MipsISelLowering.cpp revision 93d995719e2459a6e9ccdb2c93a8ede8fa88c899
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include <cctype>
38
39using namespace llvm;
40
41STATISTIC(NumTailCalls, "Number of tail calls");
42
43static cl::opt<bool>
44LargeGOT("mxgot", cl::Hidden,
45         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
46
47static cl::opt<bool>
48NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
49               cl::desc("MIPS: Don't trap on integer division by zero."),
50               cl::init(false));
51
52static const uint16_t O32IntRegs[4] = {
53  Mips::A0, Mips::A1, Mips::A2, Mips::A3
54};
55
56static const uint16_t Mips64IntRegs[8] = {
57  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
58  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
59};
60
61static const uint16_t Mips64DPRegs[8] = {
62  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
63  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
64};
65
66// If I is a shifted mask, set the size (Size) and the first bit of the
67// mask (Pos), and return true.
68// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
69static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
70  if (!isShiftedMask_64(I))
71     return false;
72
73  Size = CountPopulation_64(I);
74  Pos = countTrailingZeros(I);
75  return true;
76}
77
78SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
79  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
80  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
81}
82
83static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
84  EVT Ty = Op.getValueType();
85
86  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
87    return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(Op), Ty, 0,
88                                      Flag);
89  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
90    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
91  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
92    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
93  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
94    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
95  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
96    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
97                                     N->getOffset(), Flag);
98
99  llvm_unreachable("Unexpected node type.");
100  return SDValue();
101}
102
103static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
104  SDLoc DL(Op);
105  EVT Ty = Op.getValueType();
106  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
107  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
108  return DAG.getNode(ISD::ADD, DL, Ty,
109                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
110                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
111}
112
113SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
114                                         bool HasMips64) const {
115  SDLoc DL(Op);
116  EVT Ty = Op.getValueType();
117  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
118  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
119                            getTargetNode(Op, DAG, GOTFlag));
120  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
121                             MachinePointerInfo::getGOT(), false, false, false,
122                             0);
123  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
124  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
125  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
126}
127
128SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
129                                          unsigned Flag) const {
130  SDLoc DL(Op);
131  EVT Ty = Op.getValueType();
132  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
133                            getTargetNode(Op, DAG, Flag));
134  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
135                     MachinePointerInfo::getGOT(), false, false, false, 0);
136}
137
138SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
139                                                  unsigned HiFlag,
140                                                  unsigned LoFlag) const {
141  SDLoc DL(Op);
142  EVT Ty = Op.getValueType();
143  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
144  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
145  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
146                                getTargetNode(Op, DAG, LoFlag));
147  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
148                     MachinePointerInfo::getGOT(), false, false, false, 0);
149}
150
151const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
152  switch (Opcode) {
153  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
154  case MipsISD::TailCall:          return "MipsISD::TailCall";
155  case MipsISD::Hi:                return "MipsISD::Hi";
156  case MipsISD::Lo:                return "MipsISD::Lo";
157  case MipsISD::GPRel:             return "MipsISD::GPRel";
158  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
159  case MipsISD::Ret:               return "MipsISD::Ret";
160  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
161  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
162  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
163  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
164  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
165  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
166  case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
167  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
168  case MipsISD::Mult:              return "MipsISD::Mult";
169  case MipsISD::Multu:             return "MipsISD::Multu";
170  case MipsISD::MAdd:              return "MipsISD::MAdd";
171  case MipsISD::MAddu:             return "MipsISD::MAddu";
172  case MipsISD::MSub:              return "MipsISD::MSub";
173  case MipsISD::MSubu:             return "MipsISD::MSubu";
174  case MipsISD::DivRem:            return "MipsISD::DivRem";
175  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
176  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
177  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
178  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
179  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
180  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
181  case MipsISD::Sync:              return "MipsISD::Sync";
182  case MipsISD::Ext:               return "MipsISD::Ext";
183  case MipsISD::Ins:               return "MipsISD::Ins";
184  case MipsISD::LWL:               return "MipsISD::LWL";
185  case MipsISD::LWR:               return "MipsISD::LWR";
186  case MipsISD::SWL:               return "MipsISD::SWL";
187  case MipsISD::SWR:               return "MipsISD::SWR";
188  case MipsISD::LDL:               return "MipsISD::LDL";
189  case MipsISD::LDR:               return "MipsISD::LDR";
190  case MipsISD::SDL:               return "MipsISD::SDL";
191  case MipsISD::SDR:               return "MipsISD::SDR";
192  case MipsISD::EXTP:              return "MipsISD::EXTP";
193  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
194  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
195  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
196  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
197  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
198  case MipsISD::SHILO:             return "MipsISD::SHILO";
199  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
200  case MipsISD::MULT:              return "MipsISD::MULT";
201  case MipsISD::MULTU:             return "MipsISD::MULTU";
202  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
203  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
204  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
205  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
206  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
207  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
208  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
209  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
210  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
211  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
212  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
213  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
214  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
215  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
216  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
217  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
218  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
219  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
220  case MipsISD::VSMAX:             return "MipsISD::VSMAX";
221  case MipsISD::VSMIN:             return "MipsISD::VSMIN";
222  case MipsISD::VUMAX:             return "MipsISD::VUMAX";
223  case MipsISD::VUMIN:             return "MipsISD::VUMIN";
224  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
225  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
226  case MipsISD::VNOR:              return "MipsISD::VNOR";
227  case MipsISD::VSHF:              return "MipsISD::VSHF";
228  case MipsISD::SHF:               return "MipsISD::SHF";
229  default:                         return NULL;
230  }
231}
232
233MipsTargetLowering::
234MipsTargetLowering(MipsTargetMachine &TM)
235  : TargetLowering(TM, new MipsTargetObjectFile()),
236    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
237    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
238    IsO32(Subtarget->isABI_O32()) {
239  // Mips does not have i1 type, so use i32 for
240  // setcc operations results (slt, sgt, ...).
