD::AND)
920    return SDValue();
921
922  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
923      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
924    return SDValue();
925
926  // See if Op's second operand matches (and (shl $src, pos), mask1).
927  if (And1.getOpcode() != ISD::AND)
928    return SDValue();
929
930  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
931      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
932    return SDValue();
933
934  // The shift masks must have the same position and size.
935  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
936    return SDValue();
937
938  SDValue Shl = And1.getOperand(0);
939  if (Shl.getOpcode() != ISD::SHL)
940    return SDValue();
941
942  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
943    return SDValue();
944
945  unsigned Shamt = CN->getZExtValue();
946
947  // Return if the shift amount and the first bit position of mask are not the
948  // same.
949  EVT ValTy = N->getValueType(0);
950  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
951    return SDValue();
952
953  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
954                     DAG.getConstant(SMPos0, MVT::i32),
955                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
956}
957
958static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
959                                 TargetLowering::DAGCombinerInfo &DCI,
960                                 const MipsSubtarget *Subtarget) {
961  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
962
963  if (DCI.isBeforeLegalizeOps())
964    return SDValue();
965
966  SDValue Add = N->getOperand(1);
967
968  if (Add.getOpcode() != ISD::ADD)
969    return SDValue();
970
971  SDValue Lo = Add.getOperand(1);
972
973  if ((Lo.getOpcode() != MipsISD::Lo) ||
974      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
975    return SDValue();
976
977  EVT ValTy = N->getValueType(0);
978  DebugLoc DL = N->getDebugLoc();
979
980  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
981                             Add.getOperand(0));
982  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
983}
984
985SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
986  const {
987  SelectionDAG &DAG = DCI.DAG;
988  unsigned opc = N->getOpcode();
989
990  switch (opc) {
991  default: break;
992  case ISD::ADDE:
993    return PerformADDECombine(N, DAG, DCI, Subtarget);
994  case ISD::SUBE:
995    return PerformSUBECombine(N, DAG, DCI, Subtarget);
996  case ISD::SDIVREM:
997  case ISD::UDIVREM:
998    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
999  case ISD::SELECT:
1000    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
1001  case ISD::AND:
1002    return PerformANDCombine(N, DAG, DCI, Subtarget);
1003  case ISD::OR:
1004    return PerformORCombine(N, DAG, DCI, Subtarget);
1005  case ISD::ADD:
1006    return PerformADDCombine(N, DAG, DCI, Subtarget);
1007  }
1008
1009  return SDValue();
1010}
1011
1012void
1013MipsTargetLowering::LowerOperationWrapper(SDNode *N,
1014                                          SmallVectorImpl<SDValue> &Results,
1015                                          SelectionDAG &DAG) const {
1016  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1017
1018  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1019    Results.push_back(Res.getValue(I));
1020}
1021
1022void
1023MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1024                                       SmallVectorImpl<SDValue> &Results,
1025                                       SelectionDAG &DAG) const {
1026  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1027
1028  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1029    Results.push_back(Res.getValue(I));
1030}
1031
1032SDValue MipsTargetLowering::
1033LowerOperation(SDValue Op, SelectionDAG &DAG) const
1034{
1035  switch (Op.getOpcode())
1036  {
1037    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
1038    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
1039    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
1040    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
1041    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
1042    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
1043    case ISD::SELECT:             return LowerSELECT(Op, DAG);
1044    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
1045    case ISD::SETCC:              return LowerSETCC(Op, DAG);
1046    case ISD::VASTART:            return LowerVASTART(Op, DAG);
1047    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
1048    case ISD::FABS:               return LowerFABS(Op, DAG);
1049    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
1050    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
1051    case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
1052    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
1053    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
1054    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
1055    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
1056    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
1057    case ISD::LOAD:               return LowerLOAD(Op, DAG);
1058    case ISD::STORE:              return LowerSTORE(Op, DAG);
1059    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1060    case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
1061    case ISD::ADD:                return LowerADD(Op, DAG);
1062  }
1063  return SDValue();
1064}
1065
1066//===----------------------------------------------------------------------===//
1067//  Lower helper functions
1068//===----------------------------------------------------------------------===//
1069
1070// AddLiveIn - This helper function adds the specified physical register to the
1071// MachineFunction as a live in value.  It also creates a corresponding
1072// virtual register for it.
1073static unsigned
1074AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1075{
1076  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1077  MF.getRegInfo().addLiveIn(PReg, VReg);
1078  return VReg;
1079}
1080
1081// Get fp branch code (not opcode) from condition code.
1082static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
1083  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
1084    return Mips::BRANCH_T;
1085
1086  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
1087         "Invalid CondCode.");
1088
1089  return Mips::BRANCH_F;
1090}
1091
1092/*
1093static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
1094                                        DebugLoc dl,
1095                                        const MipsSubtarget *Subtarget,
1096                                        const TargetInstrInfo *TII,
1097                                        bool isFPCmp, unsigned Opc) {
1098  // There is no need to expand CMov instructions if target has
1099  // conditional moves.
1100  if (Subtarget->hasCondMov())
1101    return BB;
1102
1103  // To "insert" a SELECT_CC instruction, we actually have to insert the
1104  // diamond control-flow pattern.  The incoming instruction knows the
1105  // destination vreg to set, the condition code register to branch on, the
1106  // true/false values to select between, and a branch opcode to use.
1107  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1108  MachineFunction::iterator It = BB;
1109  ++It;
1110
1111  //  thisMBB:
1112  //  ...
1113  //   TrueVal = ...
1114  //   setcc r1, r2, r3
1115  //   bNE   r1, r0, copy1MBB
1116  //   fallthrough --> copy0MBB
1117  MachineBasicBlock *thisMBB  = BB;
1118  MachineFunction *F = BB->getParent();
1119  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1120  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1121  F->insert(It, copy0MBB);
1122  F->insert(It, sinkMBB);
1123
1124  // Transfer the remainder of BB and its successor edges to sinkMBB.
1125  sinkMBB->splice(sinkMBB->begin(), BB,
1126                  llvm::next(MachineBasicBlock::iterator(MI)),
1127                  BB->end());
1128  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1129
1130  // Next, add the true and fallthrough blocks as its successors.
1131  BB->addSuccessor(copy0MBB);
1132  BB->addSuccessor(sinkMBB);
1133
1134  // Emit the right instruction according to the type of the operands compared
1135  if (isFPCmp)
1136    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
1137  else
1138    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
1139      .addReg(Mips::ZERO).addMBB(sinkMBB);
1140
1141  //  copy0MBB:
1142  //   %FalseValue = ...
1143  //   # fallthrough to sinkMBB
1144  BB = copy0MBB;
1145
1146  // Update machine-CFG edges
1147  BB->addSuccessor(sinkMBB);
1148
1149  //  sinkMBB:
1150  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1151  //  ...
1152  BB = sinkMBB;
1153
1154  if (isFPCmp)
1155    BuildMI(*BB, BB->begin(), dl,
1156            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1157      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
1158      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1159  else
1160    BuildMI(*BB, BB->begin(), dl,
1161            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1162      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
1163      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1164
1165  MI->eraseFromParent();   // The pseudo instruction is gone now.
1166  return BB;
1167}
1168*/
1169
1170MachineBasicBlock *
1171MipsTargetLowering::EmitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
1172  // $bb:
1173  //  bposge32_pseudo $vr0
1174  //  =>
1175  // $bb:
1176  //  bposge32 $tbb
1177  // $fbb:
1178  //  li $vr2, 0
1179  //  b $sink
1180  // $tbb:
1181  //  li $vr1, 1
1182  // $sink:
1183  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
1184
1185  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
1186  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1187  const TargetRegisterClass *RC = &Mips::CPURegsRegClass;
1188  DebugLoc DL = MI->getDebugLoc();
1189  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1190  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
1191  MachineFunction *F = BB->getParent();
1192  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
1193  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
1194  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
1195  F->insert(It, FBB);
1196  F->insert(It, TBB);
1197  F->insert(It, Sink);
1198
1199  // Transfer the remainder of BB and its successor edges to Sink.
1200  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
1201               BB->end());
1202  Sink->transferSuccessorsAndUpdatePHIs(BB);
1203
1204  // Add successors.
1205  BB->addSuccessor(FBB);
1206  BB->addSuccessor(TBB);
1207  FBB->addSuccessor(Sink);
1208  TBB->addSuccessor(Sink);
1209
1210  // Insert the real bposge32 instruction to $BB.
1211  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
1212
1213  // Fill $FBB.
1214  unsigned VR2 = RegInfo.createVirtualRegister(RC);
1215  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
1216    .addReg(Mips::ZERO).addImm(0);
1217  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
1218
1219  // Fill $TBB.
1220  unsigned VR1 = RegInfo.createVirtualRegister(RC);
1221  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
1222    .addReg(Mips::ZERO).addImm(1);
1223
1224  // Insert phi function to $Sink.
1225  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
1226          MI->getOperand(0).getReg())
1227    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
1228
1229  MI->eraseFromParent();   // The pseudo instruction is gone now.
1230  return Sink;
1231}
1232
1233MachineBasicBlock *
1234MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1235                                                MachineBasicBlock *BB) const {
1236  switch (MI->getOpcode()) {
1237  default: llvm_unreachable("Unexpected instr type to insert");
1238  case Mips::ATOMIC_LOAD_ADD_I8:
1239  case Mips::ATOMIC_LOAD_ADD_I8_P8:
1240    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
1241  case Mips::ATOMIC_LOAD_ADD_I16:
1242  case Mips::ATOMIC_LOAD_ADD_I16_P8:
1243    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
1244  case Mips::ATOMIC_LOAD_ADD_I32:
1245  case Mips::ATOMIC_LOAD_ADD_I32_P8:
1246    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
1247  case Mips::ATOMIC_LOAD_ADD_I64:
1248  case Mips::ATOMIC_LOAD_ADD_I64_P8:
1249    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
1250
1251  case Mips::ATOMIC_LOAD_AND_I8:
1252  case Mips::ATOMIC_LOAD_AND_I8_P8:
1253    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
1254  case Mips::ATOMIC_LOAD_AND_I16:
1255  case Mips::ATOMIC_LOAD_AND_I16_P8:
1256    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
1257  case Mips::ATOMIC_LOAD_AND_I32:
1258  case Mips::ATOMIC_LOAD_AND_I32_P8:
1259    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
1260  case Mips::ATOMIC_LOAD_AND_I64:
1261  case Mips::ATOMIC_LOAD_AND_I64_P8:
1262    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
1263
1264  case Mips::ATOMIC_LOAD_OR_I8:
1265  case Mips::ATOMIC_LOAD_OR_I8_P8:
1266    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
1267  case Mips::ATOMIC_LOAD_OR_I16:
1268  case Mips::ATOMIC_LOAD_OR_I16_P8:
1269    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
1270  case Mips::ATOMIC_LOAD_OR_I32:
1271  case Mips::ATOMIC_LOAD_OR_I32_P8:
1272    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
1273  case Mips::ATOMIC_LOAD_OR_I64:
1274  case Mips::ATOMIC_LOAD_OR_I64_P8:
1275    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
1276
1277  case Mips::ATOMIC_LOAD_XOR_I8:
1278  case Mips::ATOMIC_LOAD_XOR_I8_P8:
1279    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
1280  case Mips::ATOMIC_LOAD_XOR_I16:
1281  case Mips::ATOMIC_LOAD_XOR_I16_P8:
1282    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
1283  case Mips::ATOMIC_LOAD_XOR_I32:
1284  case Mips::ATOMIC_LOAD_XOR_I32_P8:
1285    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
1286  case Mips::ATOMIC_LOAD_XOR_I64:
1287  case Mips::ATOMIC_LOAD_XOR_I64_P8:
1288    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
1289
1290  case Mips::ATOMIC_LOAD_NAND_I8:
1291  case Mips::ATOMIC_LOAD_NAND_I8_P8:
1292    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
1293  case Mips::ATOMIC_LOAD_NAND_I16:
1294  case Mips::ATOMIC_LOAD_NAND_I16_P8:
1295    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
1296  case Mips::ATOMIC_LOAD_NAND_I32:
1297  case Mips::ATOMIC_LOAD_NAND_I32_P8:
1298    return EmitAtomicBinary(MI, BB, 4, 0, true);
1299  case Mips::ATOMIC_LOAD_NAND_I64:
1300  case Mips::ATOMIC_LOAD_NAND_I64_P8:
1301    return EmitAtomicBinary(MI, BB, 8, 0, true);
1302
1303  case Mips::ATOMIC_LOAD_SUB_I8:
1304  case Mips::ATOMIC_LOAD_SUB_I8_P8:
1305    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
1306  case Mips::ATOMIC_LOAD_SUB_I16:
1307  case Mips::ATOMIC_LOAD_SUB_I16_P8:
1308    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1309  case Mips::ATOMIC_LOAD_SUB_I32:
1310  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1311    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1312  case Mips::ATOMIC_LOAD_SUB_I64:
1313  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1314    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1315
1316  case Mips::ATOMIC_SWAP_I8:
1317  case Mips::ATOMIC_SWAP_I8_P8:
1318    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1319  case Mips::ATOMIC_SWAP_I16:
1320  case Mips::ATOMIC_SWAP_I16_P8:
1321    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1322  case Mips::ATOMIC_SWAP_I32:
1323  case Mips::ATOMIC_SWAP_I32_P8:
1324    return EmitAtomicBinary(MI, BB, 4, 0);
1325  case Mips::ATOMIC_SWAP_I64:
1326  case Mips::ATOMIC_SWAP_I64_P8:
1327    return EmitAtomicBinary(MI, BB, 8, 0);
1328
1329  case Mips::ATOMIC_CMP_SWAP_I8:
1330  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1331    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1332  case Mips::ATOMIC_CMP_SWAP_I16:
1333  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1334    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1335  case Mips::ATOMIC_CMP_SWAP_I32:
1336  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1337    return EmitAtomicCmpSwap(MI, BB, 4);
1338  case Mips::ATOMIC_CMP_SWAP_I64:
1339  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1340    return EmitAtomicCmpSwap(MI, BB, 8);
1341  case Mips::BPOSGE32_PSEUDO:
1342    return EmitBPOSGE32(MI, BB);
1343  }
1344}
1345
1346// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1347// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1348MachineBasicBlock *
1349MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1350                                     unsigned Size, unsigned BinOpcode,
1351                                     bool Nand) const {
1352  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1353
1354  MachineFunction *MF = BB->getParent();
1355  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1356  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1357  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1358  DebugLoc dl = MI->getDebugLoc();
1359  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1360
1361  if (Size == 4) {
1362    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1363    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1364    AND = Mips::AND;
1365    NOR = Mips::NOR;
1366    ZERO = Mips::ZERO;
1367    BEQ = Mips::BEQ;
1368  }
1369  else {
1370    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1371    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1372    AND = Mips::AND64;
1373    NOR = Mips::NOR64;
1374    ZERO = Mips::ZERO_64;
1375    BEQ = Mips::BEQ64;
1376  }
1377
1378  unsigned OldVal = MI->getOperand(0).getReg();
1379  unsigned Ptr = MI->getOperand(1).getReg();
1380  unsigned Incr = MI->getOperand(2).getReg();
1381
1382  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1383  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1384  unsigned Success = RegInfo.createVirtualRegister(RC);
1385
1386  // insert new blocks after the current block
1387  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1388  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1389  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1390  MachineFunction::iterator It = BB;
1391  ++It;
1392  MF->insert(It, loopMBB);
1393  MF->insert(It, exitMBB);
1394
1395  // Transfer the remainder of BB and its successor edges to exitMBB.
