MipsISelLowering.cpp revision 7e0df9aa2966d0462e34511524a4958e226b74ee
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include <cctype>
38
39using namespace llvm;
40
41STATISTIC(NumTailCalls, "Number of tail calls");
42
43static cl::opt<bool>
44LargeGOT("mxgot", cl::Hidden,
45         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
46
47static cl::opt<bool>
48NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
49               cl::desc("MIPS: Don't trap on integer division by zero."),
50               cl::init(false));
51
52static const uint16_t O32IntRegs[4] = {
53  Mips::A0, Mips::A1, Mips::A2, Mips::A3
54};
55
56static const uint16_t Mips64IntRegs[8] = {
57  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
58  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
59};
60
61static const uint16_t Mips64DPRegs[8] = {
62  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
63  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
64};
65
66// If I is a shifted mask, set the size (Size) and the first bit of the
67// mask (Pos), and return true.
68// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
69static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
70  if (!isShiftedMask_64(I))
71     return false;
72
73  Size = CountPopulation_64(I);
74  Pos = countTrailingZeros(I);
75  return true;
76}
77
78SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
79  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
80  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
81}
82
83static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
84  EVT Ty = Op.getValueType();
85
86  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
87    return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(Op), Ty, 0,
88                                      Flag);
89  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
90    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
91  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
92    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
93  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
94    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
95  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
96    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
97                                     N->getOffset(), Flag);
98
99  llvm_unreachable("Unexpected node type.");
100  return SDValue();
101}
102
103static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
104  SDLoc DL(Op);
105  EVT Ty = Op.getValueType();
106  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
107  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
108  return DAG.getNode(ISD::ADD, DL, Ty,
109                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
110                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
111}
112
113SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
114                                         bool HasMips64) const {
115  SDLoc DL(Op);
116  EVT Ty = Op.getValueType();
117  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
118  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
119                            getTargetNode(Op, DAG, GOTFlag));
120  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
121                             MachinePointerInfo::getGOT(), false, false, false,
122                             0);
123  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
124  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
125  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
126}
127
128SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
129                                          unsigned Flag) const {
130  SDLoc DL(Op);
131  EVT Ty = Op.getValueType();
132  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
133                            getTargetNode(Op, DAG, Flag));
134  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
135                     MachinePointerInfo::getGOT(), false, false, false, 0);
136}
137
138SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
139                                                  unsigned HiFlag,
140                                                  unsigned LoFlag) const {
141  SDLoc DL(Op);
142  EVT Ty = Op.getValueType();
143  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
144  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
145  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
146                                getTargetNode(Op, DAG, LoFlag));
147  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
148                     MachinePointerInfo::getGOT(), false, false, false, 0);
149}
150
151const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
152  switch (Opcode) {
153  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
154  case MipsISD::TailCall:          return "MipsISD::TailCall";
155  case MipsISD::Hi:                return "MipsISD::Hi";
156  case MipsISD::Lo:                return "MipsISD::Lo";
157  case MipsISD::GPRel:             return "MipsISD::GPRel";
158  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
159  case MipsISD::Ret:               return "MipsISD::Ret";
160  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
161  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
162  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
163  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
164  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
165  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
166  case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
167  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
168  case MipsISD::Mult:              return "MipsISD::Mult";
169  case MipsISD::Multu:             return "MipsISD::Multu";
170  case MipsISD::MAdd:              return "MipsISD::MAdd";
171  case MipsISD::MAddu:             return "MipsISD::MAddu";
172  case MipsISD::MSub:              return "MipsISD::MSub";
173  case MipsISD::MSubu:             return "MipsISD::MSubu";
174  case MipsISD::DivRem:            return "MipsISD::DivRem";
175  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
176  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
177  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
178  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
179  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
180  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
181  case MipsISD::Sync:              return "MipsISD::Sync";
182  case MipsISD::Ext:               return "MipsISD::Ext";
183  case MipsISD::Ins:               return "MipsISD::Ins";
184  case MipsISD::LWL:               return "MipsISD::LWL";
185  case MipsISD::LWR:               return "MipsISD::LWR";
186  case MipsISD::SWL:               return "MipsISD::SWL";
187  case MipsISD::SWR:               return "MipsISD::SWR";
188  case MipsISD::LDL:               return "MipsISD::LDL";
189  case MipsISD::LDR:               return "MipsISD::LDR";
190  case MipsISD::SDL:               return "MipsISD::SDL";
191  case MipsISD::SDR:               return "MipsISD::SDR";
192  case MipsISD::EXTP:              return "MipsISD::EXTP";
193  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
194  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
195  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
196  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
197  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
198  case MipsISD::SHILO:             return "MipsISD::SHILO";
199  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
200  case MipsISD::MULT:              return "MipsISD::MULT";
201  case MipsISD::MULTU:             return "MipsISD::MULTU";
202  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
203  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
204  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
205  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
206  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
207  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
208  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
209  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
210  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
211  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
212  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
213  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
214  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
215  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
216  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
217  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
218  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
219  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
220  case MipsISD::VSMAX:             return "MipsISD::VSMAX";
221  case MipsISD::VSMIN:             return "MipsISD::VSMIN";
222  case MipsISD::VUMAX:             return "MipsISD::VUMAX";
223  case MipsISD::VUMIN:             return "MipsISD::VUMIN";
224  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
225  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
226  case MipsISD::VNOR:              return "MipsISD::VNOR";
227  case MipsISD::VSHF:              return "MipsISD::VSHF";
228  default:                         return NULL;
229  }
230}
231
232MipsTargetLowering::
233MipsTargetLowering(MipsTargetMachine &TM)
234  : TargetLowering(TM, new MipsTargetObjectFile()),
235    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
236    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
237    IsO32(Subtarget->isABI_O32()) {
238  // Mips does not have i1 type, so use i32 for
239  // setcc operations results (slt, sgt, ...).
240  setBooleanContents(ZeroOrOneBooleanContent);
241  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
242
243  // Load extented operations for i1 types must be promoted
244  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
245  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
246  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
247
248  // MIPS doesn't have extending float->double load/store
249  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
250  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
251
252  // Used by legalize types to correctly generate the setcc result.
253  // Without this, every float setcc comes with a AND/OR with the result,
254  // we don't want this, since the fpcmp result goes to a flag register,
255  // which is used implicitly by brcond and select operations.
256  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
257
258  // Mips Custom Operations
259  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
260  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
261  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
262  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
263  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
264  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
265  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
266  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
267  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
268  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
269  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
270  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
271  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
272  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
273  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
274  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
275  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
276  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
277
278  if (!TM.Options.NoNaNsFPMath) {
279    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
280    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
281  }
282
283  if (HasMips64) {
284    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
285    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
286    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
287    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
288    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
289    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
290    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
291    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
292    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
293  }
294
295  if (!HasMips64) {
296    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
297    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
298    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
299  }
300
301  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
302  if (HasMips64)
303    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
304
305  setOperationAction(ISD::SDIV, MVT::i32, Expand);
306  setOperationAction(ISD::SREM, MVT::i32, Expand);
307  setOperationAction(ISD::UDIV, MVT::i32, Expand);
308  setOperationAction(ISD::UREM, MVT::i32, Expand);
309  setOperationAction(ISD::SDIV, MVT::i64, Expand);
310  setOperationAction(ISD::SREM, MVT::i64, Expand);
311  setOperationAction(ISD::UDIV, MVT::i64, Expand);
312  setOperationAction(ISD::UREM, MVT::i64, Expand);
313
314  // Operations not directly supported by Mips.
315  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
316  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
317  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
318  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
319  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
320  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
321  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
322  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
323  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
324  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
325  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
326  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
327  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
328  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
329  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
330  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
331  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
332  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
333  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
334  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
335  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
336  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
337
338  if (!Subtarget->hasMips32r2())
339    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
340
341  if (!Subtarget->hasMips64r2())
342    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
343
344  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
345  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
346  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
347  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
348  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
349  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
350  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
351  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
352  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
353  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
354  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
355  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
356  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
357  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
358  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
359  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
360  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
361
362  if (!TM.Options.NoNaNsFPMath) {
363    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
364    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
365  }
366
367  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
368
369  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
370  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
371  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
372
373  // Use the default for now
374  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
375  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
376
377  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
378  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
379  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
380  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
381
382  setInsertFencesForAtomic(true);
383
384  if (!Subtarget->hasSEInReg()) {
385    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
386    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
387  }
388
389  if (!Subtarget->hasBitCount()) {
390    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
391    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
392  }
393
394  if (!Subtarget->hasSwap()) {
395    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
396    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
397  }
398
399  if (HasMips64) {
400    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
401    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
402    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
403    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
404  }
405
406  setOperationAction(ISD::TRAP, MVT::Other, Legal);
407
408  setTargetDAGCombine(ISD::SDIVREM);
409  setTargetDAGCombine(ISD::UDIVREM);
410  setTargetDAGCombine(ISD::SELECT);
411  setTargetDAGCombine(ISD::AND);
412  setTargetDAGCombine(ISD::OR);
413  setTargetDAGCombine(ISD::ADD);
414
415  setMinFunctionAlignment(HasMips64 ? 3 : 2);
416
417  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
418
419  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
420  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
421
422  MaxStoresPerMemcpy = 16;
423}
424
425const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
426  if (TM.getSubtargetImpl()->inMips16Mode())
427    return llvm::createMips16TargetLowering(TM);
428
429  return llvm::createMipsSETargetLowering(TM);
430}
431
432EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
433  if (!VT.isVector())
434    return MVT::i32;
435  return VT.changeVectorElementTypeToInteger();
436}
437
438static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
439                                    TargetLowering::DAGCombinerInfo &DCI,
440                                    const MipsSubtarget *Subtarget) {
441  if (DCI.isBeforeLegalizeOps())
442    return SDValue();
443
444  EVT Ty = N->getValueType(0);
445  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
446  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
447  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
448                                                  MipsISD::DivRemU16;
449  SDLoc DL(N);
450
451  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
452                               N->getOperand(0), N->getOperand(1));
453  SDValue InChain = DAG.getEntryNode();
454  SDValue InGlue = DivRem;
455
456  // insert MFLO
457  if (N->hasAnyUseOfValue(0)) {
458    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
459                                            InGlue);
460    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
461    InChain = CopyFromLo.getValue(1);
462    InGlue = CopyFromLo.getValue(2);
463  }
464
465  // insert MFHI
466  if (N->hasAnyUseOfValue(1)) {
467    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
468                                            HI, Ty, InGlue);
469    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
470  }
471
472  return SDValue();
473}
474
475static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
476  switch (CC) {
477  default: llvm_unreachable("Unknown fp condition code!");
478  case ISD::SETEQ:
479  case ISD::SETOEQ: return Mips::FCOND_OEQ;
480  case ISD::SETUNE: return Mips::FCOND_UNE;
481  case ISD::SETLT:
482  case ISD::SETOLT: return Mips::FCOND_OLT;
483  case ISD::SETGT:
484  case ISD::SETOGT: return Mips::FCOND_OGT;
485  case ISD::SETLE:
486  case ISD::SETOLE: return Mips::FCOND_OLE;
487  case ISD::SETGE:
488  case ISD::SETOGE: return Mips::FCOND_OGE;
489  case ISD::SETULT: return Mips::FCOND_ULT;
490  case ISD::SETULE: return Mips::FCOND_ULE;
491  case ISD::SETUGT: return Mips::FCOND_UGT;
492  case ISD::SETUGE: return Mips::FCOND_UGE;
493  case ISD::SETUO:  return Mips::FCOND_UN;
494  case ISD::SETO:   return Mips::FCOND_OR;
495  case ISD::SETNE:
496  case ISD::SETONE: return Mips::FCOND_ONE;
497  case ISD::SETUEQ: return Mips::FCOND_UEQ;
498  }
499}
500
501
502/// This function returns true if the floating point conditional branches and
503/// conditional moves which use condition code CC should be inverted.
504static bool invertFPCondCodeUser(Mips::CondCode CC) {
505  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
506    return false;
507
508  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
509         "Illegal Condition Code");
510
511  return true;
512}
513
514// Creates and returns an FPCmp node from a setcc node.
515// Returns Op if setcc is not a floating point comparison.
516static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
517  // must be a SETCC node
518  if (Op.getOpcode() != ISD::SETCC)
519    return Op;
520
521  SDValue LHS = Op.getOperand(0);
522
523  if (!LHS.getValueType().isFloatingPoint())
524    return Op;
525
526  SDValue RHS = Op.getOperand(1);
527  SDLoc DL(Op);
528
529  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
530  // node if necessary.
531  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
532
533  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
534                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
535}
536
537// Creates and returns a CMovFPT/F node.