1396  exitMBB->splice(exitMBB->begin(), BB,
1397                  llvm::next(MachineBasicBlock::iterator(MI)),
1398                  BB->end());
1399  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1400
1401  //  thisMBB:
1402  //    ...
1403  //    fallthrough --> loopMBB
1404  BB->addSuccessor(loopMBB);
1405  loopMBB->addSuccessor(loopMBB);
1406  loopMBB->addSuccessor(exitMBB);
1407
1408  //  loopMBB:
1409  //    ll oldval, 0(ptr)
1410  //    <binop> storeval, oldval, incr
1411  //    sc success, storeval, 0(ptr)
1412  //    beq success, $0, loopMBB
1413  BB = loopMBB;
1414  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1415  if (Nand) {
1416    //  and andres, oldval, incr
1417    //  nor storeval, $0, andres
1418    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1419    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1420  } else if (BinOpcode) {
1421    //  <binop> storeval, oldval, incr
1422    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1423  } else {
1424    StoreVal = Incr;
1425  }
1426  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1427  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1428
1429  MI->eraseFromParent();   // The instruction is gone now.
1430
1431  return exitMBB;
1432}
1433
1434MachineBasicBlock *
1435MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1436                                             MachineBasicBlock *BB,
1437                                             unsigned Size, unsigned BinOpcode,
1438                                             bool Nand) const {
1439  assert((Size == 1 || Size == 2) &&
1440      "Unsupported size for EmitAtomicBinaryPartial.");
1441
1442  MachineFunction *MF = BB->getParent();
1443  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1444  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1445  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1446  DebugLoc dl = MI->getDebugLoc();
1447  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1448  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1449
1450  unsigned Dest = MI->getOperand(0).getReg();
1451  unsigned Ptr = MI->getOperand(1).getReg();
1452  unsigned Incr = MI->getOperand(2).getReg();
1453
1454  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1455  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1456  unsigned Mask = RegInfo.createVirtualRegister(RC);
1457  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1458  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1459  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1460  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1461  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1462  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1463  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1464  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1465  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1466  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1467  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1468  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1469  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1470  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1471  unsigned Success = RegInfo.createVirtualRegister(RC);
1472
1473  // insert new blocks after the current block
1474  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1475  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1476  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1477  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1478  MachineFunction::iterator It = BB;
1479  ++It;
1480  MF->insert(It, loopMBB);
1481  MF->insert(It, sinkMBB);
1482  MF->insert(It, exitMBB);
1483
1484  // Transfer the remainder of BB and its successor edges to exitMBB.
1485  exitMBB->splice(exitMBB->begin(), BB,
1486                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1487  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1488
1489  BB->addSuccessor(loopMBB);
1490  loopMBB->addSuccessor(loopMBB);
1491  loopMBB->addSuccessor(sinkMBB);
1492  sinkMBB->addSuccessor(exitMBB);
1493
1494  //  thisMBB:
1495  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1496  //    and     alignedaddr,ptr,masklsb2
1497  //    andi    ptrlsb2,ptr,3
1498  //    sll     shiftamt,ptrlsb2,3
1499  //    ori     maskupper,$0,255               # 0xff
1500  //    sll     mask,maskupper,shiftamt
1501  //    nor     mask2,$0,mask
1502  //    sll     incr2,incr,shiftamt
1503
1504  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1505  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1506    .addReg(Mips::ZERO).addImm(-4);
1507  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1508    .addReg(Ptr).addReg(MaskLSB2);
1509  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1510  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1511  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1512    .addReg(Mips::ZERO).addImm(MaskImm);
1513  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1514    .addReg(ShiftAmt).addReg(MaskUpper);
1515  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1516  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1517
1518  // atomic.load.binop
1519  // loopMBB:
1520  //   ll      oldval,0(alignedaddr)
1521  //   binop   binopres,oldval,incr2
1522  //   and     newval,binopres,mask
1523  //   and     maskedoldval0,oldval,mask2
1524  //   or      storeval,maskedoldval0,newval
1525  //   sc      success,storeval,0(alignedaddr)
1526  //   beq     success,$0,loopMBB
1527
1528  // atomic.swap
1529  // loopMBB:
1530  //   ll      oldval,0(alignedaddr)
1531  //   and     newval,incr2,mask
1532  //   and     maskedoldval0,oldval,mask2
1533  //   or      storeval,maskedoldval0,newval
1534  //   sc      success,storeval,0(alignedaddr)
1535  //   beq     success,$0,loopMBB
1536
1537  BB = loopMBB;
1538  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1539  if (Nand) {
1540    //  and andres, oldval, incr2
1541    //  nor binopres, $0, andres
1542    //  and newval, binopres, mask
1543    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1544    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1545      .addReg(Mips::ZERO).addReg(AndRes);
1546    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1547  } else if (BinOpcode) {
1548    //  <binop> binopres, oldval, incr2
1549    //  and newval, binopres, mask
1550    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1551    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1552  } else {// atomic.swap
1553    //  and newval, incr2, mask
1554    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1555  }
1556
1557  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1558    .addReg(OldVal).addReg(Mask2);
1559  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1560    .addReg(MaskedOldVal0).addReg(NewVal);
1561  BuildMI(BB, dl, TII->get(SC), Success)
1562    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1563  BuildMI(BB, dl, TII->get(Mips::BEQ))
1564    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1565
1566  //  sinkMBB:
1567  //    and     maskedoldval1,oldval,mask
1568  //    srl     srlres,maskedoldval1,shiftamt
1569  //    sll     sllres,srlres,24
1570  //    sra     dest,sllres,24
1571  BB = sinkMBB;
1572  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1573
1574  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1575    .addReg(OldVal).addReg(Mask);
1576  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1577      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1578  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1579      .addReg(SrlRes).addImm(ShiftImm);
1580  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1581      .addReg(SllRes).addImm(ShiftImm);
1582
1583  MI->eraseFromParent();   // The instruction is gone now.
1584
1585  return exitMBB;
1586}
1587
1588MachineBasicBlock *
1589MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1590                                      MachineBasicBlock *BB,
1591                                      unsigned Size) const {
1592  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1593
1594  MachineFunction *MF = BB->getParent();
1595  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1596  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1597  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1598  DebugLoc dl = MI->getDebugLoc();
1599  unsigned LL, SC, ZERO, BNE, BEQ;
1600
1601  if (Size == 4) {
1602    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1603    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1604    ZERO = Mips::ZERO;
1605    BNE = Mips::BNE;
1606    BEQ = Mips::BEQ;
1607  }
1608  else {
1609    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1610    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1611    ZERO = Mips::ZERO_64;
1612    BNE = Mips::BNE64;
1613    BEQ = Mips::BEQ64;
1614  }
1615
1616  unsigned Dest    = MI->getOperand(0).getReg();
1617  unsigned Ptr     = MI->getOperand(1).getReg();
1618  unsigned OldVal  = MI->getOperand(2).getReg();
1619  unsigned NewVal  = MI->getOperand(3).getReg();
1620
1621  unsigned Success = RegInfo.createVirtualRegister(RC);
1622
1623  // insert new blocks after the current block
1624  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1625  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1626  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1627  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1628  MachineFunction::iterator It = BB;
1629  ++It;
1630  MF->insert(It, loop1MBB);
1631  MF->insert(It, loop2MBB);
1632  MF->insert(It, exitMBB);
1633
1634  // Transfer the remainder of BB and its successor edges to exitMBB.
1635  exitMBB->splice(exitMBB->begin(), BB,
1636                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1637  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1638
1639  //  thisMBB:
1640  //    ...
1641  //    fallthrough --> loop1MBB
1642  BB->addSuccessor(loop1MBB);
1643  loop1MBB->addSuccessor(exitMBB);
1644  loop1MBB->addSuccessor(loop2MBB);
1645  loop2MBB->addSuccessor(loop1MBB);
1646  loop2MBB->addSuccessor(exitMBB);
1647
1648  // loop1MBB:
1649  //   ll dest, 0(ptr)
1650  //   bne dest, oldval, exitMBB
1651  BB = loop1MBB;
1652  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1653  BuildMI(BB, dl, TII->get(BNE))
1654    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1655
1656  // loop2MBB:
1657  //   sc success, newval, 0(ptr)
1658  //   beq success, $0, loop1MBB
1659  BB = loop2MBB;
1660  BuildMI(BB, dl, TII->get(SC), Success)
1661    .addReg(NewVal).addReg(Ptr).addImm(0);
1662  BuildMI(BB, dl, TII->get(BEQ))
1663    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1664
1665  MI->eraseFromParent();   // The instruction is gone now.
1666
1667  return exitMBB;
1668}
1669
1670MachineBasicBlock *
1671MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1672                                              MachineBasicBlock *BB,
1673                                              unsigned Size) const {
1674  assert((Size == 1 || Size == 2) &&
1675      "Unsupported size for EmitAtomicCmpSwapPartial.");
1676
1677  MachineFunction *MF = BB->getParent();
1678  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1679  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1680  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1681  DebugLoc dl = MI->getDebugLoc();
1682  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1683  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1684
1685  unsigned Dest    = MI->getOperand(0).getReg();
1686  unsigned Ptr     = MI->getOperand(1).getReg();
1687  unsigned CmpVal  = MI->getOperand(2).getReg();
1688  unsigned NewVal  = MI->getOperand(3).getReg();
1689
1690  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1691  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1692  unsigned Mask = RegInfo.createVirtualRegister(RC);
1693  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1694  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1695  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1696  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1697  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1698  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1699  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1700  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1701  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1702  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1703  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1704  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1705  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1706  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1707  unsigned Success = RegInfo.createVirtualRegister(RC);
1708
1709  // insert new blocks after the current block
1710  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1711  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1712  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1713  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1714  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1715  MachineFunction::iterator It = BB;
1716  ++It;
1717  MF->insert(It, loop1MBB);
1718  MF->insert(It, loop2MBB);
1719  MF->insert(It, sinkMBB);
1720  MF->insert(It, exitMBB);
1721
1722  // Transfer the remainder of BB and its successor edges to exitMBB.