538static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
539                            SDValue False, SDLoc DL) {
540  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
541  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
542  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
543
544  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
545                     True.getValueType(), True, FCC0, False, Cond);
546}
547
548static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
549                                    TargetLowering::DAGCombinerInfo &DCI,
550                                    const MipsSubtarget *Subtarget) {
551  if (DCI.isBeforeLegalizeOps())
552    return SDValue();
553
554  SDValue SetCC = N->getOperand(0);
555
556  if ((SetCC.getOpcode() != ISD::SETCC) ||
557      !SetCC.getOperand(0).getValueType().isInteger())
558    return SDValue();
559
560  SDValue False = N->getOperand(2);
561  EVT FalseTy = False.getValueType();
562
563  if (!FalseTy.isInteger())
564    return SDValue();
565
566  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
567
568  if (!CN || CN->getZExtValue())
569    return SDValue();
570
571  const SDLoc DL(N);
572  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
573  SDValue True = N->getOperand(1);
574
575  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
576                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
577
578  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
579}
580
581static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
582                                 TargetLowering::DAGCombinerInfo &DCI,
583                                 const MipsSubtarget *Subtarget) {
584  // Pattern match EXT.
585  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
586  //  => ext $dst, $src, size, pos
587  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
588    return SDValue();
589
590  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
591  unsigned ShiftRightOpc = ShiftRight.getOpcode();
592
593  // Op's first operand must be a shift right.
594  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
595    return SDValue();
596
597  // The second operand of the shift must be an immediate.
598  ConstantSDNode *CN;
599  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
600    return SDValue();
601
602  uint64_t Pos = CN->getZExtValue();
603  uint64_t SMPos, SMSize;
604
605  // Op's second operand must be a shifted mask.
606  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
607      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
608    return SDValue();
609
610  // Return if the shifted mask does not start at bit 0 or the sum of its size
611  // and Pos exceeds the word's size.
612  EVT ValTy = N->getValueType(0);
613  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
614    return SDValue();
615
616  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
617                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
618                     DAG.getConstant(SMSize, MVT::i32));
619}
620
621static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
622                                TargetLowering::DAGCombinerInfo &DCI,
623                                const MipsSubtarget *Subtarget) {
624  // Pattern match INS.
625  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
626  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
627  //  => ins $dst, $src, size, pos, $src1
628  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
629    return SDValue();
630
631  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
632  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
633  ConstantSDNode *CN;
634
635  // See if Op's first operand matches (and $src1 , mask0).
636  if (And0.getOpcode() != ISD::AND)
637    return SDValue();
638
639  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
640      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
641    return SDValue();
642
643  // See if Op's second operand matches (and (shl $src, pos), mask1).
644  if (And1.getOpcode() != ISD::AND)
645    return SDValue();
646
647  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
648      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
649    return SDValue();
650
651  // The shift masks must have the same position and size.
652  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
653    return SDValue();
654
655  SDValue Shl = And1.getOperand(0);
656  if (Shl.getOpcode() != ISD::SHL)
657    return SDValue();
658
659  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
660    return SDValue();
661
662  unsigned Shamt = CN->getZExtValue();
663
664  // Return if the shift amount and the first bit position of mask are not the
665  // same.
666  EVT ValTy = N->getValueType(0);
667  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
668    return SDValue();
669
670  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
671                     DAG.getConstant(SMPos0, MVT::i32),
672                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
673}
674
675static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
676                                 TargetLowering::DAGCombinerInfo &DCI,
677                                 const MipsSubtarget *Subtarget) {
678  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
679
680  if (DCI.isBeforeLegalizeOps())
681    return SDValue();
682
683  SDValue Add = N->getOperand(1);
684
685  if (Add.getOpcode() != ISD::ADD)
686    return SDValue();
687
688  SDValue Lo = Add.getOperand(1);
689
690  if ((Lo.getOpcode() != MipsISD::Lo) ||
691      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
692    return SDValue();
693
694  EVT ValTy = N->getValueType(0);
695  SDLoc DL(N);
696
697  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
698                             Add.getOperand(0));
699  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
700}
701
702SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
703  const {
704  SelectionDAG &DAG = DCI.DAG;
705  unsigned Opc = N->getOpcode();
706
707  switch (Opc) {
708  default: break;
709  case ISD::SDIVREM:
710  case ISD::UDIVREM:
711    return performDivRemCombine(N, DAG, DCI, Subtarget);
712  case ISD::SELECT:
713    return performSELECTCombine(N, DAG, DCI, Subtarget);
714  case ISD::AND:
715    return performANDCombine(N, DAG, DCI, Subtarget);
716  case ISD::OR:
717    return performORCombine(N, DAG, DCI, Subtarget);
718  case ISD::ADD:
719    return performADDCombine(N, DAG, DCI, Subtarget);
720  }
721
722  return SDValue();
723}
724
725void
726MipsTargetLowering::LowerOperationWrapper(SDNode *N,
727                                          SmallVectorImpl<SDValue> &Results,
728                                          SelectionDAG &DAG) const {
729  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
730
731  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
732    Results.push_back(Res.getValue(I));
733}
734
735void
736MipsTargetLowering::ReplaceNodeResults(SDNode *N,
737                                       SmallVectorImpl<SDValue> &Results,
738                                       SelectionDAG &DAG) const {
739  return LowerOperationWrapper(N, Results, DAG);
740}
741
742SDValue MipsTargetLowering::
743LowerOperation(SDValue Op, SelectionDAG &DAG) const
744{
745  switch (Op.getOpcode())
746  {
747  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
748  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
749  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
750  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
751  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
752  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
753  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
754  case ISD::SELECT:             return lowerSELECT(Op, DAG);
755  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
756  case ISD::SETCC:              return lowerSETCC(Op, DAG);
757  case ISD::VASTART:            return lowerVASTART(Op, DAG);
758  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
759  case ISD::FABS:               return lowerFABS(Op, DAG);
760  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
761  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
762  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
763  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
764  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
765  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
766  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
767  case ISD::LOAD:               return lowerLOAD(Op, DAG);
768  case ISD::STORE:              return lowerSTORE(Op, DAG);
769  case ISD::ADD:                return lowerADD(Op, DAG);
770  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
771  }
772  return SDValue();
773}
774
775//===----------------------------------------------------------------------===//
776//  Lower helper functions
777//===----------------------------------------------------------------------===//
778
779// addLiveIn - This helper function adds the specified physical register to the
780// MachineFunction as a live in value.  It also creates a corresponding
781// virtual register for it.
782static unsigned
783addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
784{
785  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
786  MF.getRegInfo().addLiveIn(PReg, VReg);
787  return VReg;
788}
789
790static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
791                                          MachineBasicBlock &MBB,
792                                          const TargetInstrInfo &TII,
793                                          bool Is64Bit) {
794  if (NoZeroDivCheck)
795    return &MBB;
796
797  // Insert instruction "teq $divisor_reg, $zero, 7".
798  MachineBasicBlock::iterator I(MI);
799  MachineInstrBuilder MIB;
800  MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
801    .addOperand(MI->getOperand(2)).addReg(Mips::ZERO).addImm(7);
802
803  // Use the 32-bit sub-register if this is a 64-bit division.
804  if (Is64Bit)
805    MIB->getOperand(0).setSubReg(Mips::sub_32);
806
807  return &MBB;
808}
809
810MachineBasicBlock *
811MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
812                                                MachineBasicBlock *BB) const {
813  switch (MI->getOpcode()) {
814  default:
815    llvm_unreachable("Unexpected instr type to insert");
816  case Mips::ATOMIC_LOAD_ADD_I8:
817    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
818  case Mips::ATOMIC_LOAD_ADD_I16:
819    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
820  case Mips::ATOMIC_LOAD_ADD_I32:
821    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
822  case Mips::ATOMIC_LOAD_ADD_I64:
823    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
824
825  case Mips::ATOMIC_LOAD_AND_I8:
826    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
827  case Mips::ATOMIC_LOAD_AND_I16:
828    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
829  case Mips::ATOMIC_LOAD_AND_I32:
830    return emitAtomicBinary(MI, BB, 4, Mips::AND);
831  case Mips::ATOMIC_LOAD_AND_I64:
832    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
833
834  case Mips::ATOMIC_LOAD_OR_I8:
835    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
836  case Mips::ATOMIC_LOAD_OR_I16:
837    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
838  case Mips::ATOMIC_LOAD_OR_I32:
839    return emitAtomicBinary(MI, BB, 4, Mips::OR);
840  case Mips::ATOMIC_LOAD_OR_I64:
841    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
842
843  case Mips::ATOMIC_LOAD_XOR_I8:
844    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
845  case Mips::ATOMIC_LOAD_XOR_I16:
846    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
847  case Mips::ATOMIC_LOAD_XOR_I32:
848    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
849  case Mips::ATOMIC_LOAD_XOR_I64:
850    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
851
852  case Mips::ATOMIC_LOAD_NAND_I8:
853    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
854  case Mips::ATOMIC_LOAD_NAND_I16:
855    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
856  case Mips::ATOMIC_LOAD_NAND_I32:
857    return emitAtomicBinary(MI, BB, 4, 0, true);
858  case Mips::ATOMIC_LOAD_NAND_I64:
859    return emitAtomicBinary(MI, BB, 8, 0, true);
860
861  case Mips::ATOMIC_LOAD_SUB_I8:
862    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
863  case Mips::ATOMIC_LOAD_SUB_I16:
864    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
865  case Mips::ATOMIC_LOAD_SUB_I32:
866    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
867  case Mips::ATOMIC_LOAD_SUB_I64:
868    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
869
870  case Mips::ATOMIC_SWAP_I8:
871    return emitAtomicBinaryPartword(MI, BB, 1, 0);
872  case Mips::ATOMIC_SWAP_I16:
873    return emitAtomicBinaryPartword(MI, BB, 2, 0);
874  case Mips::ATOMIC_SWAP_I32:
875    return emitAtomicBinary(MI, BB, 4, 0);
876  case Mips::ATOMIC_SWAP_I64:
877    return emitAtomicBinary(MI, BB, 8, 0);
878
879  case Mips::ATOMIC_CMP_SWAP_I8:
880    return emitAtomicCmpSwapPartword(MI, BB, 1);
881  case Mips::ATOMIC_CMP_SWAP_I16:
882    return emitAtomicCmpSwapPartword(MI, BB, 2);
883  case Mips::ATOMIC_CMP_SWAP_I32:
884    return emitAtomicCmpSwap(MI, BB, 4);
885  case Mips::ATOMIC_CMP_SWAP_I64:
886    return emitAtomicCmpSwap(MI, BB, 8);
887  case Mips::PseudoSDIV:
888  case Mips::PseudoUDIV:
889    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
890  case Mips::PseudoDSDIV:
891  case Mips::PseudoDUDIV:
892    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
893  }
894}
895
896// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
897// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
898MachineBasicBlock *
899MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
900                                     unsigned Size, unsigned BinOpcode,
901                                     bool Nand) const {
902  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
903
904  MachineFunction *MF = BB->getParent();
905  MachineRegisterInfo &RegInfo = MF->getRegInfo();
906  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
907  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
908  DebugLoc DL = MI->getDebugLoc();
909  unsigned LL, SC, AND, NOR, ZERO, BEQ;
910
911  if (Size == 4) {
912    LL = Mips::LL;
913    SC = Mips::SC;
914    AND = Mips::AND;
915    NOR = Mips::NOR;
916    ZERO = Mips::ZERO;
917    BEQ = Mips::BEQ;
918  }
919  else {
920    LL = Mips::LLD;
921    SC = Mips::SCD;
922    AND = Mips::AND64;
923    NOR = Mips::NOR64;
924    ZERO = Mips::ZERO_64;
925    BEQ = Mips::BEQ64;
926  }
927
928  unsigned OldVal = MI->getOperand(0).getReg();
929  unsigned Ptr = MI->getOperand(1).getReg();
930  unsigned Incr = MI->getOperand(2).getReg();
931
932  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
933  unsigned AndRes = RegInfo.createVirtualRegister(RC);
934  unsigned Success = RegInfo.createVirtualRegister(RC);
935
936  // insert new blocks after the current block
937  const BasicBlock *LLVM_BB = BB->getBasicBlock();
938  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
939  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
940  MachineFunction::iterator It = BB;
941  ++It;
942  MF->insert(It, loopMBB);
943  MF->insert(It, exitMBB);
944
945  // Transfer the remainder of BB and its successor edges to exitMBB.
946  exitMBB->splice(exitMBB->begin(), BB,
947                  llvm::next(MachineBasicBlock::iterator(MI)),
948                  BB->end());
949  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
950
951  //  thisMBB:
952  //    ...
953  //    fallthrough --> loopMBB
954  BB->addSuccessor(loopMBB);
955  loopMBB->addSuccessor(loopMBB);
956  loopMBB->addSuccessor(exitMBB);
957
958  //  loopMBB:
959  //    ll oldval, 0(ptr)
960  //    <binop> storeval, oldval, incr
961  //    sc success, storeval, 0(ptr)
962  //    beq success, $0, loopMBB
963  BB = loopMBB;
964  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
965  if (Nand) {
966    //  and andres, oldval, incr
967    //  nor storeval, $0, andres
968    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
969    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
970  } else if (BinOpcode) {
971    //  <binop> storeval, oldval, incr
972    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
973  } else {
974    StoreVal = Incr;
975  }
976  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
977  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
978
979  MI->eraseFromParent();   // The instruction is gone now.
980
981  return exitMBB;
982}
983
984MachineBasicBlock *
985MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
986                                             MachineBasicBlock *BB,
987                                             unsigned Size, unsigned BinOpcode,
988                                             bool Nand) const {
989  assert((Size == 1 || Size == 2) &&
990      "Unsupported size for EmitAtomicBinaryPartial.");
991
992  MachineFunction *MF = BB->getParent();
993  MachineRegisterInfo &RegInfo = MF->getRegInfo();
994  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
995  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
996  DebugLoc DL = MI->getDebugLoc();
997
998  unsigned Dest = MI->getOperand(0).getReg();
999  unsigned Ptr = MI->getOperand(1).getReg();
1000  unsigned Incr = MI->getOperand(2).getReg();
1001
1002  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1003  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1004  unsigned Mask = RegInfo.createVirtualRegister(RC);
1005  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1006  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1007  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1008  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1009  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1010  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1011  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1012  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1013  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1014  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1015  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1016  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1017  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1018  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1019  unsigned Success = RegInfo.createVirtualRegister(RC);
1020
1021  // insert new blocks after the current block
1022  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1023  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1024  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1025  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1026  MachineFunction::iterator It = BB;
1027  ++It;
1028  MF->insert(It, loopMBB);
1029  MF->insert(It, sinkMBB);
1030  MF->insert(It, exitMBB);
1031
1032  // Transfer the remainder of BB and its successor edges to exitMBB.
1033  exitMBB->splice(exitMBB->begin(), BB,
1034                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1035  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1036
1037  BB->addSuccessor(loopMBB);
1038  loopMBB->addSuccessor(loopMBB);
1039  loopMBB->addSuccessor(sinkMBB);
1040  sinkMBB->addSuccessor(exitMBB);
1041
1042  //  thisMBB:
1043  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1044  //    and     alignedaddr,ptr,masklsb2
1045  //    andi    ptrlsb2,ptr,3
1046  //    sll     shiftamt,ptrlsb2,3
1047  //    ori     maskupper,$0,255               # 0xff
1048  //    sll     mask,maskupper,shiftamt
1049  //    nor     mask2,$0,mask
1050  //    sll     incr2,incr,shiftamt
1051
1052  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1053  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1054    .addReg(Mips::ZERO).addImm(-4);
1055  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1056    .addReg(Ptr).addReg(MaskLSB2);
1057  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1058  if (Subtarget->isLittle()) {
1059    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1060  } else {
1061    unsigned Off = RegInfo.createVirtualRegister(RC);
1062    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1063      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1064    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1065  }
1066  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1067    .addReg(Mips::ZERO).addImm(MaskImm);
1068  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1069    .addReg(MaskUpper).addReg(ShiftAmt);
1070  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1071  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1072
1073  // atomic.load.binop
1074  // loopMBB:
1075  //   ll      oldval,0(alignedaddr)
1076  //   binop   binopres,oldval,incr2
1077  //   and     newval,binopres,mask
1078  //   and     maskedoldval0,oldval,mask2
1079  //   or      storeval,maskedoldval0,newval
1080  //   sc      success,storeval,0(alignedaddr)
1081  //   beq     success,$0,loopMBB
1082
1083  // atomic.swap
1084  // loopMBB:
1085  //   ll      oldval,0(alignedaddr)
1086  //   and     newval,incr2,mask
1087  //   and     maskedoldval0,oldval,mask2
1088  //   or      storeval,maskedoldval0,newval
1089  //   sc      success,storeval,0(alignedaddr)
1090  //   beq     success,$0,loopMBB
1091
1092  BB = loopMBB;
1093  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1094  if (Nand) {
1095    //  and andres, oldval, incr2
1096    //  nor binopres, $0, andres
1097    //  and newval, binopres, mask
1098    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1099    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1100      .addReg(Mips::ZERO).addReg(AndRes);
1101    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1102  } else if (BinOpcode) {
1103    //  <binop> binopres, oldval, incr2
1104    //  and newval, binopres, mask
1105    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1106    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1107  } else {// atomic.swap
1108    //  and newval, incr2, mask
1109    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1110  }
1111
1112  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1113    .addReg(OldVal).addReg(Mask2);
1114  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1115    .addReg(MaskedOldVal0).addReg(NewVal);
1116  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1117    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1118  BuildMI(BB, DL, TII->get(Mips::BEQ))
1119    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1120
1121  //  sinkMBB:
1122  //    and     maskedoldval1,oldval,mask
1123  //    srl     srlres,maskedoldval1,shiftamt
1124  //    sll     sllres,srlres,24
1125  //    sra     dest,sllres,24
1126  BB = sinkMBB;
1127  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1128
1129  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1130    .addReg(OldVal).addReg(Mask);
1131  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1132      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1133  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1134      .addReg(SrlRes).addImm(ShiftImm);
1135  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1136      .addReg(SllRes).addImm(ShiftImm);
1137
1138  MI->eraseFromParent();   // The instruction is gone now.
1139
1140  return exitMBB;
1141}
1142
1143MachineBasicBlock *
1144MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1145                                      MachineBasicBlock *BB,
1146                                      unsigned Size) const {
1147  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1148
1149  MachineFunction *MF = BB->getParent();
1150  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1151  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1152  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1153  DebugLoc DL = MI->getDebugLoc();
1154  unsigned LL, SC, ZERO, BNE, BEQ;
1155
1156  if (Size == 4) {
1157    LL = Mips::LL;
1158    SC = Mips::SC;
1159    ZERO = Mips::ZERO;
1160    BNE = Mips::BNE;
1161    BEQ = Mips::BEQ;
1162  }
1163  else {
1164    LL = Mips::LLD;
1165    SC = Mips::SCD;
1166    ZERO = Mips::ZERO_64;
1167    BNE = Mips::BNE64;
1168    BEQ = Mips::BEQ64;
1169  }
1170
1171  unsigned Dest    = MI->getOperand(0).getReg();
1172  unsigned Ptr     = MI->getOperand(1).getReg();
1173  unsigned OldVal  = MI->getOperand(2).getReg();
1174  unsigned NewVal  = MI->getOperand(3).getReg();
1175
1176  unsigned Success = RegInfo.createVirtualRegister(RC);
1177
1178  // insert new blocks after the current block
1179  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1180  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1181  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1182  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1183  MachineFunction::iterator It = BB;
1184  ++It;
1185  MF->insert(It, loop1MBB);
1186  MF->insert(It, loop2MBB);
1187  MF->insert(It, exitMBB);
1188
1189  // Transfer the remainder of BB and its successor edges to exitMBB.
1190  exitMBB->splice(exitMBB->begin(), BB,
1191                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1192  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1193
1194  //  thisMBB:
1195  //    ...
1196  //    fallthrough --> loop1MBB
1197  BB->addSuccessor(loop1MBB);
1198  loop1MBB->addSuccessor(exitMBB);
1199  loop1MBB->addSuccessor(loop2MBB);
1200  loop2MBB->addSuccessor(loop1MBB);
1201  loop2MBB->addSuccessor(exitMBB);
1202
1203  // loop1MBB:
1204  //   ll dest, 0(ptr)
1205  //   bne dest, oldval, exitMBB
1206  BB = loop1MBB;
1207  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1208  BuildMI(BB, DL, TII->get(BNE))
1209    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1210
1211  // loop2MBB:
1212  //   sc success, newval, 0(ptr)
1213  //   beq success, $0, loop1MBB
1214  BB = loop2MBB;
1215  BuildMI(BB, DL, TII->get(SC), Success)
1216    .addReg(NewVal).addReg(Ptr).addImm(0);
1217  BuildMI(BB, DL, TII->get(BEQ))
1218    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1219
1220  MI->eraseFromParent();   // The instruction is gone now.
1221
1222  return exitMBB;
1223}
1224
1225MachineBasicBlock *
1226MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1227                                              MachineBasicBlock *BB,
1228                                              unsigned Size) const {
1229  assert((Size == 1 || Size == 2) &&
1230      "Unsupported size for EmitAtomicCmpSwapPartial.");
1231
1232  MachineFunction *MF = BB->getParent();
1233  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1234  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1235  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1236  DebugLoc DL = MI->getDebugLoc();
1237
1238  unsigned Dest    = MI->getOperand(0).getReg();
1239  unsigned Ptr     = MI->getOperand(1).getReg();
1240  unsigned CmpVal  = MI->getOperand(2).getReg();
1241  unsigned NewVal  = MI->getOperand(3).getReg();
1242
1243  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1244  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1245  unsigned Mask = RegInfo.createVirtualRegister(RC);
1246  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1247  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1248  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1249  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1250  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1251  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1252  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1253  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1254  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1255  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1256  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1257  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1258  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1259  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1260  unsigned Success = RegInfo.createVirtualRegister(RC);
1261
1262  // insert new blocks after the current block
1263  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1264  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1265  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1266  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1267  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1268  MachineFunction::iterator It = BB;
1269  ++It;
1270  MF->insert(It, loop1MBB);
1271  MF->insert(It, loop2MBB);
1272  MF->insert(It, sinkMBB);
1273  MF->insert(It, exitMBB);
1274
1275  // Transfer the remainder of BB and its successor edges to exitMBB.
1276  exitMBB->splice(exitMBB->begin(), BB,
1277                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1278  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1279
1280  BB->addSuccessor(loop1MBB);
1281  loop1MBB->addSuccessor(sinkMBB);
1282  loop1MBB->addSuccessor(loop2MBB);
1283  loop2MBB->addSuccessor(loop1MBB);
1284  loop2MBB->addSuccessor(sinkMBB);
1285  sinkMBB->addSuccessor(exitMBB);
1286
1287  // FIXME: computation of newval2 can be moved to loop2MBB.
1288  //  thisMBB:
1289  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1290  //    and     alignedaddr,ptr,masklsb2
1291  //    andi    ptrlsb2,ptr,3
1292  //    sll     shiftamt,ptrlsb2,3
1293  //    ori     maskupper,$0,255               # 0xff
1294  //    sll     mask,maskupper,shiftamt
1295  //    nor     mask2,$0,mask
1296  //    andi    maskedcmpval,cmpval,255
1297  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1298  //    andi    maskednewval,newval,255
1299  //    sll     shiftednewval,maskednewval,shiftamt
1300  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1301  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1302    .addReg(Mips::ZERO).addImm(-4);
1303  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1304    .addReg(Ptr).addReg(MaskLSB2);
1305  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1306  if (Subtarget->isLittle()) {
1307    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1308  } else {
1309    unsigned Off = RegInfo.createVirtualRegister(RC);
1310    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1311      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1312    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1313  }
1314  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1315    .addReg(Mips::ZERO).addImm(MaskImm);
1316  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1317    .addReg(MaskUpper).addReg(ShiftAmt);
1318  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1319  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1320    .addReg(CmpVal).addImm(MaskImm);
1321  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1322    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1323  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1324    .addReg(NewVal).addImm(MaskImm);
1325  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1326    .addReg(MaskedNewVal).addReg(ShiftAmt);
1327
1328  //  loop1MBB:
1329  //    ll      oldval,0(alginedaddr)
1330  //    and     maskedoldval0,oldval,mask
1331  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1332  BB = loop1MBB;
1333  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1334  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1335    .addReg(OldVal).addReg(Mask);
1336  BuildMI(BB, DL, TII->get(Mips::BNE))
1337    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1338
1339  //  loop2MBB:
1340  //    and     maskedoldval1,oldval,mask2
1341  //    or      storeval,maskedoldval1,shiftednewval
1342  //    sc      success,storeval,0(alignedaddr)
1343  //    beq     success,$0,loop1MBB
1344  BB = loop2MBB;
1345  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1346    .addReg(OldVal).addReg(Mask2);
1347  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1348    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1349  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1350      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1351  BuildMI(BB, DL, TII->get(Mips::BEQ))
1352      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1353
1354  //  sinkMBB:
1355  //    srl     srlres,maskedoldval0,shiftamt
1356  //    sll     sllres,srlres,24
1357  //    sra     dest,sllres,24
1358  BB = sinkMBB;
1359  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1360
1361  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1362      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1363  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1364      .addReg(SrlRes).addImm(ShiftImm);
1365  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1366      .addReg(SllRes).addImm(ShiftImm);
1367
1368  MI->eraseFromParent();   // The instruction is gone now.
1369
1370  return exitMBB;
1371}
1372
1373//===----------------------------------------------------------------------===//
1374//  Misc Lower Operation implementation
1375//===----------------------------------------------------------------------===//
1376SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1377  SDValue Chain = Op.getOperand(0);
1378  SDValue Table = Op.getOperand(1);
1379  SDValue Index = Op.getOperand(2);
1380  SDLoc DL(Op);
1381  EVT PTy = getPointerTy();
1382  unsigned EntrySize =
1383    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1384
1385  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1386                      DAG.getConstant(EntrySize, PTy));
1387  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1388
1389  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1390  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1391                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1392                        0);
1393  Chain = Addr.getValue(1);
1394
1395  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1396    // For PIC, the sequence is:
1397    // BRIND(load(Jumptable + index) + RelocBase)
1398    // RelocBase can be JumpTable, GOT or some sort of global base.