1723  exitMBB->splice(exitMBB->begin(), BB,
1724                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1725  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1726
1727  BB->addSuccessor(loop1MBB);
1728  loop1MBB->addSuccessor(sinkMBB);
1729  loop1MBB->addSuccessor(loop2MBB);
1730  loop2MBB->addSuccessor(loop1MBB);
1731  loop2MBB->addSuccessor(sinkMBB);
1732  sinkMBB->addSuccessor(exitMBB);
1733
1734  // FIXME: computation of newval2 can be moved to loop2MBB.
1735  //  thisMBB:
1736  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1737  //    and     alignedaddr,ptr,masklsb2
1738  //    andi    ptrlsb2,ptr,3
1739  //    sll     shiftamt,ptrlsb2,3
1740  //    ori     maskupper,$0,255               # 0xff
1741  //    sll     mask,maskupper,shiftamt
1742  //    nor     mask2,$0,mask
1743  //    andi    maskedcmpval,cmpval,255
1744  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1745  //    andi    maskednewval,newval,255
1746  //    sll     shiftednewval,maskednewval,shiftamt
1747  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1748  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1749    .addReg(Mips::ZERO).addImm(-4);
1750  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1751    .addReg(Ptr).addReg(MaskLSB2);
1752  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1753  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1754  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1755    .addReg(Mips::ZERO).addImm(MaskImm);
1756  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1757    .addReg(ShiftAmt).addReg(MaskUpper);
1758  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1759  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1760    .addReg(CmpVal).addImm(MaskImm);
1761  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1762    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1763  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1764    .addReg(NewVal).addImm(MaskImm);
1765  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1766    .addReg(ShiftAmt).addReg(MaskedNewVal);
1767
1768  //  loop1MBB:
1769  //    ll      oldval,0(alginedaddr)
1770  //    and     maskedoldval0,oldval,mask
1771  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1772  BB = loop1MBB;
1773  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1774  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1775    .addReg(OldVal).addReg(Mask);
1776  BuildMI(BB, dl, TII->get(Mips::BNE))
1777    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1778
1779  //  loop2MBB:
1780  //    and     maskedoldval1,oldval,mask2
1781  //    or      storeval,maskedoldval1,shiftednewval
1782  //    sc      success,storeval,0(alignedaddr)
1783  //    beq     success,$0,loop1MBB
1784  BB = loop2MBB;
1785  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1786    .addReg(OldVal).addReg(Mask2);
1787  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1788    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1789  BuildMI(BB, dl, TII->get(SC), Success)
1790      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1791  BuildMI(BB, dl, TII->get(Mips::BEQ))
1792      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1793
1794  //  sinkMBB:
1795  //    srl     srlres,maskedoldval0,shiftamt
1796  //    sll     sllres,srlres,24
1797  //    sra     dest,sllres,24
1798  BB = sinkMBB;
1799  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1800
1801  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1802      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1803  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1804      .addReg(SrlRes).addImm(ShiftImm);
1805  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1806      .addReg(SllRes).addImm(ShiftImm);
1807
1808  MI->eraseFromParent();   // The instruction is gone now.
1809
1810  return exitMBB;
1811}
1812
1813//===----------------------------------------------------------------------===//
1814//  Misc Lower Operation implementation
1815//===----------------------------------------------------------------------===//
1816SDValue MipsTargetLowering::
1817LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1818{
1819  // The first operand is the chain, the second is the condition, the third is
1820  // the block to branch to if the condition is true.
1821  SDValue Chain = Op.getOperand(0);
1822  SDValue Dest = Op.getOperand(2);
1823  DebugLoc dl = Op.getDebugLoc();
1824
1825  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1826
1827  // Return if flag is not set by a floating point comparison.
1828  if (CondRes.getOpcode() != MipsISD::FPCmp)
1829    return Op;
1830
1831  SDValue CCNode  = CondRes.getOperand(2);
1832  Mips::CondCode CC =
1833    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1834  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1835
1836  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1837                     Dest, CondRes);
1838}
1839
1840SDValue MipsTargetLowering::
1841LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1842{
1843  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1844
1845  // Return if flag is not set by a floating point comparison.
1846  if (Cond.getOpcode() != MipsISD::FPCmp)
1847    return Op;
1848
1849  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1850                      Op.getDebugLoc());
1851}
1852
1853SDValue MipsTargetLowering::
1854LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1855{
1856  DebugLoc DL = Op.getDebugLoc();
1857  EVT Ty = Op.getOperand(0).getValueType();
1858  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1859                             Op.getOperand(0), Op.getOperand(1),
1860                             Op.getOperand(4));
1861
1862  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1863                     Op.getOperand(3));
1864}
1865
1866SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1867  SDValue Cond = CreateFPCmp(DAG, Op);
1868
1869  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1870         "Floating point operand expected.");
1871
1872  SDValue True  = DAG.getConstant(1, MVT::i32);
1873  SDValue False = DAG.getConstant(0, MVT::i32);
1874
1875  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1876}
1877
1878SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1879                                               SelectionDAG &DAG) const {
1880  // FIXME there isn't actually debug info here
1881  DebugLoc dl = Op.getDebugLoc();
1882  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1883
1884  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1885    const MipsTargetObjectFile &TLOF =
1886      (const MipsTargetObjectFile&)getObjFileLowering();
1887
1888    // %gp_rel relocation
1889    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1890      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1891                                              MipsII::MO_GPREL);
1892      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl,
1893                                      DAG.getVTList(MVT::i32), &GA, 1);
1894      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1895      return DAG.getNode(ISD::ADD, dl, MVT::i32, GPReg, GPRelNode);
1896    }
1897
1898    // %hi/%lo relocation
1899    return getAddrNonPIC(Op, DAG);
1900  }
1901
1902  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1903    return getAddrLocal(Op, DAG, HasMips64);
1904
1905  if (LargeGOT)
1906    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1907                                 MipsII::MO_GOT_LO16);
1908
1909  return getAddrGlobal(Op, DAG,
1910                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1911}
1912
1913SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1914                                              SelectionDAG &DAG) const {
1915  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1916    return getAddrNonPIC(Op, DAG);
1917
1918  return getAddrLocal(Op, DAG, HasMips64);
1919}
1920
1921SDValue MipsTargetLowering::
1922LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1923{
1924  // If the relocation model is PIC, use the General Dynamic TLS Model or
1925  // Local Dynamic TLS model, otherwise use the Initial Exec or
1926  // Local Exec TLS Model.
1927
1928  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1929  DebugLoc dl = GA->getDebugLoc();
1930  const GlobalValue *GV = GA->getGlobal();
1931  EVT PtrVT = getPointerTy();
1932
1933  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1934
1935  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1936    // General Dynamic and Local Dynamic TLS Model.
1937    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1938                                                      : MipsII::MO_TLSGD;
1939
1940    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1941    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1942                                   GetGlobalReg(DAG, PtrVT), TGA);
1943    unsigned PtrSize = PtrVT.getSizeInBits();
1944    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1945
1946    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1947
1948    ArgListTy Args;
1949    ArgListEntry Entry;
1950    Entry.Node = Argument;
1951    Entry.Ty = PtrTy;
1952    Args.push_back(Entry);
1953
1954    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1955                  false, false, false, false, 0, CallingConv::C,
1956                  /*isTailCall=*/false, /*doesNotRet=*/false,
1957                  /*isReturnValueUsed=*/true,
1958                  TlsGetAddr, Args, DAG, dl);
1959    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1960
1961    SDValue Ret = CallResult.first;
1962
1963    if (model != TLSModel::LocalDynamic)
1964      return Ret;
1965
1966    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1967                                               MipsII::MO_DTPREL_HI);
1968    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1969    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1970                                               MipsII::MO_DTPREL_LO);
1971    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1972    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1973    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1974  }
1975
1976  SDValue Offset;
1977  if (model == TLSModel::InitialExec) {
1978    // Initial Exec TLS Model
1979    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1980                                             MipsII::MO_GOTTPREL);
1981    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1982                      TGA);
1983    Offset = DAG.getLoad(PtrVT, dl,
1984                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1985                         false, false, false, 0);
1986  } else {
1987    // Local Exec TLS Model
1988    assert(model == TLSModel::LocalExec);
1989    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1990                                               MipsII::MO_TPREL_HI);
1991    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1992                                               MipsII::MO_TPREL_LO);
1993    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1994    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1995    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1996  }
1997
1998  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1999  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2000}
2001
2002SDValue MipsTargetLowering::
2003LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2004{
2005  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2006    return getAddrNonPIC(Op, DAG);
2007
2008  return getAddrLocal(Op, DAG, HasMips64);
2009}
2010
2011SDValue MipsTargetLowering::
2012LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2013{
2014  // gp_rel relocation
2015  // FIXME: we should reference the constant pool using small data sections,
2016  // but the asm printer currently doesn't support this feature without
2017  // hacking it. This feature should come soon so we can uncomment the
2018  // stuff below.
2019  //if (IsInSmallSection(C->getType())) {
2020  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
2021  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
2022  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
2023
2024  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2025    return getAddrNonPIC(Op, DAG);
2026
2027  return getAddrLocal(Op, DAG, HasMips64);
2028}
2029
2030SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2031  MachineFunction &MF = DAG.getMachineFunction();
2032  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2033
2034  DebugLoc dl = Op.getDebugLoc();
2035  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2036                                 getPointerTy());
2037
2038  // vastart just stores the address of the VarArgsFrameIndex slot into the
2039  // memory location argument.
2040  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2041  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
2042                      MachinePointerInfo(SV), false, false, 0);
2043}
2044
2045static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2046  EVT TyX = Op.getOperand(0).getValueType();
2047  EVT TyY = Op.getOperand(1).getValueType();
2048  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2049  SDValue Const31 = DAG.getConstant(31, MVT::i32);
2050  DebugLoc DL = Op.getDebugLoc();
2051  SDValue Res;
2052
2053  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2054  // to i32.
2055  SDValue X = (TyX == MVT::f32) ?
2056    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2057    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2058                Const1);
2059  SDValue Y = (TyY == MVT::f32) ?
2060    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2061    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2062                Const1);
2063
2064  if (HasR2) {
2065    // ext  E, Y, 31, 1  ; extract bit31 of Y
2066    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
2067    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2068    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2069  } else {
2070    // sll SllX, X, 1
2071    // srl SrlX, SllX, 1
2072    // srl SrlY, Y, 31
2073    // sll SllY, SrlX, 31
2074    // or  Or, SrlX, SllY
2075    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2076    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2077    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2078    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2079    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2080  }
2081
2082  if (TyX == MVT::f32)
2083    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2084
2085  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2086                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2087  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2088}
2089
2090static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2091  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2092  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2093  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2094  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2095  DebugLoc DL = Op.getDebugLoc();
2096
2097  // Bitcast to integer nodes.
2098  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2099  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2100
2101  if (HasR2) {
2102    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2103    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2104    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2105                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
2106
2107    if (WidthX > WidthY)
2108      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2109    else if (WidthY > WidthX)
2110      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2111
2112    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2113                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
2114    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2115  }
2116
2117  // (d)sll SllX, X, 1
2118  // (d)srl SrlX, SllX, 1
2119  // (d)srl SrlY, Y, width(Y)-1
2120  // (d)sll SllY, SrlX, width(Y)-1
2121  // or     Or, SrlX, SllY
2122  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2123  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2124  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2125                             DAG.getConstant(WidthY - 1, MVT::i32));
2126
2127  if (WidthX > WidthY)
2128    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2129  else if (WidthY > WidthX)
2130    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2131
2132  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2133                             DAG.getConstant(WidthX - 1, MVT::i32));
2134  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2135  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2136}
2137
2138SDValue
2139MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2140  if (Subtarget->hasMips64())
2141    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
2142
2143  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
2144}
2145
2146static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2147  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2148  DebugLoc DL = Op.getDebugLoc();
2149
2150  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2151  // to i32.