1399    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1400                       getPICJumpTableRelocBase(Table, DAG));
1401  }
1402
1403  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1404}
1405
1406SDValue MipsTargetLowering::
1407lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1408{
1409  // The first operand is the chain, the second is the condition, the third is
1410  // the block to branch to if the condition is true.
1411  SDValue Chain = Op.getOperand(0);
1412  SDValue Dest = Op.getOperand(2);
1413  SDLoc DL(Op);
1414
1415  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1416
1417  // Return if flag is not set by a floating point comparison.
1418  if (CondRes.getOpcode() != MipsISD::FPCmp)
1419    return Op;
1420
1421  SDValue CCNode  = CondRes.getOperand(2);
1422  Mips::CondCode CC =
1423    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1424  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1425  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1426  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1427  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1428                     FCC0, Dest, CondRes);
1429}
1430
1431SDValue MipsTargetLowering::
1432lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1433{
1434  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1435
1436  // Return if flag is not set by a floating point comparison.
1437  if (Cond.getOpcode() != MipsISD::FPCmp)
1438    return Op;
1439
1440  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1441                      SDLoc(Op));
1442}
1443
1444SDValue MipsTargetLowering::
1445lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1446{
1447  SDLoc DL(Op);
1448  EVT Ty = Op.getOperand(0).getValueType();
1449  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1450                             getSetCCResultType(*DAG.getContext(), Ty),
1451                             Op.getOperand(0), Op.getOperand(1),
1452                             Op.getOperand(4));
1453
1454  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1455                     Op.getOperand(3));
1456}
1457
1458SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1459  SDValue Cond = createFPCmp(DAG, Op);
1460
1461  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1462         "Floating point operand expected.");
1463
1464  SDValue True  = DAG.getConstant(1, MVT::i32);
1465  SDValue False = DAG.getConstant(0, MVT::i32);
1466
1467  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1468}
1469
1470SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1471                                               SelectionDAG &DAG) const {
1472  // FIXME there isn't actually debug info here
1473  SDLoc DL(Op);
1474  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1475
1476  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1477    const MipsTargetObjectFile &TLOF =
1478      (const MipsTargetObjectFile&)getObjFileLowering();
1479
1480    // %gp_rel relocation
1481    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1482      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1483                                              MipsII::MO_GPREL);
1484      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1485                                      DAG.getVTList(MVT::i32), &GA, 1);
1486      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1487      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1488    }
1489
1490    // %hi/%lo relocation
1491    return getAddrNonPIC(Op, DAG);
1492  }
1493
1494  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1495    return getAddrLocal(Op, DAG, HasMips64);
1496
1497  if (LargeGOT)
1498    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1499                                 MipsII::MO_GOT_LO16);
1500
1501  return getAddrGlobal(Op, DAG,
1502                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1503}
1504
1505SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1506                                              SelectionDAG &DAG) const {
1507  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1508    return getAddrNonPIC(Op, DAG);
1509
1510  return getAddrLocal(Op, DAG, HasMips64);
1511}
1512
1513SDValue MipsTargetLowering::
1514lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1515{
1516  // If the relocation model is PIC, use the General Dynamic TLS Model or
1517  // Local Dynamic TLS model, otherwise use the Initial Exec or
1518  // Local Exec TLS Model.
1519
1520  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1521  SDLoc DL(GA);
1522  const GlobalValue *GV = GA->getGlobal();
1523  EVT PtrVT = getPointerTy();
1524
1525  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1526
1527  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1528    // General Dynamic and Local Dynamic TLS Model.
1529    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1530                                                      : MipsII::MO_TLSGD;
1531
1532    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1533    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1534                                   getGlobalReg(DAG, PtrVT), TGA);
1535    unsigned PtrSize = PtrVT.getSizeInBits();
1536    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1537
1538    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1539
1540    ArgListTy Args;
1541    ArgListEntry Entry;
1542    Entry.Node = Argument;
1543    Entry.Ty = PtrTy;
1544    Args.push_back(Entry);
1545
1546    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1547                  false, false, false, false, 0, CallingConv::C,
1548                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1549                  /*isReturnValueUsed=*/true,
1550                  TlsGetAddr, Args, DAG, DL);
1551    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1552
1553    SDValue Ret = CallResult.first;
1554
1555    if (model != TLSModel::LocalDynamic)
1556      return Ret;
1557
1558    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1559                                               MipsII::MO_DTPREL_HI);
1560    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1561    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1562                                               MipsII::MO_DTPREL_LO);
1563    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1564    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1565    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1566  }
1567
1568  SDValue Offset;
1569  if (model == TLSModel::InitialExec) {
1570    // Initial Exec TLS Model
1571    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1572                                             MipsII::MO_GOTTPREL);
1573    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1574                      TGA);
1575    Offset = DAG.getLoad(PtrVT, DL,
1576                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1577                         false, false, false, 0);
1578  } else {
1579    // Local Exec TLS Model
1580    assert(model == TLSModel::LocalExec);
1581    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1582                                               MipsII::MO_TPREL_HI);
1583    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1584                                               MipsII::MO_TPREL_LO);
1585    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1586    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1587    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1588  }
1589
1590  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1591  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1592}
1593
1594SDValue MipsTargetLowering::
1595lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1596{
1597  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1598    return getAddrNonPIC(Op, DAG);
1599
1600  return getAddrLocal(Op, DAG, HasMips64);
1601}
1602
1603SDValue MipsTargetLowering::
1604lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1605{
1606  // gp_rel relocation
1607  // FIXME: we should reference the constant pool using small data sections,
1608  // but the asm printer currently doesn't support this feature without
1609  // hacking it. This feature should come soon so we can uncomment the
1610  // stuff below.
1611  //if (IsInSmallSection(C->getType())) {
1612  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1613  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1614  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1615
1616  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1617    return getAddrNonPIC(Op, DAG);
1618
1619  return getAddrLocal(Op, DAG, HasMips64);
1620}
1621
1622SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1623  MachineFunction &MF = DAG.getMachineFunction();
1624  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1625
1626  SDLoc DL(Op);
1627  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1628                                 getPointerTy());
1629
1630  // vastart just stores the address of the VarArgsFrameIndex slot into the
1631  // memory location argument.
1632  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1633  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1634                      MachinePointerInfo(SV), false, false, 0);
1635}
1636
1637static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1638  EVT TyX = Op.getOperand(0).getValueType();
1639  EVT TyY = Op.getOperand(1).getValueType();
1640  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1641  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1642  SDLoc DL(Op);
1643  SDValue Res;
1644
1645  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1646  // to i32.
1647  SDValue X = (TyX == MVT::f32) ?
1648    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1649    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1650                Const1);
1651  SDValue Y = (TyY == MVT::f32) ?
1652    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1653    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1654                Const1);
1655
1656  if (HasR2) {
1657    // ext  E, Y, 31, 1  ; extract bit31 of Y
1658    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1659    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1660    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1661  } else {
1662    // sll SllX, X, 1
1663    // srl SrlX, SllX, 1
1664    // srl SrlY, Y, 31
1665    // sll SllY, SrlX, 31
1666    // or  Or, SrlX, SllY
1667    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1668    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1669    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1670    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1671    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1672  }
1673
1674  if (TyX == MVT::f32)
1675    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1676
1677  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1678                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1679  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1680}
1681
1682static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1683  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1684  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1685  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1686  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1687  SDLoc DL(Op);
1688
1689  // Bitcast to integer nodes.
1690  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1691  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1692
1693  if (HasR2) {
1694    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1695    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1696    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1697                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1698
1699    if (WidthX > WidthY)
1700      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1701    else if (WidthY > WidthX)
1702      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1703
1704    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1705                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1706    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1707  }
1708
1709  // (d)sll SllX, X, 1
1710  // (d)srl SrlX, SllX, 1
1711  // (d)srl SrlY, Y, width(Y)-1
1712  // (d)sll SllY, SrlX, width(Y)-1
1713  // or     Or, SrlX, SllY
1714  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1715  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1716  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1717                             DAG.getConstant(WidthY - 1, MVT::i32));
1718
1719  if (WidthX > WidthY)
1720    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1721  else if (WidthY > WidthX)
1722    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1723
1724  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1725                             DAG.getConstant(WidthX - 1, MVT::i32));
1726  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1727  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1728}
1729
1730SDValue
1731MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1732  if (Subtarget->hasMips64())
1733    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1734
1735  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1736}
1737
1738static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1739  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1740  SDLoc DL(Op);
1741
1742  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1743  // to i32.
1744  SDValue X = (Op.getValueType() == MVT::f32) ?
1745    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1746    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1747                Const1);
1748
1749  // Clear MSB.
1750  if (HasR2)
1751    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1752                      DAG.getRegister(Mips::ZERO, MVT::i32),
1753                      DAG.getConstant(31, MVT::i32), Const1, X);
1754  else {
1755    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1756    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1757  }
1758
1759  if (Op.getValueType() == MVT::f32)
1760    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1761
1762  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1763                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1764  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1765}
1766
1767static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1768  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1769  SDLoc DL(Op);
1770
1771  // Bitcast to integer node.
1772  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1773
1774  // Clear MSB.
1775  if (HasR2)
1776    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1777                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1778                      DAG.getConstant(63, MVT::i32), Const1, X);
1779  else {
1780    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1781    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1782  }
1783
1784  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1785}
1786
1787SDValue
1788MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1789  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1790    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1791
1792  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1793}
1794
1795SDValue MipsTargetLowering::
1796lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1797  // check the depth
1798  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1799         "Frame address can only be determined for current frame.");
1800
1801  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1802  MFI->setFrameAddressIsTaken(true);
1803  EVT VT = Op.getValueType();
1804  SDLoc DL(Op);
1805  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1806                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1807  return FrameAddr;
1808}
1809
1810SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1811                                            SelectionDAG &DAG) const {
1812  // check the depth
1813  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1814         "Return address can be determined only for current frame.");
1815
1816  MachineFunction &MF = DAG.getMachineFunction();
1817  MachineFrameInfo *MFI = MF.getFrameInfo();
1818  MVT VT = Op.getSimpleValueType();
1819  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1820  MFI->setReturnAddressIsTaken(true);
1821
1822  // Return RA, which contains the return address. Mark it an implicit live-in.
1823  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1824  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1825}
1826
1827// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1828// generated from __builtin_eh_return (offset, handler)
1829// The effect of this is to adjust the stack pointer by "offset"
1830// and then branch to "handler".
1831SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1832                                                                     const {
1833  MachineFunction &MF = DAG.getMachineFunction();
1834  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1835
1836  MipsFI->setCallsEhReturn();
1837  SDValue Chain     = Op.getOperand(0);
1838  SDValue Offset    = Op.getOperand(1);
1839  SDValue Handler   = Op.getOperand(2);
1840  SDLoc DL(Op);
1841  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1842
1843  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1844  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1845  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1846  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1847  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1848  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1849  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1850                     DAG.getRegister(OffsetReg, Ty),
1851                     DAG.getRegister(AddrReg, getPointerTy()),
1852                     Chain.getValue(1));
1853}
1854
1855SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1856                                              SelectionDAG &DAG) const {
1857  // FIXME: Need pseudo-fence for 'singlethread' fences
1858  // FIXME: Set SType for weaker fences where supported/appropriate.