2152  SDValue X = (Op.getValueType() == MVT::f32) ?
2153    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2154    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2155                Const1);
2156
2157  // Clear MSB.
2158  if (HasR2)
2159    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2160                      DAG.getRegister(Mips::ZERO, MVT::i32),
2161                      DAG.getConstant(31, MVT::i32), Const1, X);
2162  else {
2163    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2164    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2165  }
2166
2167  if (Op.getValueType() == MVT::f32)
2168    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2169
2170  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2171                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2172  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2173}
2174
2175static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2176  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2177  DebugLoc DL = Op.getDebugLoc();
2178
2179  // Bitcast to integer node.
2180  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2181
2182  // Clear MSB.
2183  if (HasR2)
2184    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2185                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
2186                      DAG.getConstant(63, MVT::i32), Const1, X);
2187  else {
2188    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2189    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2190  }
2191
2192  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2193}
2194
2195SDValue
2196MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
2197  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
2198    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
2199
2200  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
2201}
2202
2203SDValue MipsTargetLowering::
2204LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2205  // check the depth
2206  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2207         "Frame address can only be determined for current frame.");
2208
2209  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2210  MFI->setFrameAddressIsTaken(true);
2211  EVT VT = Op.getValueType();
2212  DebugLoc dl = Op.getDebugLoc();
2213  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2214                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
2215  return FrameAddr;
2216}
2217
2218SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
2219                                            SelectionDAG &DAG) const {
2220  // check the depth
2221  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2222         "Return address can be determined only for current frame.");
2223
2224  MachineFunction &MF = DAG.getMachineFunction();
2225  MachineFrameInfo *MFI = MF.getFrameInfo();
2226  MVT VT = Op.getSimpleValueType();
2227  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
2228  MFI->setReturnAddressIsTaken(true);
2229
2230  // Return RA, which contains the return address. Mark it an implicit live-in.
2231  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2232  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2233}
2234
2235// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2236// generated from __builtin_eh_return (offset, handler)
2237// The effect of this is to adjust the stack pointer by "offset"
2238// and then branch to "handler".
2239SDValue MipsTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2240                                                                     const {
2241  MachineFunction &MF = DAG.getMachineFunction();
2242  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2243
2244  MipsFI->setCallsEhReturn();
2245  SDValue Chain     = Op.getOperand(0);
2246  SDValue Offset    = Op.getOperand(1);
2247  SDValue Handler   = Op.getOperand(2);
2248  DebugLoc DL       = Op.getDebugLoc();
2249  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2250
2251  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2252  // EH_RETURN nodes, so that instructions are emitted back-to-back.
2253  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
2254  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
2255  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2256  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2257  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2258                     DAG.getRegister(OffsetReg, Ty),
2259                     DAG.getRegister(AddrReg, getPointerTy()),
2260                     Chain.getValue(1));
2261}
2262
2263// TODO: set SType according to the desired memory barrier behavior.
2264SDValue
2265MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2266  unsigned SType = 0;
2267  DebugLoc dl = Op.getDebugLoc();
2268  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2269                     DAG.getConstant(SType, MVT::i32));
2270}
2271
2272SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2273                                              SelectionDAG &DAG) const {
2274  // FIXME: Need pseudo-fence for 'singlethread' fences
2275  // FIXME: Set SType for weaker fences where supported/appropriate.
2276  unsigned SType = 0;
2277  DebugLoc dl = Op.getDebugLoc();
2278  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2279                     DAG.getConstant(SType, MVT::i32));
2280}
2281
2282SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2283                                                SelectionDAG &DAG) const {
2284  DebugLoc DL = Op.getDebugLoc();
2285  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2286  SDValue Shamt = Op.getOperand(2);
2287
2288  // if shamt < 32:
2289  //  lo = (shl lo, shamt)
2290  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2291  // else:
2292  //  lo = 0
2293  //  hi = (shl lo, shamt[4:0])
2294  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2295                            DAG.getConstant(-1, MVT::i32));
2296  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2297                                      DAG.getConstant(1, MVT::i32));
2298  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2299                                     Not);
2300  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2301  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2302  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2303  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2304                             DAG.getConstant(0x20, MVT::i32));
2305  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2306                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2307  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2308
2309  SDValue Ops[2] = {Lo, Hi};
2310  return DAG.getMergeValues(Ops, 2, DL);
2311}
2312
2313SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2314                                                 bool IsSRA) const {
2315  DebugLoc DL = Op.getDebugLoc();
2316  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2317  SDValue Shamt = Op.getOperand(2);
2318
2319  // if shamt < 32:
2320  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2321  //  if isSRA:
2322  //    hi = (sra hi, shamt)
2323  //  else:
2324  //    hi = (srl hi, shamt)
2325  // else:
2326  //  if isSRA:
2327  //   lo = (sra hi, shamt[4:0])
2328  //   hi = (sra hi, 31)
2329  //  else:
2330  //   lo = (srl hi, shamt[4:0])
2331  //   hi = 0
2332  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2333                            DAG.getConstant(-1, MVT::i32));
2334  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2335                                     DAG.getConstant(1, MVT::i32));
2336  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2337  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2338  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2339  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2340                                     Hi, Shamt);
2341  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2342                             DAG.getConstant(0x20, MVT::i32));
2343  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2344                                DAG.getConstant(31, MVT::i32));
2345  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2346  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2347                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2348                   ShiftRightHi);
2349
2350  SDValue Ops[2] = {Lo, Hi};
2351  return DAG.getMergeValues(Ops, 2, DL);
2352}
2353
2354static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2355                            SDValue Chain, SDValue Src, unsigned Offset) {
2356  SDValue Ptr = LD->getBasePtr();
2357  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2358  EVT BasePtrVT = Ptr.getValueType();
2359  DebugLoc DL = LD->getDebugLoc();
2360  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2361
2362  if (Offset)
2363    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2364                      DAG.getConstant(Offset, BasePtrVT));
2365
2366  SDValue Ops[] = { Chain, Ptr, Src };
2367  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2368                                 LD->getMemOperand());
2369}
2370
2371// Expand an unaligned 32 or 64-bit integer load node.
2372SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2373  LoadSDNode *LD = cast<LoadSDNode>(Op);
2374  EVT MemVT = LD->getMemoryVT();
2375
2376  // Return if load is aligned or if MemVT is neither i32 nor i64.
2377  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2378      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2379    return SDValue();
2380
2381  bool IsLittle = Subtarget->isLittle();
2382  EVT VT = Op.getValueType();
2383  ISD::LoadExtType ExtType = LD->getExtensionType();
2384  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2385
2386  assert((VT == MVT::i32) || (VT == MVT::i64));
2387
2388  // Expand
2389  //  (set dst, (i64 (load baseptr)))
2390  // to
2391  //  (set tmp, (ldl (add baseptr, 7), undef))
2392  //  (set dst, (ldr baseptr, tmp))
2393  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2394    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2395                               IsLittle ? 7 : 0);
2396    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2397                        IsLittle ? 0 : 7);
2398  }
2399
2400  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2401                             IsLittle ? 3 : 0);
2402  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2403                             IsLittle ? 0 : 3);
2404
2405  // Expand
2406  //  (set dst, (i32 (load baseptr))) or
2407  //  (set dst, (i64 (sextload baseptr))) or
2408  //  (set dst, (i64 (extload baseptr)))
2409  // to
2410  //  (set tmp, (lwl (add baseptr, 3), undef))
2411  //  (set dst, (lwr baseptr, tmp))
2412  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2413      (ExtType == ISD::EXTLOAD))
2414    return LWR;
2415
2416  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2417
2418  // Expand
2419  //  (set dst, (i64 (zextload baseptr)))
2420  // to
2421  //  (set tmp0, (lwl (add baseptr, 3), undef))
2422  //  (set tmp1, (lwr baseptr, tmp0))
2423  //  (set tmp2, (shl tmp1, 32))
2424  //  (set dst, (srl tmp2, 32))
2425  DebugLoc DL = LD->getDebugLoc();
2426  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2427  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2428  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2429  SDValue Ops[] = { SRL, LWR.getValue(1) };
2430  return DAG.getMergeValues(Ops, 2, DL);
2431}
2432
2433static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2434                             SDValue Chain, unsigned Offset) {
2435  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2436  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2437  DebugLoc DL = SD->getDebugLoc();
2438  SDVTList VTList = DAG.getVTList(MVT::Other);
2439
2440  if (Offset)
2441    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2442                      DAG.getConstant(Offset, BasePtrVT));
2443
2444  SDValue Ops[] = { Chain, Value, Ptr };
2445  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2446                                 SD->getMemOperand());
2447}
2448
2449// Expand an unaligned 32 or 64-bit integer store node.
2450SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2451  StoreSDNode *SD = cast<StoreSDNode>(Op);
2452  EVT MemVT = SD->getMemoryVT();
2453
2454  // Return if store is aligned or if MemVT is neither i32 nor i64.
2455  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2456      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2457    return SDValue();
2458
2459  bool IsLittle = Subtarget->isLittle();
2460  SDValue Value = SD->getValue(), Chain = SD->getChain();
2461  EVT VT = Value.getValueType();
2462
2463  // Expand
2464  //  (store val, baseptr) or
2465  //  (truncstore val, baseptr)
2466  // to
2467  //  (swl val, (add baseptr, 3))
2468  //  (swr val, baseptr)
2469  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2470    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2471                                IsLittle ? 3 : 0);
2472    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2473  }
2474
2475  assert(VT == MVT::i64);
2476
2477  // Expand
2478  //  (store val, baseptr)
2479  // to
2480  //  (sdl val, (add baseptr, 7))
2481  //  (sdr val, baseptr)
2482  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2483  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2484}
2485
2486// This function expands mips intrinsic nodes which have 64-bit input operands
2487// or output values.