1859  unsigned SType = 0;
1860  SDLoc DL(Op);
1861  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1862                     DAG.getConstant(SType, MVT::i32));
1863}
1864
1865SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1866                                                SelectionDAG &DAG) const {
1867  SDLoc DL(Op);
1868  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1869  SDValue Shamt = Op.getOperand(2);
1870
1871  // if shamt < 32:
1872  //  lo = (shl lo, shamt)
1873  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1874  // else:
1875  //  lo = 0
1876  //  hi = (shl lo, shamt[4:0])
1877  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1878                            DAG.getConstant(-1, MVT::i32));
1879  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1880                                      DAG.getConstant(1, MVT::i32));
1881  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1882                                     Not);
1883  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1884  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1885  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1886  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1887                             DAG.getConstant(0x20, MVT::i32));
1888  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1889                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1890  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1891
1892  SDValue Ops[2] = {Lo, Hi};
1893  return DAG.getMergeValues(Ops, 2, DL);
1894}
1895
1896SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1897                                                 bool IsSRA) const {
1898  SDLoc DL(Op);
1899  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1900  SDValue Shamt = Op.getOperand(2);
1901
1902  // if shamt < 32:
1903  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1904  //  if isSRA:
1905  //    hi = (sra hi, shamt)
1906  //  else:
1907  //    hi = (srl hi, shamt)
1908  // else:
1909  //  if isSRA:
1910  //   lo = (sra hi, shamt[4:0])
1911  //   hi = (sra hi, 31)
1912  //  else:
1913  //   lo = (srl hi, shamt[4:0])
1914  //   hi = 0
1915  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1916                            DAG.getConstant(-1, MVT::i32));
1917  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1918                                     DAG.getConstant(1, MVT::i32));
1919  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1920  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1921  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1922  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1923                                     Hi, Shamt);
1924  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1925                             DAG.getConstant(0x20, MVT::i32));
1926  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1927                                DAG.getConstant(31, MVT::i32));
1928  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1929  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1930                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1931                   ShiftRightHi);
1932
1933  SDValue Ops[2] = {Lo, Hi};
1934  return DAG.getMergeValues(Ops, 2, DL);
1935}
1936
1937static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1938                            SDValue Chain, SDValue Src, unsigned Offset) {
1939  SDValue Ptr = LD->getBasePtr();
1940  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1941  EVT BasePtrVT = Ptr.getValueType();
1942  SDLoc DL(LD);
1943  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1944
1945  if (Offset)
1946    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1947                      DAG.getConstant(Offset, BasePtrVT));
1948
1949  SDValue Ops[] = { Chain, Ptr, Src };
1950  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1951                                 LD->getMemOperand());
1952}
1953
1954// Expand an unaligned 32 or 64-bit integer load node.
1955SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1956  LoadSDNode *LD = cast<LoadSDNode>(Op);
1957  EVT MemVT = LD->getMemoryVT();
1958
1959  // Return if load is aligned or if MemVT is neither i32 nor i64.
1960  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1961      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1962    return SDValue();
1963
1964  bool IsLittle = Subtarget->isLittle();
1965  EVT VT = Op.getValueType();
1966  ISD::LoadExtType ExtType = LD->getExtensionType();
1967  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1968
1969  assert((VT == MVT::i32) || (VT == MVT::i64));
1970
1971  // Expand
1972  //  (set dst, (i64 (load baseptr)))
1973  // to
1974  //  (set tmp, (ldl (add baseptr, 7), undef))
1975  //  (set dst, (ldr baseptr, tmp))
1976  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1977    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1978                               IsLittle ? 7 : 0);
1979    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1980                        IsLittle ? 0 : 7);
1981  }
1982
1983  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1984                             IsLittle ? 3 : 0);
1985  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1986                             IsLittle ? 0 : 3);
1987
1988  // Expand
1989  //  (set dst, (i32 (load baseptr))) or
1990  //  (set dst, (i64 (sextload baseptr))) or
1991  //  (set dst, (i64 (extload baseptr)))
1992  // to
1993  //  (set tmp, (lwl (add baseptr, 3), undef))
1994  //  (set dst, (lwr baseptr, tmp))
1995  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1996      (ExtType == ISD::EXTLOAD))
1997    return LWR;
1998
1999  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2000
2001  // Expand
2002  //  (set dst, (i64 (zextload baseptr)))
2003  // to
2004  //  (set tmp0, (lwl (add baseptr, 3), undef))
2005  //  (set tmp1, (lwr baseptr, tmp0))
2006  //  (set tmp2, (shl tmp1, 32))
2007  //  (set dst, (srl tmp2, 32))
2008  SDLoc DL(LD);
2009  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2010  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2011  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2012  SDValue Ops[] = { SRL, LWR.getValue(1) };
2013  return DAG.getMergeValues(Ops, 2, DL);
2014}
2015
2016static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2017                             SDValue Chain, unsigned Offset) {
2018  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2019  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2020  SDLoc DL(SD);
2021  SDVTList VTList = DAG.getVTList(MVT::Other);
2022
2023  if (Offset)
2024    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2025                      DAG.getConstant(Offset, BasePtrVT));
2026
2027  SDValue Ops[] = { Chain, Value, Ptr };
2028  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2029                                 SD->getMemOperand());
2030}
2031
2032// Expand an unaligned 32 or 64-bit integer store node.
2033static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2034                                      bool IsLittle) {
2035  SDValue Value = SD->getValue(), Chain = SD->getChain();
2036  EVT VT = Value.getValueType();
2037
2038  // Expand
2039  //  (store val, baseptr) or
2040  //  (truncstore val, baseptr)
2041  // to
2042  //  (swl val, (add baseptr, 3))
2043  //  (swr val, baseptr)
2044  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2045    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2046                                IsLittle ? 3 : 0);
2047    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2048  }
2049
2050  assert(VT == MVT::i64);
2051
2052  // Expand
2053  //  (store val, baseptr)
2054  // to
2055  //  (sdl val, (add baseptr, 7))
2056  //  (sdr val, baseptr)
2057  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2058  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2059}
2060
2061// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2062static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2063  SDValue Val = SD->getValue();
2064
2065  if (Val.getOpcode() != ISD::FP_TO_SINT)
2066    return SDValue();
2067
2068  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2069  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2070                           Val.getOperand(0));
2071
2072  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2073                      SD->getPointerInfo(), SD->isVolatile(),
2074                      SD->isNonTemporal(), SD->getAlignment());
2075}
2076
2077SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2078  StoreSDNode *SD = cast<StoreSDNode>(Op);
2079  EVT MemVT = SD->getMemoryVT();
2080
2081  // Lower unaligned integer stores.
2082  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2083      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2084    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2085
2086  return lowerFP_TO_SINT_STORE(SD, DAG);
2087}
2088
2089SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2090  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2091      || cast<ConstantSDNode>
2092        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2093      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2094    return SDValue();
2095
2096  // The pattern
2097  //   (add (frameaddr 0), (frame_to_args_offset))
2098  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2099  //   (add FrameObject, 0)
2100  // where FrameObject is a fixed StackObject with offset 0 which points to
2101  // the old stack pointer.
2102  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2103  EVT ValTy = Op->getValueType(0);
2104  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2105  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2106  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2107                     DAG.getConstant(0, ValTy));
2108}
2109
2110SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2111                                            SelectionDAG &DAG) const {
2112  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2113  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2114                              Op.getOperand(0));
2115  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2116}
2117
2118//===----------------------------------------------------------------------===//
2119//                      Calling Convention Implementation
2120//===----------------------------------------------------------------------===//
2121
2122//===----------------------------------------------------------------------===//
2123// TODO: Implement a generic logic using tblgen that can support this.
2124// Mips O32 ABI rules:
2125// ---
2126// i32 - Passed in A0, A1, A2, A3 and stack
2127// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2128//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2129// f64 - Only passed in two aliased f32 registers if no int reg has been used
2130//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2131//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2132//       go to stack.
2133//
2134//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2135//===----------------------------------------------------------------------===//
2136
2137static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2138                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2139                       ISD::ArgFlagsTy ArgFlags, CCState &State,
2140                       const uint16_t *F64Regs) {
2141
2142  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2143
2144  static const uint16_t IntRegs[] = {
2145      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2146  };
2147  static const uint16_t F32Regs[] = {
2148      Mips::F12, Mips::F14
2149  };
2150
2151  // Do not process byval args here.
2152  if (ArgFlags.isByVal())
2153    return true;
2154
2155  // Promote i8 and i16
2156  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2157    LocVT = MVT::i32;
2158    if (ArgFlags.isSExt())
2159      LocInfo = CCValAssign::SExt;
2160    else if (ArgFlags.isZExt())
2161      LocInfo = CCValAssign::ZExt;
2162    else
2163      LocInfo = CCValAssign::AExt;
2164  }
2165
2166  unsigned Reg;
2167
2168  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2169  // is true: function is vararg, argument is 3rd or higher, there is previous
2170  // argument which is not f32 or f64.
2171  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2172      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2173  unsigned OrigAlign = ArgFlags.getOrigAlign();
2174  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2175
2176  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2177    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2178    // If this is the first part of an i64 arg,
2179    // the allocated register must be either A0 or A2.
2180    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2181      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2182    LocVT = MVT::i32;
2183  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2184    // Allocate int register and shadow next int register. If first
2185    // available register is Mips::A1 or Mips::A3, shadow it too.
2186    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2187    if (Reg == Mips::A1 || Reg == Mips::A3)
2188      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2189    State.AllocateReg(IntRegs, IntRegsSize);
2190    LocVT = MVT::i32;
2191  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2192    // we are guaranteed to find an available float register
2193    if (ValVT == MVT::f32) {
2194      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2195      // Shadow int register
2196      State.AllocateReg(IntRegs, IntRegsSize);
2197    } else {
2198      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2199      // Shadow int registers
2200      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2201      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2202        State.AllocateReg(IntRegs, IntRegsSize);
2203      State.AllocateReg(IntRegs, IntRegsSize);
2204    }
2205  } else
2206    llvm_unreachable("Cannot handle this ValVT.");
2207
2208  if (!Reg) {
2209    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2210                                          OrigAlign);
2211    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2212  } else
2213    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2214
2215  return false;
2216}
2217
2218static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2219                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2220                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2221  static const uint16_t F64Regs[] = { Mips::D6, Mips::D7 };
2222
2223  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2224}
2225
2226static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2227                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2228                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2229  static const uint16_t F64Regs[] = { Mips::D12_64, Mips::D12_64 };
2230
2231  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2232}
2233
2234#include "MipsGenCallingConv.inc"
2235
2236//===----------------------------------------------------------------------===//
2237//                  Call Calling Convention Implementation
2238//===----------------------------------------------------------------------===//
2239
2240// Return next O32 integer argument register.
2241static unsigned getNextIntArgReg(unsigned Reg) {
2242  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2243  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2244}
2245
2246SDValue
2247MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2248                                   SDValue Chain, SDValue Arg, SDLoc DL,
2249                                   bool IsTailCall, SelectionDAG &DAG) const {
2250  if (!IsTailCall) {
2251    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2252                                 DAG.getIntPtrConstant(Offset));
2253    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2254                        false, 0);
2255  }
2256
2257  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2258  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2259  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2260  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2261                      /*isVolatile=*/ true, false, 0);
2262}
2263
2264void MipsTargetLowering::
2265getOpndList(SmallVectorImpl<SDValue> &Ops,
2266            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2267            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2268            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2269  // Insert node "GP copy globalreg" before call to function.
2270  //
2271  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2272  // in PIC mode) allow symbols to be resolved via lazy binding.
2273  // The lazy binding stub requires GP to point to the GOT.
2274  if (IsPICCall && !InternalLinkage) {
2275    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2276    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2277    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2278  }
2279
2280  // Build a sequence of copy-to-reg nodes chained together with token
2281  // chain and flag operands which copy the outgoing args into registers.
2282  // The InFlag in necessary since all emitted instructions must be
2283  // stuck together.
2284  SDValue InFlag;
2285
2286  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2287    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2288                                 RegsToPass[i].second, InFlag);
2289    InFlag = Chain.getValue(1);
2290  }
2291
2292  // Add argument registers to the end of the list so that they are
2293  // known live into the call.
2294  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2295    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2296                                      RegsToPass[i].second.getValueType()));
2297
2298  // Add a register mask operand representing the call-preserved registers.