2488//
2489// out64 = intrinsic-node in64
2490// =>
2491// lo = copy (extract-element (in64, 0))
2492// hi = copy (extract-element (in64, 1))
2493// mips-specific-node
2494// v0 = copy lo
2495// v1 = copy hi
2496// out64 = merge-values (v0, v1)
2497//
2498static SDValue LowerDSPIntr(SDValue Op, SelectionDAG &DAG,
2499                            unsigned Opc, bool HasI64In, bool HasI64Out) {
2500  DebugLoc DL = Op.getDebugLoc();
2501  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
2502  SDValue Chain = HasChainIn ? Op->getOperand(0) : DAG.getEntryNode();
2503  SmallVector<SDValue, 3> Ops;
2504
2505  if (HasI64In) {
2506    SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2507                               Op->getOperand(1 + HasChainIn),
2508                               DAG.getConstant(0, MVT::i32));
2509    SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2510                               Op->getOperand(1 + HasChainIn),
2511                               DAG.getConstant(1, MVT::i32));
2512
2513    Chain = DAG.getCopyToReg(Chain, DL, Mips::LO, InLo, SDValue());
2514    Chain = DAG.getCopyToReg(Chain, DL, Mips::HI, InHi, Chain.getValue(1));
2515
2516    Ops.push_back(Chain);
2517    Ops.append(Op->op_begin() + HasChainIn + 2, Op->op_end());
2518    Ops.push_back(Chain.getValue(1));
2519  } else {
2520    Ops.push_back(Chain);
2521    Ops.append(Op->op_begin() + HasChainIn + 1, Op->op_end());
2522  }
2523
2524  if (!HasI64Out)
2525    return DAG.getNode(Opc, DL, Op->value_begin(), Op->getNumValues(),
2526                       Ops.begin(), Ops.size());
2527
2528  SDValue Intr = DAG.getNode(Opc, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2529                             Ops.begin(), Ops.size());
2530  SDValue OutLo = DAG.getCopyFromReg(Intr.getValue(0), DL, Mips::LO, MVT::i32,
2531                                     Intr.getValue(1));
2532  SDValue OutHi = DAG.getCopyFromReg(OutLo.getValue(1), DL, Mips::HI, MVT::i32,
2533                                     OutLo.getValue(2));
2534  SDValue Out = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, OutLo, OutHi);
2535
2536  if (!HasChainIn)
2537    return Out;
2538
2539  SDValue Vals[] = { Out, OutHi.getValue(1) };
2540  return DAG.getMergeValues(Vals, 2, DL);
2541}
2542
2543SDValue MipsTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2544                                                    SelectionDAG &DAG) const {
2545  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
2546  default:
2547    return SDValue();
2548  case Intrinsic::mips_shilo:
2549    return LowerDSPIntr(Op, DAG, MipsISD::SHILO, true, true);
2550  case Intrinsic::mips_dpau_h_qbl:
2551    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL, true, true);
2552  case Intrinsic::mips_dpau_h_qbr:
2553    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR, true, true);
2554  case Intrinsic::mips_dpsu_h_qbl:
2555    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL, true, true);
2556  case Intrinsic::mips_dpsu_h_qbr:
2557    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR, true, true);
2558  case Intrinsic::mips_dpa_w_ph:
2559    return LowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH, true, true);
2560  case Intrinsic::mips_dps_w_ph:
2561    return LowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH, true, true);
2562  case Intrinsic::mips_dpax_w_ph:
2563    return LowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH, true, true);
2564  case Intrinsic::mips_dpsx_w_ph:
2565    return LowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH, true, true);
2566  case Intrinsic::mips_mulsa_w_ph:
2567    return LowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH, true, true);
2568  case Intrinsic::mips_mult:
2569    return LowerDSPIntr(Op, DAG, MipsISD::MULT, false, true);
2570  case Intrinsic::mips_multu:
2571    return LowerDSPIntr(Op, DAG, MipsISD::MULTU, false, true);
2572  case Intrinsic::mips_madd:
2573    return LowerDSPIntr(Op, DAG, MipsISD::MADD_DSP, true, true);
2574  case Intrinsic::mips_maddu:
2575    return LowerDSPIntr(Op, DAG, MipsISD::MADDU_DSP, true, true);
2576  case Intrinsic::mips_msub:
2577    return LowerDSPIntr(Op, DAG, MipsISD::MSUB_DSP, true, true);
2578  case Intrinsic::mips_msubu:
2579    return LowerDSPIntr(Op, DAG, MipsISD::MSUBU_DSP, true, true);
2580  }
2581}
2582
2583SDValue MipsTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2584                                                   SelectionDAG &DAG) const {
2585  switch (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue()) {
2586  default:
2587    return SDValue();
2588  case Intrinsic::mips_extp:
2589    return LowerDSPIntr(Op, DAG, MipsISD::EXTP, true, false);
2590  case Intrinsic::mips_extpdp:
2591    return LowerDSPIntr(Op, DAG, MipsISD::EXTPDP, true, false);
2592  case Intrinsic::mips_extr_w:
2593    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_W, true, false);
2594  case Intrinsic::mips_extr_r_w:
2595    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W, true, false);
2596  case Intrinsic::mips_extr_rs_w:
2597    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W, true, false);
2598  case Intrinsic::mips_extr_s_h:
2599    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H, true, false);
2600  case Intrinsic::mips_mthlip:
2601    return LowerDSPIntr(Op, DAG, MipsISD::MTHLIP, true, true);
2602  case Intrinsic::mips_mulsaq_s_w_ph:
2603    return LowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH, true, true);
2604  case Intrinsic::mips_maq_s_w_phl:
2605    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL, true, true);
2606  case Intrinsic::mips_maq_s_w_phr:
2607    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR, true, true);
2608  case Intrinsic::mips_maq_sa_w_phl:
2609    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL, true, true);
2610  case Intrinsic::mips_maq_sa_w_phr:
2611    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR, true, true);
2612  case Intrinsic::mips_dpaq_s_w_ph:
2613    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH, true, true);
2614  case Intrinsic::mips_dpsq_s_w_ph:
2615    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH, true, true);
2616  case Intrinsic::mips_dpaq_sa_l_w:
2617    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W, true, true);
2618  case Intrinsic::mips_dpsq_sa_l_w:
2619    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W, true, true);
2620  case Intrinsic::mips_dpaqx_s_w_ph:
2621    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH, true, true);
2622  case Intrinsic::mips_dpaqx_sa_w_ph:
2623    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH, true, true);
2624  case Intrinsic::mips_dpsqx_s_w_ph:
2625    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH, true, true);
2626  case Intrinsic::mips_dpsqx_sa_w_ph:
2627    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH, true, true);
2628  }
2629}
2630
2631SDValue MipsTargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
2632  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2633      || cast<ConstantSDNode>
2634        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2635      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2636    return SDValue();
2637
2638  // The pattern
2639  //   (add (frameaddr 0), (frame_to_args_offset))
2640  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2641  //   (add FrameObject, 0)
2642  // where FrameObject is a fixed StackObject with offset 0 which points to
2643  // the old stack pointer.
2644  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2645  EVT ValTy = Op->getValueType(0);
2646  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2647  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2648  return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
2649                     DAG.getConstant(0, ValTy));
2650}
2651
2652//===----------------------------------------------------------------------===//
2653//                      Calling Convention Implementation
2654//===----------------------------------------------------------------------===//
2655
2656//===----------------------------------------------------------------------===//
2657// TODO: Implement a generic logic using tblgen that can support this.
2658// Mips O32 ABI rules:
2659// ---
2660// i32 - Passed in A0, A1, A2, A3 and stack
2661// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2662//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2663// f64 - Only passed in two aliased f32 registers if no int reg has been used
2664//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2665//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2666//       go to stack.
2667//
2668//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2669//===----------------------------------------------------------------------===//
2670
2671static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2672                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2673                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2674
2675  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2676
2677  static const uint16_t IntRegs[] = {
2678      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2679  };
2680  static const uint16_t F32Regs[] = {
2681      Mips::F12, Mips::F14
2682  };
2683  static const uint16_t F64Regs[] = {
2684      Mips::D6, Mips::D7
2685  };
2686
2687  // Do not process byval args here.
2688  if (ArgFlags.isByVal())
2689    return true;
2690
2691  // Promote i8 and i16
2692  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2693    LocVT = MVT::i32;
2694    if (ArgFlags.isSExt())
2695      LocInfo = CCValAssign::SExt;
2696    else if (ArgFlags.isZExt())
2697      LocInfo = CCValAssign::ZExt;
2698    else
2699      LocInfo = CCValAssign::AExt;
2700  }
2701
2702  unsigned Reg;
2703
2704  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2705  // is true: function is vararg, argument is 3rd or higher, there is previous
2706  // argument which is not f32 or f64.
2707  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2708      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2709  unsigned OrigAlign = ArgFlags.getOrigAlign();
2710  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2711
2712  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2713    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2714    // If this is the first part of an i64 arg,
2715    // the allocated register must be either A0 or A2.
2716    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2717      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2718    LocVT = MVT::i32;
2719  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2720    // Allocate int register and shadow next int register. If first
2721    // available register is Mips::A1 or Mips::A3, shadow it too.
2722    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2723    if (Reg == Mips::A1 || Reg == Mips::A3)
2724      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2725    State.AllocateReg(IntRegs, IntRegsSize);
2726    LocVT = MVT::i32;
2727  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2728    // we are guaranteed to find an available float register
2729    if (ValVT == MVT::f32) {
2730      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2731      // Shadow int register
2732      State.AllocateReg(IntRegs, IntRegsSize);
2733    } else {
2734      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2735      // Shadow int registers
2736      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2737      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2738        State.AllocateReg(IntRegs, IntRegsSize);
2739      State.AllocateReg(IntRegs, IntRegsSize);
2740    }
2741  } else
2742    llvm_unreachable("Cannot handle this ValVT.");
2743
2744  if (!Reg) {
2745    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2746                                          OrigAlign);
2747    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2748  } else
2749    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2750
2751  return false;
2752}
2753
2754#include "MipsGenCallingConv.inc"
2755
2756//===----------------------------------------------------------------------===//
2757//                  Call Calling Convention Implementation
2758//===----------------------------------------------------------------------===//
2759
2760static const unsigned O32IntRegsSize = 4;
2761
2762// Return next O32 integer argument register.
2763static unsigned getNextIntArgReg(unsigned Reg) {
2764  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2765  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2766}
2767
2768/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2769/// for tail call optimization.
2770bool MipsTargetLowering::
2771IsEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
2772                                  unsigned NextStackOffset,
2773                                  const MipsFunctionInfo& FI) const {
2774  if (!EnableMipsTailCalls)
2775    return false;
2776
2777  // No tail call optimization for mips16.
2778  if (Subtarget->inMips16Mode())
2779    return false;
2780
2781  // Return false if either the callee or caller has a byval argument.
2782  if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
2783    return false;
2784
2785  // Return true if the callee's argument area is no larger than the
2786  // caller's.
2787  return NextStackOffset <= FI.getIncomingArgSize();
2788}
2789
2790SDValue
2791MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2792                                   SDValue Chain, SDValue Arg, DebugLoc DL,
2793                                   bool IsTailCall, SelectionDAG &DAG) const {
2794  if (!IsTailCall) {
2795    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2796                                 DAG.getIntPtrConstant(Offset));
2797    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2798                        false, 0);
2799  }
2800
2801  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2802  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2803  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2804  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2805                      /*isVolatile=*/ true, false, 0);
2806}
2807
2808//
2809// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
2810// cleaner way to do all of this but it will have to wait until the traditional
2811// gcc mechanism is completed.
2812//
2813// For Pic, in order for Mips16 code to call Mips32 code which according the abi
2814// have either arguments or returned values placed in floating point registers,
2815// we use a set of helper functions. (This includes functions which return type
2816//  complex which on Mips are returned in a pair of floating point registers).
2817//
2818// This is an encoding that we inherited from gcc.
2819// In Mips traditional O32, N32 ABI, floating point numbers are passed in
2820// floating point argument registers 1,2 only when the first and optionally
2821// the second arguments are float (sf) or double (df).
2822// For Mips16 we are only concerned with the situations where floating point
2823// arguments are being passed in floating point registers by the ABI, because
2824// Mips16 mode code cannot execute floating point instructions to load those
2825// values and hence helper functions are needed.
2826// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
2827// the helper function suffixs for these are:
2828//                        0,  1,    5,        9,         2,   6,        10
2829// this suffix can then be calculated as follows:
2830// for a given argument Arg:
2831//     Arg1x, Arg2x = 1 :  Arg is sf
2832//                    2 :  Arg is df
2833//                    0:   Arg is neither sf or df
2834// So this stub is the string for number Arg1x + Arg2x*4.
2835// However not all numbers between 0 and 10 are possible, we check anyway and
2836// assert if the impossible exists.
2837//
2838
2839unsigned int MipsTargetLowering::getMips16HelperFunctionStubNumber
2840  (ArgListTy &Args) const {
2841  unsigned int resultNum = 0;
2842  if (Args.size() >= 1) {
2843    Type *t = Args[0].Ty;
2844    if (t->isFloatTy()) {
2845      resultNum = 1;
2846    }
2847    else if (t->isDoubleTy()) {
2848      resultNum = 2;
2849    }
2850  }
2851  if (resultNum) {
2852    if (Args.size() >=2) {
2853      Type *t = Args[1].Ty;
2854      if (t->isFloatTy()) {
2855        resultNum += 4;
2856      }
2857      else if (t->isDoubleTy()) {
2858        resultNum += 8;
2859      }
2860    }
2861  }
2862  return resultNum;
2863}
2864
2865//
2866// prefixs are attached to stub numbers depending on the return type .
2867// return type: float  sf_
2868//              double df_
2869//              single complex sc_
2870//              double complext dc_
2871//              others  NO PREFIX
2872//
2873//
2874// The full name of a helper function is__mips16_call_stub +
2875//    return type dependent prefix + stub number
2876//
2877//
2878// This is something that probably should be in a different source file and
2879// perhaps done differently but my main purpose is to not waste runtime
2880// on something that we can enumerate in the source. Another possibility is
2881// to have a python script to generate these mapping tables. This will do
2882// for now. There are a whole series of helper function mapping arrays, one
2883// for each return type class as outlined above. There there are 11 possible
2884//  entries. Ones with 0 are ones which should never be selected
2885//
2886// All the arrays are similar except for ones which return neither
2887// sf, df, sc, dc, in which only care about ones which have sf or df as a
2888// first parameter.