2299  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2300  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2301  assert(Mask && "Missing call preserved mask for calling convention");
2302  if (Subtarget->inMips16HardFloat()) {
2303    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2304      llvm::StringRef Sym = G->getGlobal()->getName();
2305      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2306      if (F->hasFnAttribute("__Mips16RetHelper")) {
2307        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2308      }
2309    }
2310  }
2311  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2312
2313  if (InFlag.getNode())
2314    Ops.push_back(InFlag);
2315}
2316
2317/// LowerCall - functions arguments are copied from virtual regs to
2318/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2319SDValue
2320MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2321                              SmallVectorImpl<SDValue> &InVals) const {
2322  SelectionDAG &DAG                     = CLI.DAG;
2323  SDLoc DL                              = CLI.DL;
2324  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2325  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2326  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2327  SDValue Chain                         = CLI.Chain;
2328  SDValue Callee                        = CLI.Callee;
2329  bool &IsTailCall                      = CLI.IsTailCall;
2330  CallingConv::ID CallConv              = CLI.CallConv;
2331  bool IsVarArg                         = CLI.IsVarArg;
2332
2333  MachineFunction &MF = DAG.getMachineFunction();
2334  MachineFrameInfo *MFI = MF.getFrameInfo();
2335  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2336  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2337
2338  // Analyze operands of the call, assigning locations to each operand.
2339  SmallVector<CCValAssign, 16> ArgLocs;
2340  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2341                 getTargetMachine(), ArgLocs, *DAG.getContext());
2342  MipsCC::SpecialCallingConvType SpecialCallingConv =
2343    getSpecialCallingConv(Callee);
2344  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo,
2345                    SpecialCallingConv);
2346
2347  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2348                                 Subtarget->mipsSEUsesSoftFloat(),
2349                                 Callee.getNode(), CLI.Args);
2350
2351  // Get a count of how many bytes are to be pushed on the stack.
2352  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2353
2354  // Check if it's really possible to do a tail call.
2355  if (IsTailCall)
2356    IsTailCall =
2357      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2358                                        *MF.getInfo<MipsFunctionInfo>());
2359
2360  if (IsTailCall)
2361    ++NumTailCalls;
2362
2363  // Chain is the output chain of the last Load/Store or CopyToReg node.
2364  // ByValChain is the output chain of the last Memcpy node created for copying
2365  // byval arguments to the stack.
2366  unsigned StackAlignment = TFL->getStackAlignment();
2367  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2368  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2369
2370  if (!IsTailCall)
2371    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2372
2373  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2374                                        IsN64 ? Mips::SP_64 : Mips::SP,
2375                                        getPointerTy());
2376
2377  // With EABI is it possible to have 16 args on registers.
2378  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2379  SmallVector<SDValue, 8> MemOpChains;
2380  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2381
2382  // Walk the register/memloc assignments, inserting copies/loads.
2383  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2384    SDValue Arg = OutVals[i];
2385    CCValAssign &VA = ArgLocs[i];
2386    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2387    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2388
2389    // ByVal Arg.
2390    if (Flags.isByVal()) {
2391      assert(Flags.getByValSize() &&
2392             "ByVal args of size 0 should have been ignored by front-end.");
2393      assert(ByValArg != MipsCCInfo.byval_end());
2394      assert(!IsTailCall &&
2395             "Do not tail-call optimize if there is a byval argument.");
2396      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2397                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2398      ++ByValArg;
2399      continue;
2400    }
2401
2402    // Promote the value if needed.
2403    switch (VA.getLocInfo()) {
2404    default: llvm_unreachable("Unknown loc info!");
2405    case CCValAssign::Full:
2406      if (VA.isRegLoc()) {
2407        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2408            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2409            (ValVT == MVT::i64 && LocVT == MVT::f64))
2410          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2411        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2412          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2413                                   Arg, DAG.getConstant(0, MVT::i32));
2414          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2415                                   Arg, DAG.getConstant(1, MVT::i32));
2416          if (!Subtarget->isLittle())
2417            std::swap(Lo, Hi);
2418          unsigned LocRegLo = VA.getLocReg();
2419          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2420          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2421          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2422          continue;
2423        }
2424      }
2425      break;
2426    case CCValAssign::SExt:
2427      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2428      break;
2429    case CCValAssign::ZExt:
2430      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2431      break;
2432    case CCValAssign::AExt:
2433      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2434      break;
2435    }
2436
2437    // Arguments that can be passed on register must be kept at
2438    // RegsToPass vector
2439    if (VA.isRegLoc()) {
2440      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2441      continue;
2442    }
2443
2444    // Register can't get to this point...
2445    assert(VA.isMemLoc());
2446
2447    // emit ISD::STORE whichs stores the
2448    // parameter value to a stack Location
2449    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2450                                         Chain, Arg, DL, IsTailCall, DAG));
2451  }
2452
2453  // Transform all store nodes into one single node because all store
2454  // nodes are independent of each other.
2455  if (!MemOpChains.empty())
2456    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2457                        &MemOpChains[0], MemOpChains.size());
2458
2459  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2460  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2461  // node so that legalize doesn't hack it.
2462  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2463  bool GlobalOrExternal = false, InternalLinkage = false;
2464  SDValue CalleeLo;
2465
2466  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2467    if (IsPICCall) {
2468      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2469
2470      if (InternalLinkage)
2471        Callee = getAddrLocal(Callee, DAG, HasMips64);
2472      else if (LargeGOT)
2473        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2474                                       MipsII::MO_CALL_LO16);
2475      else
2476        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2477    } else
2478      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2479                                          MipsII::MO_NO_FLAG);
2480    GlobalOrExternal = true;
2481  }
2482  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2483    if (!IsN64 && !IsPIC) // !N64 && static
2484      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2485                                            MipsII::MO_NO_FLAG);
2486    else if (LargeGOT)
2487      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2488                                     MipsII::MO_CALL_LO16);
2489    else // N64 || PIC
2490      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2491
2492    GlobalOrExternal = true;
2493  }
2494
2495  SmallVector<SDValue, 8> Ops(1, Chain);
2496  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2497
2498  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2499              CLI, Callee, Chain);
2500
2501  if (IsTailCall)
2502    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2503
2504  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2505  SDValue InFlag = Chain.getValue(1);
2506
2507  // Create the CALLSEQ_END node.
2508  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2509                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2510  InFlag = Chain.getValue(1);
2511
2512  // Handle result values, copying them out of physregs into vregs that we
2513  // return.
2514  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2515                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2516}
2517
2518/// LowerCallResult - Lower the result values of a call into the
2519/// appropriate copies out of appropriate physical registers.
2520SDValue
2521MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2522                                    CallingConv::ID CallConv, bool IsVarArg,
2523                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2524                                    SDLoc DL, SelectionDAG &DAG,
2525                                    SmallVectorImpl<SDValue> &InVals,
2526                                    const SDNode *CallNode,
2527                                    const Type *RetTy) const {
2528  // Assign locations to each value returned by this call.
2529  SmallVector<CCValAssign, 16> RVLocs;
2530  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2531                 getTargetMachine(), RVLocs, *DAG.getContext());
2532  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2533
2534  MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
2535                               CallNode, RetTy);
2536
2537  // Copy all of the result registers out of their specified physreg.
2538  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2539    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2540                                     RVLocs[i].getLocVT(), InFlag);
2541    Chain = Val.getValue(1);
2542    InFlag = Val.getValue(2);
2543
2544    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2545      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2546
2547    InVals.push_back(Val);
2548  }
2549
2550  return Chain;
2551}
2552
2553//===----------------------------------------------------------------------===//
2554//             Formal Arguments Calling Convention Implementation
2555//===----------------------------------------------------------------------===//
2556/// LowerFormalArguments - transform physical registers into virtual registers
2557/// and generate load operations for arguments places on the stack.
2558SDValue
2559MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2560                                         CallingConv::ID CallConv,
2561                                         bool IsVarArg,
2562                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2563                                         SDLoc DL, SelectionDAG &DAG,
2564                                         SmallVectorImpl<SDValue> &InVals)
2565                                          const {
2566  MachineFunction &MF = DAG.getMachineFunction();
2567  MachineFrameInfo *MFI = MF.getFrameInfo();
2568  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2569
2570  MipsFI->setVarArgsFrameIndex(0);
2571
2572  // Used with vargs to acumulate store chains.
2573  std::vector<SDValue> OutChains;
2574
2575  // Assign locations to all of the incoming arguments.
2576  SmallVector<CCValAssign, 16> ArgLocs;
2577  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2578                 getTargetMachine(), ArgLocs, *DAG.getContext());
2579  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2580  Function::const_arg_iterator FuncArg =
2581    DAG.getMachineFunction().getFunction()->arg_begin();
2582  bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
2583
2584  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2585  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2586                           MipsCCInfo.hasByValArg());
2587
2588  unsigned CurArgIdx = 0;
2589  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2590
2591  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2592    CCValAssign &VA = ArgLocs[i];
2593    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2594    CurArgIdx = Ins[i].OrigArgIndex;
2595    EVT ValVT = VA.getValVT();
2596    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2597    bool IsRegLoc = VA.isRegLoc();
2598
2599    if (Flags.isByVal()) {
2600      assert(Flags.getByValSize() &&
2601             "ByVal args of size 0 should have been ignored by front-end.");
2602      assert(ByValArg != MipsCCInfo.byval_end());
2603      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2604                    MipsCCInfo, *ByValArg);
2605      ++ByValArg;
2606      continue;
2607    }
2608
2609    // Arguments stored on registers
2610    if (IsRegLoc) {
2611      EVT RegVT = VA.getLocVT();
2612      unsigned ArgReg = VA.getLocReg();
2613      const TargetRegisterClass *RC;
2614
2615      if (RegVT == MVT::i32)
2616        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2617                                        &Mips::GPR32RegClass;
2618      else if (RegVT == MVT::i64)
2619        RC = &Mips::GPR64RegClass;
2620      else if (RegVT == MVT::f32)
2621        RC = &Mips::FGR32RegClass;
2622      else if (RegVT == MVT::f64)
2623        RC = Subtarget->isFP64bit() ? &Mips::FGR64RegClass :
2624                                      &Mips::AFGR64RegClass;
2625      else
2626        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2627
2628      // Transform the arguments stored on
2629      // physical registers into virtual ones
2630      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2631      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2632
2633      // If this is an 8 or 16-bit value, it has been passed promoted
2634      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2635      // truncate to the right size.
2636      if (VA.getLocInfo() != CCValAssign::Full) {
2637        unsigned Opcode = 0;
2638        if (VA.getLocInfo() == CCValAssign::SExt)
2639          Opcode = ISD::AssertSext;
2640        else if (VA.getLocInfo() == CCValAssign::ZExt)
2641          Opcode = ISD::AssertZext;
2642        if (Opcode)
2643          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2644                                 DAG.getValueType(ValVT));
2645        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2646      }
2647
2648      // Handle floating point arguments passed in integer registers and
2649      // long double arguments passed in floating point registers.
2650      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2651          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2652          (RegVT == MVT::f64 && ValVT == MVT::i64))
2653        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2654      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2655        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2656                                  getNextIntArgReg(ArgReg), RC);
2657        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2658        if (!Subtarget->isLittle())
2659          std::swap(ArgValue, ArgValue2);
2660        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2661                               ArgValue, ArgValue2);
2662      }
2663
2664      InVals.push_back(ArgValue);
2665    } else { // VA.isRegLoc()
2666
2667      // sanity check
2668      assert(VA.isMemLoc());
2669
2670      // The stack pointer offset is relative to the caller stack frame.
2671      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2672                                      VA.getLocMemOffset(), true);
2673
2674      // Create load nodes to retrieve arguments from the stack
2675      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2676      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2677                                   MachinePointerInfo::getFixedStack(FI),
2678                                   false, false, false, 0));
2679    }
2680  }
2681
2682  // The mips ABIs for returning structs by value requires that we copy
2683  // the sret argument into $v0 for the return. Save the argument into
2684  // a virtual register so that we can access it from the return points.
2685  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2686    unsigned Reg = MipsFI->getSRetReturnReg();
2687    if (!Reg) {
2688      Reg = MF.getRegInfo().
2689        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2690      MipsFI->setSRetReturnReg(Reg);
2691    }
2692    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2693    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2694  }
2695
2696  if (IsVarArg)
2697    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2698
2699  // All stores are grouped in one node to allow the matching between
2700  // the size of Ins and InVals. This only happens when on varg functions
2701  if (!OutChains.empty()) {
2702    OutChains.push_back(Chain);
2703    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2704                        &OutChains[0], OutChains.size());
2705  }
2706
2707  return Chain;
2708}
2709
2710//===----------------------------------------------------------------------===//
2711//               Return Value Calling Convention Implementation
2712//===----------------------------------------------------------------------===//
2713
2714bool
2715MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2716                                   MachineFunction &MF, bool IsVarArg,
2717                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2718                                   LLVMContext &Context) const {
2719  SmallVector<CCValAssign, 16> RVLocs;
2720  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2721                 RVLocs, Context);
2722  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2723}
2724
2725SDValue
2726MipsTargetLowering::LowerReturn(SDValue Chain,
2727                                CallingConv::ID CallConv, bool IsVarArg,
2728                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2729                                const SmallVectorImpl<SDValue> &OutVals,
2730                                SDLoc DL, SelectionDAG &DAG) const {
2731  // CCValAssign - represent the assignment of
2732  // the return value to a location
2733  SmallVector<CCValAssign, 16> RVLocs;
2734  MachineFunction &MF = DAG.getMachineFunction();
2735
2736  // CCState - Info about the registers and stack slot.