2889//
2890#define P_ "__mips16_call_stub_"
2891#define MAX_STUB_NUMBER 10
2892#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
2893#define T P "0" , T1
2894#define P P_
2895static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
2896  {0, T1 };
2897#undef P
2898#define P P_ "sf_"
2899static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
2900  { T };
2901#undef P
2902#define P P_ "df_"
2903static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
2904  { T };
2905#undef P
2906#define P P_ "sc_"
2907static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
2908  { T };
2909#undef P
2910#define P P_ "dc_"
2911static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
2912  { T };
2913#undef P
2914#undef P_
2915
2916
2917const char* MipsTargetLowering::
2918  getMips16HelperFunction
2919    (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
2920  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
2921#ifndef NDEBUG
2922  const unsigned int maxStubNum = 10;
2923  assert(stubNum <= maxStubNum);
2924  const bool validStubNum[maxStubNum+1] =
2925    {true, true, true, false, false, true, true, false, false, true, true};
2926  assert(validStubNum[stubNum]);
2927#endif
2928  const char *result;
2929  if (RetTy->isFloatTy()) {
2930    result = sfMips16Helper[stubNum];
2931  }
2932  else if (RetTy ->isDoubleTy()) {
2933    result = dfMips16Helper[stubNum];
2934  }
2935  else if (RetTy->isStructTy()) {
2936    // check if it's complex
2937    if (RetTy->getNumContainedTypes() == 2) {
2938      if ((RetTy->getContainedType(0)->isFloatTy()) &&
2939          (RetTy->getContainedType(1)->isFloatTy())) {
2940        result = scMips16Helper[stubNum];
2941      }
2942      else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
2943               (RetTy->getContainedType(1)->isDoubleTy())) {
2944        result = dcMips16Helper[stubNum];
2945      }
2946      else {
2947        llvm_unreachable("Uncovered condition");
2948      }
2949    }
2950    else {
2951      llvm_unreachable("Uncovered condition");
2952    }
2953  }
2954  else {
2955    if (stubNum == 0) {
2956      needHelper = false;
2957      return "";
2958    }
2959    result = vMips16Helper[stubNum];
2960  }
2961  needHelper = true;
2962  return result;
2963}
2964
2965/// LowerCall - functions arguments are copied from virtual regs to
2966/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2967SDValue
2968MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2969                              SmallVectorImpl<SDValue> &InVals) const {
2970  SelectionDAG &DAG                     = CLI.DAG;
2971  DebugLoc &dl                          = CLI.DL;
2972  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2973  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2974  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2975  SDValue Chain                         = CLI.Chain;
2976  SDValue Callee                        = CLI.Callee;
2977  bool &isTailCall                      = CLI.IsTailCall;
2978  CallingConv::ID CallConv              = CLI.CallConv;
2979  bool isVarArg                         = CLI.IsVarArg;
2980
2981  const char* mips16HelperFunction = 0;
2982  bool needMips16Helper = false;
2983
2984  if (Subtarget->inMips16Mode() && getTargetMachine().Options.UseSoftFloat &&
2985      Mips16HardFloat) {
2986    //
2987    // currently we don't have symbols tagged with the mips16 or mips32
2988    // qualifier so we will assume that we don't know what kind it is.
2989    // and generate the helper
2990    //
2991    bool lookupHelper = true;
2992    if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2993      if (noHelperNeeded.find(S->getSymbol()) != noHelperNeeded.end()) {
2994        lookupHelper = false;
2995      }
2996    }
2997    if (lookupHelper) mips16HelperFunction =
2998      getMips16HelperFunction(CLI.RetTy, CLI.Args, needMips16Helper);
2999
3000  }
3001  MachineFunction &MF = DAG.getMachineFunction();
3002  MachineFrameInfo *MFI = MF.getFrameInfo();
3003  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
3004  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
3005
3006  // Analyze operands of the call, assigning locations to each operand.
3007  SmallVector<CCValAssign, 16> ArgLocs;
3008  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3009                 getTargetMachine(), ArgLocs, *DAG.getContext());
3010  MipsCC MipsCCInfo(CallConv, isVarArg, IsO32, CCInfo);
3011
3012  MipsCCInfo.analyzeCallOperands(Outs);
3013
3014  // Get a count of how many bytes are to be pushed on the stack.
3015  unsigned NextStackOffset = CCInfo.getNextStackOffset();
3016
3017  // Check if it's really possible to do a tail call.
3018  if (isTailCall)
3019    isTailCall =
3020      IsEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
3021                                        *MF.getInfo<MipsFunctionInfo>());
3022
3023  if (isTailCall)
3024    ++NumTailCalls;
3025
3026  // Chain is the output chain of the last Load/Store or CopyToReg node.
3027  // ByValChain is the output chain of the last Memcpy node created for copying
3028  // byval arguments to the stack.
3029  unsigned StackAlignment = TFL->getStackAlignment();
3030  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
3031  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
3032
3033  if (!isTailCall)
3034    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
3035
3036  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
3037                                        IsN64 ? Mips::SP_64 : Mips::SP,
3038                                        getPointerTy());
3039
3040  // With EABI is it possible to have 16 args on registers.
3041  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
3042  SmallVector<SDValue, 8> MemOpChains;
3043  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3044
3045  // Walk the register/memloc assignments, inserting copies/loads.
3046  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3047    SDValue Arg = OutVals[i];
3048    CCValAssign &VA = ArgLocs[i];
3049    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3050    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3051
3052    // ByVal Arg.
3053    if (Flags.isByVal()) {
3054      assert(Flags.getByValSize() &&
3055             "ByVal args of size 0 should have been ignored by front-end.");
3056      assert(ByValArg != MipsCCInfo.byval_end());
3057      assert(!isTailCall &&
3058             "Do not tail-call optimize if there is a byval argument.");
3059      passByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3060                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
3061      ++ByValArg;
3062      continue;
3063    }
3064
3065    // Promote the value if needed.
3066    switch (VA.getLocInfo()) {
3067    default: llvm_unreachable("Unknown loc info!");
3068    case CCValAssign::Full:
3069      if (VA.isRegLoc()) {
3070        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3071            (ValVT == MVT::f64 && LocVT == MVT::i64))
3072          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
3073        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3074          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3075                                   Arg, DAG.getConstant(0, MVT::i32));
3076          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3077                                   Arg, DAG.getConstant(1, MVT::i32));
3078          if (!Subtarget->isLittle())
3079            std::swap(Lo, Hi);
3080          unsigned LocRegLo = VA.getLocReg();
3081          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3082          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3083          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3084          continue;
3085        }
3086      }
3087      break;
3088    case CCValAssign::SExt:
3089      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
3090      break;
3091    case CCValAssign::ZExt:
3092      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
3093      break;
3094    case CCValAssign::AExt:
3095      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
3096      break;
3097    }
3098
3099    // Arguments that can be passed on register must be kept at
3100    // RegsToPass vector
3101    if (VA.isRegLoc()) {
3102      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3103      continue;
3104    }
3105
3106    // Register can't get to this point...
3107    assert(VA.isMemLoc());
3108
3109    // emit ISD::STORE whichs stores the
3110    // parameter value to a stack Location
3111    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3112                                         Chain, Arg, dl, isTailCall, DAG));
3113  }
3114
3115  // Transform all store nodes into one single node because all store
3116  // nodes are independent of each other.
3117  if (!MemOpChains.empty())
3118    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3119                        &MemOpChains[0], MemOpChains.size());
3120
3121  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3122  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3123  // node so that legalize doesn't hack it.
3124  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
3125  bool GlobalOrExternal = false, InternalLinkage = false;
3126  SDValue CalleeLo;
3127
3128  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3129    if (IsPICCall) {
3130      InternalLinkage = G->getGlobal()->hasInternalLinkage();
3131
3132      if (InternalLinkage)
3133        Callee = getAddrLocal(Callee, DAG, HasMips64);
3134      else if (LargeGOT)
3135        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
3136                                       MipsII::MO_CALL_LO16);
3137      else
3138        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
3139    } else
3140      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
3141                                          MipsII::MO_NO_FLAG);
3142    GlobalOrExternal = true;
3143  }
3144  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3145    if (!IsN64 && !IsPIC) // !N64 && static
3146      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
3147                                            MipsII::MO_NO_FLAG);
3148    else if (LargeGOT)
3149      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
3150                                     MipsII::MO_CALL_LO16);
3151    else if (HasMips64)
3152      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_DISP);
3153    else // O32 & PIC
3154      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
3155
3156    GlobalOrExternal = true;
3157  }
3158
3159  SDValue JumpTarget = Callee;
3160
3161  // T9 should contain the address of the callee function if
3162  // -reloction-model=pic or it is an indirect call.
3163  if (IsPICCall || !GlobalOrExternal) {
3164    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
3165    unsigned V0Reg = Mips::V0;
3166    if (needMips16Helper) {
3167      RegsToPass.push_front(std::make_pair(V0Reg, Callee));
3168      JumpTarget = DAG.getExternalSymbol(
3169        mips16HelperFunction, getPointerTy());
3170      JumpTarget = getAddrGlobal(JumpTarget, DAG, MipsII::MO_GOT);
3171    }
3172    else {
3173      RegsToPass.push_front(std::make_pair(T9Reg, Callee));
3174
3175      if (!Subtarget->inMips16Mode())
3176        JumpTarget = SDValue();
3177    }
3178  }
3179
3180  // Insert node "GP copy globalreg" before call to function.
3181  //
3182  // R_MIPS_CALL* operators (emitted when non-internal functions are called
3183  // in PIC mode) allow symbols to be resolved via lazy binding.
3184  // The lazy binding stub requires GP to point to the GOT.
3185  if (IsPICCall && !InternalLinkage) {
3186    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
3187    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
3188    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
3189  }
3190
3191  // Build a sequence of copy-to-reg nodes chained together with token
3192  // chain and flag operands which copy the outgoing args into registers.
3193  // The InFlag in necessary since all emitted instructions must be
3194  // stuck together.
3195  SDValue InFlag;
3196
3197  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3198    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3199                             RegsToPass[i].second, InFlag);
3200    InFlag = Chain.getValue(1);
3201  }
3202
3203  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
3204  //             = Chain, Callee, Reg#1, Reg#2, ...
3205  //
3206  // Returns a chain & a flag for retval copy to use.
3207  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3208  SmallVector<SDValue, 8> Ops(1, Chain);
3209
3210  if (JumpTarget.getNode())
3211    Ops.push_back(JumpTarget);
3212
3213  // Add argument registers to the end of the list so that they are
3214  // known live into the call.
3215  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3216    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3217                                  RegsToPass[i].second.getValueType()));
3218
3219  // Add a register mask operand representing the call-preserved registers.
3220  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3221  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3222  assert(Mask && "Missing call preserved mask for calling convention");
3223  Ops.push_back(DAG.getRegisterMask(Mask));
3224
3225  if (InFlag.getNode())
3226    Ops.push_back(InFlag);
3227
3228  if (isTailCall)
3229    return DAG.getNode(MipsISD::TailCall, dl, MVT::Other, &Ops[0], Ops.size());
3230
3231  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
3232  InFlag = Chain.getValue(1);
3233
3234  // Create the CALLSEQ_END node.
3235  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3236                             DAG.getIntPtrConstant(0, true), InFlag);
3237  InFlag = Chain.getValue(1);
3238
3239  // Handle result values, copying them out of physregs into vregs that we
3240  // return.
3241  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3242                         Ins, dl, DAG, InVals);
3243}
3244
3245/// LowerCallResult - Lower the result values of a call into the
3246/// appropriate copies out of appropriate physical registers.
3247SDValue
3248MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3249                                    CallingConv::ID CallConv, bool isVarArg,
3250                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3251                                    DebugLoc dl, SelectionDAG &DAG,
3252                                    SmallVectorImpl<SDValue> &InVals) const {
3253  // Assign locations to each value returned by this call.
3254  SmallVector<CCValAssign, 16> RVLocs;
3255  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3256                 getTargetMachine(), RVLocs, *DAG.getContext());
3257
3258  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
3259
3260  // Copy all of the result registers out of their specified physreg.
3261  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3262    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
3263                               RVLocs[i].getValVT(), InFlag).getValue(1);
3264    InFlag = Chain.getValue(2);
3265    InVals.push_back(Chain.getValue(0));
3266  }
3267
3268  return Chain;
3269}
3270
3271//===----------------------------------------------------------------------===//
3272//             Formal Arguments Calling Convention Implementation
3273//===----------------------------------------------------------------------===//
3274/// LowerFormalArguments - transform physical registers into virtual registers
3275/// and generate load operations for arguments places on the stack.
3276SDValue
3277MipsTargetLowering::LowerFormalArguments(SDValue Chain,
3278                                         CallingConv::ID CallConv,
3279                                         bool isVarArg,
3280                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3281                                         DebugLoc dl, SelectionDAG &DAG,
3282                                         SmallVectorImpl<SDValue> &InVals)
3283                                          const {
3284  MachineFunction &MF = DAG.getMachineFunction();
3285  MachineFrameInfo *MFI = MF.getFrameInfo();
3286  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3287
3288  MipsFI->setVarArgsFrameIndex(0);
3289
3290  // Used with vargs to acumulate store chains.