2737  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2738                 *DAG.getContext());
2739  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2740
2741  // Analyze return values.
2742  MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
2743                           MF.getFunction()->getReturnType());
2744
2745  SDValue Flag;
2746  SmallVector<SDValue, 4> RetOps(1, Chain);
2747
2748  // Copy the result values into the output registers.
2749  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2750    SDValue Val = OutVals[i];
2751    CCValAssign &VA = RVLocs[i];
2752    assert(VA.isRegLoc() && "Can only return in registers!");
2753
2754    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2755      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2756
2757    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2758
2759    // Guarantee that all emitted copies are stuck together with flags.
2760    Flag = Chain.getValue(1);
2761    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2762  }
2763
2764  // The mips ABIs for returning structs by value requires that we copy
2765  // the sret argument into $v0 for the return. We saved the argument into
2766  // a virtual register in the entry block, so now we copy the value out
2767  // and into $v0.
2768  if (MF.getFunction()->hasStructRetAttr()) {
2769    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2770    unsigned Reg = MipsFI->getSRetReturnReg();
2771
2772    if (!Reg)
2773      llvm_unreachable("sret virtual register not created in the entry block");
2774    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2775    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2776
2777    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2778    Flag = Chain.getValue(1);
2779    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2780  }
2781
2782  RetOps[0] = Chain;  // Update chain.
2783
2784  // Add the flag if we have it.
2785  if (Flag.getNode())
2786    RetOps.push_back(Flag);
2787
2788  // Return on Mips is always a "jr $ra"
2789  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2790}
2791
2792//===----------------------------------------------------------------------===//
2793//                           Mips Inline Assembly Support
2794//===----------------------------------------------------------------------===//
2795
2796/// getConstraintType - Given a constraint letter, return the type of
2797/// constraint it is for this target.
2798MipsTargetLowering::ConstraintType MipsTargetLowering::
2799getConstraintType(const std::string &Constraint) const
2800{
2801  // Mips specific constrainy
2802  // GCC config/mips/constraints.md
2803  //
2804  // 'd' : An address register. Equivalent to r
2805  //       unless generating MIPS16 code.
2806  // 'y' : Equivalent to r; retained for
2807  //       backwards compatibility.
2808  // 'c' : A register suitable for use in an indirect
2809  //       jump. This will always be $25 for -mabicalls.
2810  // 'l' : The lo register. 1 word storage.
2811  // 'x' : The hilo register pair. Double word storage.
2812  if (Constraint.size() == 1) {
2813    switch (Constraint[0]) {
2814      default : break;
2815      case 'd':
2816      case 'y':
2817      case 'f':
2818      case 'c':
2819      case 'l':
2820      case 'x':
2821        return C_RegisterClass;
2822      case 'R':
2823        return C_Memory;
2824    }
2825  }
2826  return TargetLowering::getConstraintType(Constraint);
2827}
2828
2829/// Examine constraint type and operand type and determine a weight value.
2830/// This object must already have been set up with the operand type
2831/// and the current alternative constraint selected.
2832TargetLowering::ConstraintWeight
2833MipsTargetLowering::getSingleConstraintMatchWeight(
2834    AsmOperandInfo &info, const char *constraint) const {
2835  ConstraintWeight weight = CW_Invalid;
2836  Value *CallOperandVal = info.CallOperandVal;
2837    // If we don't have a value, we can't do a match,
2838    // but allow it at the lowest weight.
2839  if (CallOperandVal == NULL)
2840    return CW_Default;
2841  Type *type = CallOperandVal->getType();
2842  // Look at the constraint type.
2843  switch (*constraint) {
2844  default:
2845    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2846    break;
2847  case 'd':
2848  case 'y':
2849    if (type->isIntegerTy())
2850      weight = CW_Register;
2851    break;
2852  case 'f':
2853    if (type->isFloatTy())
2854      weight = CW_Register;
2855    break;
2856  case 'c': // $25 for indirect jumps
2857  case 'l': // lo register
2858  case 'x': // hilo register pair
2859      if (type->isIntegerTy())
2860      weight = CW_SpecificReg;
2861      break;
2862  case 'I': // signed 16 bit immediate
2863  case 'J': // integer zero
2864  case 'K': // unsigned 16 bit immediate
2865  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2866  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2867  case 'O': // signed 15 bit immediate (+- 16383)
2868  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2869    if (isa<ConstantInt>(CallOperandVal))
2870      weight = CW_Constant;
2871    break;
2872  case 'R':
2873    weight = CW_Memory;
2874    break;
2875  }
2876  return weight;
2877}
2878
2879/// This is a helper function to parse a physical register string and split it
2880/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
2881/// that is returned indicates whether parsing was successful. The second flag
2882/// is true if the numeric part exists.
2883static std::pair<bool, bool>
2884parsePhysicalReg(const StringRef &C, std::string &Prefix,
2885                 unsigned long long &Reg) {
2886  if (C.front() != '{' || C.back() != '}')
2887    return std::make_pair(false, false);
2888
2889  // Search for the first numeric character.
2890  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
2891  I = std::find_if(B, E, std::ptr_fun(isdigit));
2892
2893  Prefix.assign(B, I - B);
2894
2895  // The second flag is set to false if no numeric characters were found.
2896  if (I == E)
2897    return std::make_pair(true, false);
2898
2899  // Parse the numeric characters.
2900  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
2901                        true);
2902}
2903
2904std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
2905parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
2906  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2907  const TargetRegisterClass *RC;
2908  std::string Prefix;
2909  unsigned long long Reg;
2910
2911  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
2912
2913  if (!R.first)
2914    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2915
2916  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
2917    // No numeric characters follow "hi" or "lo".
2918    if (R.second)
2919      return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2920
2921    RC = TRI->getRegClass(Prefix == "hi" ?
2922                          Mips::HI32RegClassID : Mips::LO32RegClassID);
2923    return std::make_pair(*(RC->begin()), RC);
2924  }
2925
2926  if (!R.second)
2927    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2928
2929  if (Prefix == "$f") { // Parse $f0-$f31.
2930    // If the size of FP registers is 64-bit or Reg is an even number, select
2931    // the 64-bit register class. Otherwise, select the 32-bit register class.
2932    if (VT == MVT::Other)
2933      VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
2934
2935    RC= getRegClassFor(VT);
2936
2937    if (RC == &Mips::AFGR64RegClass) {
2938      assert(Reg % 2 == 0);
2939      Reg >>= 1;
2940    }
2941  } else if (Prefix == "$fcc") { // Parse $fcc0-$fcc7.
2942    RC = TRI->getRegClass(Mips::FCCRegClassID);
2943  } else { // Parse $0-$31.
2944    assert(Prefix == "$");
2945    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
2946  }
2947
2948  assert(Reg < RC->getNumRegs());
2949  return std::make_pair(*(RC->begin() + Reg), RC);
2950}
2951
2952/// Given a register class constraint, like 'r', if this corresponds directly
2953/// to an LLVM register class, return a register of 0 and the register class
2954/// pointer.
2955std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2956getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2957{
2958  if (Constraint.size() == 1) {
2959    switch (Constraint[0]) {
2960    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2961    case 'y': // Same as 'r'. Exists for compatibility.
2962    case 'r':
2963      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2964        if (Subtarget->inMips16Mode())
2965          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2966        return std::make_pair(0U, &Mips::GPR32RegClass);
2967      }
2968      if (VT == MVT::i64 && !HasMips64)
2969        return std::make_pair(0U, &Mips::GPR32RegClass);
2970      if (VT == MVT::i64 && HasMips64)
2971        return std::make_pair(0U, &Mips::GPR64RegClass);
2972      // This will generate an error message
2973      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2974    case 'f':
2975      if (VT == MVT::f32)
2976        return std::make_pair(0U, &Mips::FGR32RegClass);
2977      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2978        if (Subtarget->isFP64bit())
2979          return std::make_pair(0U, &Mips::FGR64RegClass);
2980        return std::make_pair(0U, &Mips::AFGR64RegClass);
2981      }
2982      break;
2983    case 'c': // register suitable for indirect jump
2984      if (VT == MVT::i32)
2985        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
2986      assert(VT == MVT::i64 && "Unexpected type.");
2987      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
2988    case 'l': // register suitable for indirect jump
2989      if (VT == MVT::i32)
2990        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
2991      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
2992    case 'x': // register suitable for indirect jump
2993      // Fixme: Not triggering the use of both hi and low
2994      // This will generate an error message
2995      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2996    }
2997  }
2998
2999  std::pair<unsigned, const TargetRegisterClass *> R;
3000  R = parseRegForInlineAsmConstraint(Constraint, VT);
3001
3002  if (R.second)
3003    return R;
3004
3005  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3006}
3007
3008/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3009/// vector.  If it is invalid, don't add anything to Ops.
3010void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3011                                                     std::string &Constraint,
3012                                                     std::vector<SDValue>&Ops,
3013                                                     SelectionDAG &DAG) const {
3014  SDValue Result(0, 0);
3015
3016  // Only support length 1 constraints for now.
3017  if (Constraint.length() > 1) return;
3018
3019  char ConstraintLetter = Constraint[0];
3020  switch (ConstraintLetter) {
3021  default: break; // This will fall through to the generic implementation
3022  case 'I': // Signed 16 bit constant
3023    // If this fails, the parent routine will give an error
3024    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3025      EVT Type = Op.getValueType();
3026      int64_t Val = C->getSExtValue();
3027      if (isInt<16>(Val)) {
3028        Result = DAG.getTargetConstant(Val, Type);
3029        break;
3030      }
3031    }
3032    return;
3033  case 'J': // integer zero
3034    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3035      EVT Type = Op.getValueType();
3036      int64_t Val = C->getZExtValue();
3037      if (Val == 0) {
3038        Result = DAG.getTargetConstant(0, Type);
3039        break;
3040      }
3041    }
3042    return;
3043  case 'K': // unsigned 16 bit immediate
3044    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3045      EVT Type = Op.getValueType();
3046      uint64_t Val = (uint64_t)C->getZExtValue();
3047      if (isUInt<16>(Val)) {
3048        Result = DAG.getTargetConstant(Val, Type);
3049        break;
3050      }
3051    }
3052    return;
3053  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3054    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3055      EVT Type = Op.getValueType();
3056      int64_t Val = C->getSExtValue();
3057      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3058        Result = DAG.getTargetConstant(Val, Type);
3059        break;
3060      }
3061    }
3062    return;
3063  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3064    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3065      EVT Type = Op.getValueType();
3066      int64_t Val = C->getSExtValue();
3067      if ((Val >= -65535) && (Val <= -1)) {
3068        Result = DAG.getTargetConstant(Val, Type);
3069        break;
3070      }
3071    }
3072    return;
3073  case 'O': // signed 15 bit immediate
3074    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3075      EVT Type = Op.getValueType();
3076      int64_t Val = C->getSExtValue();
3077      if ((isInt<15>(Val))) {
3078        Result = DAG.getTargetConstant(Val, Type);
3079        break;
3080      }
3081    }
3082    return;
3083  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3084    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3085      EVT Type = Op.getValueType();
3086      int64_t Val = C->getSExtValue();
3087      if ((Val <= 65535) && (Val >= 1)) {
3088        Result = DAG.getTargetConstant(Val, Type);
3089        break;
3090      }
3091    }
3092    return;
3093  }
3094
3095  if (Result.getNode()) {
3096    Ops.push_back(Result);
3097    return;
3098  }
3099
3100  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3101}
3102
3103bool
3104MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3105  // No global is ever allowed as a base.
3106  if (AM.BaseGV)
3107    return false;
3108
3109  switch (AM.Scale) {
3110  case 0: // "r+i" or just "i", depending on HasBaseReg.
3111    break;
3112  case 1:
3113    if (!AM.HasBaseReg) // allow "r+i".
3114      break;
3115    return false; // disallow "r+r" or "r+r+i".
3116  default:
3117    return false;
3118  }
3119
3120  return true;
3121}
3122
3123bool
3124MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3125  // The Mips target isn't yet aware of offsets.