3291  std::vector<SDValue> OutChains;
3292
3293  // Assign locations to all of the incoming arguments.
3294  SmallVector<CCValAssign, 16> ArgLocs;
3295  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3296                 getTargetMachine(), ArgLocs, *DAG.getContext());
3297  MipsCC MipsCCInfo(CallConv, isVarArg, IsO32, CCInfo);
3298
3299  MipsCCInfo.analyzeFormalArguments(Ins);
3300  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3301                           MipsCCInfo.hasByValArg());
3302
3303  Function::const_arg_iterator FuncArg =
3304    DAG.getMachineFunction().getFunction()->arg_begin();
3305  unsigned CurArgIdx = 0;
3306  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3307
3308  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3309    CCValAssign &VA = ArgLocs[i];
3310    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
3311    CurArgIdx = Ins[i].OrigArgIndex;
3312    EVT ValVT = VA.getValVT();
3313    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3314    bool IsRegLoc = VA.isRegLoc();
3315
3316    if (Flags.isByVal()) {
3317      assert(Flags.getByValSize() &&
3318             "ByVal args of size 0 should have been ignored by front-end.");
3319      assert(ByValArg != MipsCCInfo.byval_end());
3320      copyByValRegs(Chain, dl, OutChains, DAG, Flags, InVals, &*FuncArg,
3321                    MipsCCInfo, *ByValArg);
3322      ++ByValArg;
3323      continue;
3324    }
3325
3326    // Arguments stored on registers
3327    if (IsRegLoc) {
3328      EVT RegVT = VA.getLocVT();
3329      unsigned ArgReg = VA.getLocReg();
3330      const TargetRegisterClass *RC;
3331
3332      if (RegVT == MVT::i32)
3333        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
3334                                        &Mips::CPURegsRegClass;
3335      else if (RegVT == MVT::i64)
3336        RC = &Mips::CPU64RegsRegClass;
3337      else if (RegVT == MVT::f32)
3338        RC = &Mips::FGR32RegClass;
3339      else if (RegVT == MVT::f64)
3340        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3341      else
3342        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3343
3344      // Transform the arguments stored on
3345      // physical registers into virtual ones
3346      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3347      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3348
3349      // If this is an 8 or 16-bit value, it has been passed promoted
3350      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3351      // truncate to the right size.
3352      if (VA.getLocInfo() != CCValAssign::Full) {
3353        unsigned Opcode = 0;
3354        if (VA.getLocInfo() == CCValAssign::SExt)
3355          Opcode = ISD::AssertSext;
3356        else if (VA.getLocInfo() == CCValAssign::ZExt)
3357          Opcode = ISD::AssertZext;
3358        if (Opcode)
3359          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3360                                 DAG.getValueType(ValVT));
3361        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3362      }
3363
3364      // Handle floating point arguments passed in integer registers.
3365      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3366          (RegVT == MVT::i64 && ValVT == MVT::f64))
3367        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3368      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3369        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3370                                  getNextIntArgReg(ArgReg), RC);
3371        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3372        if (!Subtarget->isLittle())
3373          std::swap(ArgValue, ArgValue2);
3374        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3375                               ArgValue, ArgValue2);
3376      }
3377
3378      InVals.push_back(ArgValue);
3379    } else { // VA.isRegLoc()
3380
3381      // sanity check
3382      assert(VA.isMemLoc());
3383
3384      // The stack pointer offset is relative to the caller stack frame.
3385      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3386                                      VA.getLocMemOffset(), true);
3387
3388      // Create load nodes to retrieve arguments from the stack
3389      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3390      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3391                                   MachinePointerInfo::getFixedStack(FI),
3392                                   false, false, false, 0));
3393    }
3394  }
3395
3396  // The mips ABIs for returning structs by value requires that we copy
3397  // the sret argument into $v0 for the return. Save the argument into
3398  // a virtual register so that we can access it from the return points.
3399  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3400    unsigned Reg = MipsFI->getSRetReturnReg();
3401    if (!Reg) {
3402      Reg = MF.getRegInfo().
3403        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
3404      MipsFI->setSRetReturnReg(Reg);
3405    }
3406    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3407    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3408  }
3409
3410  if (isVarArg)
3411    writeVarArgRegs(OutChains, MipsCCInfo, Chain, dl, DAG);
3412
3413  // All stores are grouped in one node to allow the matching between
3414  // the size of Ins and InVals. This only happens when on varg functions
3415  if (!OutChains.empty()) {
3416    OutChains.push_back(Chain);
3417    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3418                        &OutChains[0], OutChains.size());
3419  }
3420
3421  return Chain;
3422}
3423
3424//===----------------------------------------------------------------------===//
3425//               Return Value Calling Convention Implementation
3426//===----------------------------------------------------------------------===//
3427
3428bool
3429MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3430                                   MachineFunction &MF, bool isVarArg,
3431                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3432                                   LLVMContext &Context) const {
3433  SmallVector<CCValAssign, 16> RVLocs;
3434  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3435                 RVLocs, Context);
3436  return CCInfo.CheckReturn(Outs, RetCC_Mips);
3437}
3438
3439SDValue
3440MipsTargetLowering::LowerReturn(SDValue Chain,
3441                                CallingConv::ID CallConv, bool isVarArg,
3442                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3443                                const SmallVectorImpl<SDValue> &OutVals,
3444                                DebugLoc dl, SelectionDAG &DAG) const {
3445
3446  // CCValAssign - represent the assignment of
3447  // the return value to a location
3448  SmallVector<CCValAssign, 16> RVLocs;
3449
3450  // CCState - Info about the registers and stack slot.
3451  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3452                 getTargetMachine(), RVLocs, *DAG.getContext());
3453
3454  // Analize return values.
3455  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3456
3457  // If this is the first return lowered for this function, add
3458  // the regs to the liveout set for the function.
3459  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3460    for (unsigned i = 0; i != RVLocs.size(); ++i)
3461      if (RVLocs[i].isRegLoc())
3462        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3463  }
3464
3465  SDValue Flag;
3466
3467  // Copy the result values into the output registers.
3468  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3469    CCValAssign &VA = RVLocs[i];
3470    assert(VA.isRegLoc() && "Can only return in registers!");
3471
3472    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3473
3474    // guarantee that all emitted copies are
3475    // stuck together, avoiding something bad
3476    Flag = Chain.getValue(1);
3477  }
3478
3479  // The mips ABIs for returning structs by value requires that we copy
3480  // the sret argument into $v0 for the return. We saved the argument into
3481  // a virtual register in the entry block, so now we copy the value out
3482  // and into $v0.
3483  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3484    MachineFunction &MF      = DAG.getMachineFunction();
3485    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3486    unsigned Reg = MipsFI->getSRetReturnReg();
3487
3488    if (!Reg)
3489      llvm_unreachable("sret virtual register not created in the entry block");
3490    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3491    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
3492
3493    Chain = DAG.getCopyToReg(Chain, dl, V0, Val, Flag);
3494    Flag = Chain.getValue(1);
3495    MF.getRegInfo().addLiveOut(V0);
3496  }
3497
3498  // Return on Mips is always a "jr $ra"
3499  if (Flag.getNode())
3500    return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain, Flag);
3501
3502  // Return Void
3503  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain);
3504}
3505
3506//===----------------------------------------------------------------------===//
3507//                           Mips Inline Assembly Support
3508//===----------------------------------------------------------------------===//
3509
3510/// getConstraintType - Given a constraint letter, return the type of
3511/// constraint it is for this target.
3512MipsTargetLowering::ConstraintType MipsTargetLowering::
3513getConstraintType(const std::string &Constraint) const
3514{
3515  // Mips specific constrainy
3516  // GCC config/mips/constraints.md
3517  //
3518  // 'd' : An address register. Equivalent to r
3519  //       unless generating MIPS16 code.
3520  // 'y' : Equivalent to r; retained for
3521  //       backwards compatibility.
3522  // 'c' : A register suitable for use in an indirect
3523  //       jump. This will always be $25 for -mabicalls.
3524  // 'l' : The lo register. 1 word storage.
3525  // 'x' : The hilo register pair. Double word storage.
3526  if (Constraint.size() == 1) {
3527    switch (Constraint[0]) {
3528      default : break;
3529      case 'd':
3530      case 'y':
3531      case 'f':
3532      case 'c':
3533      case 'l':
3534      case 'x':
3535        return C_RegisterClass;
3536    }
3537  }
3538  return TargetLowering::getConstraintType(Constraint);
3539}
3540
3541/// Examine constraint type and operand type and determine a weight value.
3542/// This object must already have been set up with the operand type
3543/// and the current alternative constraint selected.
3544TargetLowering::ConstraintWeight
3545MipsTargetLowering::getSingleConstraintMatchWeight(
3546    AsmOperandInfo &info, const char *constraint) const {
3547  ConstraintWeight weight = CW_Invalid;
3548  Value *CallOperandVal = info.CallOperandVal;
3549    // If we don't have a value, we can't do a match,
3550    // but allow it at the lowest weight.
3551  if (CallOperandVal == NULL)
3552    return CW_Default;
3553  Type *type = CallOperandVal->getType();
3554  // Look at the constraint type.
3555  switch (*constraint) {
3556  default:
3557    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3558    break;
3559  case 'd':
3560  case 'y':
3561    if (type->isIntegerTy())
3562      weight = CW_Register;
3563    break;
3564  case 'f':
3565    if (type->isFloatTy())
3566      weight = CW_Register;
3567    break;
3568  case 'c': // $25 for indirect jumps
3569  case 'l': // lo register
3570  case 'x': // hilo register pair
3571      if (type->isIntegerTy())
3572      weight = CW_SpecificReg;
3573      break;
3574  case 'I': // signed 16 bit immediate
3575  case 'J': // integer zero
3576  case 'K': // unsigned 16 bit immediate
3577  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3578  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3579  case 'O': // signed 15 bit immediate (+- 16383)
3580  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3581    if (isa<ConstantInt>(CallOperandVal))
3582      weight = CW_Constant;
3583    break;
3584  }
3585  return weight;
3586}
3587
3588/// Given a register class constraint, like 'r', if this corresponds directly
3589/// to an LLVM register class, return a register of 0 and the register class
3590/// pointer.
3591std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3592getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3593{
3594  if (Constraint.size() == 1) {
3595    switch (Constraint[0]) {
3596    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3597    case 'y': // Same as 'r'. Exists for compatibility.
3598    case 'r':
3599      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3600        if (Subtarget->inMips16Mode())
3601          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3602        return std::make_pair(0U, &Mips::CPURegsRegClass);
3603      }
3604      if (VT == MVT::i64 && !HasMips64)
3605        return std::make_pair(0U, &Mips::CPURegsRegClass);
3606      if (VT == MVT::i64 && HasMips64)
3607        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3608      // This will generate an error message
3609      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3610    case 'f':
3611      if (VT == MVT::f32)
3612        return std::make_pair(0U, &Mips::FGR32RegClass);
3613      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3614        if (Subtarget->isFP64bit())
3615          return std::make_pair(0U, &Mips::FGR64RegClass);
3616        return std::make_pair(0U, &Mips::AFGR64RegClass);
3617      }
3618      break;
3619    case 'c': // register suitable for indirect jump
3620      if (VT == MVT::i32)
3621        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3622      assert(VT == MVT::i64 && "Unexpected type.");
3623      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3624    case 'l': // register suitable for indirect jump
3625      if (VT == MVT::i32)
3626        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3627      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3628    case 'x': // register suitable for indirect jump
3629      // Fixme: Not triggering the use of both hi and low
3630      // This will generate an error message
3631      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3632    }
3633  }
3634  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3635}
3636
3637/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3638/// vector.  If it is invalid, don't add anything to Ops.
3639void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3640                                                     std::string &Constraint,
3641                                                     std::vector<SDValue>&Ops,
3642                                                     SelectionDAG &DAG) const {
3643  SDValue Result(0, 0);
3644
3645  // Only support length 1 constraints for now.
3646  if (Constraint.length() > 1) return;
3647
3648  char ConstraintLetter = Constraint[0];
3649  switch (ConstraintLetter) {
3650  default: break; // This will fall through to the generic implementation
3651  case 'I': // Signed 16 bit constant
3652    // If this fails, the parent routine will give an error
3653    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3654      EVT Type = Op.getValueType();
3655      int64_t Val = C->getSExtValue();
3656      if (isInt<16>(Val)) {
3657        Result = DAG.getTargetConstant(Val, Type);
3658        break;
3659      }
3660    }
3661    return;
3662  case 'J': // integer zero
3663    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3664      EVT Type = Op.getValueType();
3665      int64_t Val = C->getZExtValue();
3666      if (Val == 0) {
3667        Result = DAG.getTargetConstant(0, Type);
3668        break;
3669      }
3670    }
3671    return;
3672  case 'K': // unsigned 16 bit immediate
3673    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3674      EVT Type = Op.getValueType();
3675      uint64_t Val = (uint64_t)C->getZExtValue();
3676      if (isUInt<16>(Val)) {
3677        Result = DAG.getTargetConstant(Val, Type);
3678        break;
3679      }
3680    }
3681    return;
3682  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3683    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3684      EVT Type = Op.getValueType();
3685      int64_t Val = C->getSExtValue();
3686      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3687        Result = DAG.getTargetConstant(Val, Type);
3688        break;
3689      }
3690    }
3691    return;
3692  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3693    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3694      EVT Type = Op.getValueType();
3695      int64_t Val = C->getSExtValue();
3696      if ((Val >= -65535) && (Val <= -1)) {
3697        Result = DAG.getTargetConstant(Val, Type);
3698        break;
3699      }
3700    }
3701    return;
3702  case 'O': // signed 15 bit immediate
3703    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3704      EVT Type = Op.getValueType();
3705      int64_t Val = C->getSExtValue();
3706      if ((isInt<15>(Val))) {
3707        Result = DAG.getTargetConstant(Val, Type);
3708        break;
3709      }
3710    }
3711    return;
3712  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3713    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3714      EVT Type = Op.getValueType();
3715      int64_t Val = C->getSExtValue();
3716      if ((Val <= 65535) && (Val >= 1)) {
3717        Result = DAG.getTargetConstant(Val, Type);
3718        break;
3719      }
3720    }
3721    return;
3722  }
3723
3724  if (Result.getNode()) {
3725    Ops.push_back(Result);
3726    return;
3727  }
3728
3729  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3730}
3731
3732bool
3733MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3734  // No global is ever allowed as a base.
3735  if (AM.BaseGV)
3736    return false;
3737
3738  switch (AM.Scale) {
3739  case 0: // "r+i" or just "i", depending on HasBaseReg.
3740    break;
3741  case 1:
3742    if (!AM.HasBaseReg) // allow "r+i".
3743      break;
3744    return false; // disallow "r+r" or "r+r+i".
3745  default:
3746    return false;
3747  }
3748
3749  return true;
3750}
3751
3752bool
3753MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3754  // The Mips target isn't yet aware of offsets.
3755  return false;
3756}
3757
3758EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3759                                            unsigned SrcAlign,
3760                                            bool IsMemset, bool ZeroMemset,
3761                                            bool MemcpyStrSrc,
3762                                            MachineFunction &MF) const {
3763  if (Subtarget->hasMips64())
3764    return MVT::i64;
3765
3766  return MVT::i32;
3767}
3768
3769bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3770  if (VT != MVT::f32 && VT != MVT::f64)
3771    return false;
3772  if (Imm.isNegZero())
3773    return false;
3774  return Imm.isZero();
3775}
3776
3777unsigned MipsTargetLowering::getJumpTableEncoding() const {
3778  if (IsN64)
3779    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3780
3781  return TargetLowering::getJumpTableEncoding();
3782}
3783
3784MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CallConv, bool IsVarArg,
3785                                   bool IsO32, CCState &Info) : CCInfo(Info) {
3786  UseRegsForByval = true;
3787
3788  if (IsO32) {
3789    RegSize = 4;
3790    NumIntArgRegs = array_lengthof(O32IntRegs);
3791    ReservedArgArea = 16;
3792    IntArgRegs = ShadowRegs = O32IntRegs;
3793    FixedFn = VarFn = CC_MipsO32;
3794  } else {
3795    RegSize = 8;
3796    NumIntArgRegs = array_lengthof(Mips64IntRegs);
3797    ReservedArgArea = 0;
3798    IntArgRegs = Mips64IntRegs;
3799    ShadowRegs = Mips64DPRegs;
3800    FixedFn = CC_MipsN;
3801    VarFn = CC_MipsN_VarArg;
3802  }
3803
3804  if (CallConv == CallingConv::Fast) {
3805    assert(!IsVarArg);
3806    UseRegsForByval = false;
3807    ReservedArgArea = 0;
3808    FixedFn = VarFn = CC_Mips_FastCC;
3809  }
3810
3811  // Pre-allocate reserved argument area.
3812  CCInfo.AllocateStack(ReservedArgArea, 1);
3813}
3814
3815void MipsTargetLowering::MipsCC::
3816analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args) {
3817  unsigned NumOpnds = Args.size();
3818
3819  for (unsigned I = 0; I != NumOpnds; ++I) {
3820    MVT ArgVT = Args[I].VT;
3821    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3822    bool R;
3823
3824    if (ArgFlags.isByVal()) {
3825      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3826      continue;
3827    }
3828
3829    if (Args[I].IsFixed)
3830      R = FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3831    else
3832      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3833
3834    if (R) {
3835#ifndef NDEBUG
3836      dbgs() << "Call operand #" << I << " has unhandled type "
3837             << EVT(ArgVT).getEVTString();
3838#endif
3839      llvm_unreachable(0);
3840    }
3841  }
3842}
3843
3844void MipsTargetLowering::MipsCC::
3845analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args) {
3846  unsigned NumArgs = Args.size();
3847
3848  for (unsigned I = 0; I != NumArgs; ++I) {
3849    MVT ArgVT = Args[I].VT;
3850    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3851
3852    if (ArgFlags.isByVal()) {
3853      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3854      continue;
3855    }
3856
3857    if (!FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
3858      continue;
3859
3860#ifndef NDEBUG
3861    dbgs() << "Formal Arg #" << I << " has unhandled type "
3862           << EVT(ArgVT).getEVTString();
3863#endif
3864    llvm_unreachable(0);
3865  }
3866}
3867
3868void
3869MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3870                                           MVT LocVT,
3871                                           CCValAssign::LocInfo LocInfo,
3872                                           ISD::ArgFlagsTy ArgFlags) {
3873  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3874
3875  struct ByValArgInfo ByVal;
3876  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3877  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3878                            RegSize * 2);
3879
3880  if (UseRegsForByval)
3881    allocateRegs(ByVal, ByValSize, Align);
3882
3883  // Allocate space on caller's stack.
3884  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3885                                       Align);
3886  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3887                                    LocInfo));
3888  ByValArgs.push_back(ByVal);
3889}
3890
3891void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3892                                              unsigned ByValSize,
3893                                              unsigned Align) {
3894  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3895         "Byval argument's size and alignment should be a multiple of"
3896         "RegSize.");
3897
3898  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3899
3900  // If Align > RegSize, the first arg register must be even.
3901  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3902    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3903    ++ByVal.FirstIdx;
3904  }
3905
3906  // Mark the registers allocated.
3907  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3908       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3909    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3910}
3911
3912void MipsTargetLowering::
3913copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
3914              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3915              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3916              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3917  MachineFunction &MF = DAG.getMachineFunction();
3918  MachineFrameInfo *MFI = MF.getFrameInfo();
3919  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3920  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3921  int FrameObjOffset;
3922
3923  if (RegAreaSize)
3924    FrameObjOffset = (int)CC.reservedArgArea() -
3925      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3926  else
3927    FrameObjOffset = ByVal.Address;
3928
3929  // Create frame object.
3930  EVT PtrTy = getPointerTy();
3931  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3932  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3933  InVals.push_back(FIN);
3934
3935  if (!ByVal.NumRegs)
3936    return;
3937
3938  // Copy arg registers.
3939  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3940  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3941
3942  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3943    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3944    unsigned VReg = AddLiveIn(MF, ArgReg, RC);
3945    unsigned Offset = I * CC.regSize();
3946    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3947                                   DAG.getConstant(Offset, PtrTy));
3948    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3949                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3950                                 false, false, 0);
3951    OutChains.push_back(Store);
3952  }
3953}
3954
3955// Copy byVal arg to registers and stack.
3956void MipsTargetLowering::
3957passByValArg(SDValue Chain, DebugLoc DL,
3958             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3959             SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
3960             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3961             const MipsCC &CC, const ByValArgInfo &ByVal,
3962             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3963  unsigned ByValSize = Flags.getByValSize();
3964  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3965  unsigned RegSize = CC.regSize();
3966  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3967  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3968
3969  if (ByVal.NumRegs) {
3970    const uint16_t *ArgRegs = CC.intArgRegs();
3971    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3972    unsigned I = 0;
3973
3974    // Copy words to registers.
3975    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3976      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3977                                    DAG.getConstant(Offset, PtrTy));
3978      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3979                                    MachinePointerInfo(), false, false, false,
3980                                    Alignment);
3981      MemOpChains.push_back(LoadVal.getValue(1));
3982      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3983      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3984    }
3985
3986    // Return if the struct has been fully copied.
3987    if (ByValSize == Offset)
3988      return;
3989
3990    // Copy the remainder of the byval argument with sub-word loads and shifts.
3991    if (LeftoverBytes) {
3992      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3993             "Size of the remainder should be smaller than RegSize.");
3994      SDValue Val;
3995
3996      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3997           Offset < ByValSize; LoadSize /= 2) {
3998        unsigned RemSize = ByValSize - Offset;
3999
4000        if (RemSize < LoadSize)
4001          continue;
4002
4003        // Load subword.
4004        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4005                                      DAG.getConstant(Offset, PtrTy));
4006        SDValue LoadVal =
4007          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
4008                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
4009                         false, false, Alignment);
4010        MemOpChains.push_back(LoadVal.getValue(1));
4011
4012        // Shift the loaded value.
4013        unsigned Shamt;
4014
4015        if (isLittle)
4016          Shamt = TotalSizeLoaded;
4017        else
4018          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
4019
4020        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4021                                    DAG.getConstant(Shamt, MVT::i32));
4022
4023        if (Val.getNode())
4024          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4025        else
4026          Val = Shift;
4027
4028        Offset += LoadSize;
4029        TotalSizeLoaded += LoadSize;
4030        Alignment = std::min(Alignment, LoadSize);
4031      }
4032
4033      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
4034      RegsToPass.push_back(std::make_pair(ArgReg, Val));
4035      return;
4036    }
4037  }
4038
4039  // Copy remainder of byval arg to it with memcpy.
4040  unsigned MemCpySize = ByValSize - Offset;
4041  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4042                            DAG.getConstant(Offset, PtrTy));
4043  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4044                            DAG.getIntPtrConstant(ByVal.Address));
4045  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
4046                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
4047                        /*isVolatile=*/false, /*AlwaysInline=*/false,
4048                        MachinePointerInfo(0), MachinePointerInfo(0));
4049  MemOpChains.push_back(Chain);
4050}
4051
4052void
4053MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4054                                    const MipsCC &CC, SDValue Chain,
4055                                    DebugLoc DL, SelectionDAG &DAG) const {
4056  unsigned NumRegs = CC.numIntArgRegs();
4057  const uint16_t *ArgRegs = CC.intArgRegs();
4058  const CCState &CCInfo = CC.getCCInfo();
4059  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
4060  unsigned RegSize = CC.regSize();
4061  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
4062  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4063  MachineFunction &MF = DAG.getMachineFunction();
4064  MachineFrameInfo *MFI = MF.getFrameInfo();
4065  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4066
4067  // Offset of the first variable argument from stack pointer.
4068  int VaArgOffset;
4069
4070  if (NumRegs == Idx)
4071    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
4072  else
4073    VaArgOffset =
4074      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
4075
4076  // Record the frame index of the first variable argument
4077  // which is a value necessary to VASTART.
4078  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
4079  MipsFI->setVarArgsFrameIndex(FI);
4080
4081  // Copy the integer registers that have not been used for argument passing
4082  // to the argument register save area. For O32, the save area is allocated
4083  // in the caller's stack frame, while for N32/64, it is allocated in the
4084  // callee's stack frame.
4085  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
4086    unsigned Reg = AddLiveIn(MF, ArgRegs[I], RC);
4087    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4088    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
4089    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
4090    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
4091                                 MachinePointerInfo(), false, false, 0);
4092    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
4093    OutChains.push_back(Store);
4094  }
4095}
4096