3126  return false;
3127}
3128
3129EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3130                                            unsigned SrcAlign,
3131                                            bool IsMemset, bool ZeroMemset,
3132                                            bool MemcpyStrSrc,
3133                                            MachineFunction &MF) const {
3134  if (Subtarget->hasMips64())
3135    return MVT::i64;
3136
3137  return MVT::i32;
3138}
3139
3140bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3141  if (VT != MVT::f32 && VT != MVT::f64)
3142    return false;
3143  if (Imm.isNegZero())
3144    return false;
3145  return Imm.isZero();
3146}
3147
3148unsigned MipsTargetLowering::getJumpTableEncoding() const {
3149  if (IsN64)
3150    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3151
3152  return TargetLowering::getJumpTableEncoding();
3153}
3154
3155/// This function returns true if CallSym is a long double emulation routine.
3156static bool isF128SoftLibCall(const char *CallSym) {
3157  const char *const LibCalls[] =
3158    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3159     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3160     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3161     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3162     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3163     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3164     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3165     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3166     "truncl"};
3167
3168  const char * const *End = LibCalls + array_lengthof(LibCalls);
3169
3170  // Check that LibCalls is sorted alphabetically.
3171  MipsTargetLowering::LTStr Comp;
3172
3173#ifndef NDEBUG
3174  for (const char * const *I = LibCalls; I < End - 1; ++I)
3175    assert(Comp(*I, *(I + 1)));
3176#endif
3177
3178  return std::binary_search(LibCalls, End, CallSym, Comp);
3179}
3180
3181/// This function returns true if Ty is fp128 or i128 which was originally a
3182/// fp128.
3183static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3184  if (Ty->isFP128Ty())
3185    return true;
3186
3187  const ExternalSymbolSDNode *ES =
3188    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3189
3190  // If the Ty is i128 and the function being called is a long double emulation
3191  // routine, then the original type is f128.
3192  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3193}
3194
3195MipsTargetLowering::MipsCC::SpecialCallingConvType
3196  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3197  MipsCC::SpecialCallingConvType SpecialCallingConv =
3198    MipsCC::NoSpecialCallingConv;;
3199  if (Subtarget->inMips16HardFloat()) {
3200    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3201      llvm::StringRef Sym = G->getGlobal()->getName();
3202      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3203      if (F->hasFnAttribute("__Mips16RetHelper")) {
3204        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3205      }
3206    }
3207  }
3208  return SpecialCallingConv;
3209}
3210
3211MipsTargetLowering::MipsCC::MipsCC(
3212  CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
3213    MipsCC::SpecialCallingConvType SpecialCallingConv_)
3214  : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
3215    SpecialCallingConv(SpecialCallingConv_){
3216  // Pre-allocate reserved argument area.
3217  CCInfo.AllocateStack(reservedArgArea(), 1);
3218}
3219
3220
3221void MipsTargetLowering::MipsCC::
3222analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3223                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3224                    std::vector<ArgListEntry> &FuncArgs) {
3225  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3226         "CallingConv::Fast shouldn't be used for vararg functions.");
3227
3228  unsigned NumOpnds = Args.size();
3229  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3230
3231  for (unsigned I = 0; I != NumOpnds; ++I) {
3232    MVT ArgVT = Args[I].VT;
3233    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3234    bool R;
3235
3236    if (ArgFlags.isByVal()) {
3237      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3238      continue;
3239    }
3240
3241    if (IsVarArg && !Args[I].IsFixed)
3242      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3243    else {
3244      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3245                           IsSoftFloat);
3246      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3247    }
3248
3249    if (R) {
3250#ifndef NDEBUG
3251      dbgs() << "Call operand #" << I << " has unhandled type "
3252             << EVT(ArgVT).getEVTString();
3253#endif
3254      llvm_unreachable(0);
3255    }
3256  }
3257}
3258
3259void MipsTargetLowering::MipsCC::
3260analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3261                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3262  unsigned NumArgs = Args.size();
3263  llvm::CCAssignFn *FixedFn = fixedArgFn();
3264  unsigned CurArgIdx = 0;
3265
3266  for (unsigned I = 0; I != NumArgs; ++I) {
3267    MVT ArgVT = Args[I].VT;
3268    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3269    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3270    CurArgIdx = Args[I].OrigArgIndex;
3271
3272    if (ArgFlags.isByVal()) {
3273      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3274      continue;
3275    }
3276
3277    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3278
3279    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3280      continue;
3281
3282#ifndef NDEBUG
3283    dbgs() << "Formal Arg #" << I << " has unhandled type "
3284           << EVT(ArgVT).getEVTString();
3285#endif
3286    llvm_unreachable(0);
3287  }
3288}
3289
3290template<typename Ty>
3291void MipsTargetLowering::MipsCC::
3292analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3293              const SDNode *CallNode, const Type *RetTy) const {
3294  CCAssignFn *Fn;
3295
3296  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3297    Fn = RetCC_F128Soft;
3298  else
3299    Fn = RetCC_Mips;
3300
3301  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3302    MVT VT = RetVals[I].VT;
3303    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3304    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3305
3306    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3307#ifndef NDEBUG
3308      dbgs() << "Call result #" << I << " has unhandled type "
3309             << EVT(VT).getEVTString() << '\n';
3310#endif
3311      llvm_unreachable(0);
3312    }
3313  }
3314}
3315
3316void MipsTargetLowering::MipsCC::
3317analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3318                  const SDNode *CallNode, const Type *RetTy) const {
3319  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3320}
3321
3322void MipsTargetLowering::MipsCC::
3323analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3324              const Type *RetTy) const {
3325  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3326}
3327
3328void
3329MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3330                                           MVT LocVT,
3331                                           CCValAssign::LocInfo LocInfo,
3332                                           ISD::ArgFlagsTy ArgFlags) {
3333  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3334
3335  struct ByValArgInfo ByVal;
3336  unsigned RegSize = regSize();
3337  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3338  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3339                            RegSize * 2);
3340
3341  if (useRegsForByval())
3342    allocateRegs(ByVal, ByValSize, Align);
3343
3344  // Allocate space on caller's stack.
3345  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3346                                       Align);
3347  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3348                                    LocInfo));
3349  ByValArgs.push_back(ByVal);
3350}
3351
3352unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3353  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3354}
3355
3356unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3357  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3358}
3359
3360const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3361  return IsO32 ? O32IntRegs : Mips64IntRegs;
3362}
3363
3364llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3365  if (CallConv == CallingConv::Fast)
3366    return CC_Mips_FastCC;
3367
3368  if (SpecialCallingConv == Mips16RetHelperConv)
3369    return CC_Mips16RetHelper;
3370  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
3371}
3372
3373llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3374  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
3375}
3376
3377const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3378  return IsO32 ? O32IntRegs : Mips64DPRegs;
3379}
3380
3381void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3382                                              unsigned ByValSize,
3383                                              unsigned Align) {
3384  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3385  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3386  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3387         "Byval argument's size and alignment should be a multiple of"
3388         "RegSize.");
3389
3390  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3391
3392  // If Align > RegSize, the first arg register must be even.
3393  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3394    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3395    ++ByVal.FirstIdx;
3396  }
3397
3398  // Mark the registers allocated.
3399  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3400       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3401    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3402}
3403
3404MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3405                                         const SDNode *CallNode,
3406                                         bool IsSoftFloat) const {
3407  if (IsSoftFloat || IsO32)
3408    return VT;
3409
3410  // Check if the original type was fp128.
3411  if (originalTypeIsF128(OrigTy, CallNode)) {
3412    assert(VT == MVT::i64);
3413    return MVT::f64;
3414  }
3415
3416  return VT;
3417}
3418
3419void MipsTargetLowering::
3420copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3421              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3422              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3423              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3424  MachineFunction &MF = DAG.getMachineFunction();
3425  MachineFrameInfo *MFI = MF.getFrameInfo();
3426  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3427  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3428  int FrameObjOffset;
3429
3430  if (RegAreaSize)
3431    FrameObjOffset = (int)CC.reservedArgArea() -
3432      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3433  else
3434    FrameObjOffset = ByVal.Address;
3435
3436  // Create frame object.
3437  EVT PtrTy = getPointerTy();
3438  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3439  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3440  InVals.push_back(FIN);
3441
3442  if (!ByVal.NumRegs)
3443    return;
3444
3445  // Copy arg registers.
3446  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3447  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3448
3449  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3450    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3451    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3452    unsigned Offset = I * CC.regSize();
3453    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3454                                   DAG.getConstant(Offset, PtrTy));
3455    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3456                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3457                                 false, false, 0);
3458    OutChains.push_back(Store);
3459  }
3460}
3461
3462// Copy byVal arg to registers and stack.
3463void MipsTargetLowering::
3464passByValArg(SDValue Chain, SDLoc DL,
3465             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3466             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3467             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3468             const MipsCC &CC, const ByValArgInfo &ByVal,
3469             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3470  unsigned ByValSize = Flags.getByValSize();
3471  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3472  unsigned RegSize = CC.regSize();
3473  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3474  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3475
3476  if (ByVal.NumRegs) {
3477    const uint16_t *ArgRegs = CC.intArgRegs();
3478    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3479    unsigned I = 0;
3480
3481    // Copy words to registers.
3482    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3483      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3484                                    DAG.getConstant(Offset, PtrTy));
3485      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3486                                    MachinePointerInfo(), false, false, false,
3487                                    Alignment);
3488      MemOpChains.push_back(LoadVal.getValue(1));
3489      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3490      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3491    }
3492
3493    // Return if the struct has been fully copied.
3494    if (ByValSize == Offset)
3495      return;
3496
3497    // Copy the remainder of the byval argument with sub-word loads and shifts.
3498    if (LeftoverBytes) {
3499      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3500             "Size of the remainder should be smaller than RegSize.");
3501      SDValue Val;
3502
3503      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3504           Offset < ByValSize; LoadSize /= 2) {
3505        unsigned RemSize = ByValSize - Offset;
3506
3507        if (RemSize < LoadSize)
3508          continue;
3509
3510        // Load subword.
3511        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3512                                      DAG.getConstant(Offset, PtrTy));
3513        SDValue LoadVal =
3514          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3515                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3516                         false, false, Alignment);
3517        MemOpChains.push_back(LoadVal.getValue(1));
3518
3519        // Shift the loaded value.
3520        unsigned Shamt;
3521
3522        if (isLittle)
3523          Shamt = TotalSizeLoaded;
3524        else
3525          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3526
3527        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3528                                    DAG.getConstant(Shamt, MVT::i32));
3529
3530        if (Val.getNode())
3531          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3532        else
3533          Val = Shift;
3534
3535        Offset += LoadSize;
3536        TotalSizeLoaded += LoadSize;
3537        Alignment = std::min(Alignment, LoadSize);
3538      }
3539
3540      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3541      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3542      return;
3543    }
3544  }
3545
3546  // Copy remainder of byval arg to it with memcpy.
3547  unsigned MemCpySize = ByValSize - Offset;
3548  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3549                            DAG.getConstant(Offset, PtrTy));
3550  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3551                            DAG.getIntPtrConstant(ByVal.Address));
3552  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3553                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3554                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3555                        MachinePointerInfo(0), MachinePointerInfo(0));
3556  MemOpChains.push_back(Chain);
3557}
3558
3559void
3560MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3561                                    const MipsCC &CC, SDValue Chain,
3562                                    SDLoc DL, SelectionDAG &DAG) const {
3563  unsigned NumRegs = CC.numIntArgRegs();
3564  const uint16_t *ArgRegs = CC.intArgRegs();
3565  const CCState &CCInfo = CC.getCCInfo();
3566  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3567  unsigned RegSize = CC.regSize();
3568  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3569  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3570  MachineFunction &MF = DAG.getMachineFunction();
3571  MachineFrameInfo *MFI = MF.getFrameInfo();
3572  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3573
3574  // Offset of the first variable argument from stack pointer.
3575  int VaArgOffset;
3576
3577  if (NumRegs == Idx)
3578    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3579  else
3580    VaArgOffset =
3581      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3582
3583  // Record the frame index of the first variable argument
3584  // which is a value necessary to VASTART.
3585  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3586  MipsFI->setVarArgsFrameIndex(FI);
3587
3588  // Copy the integer registers that have not been used for argument passing
3589  // to the argument register save area. For O32, the save area is allocated
3590  // in the caller's stack frame, while for N32/64, it is allocated in the
3591  // callee's stack frame.
3592  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3593    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3594    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3595    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3596    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3597    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3598                                 MachinePointerInfo(), false, false, 0);
3599    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3600    OutChains.push_back(Store);
3601  }
3602}
3603