241  setBooleanContents(ZeroOrOneBooleanContent);
242  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
243
244  // Load extented operations for i1 types must be promoted
245  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
246  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
247  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
248
249  // MIPS doesn't have extending float->double load/store
250  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
251  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
252
253  // Used by legalize types to correctly generate the setcc result.
254  // Without this, every float setcc comes with a AND/OR with the result,
255  // we don't want this, since the fpcmp result goes to a flag register,
256  // which is used implicitly by brcond and select operations.
257  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
258
259  // Mips Custom Operations
260  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
261  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
262  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
263  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
264  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
265  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
266  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
267  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
268  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
269  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
270  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
271  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
272  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
273  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
274  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
275  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
276  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
277  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
278
279  if (!TM.Options.NoNaNsFPMath) {
280    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
281    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
282  }
283
284  if (HasMips64) {
285    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
286    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
287    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
288    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
289    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
290    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
291    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
292    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
293    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
294  }
295
296  if (!HasMips64) {
297    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
298    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
299    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
300  }
301
302  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
303  if (HasMips64)
304    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
305
306  setOperationAction(ISD::SDIV, MVT::i32, Expand);
307  setOperationAction(ISD::SREM, MVT::i32, Expand);
308  setOperationAction(ISD::UDIV, MVT::i32, Expand);
309  setOperationAction(ISD::UREM, MVT::i32, Expand);
310  setOperationAction(ISD::SDIV, MVT::i64, Expand);
311  setOperationAction(ISD::SREM, MVT::i64, Expand);
312  setOperationAction(ISD::UDIV, MVT::i64, Expand);
313  setOperationAction(ISD::UREM, MVT::i64, Expand);
314
315  // Operations not directly supported by Mips.
316  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
317  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
318  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
319  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
320  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
321  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
322  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
323  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
324  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
325  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
326  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
327  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
328  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
329  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
330  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
331  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
332  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
333  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
334  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
335  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
336  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
337  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
338
339  if (!Subtarget->hasMips32r2())
340    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
341
342  if (!Subtarget->hasMips64r2())
343    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
344
345  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
346  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
347  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
348  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
349  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
350  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
351  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
352  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
353  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
354  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
355  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
356  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
357  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
358  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
359  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
360  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
361  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
362
363  if (!TM.Options.NoNaNsFPMath) {
364    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
365    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
366  }
367
368  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
369
370  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
371  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
372  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
373
374  // Use the default for now
375  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
376  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
377
378  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
379  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
380  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
381  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
382
383  setInsertFencesForAtomic(true);
384
385  if (!Subtarget->hasSEInReg()) {
386    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
387    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
388  }
389
390  if (!Subtarget->hasBitCount()) {
391    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
392    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
393  }
394
395  if (!Subtarget->hasSwap()) {
396    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
397    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
398  }
399
400  if (HasMips64) {
401    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
402    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
403    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
404    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
405  }
406
407  setOperationAction(ISD::TRAP, MVT::Other, Legal);
408
409  setTargetDAGCombine(ISD::SDIVREM);
410  setTargetDAGCombine(ISD::UDIVREM);
411  setTargetDAGCombine(ISD::SELECT);
412  setTargetDAGCombine(ISD::AND);
413  setTargetDAGCombine(ISD::OR);
414  setTargetDAGCombine(ISD::ADD);
415
416  setMinFunctionAlignment(HasMips64 ? 3 : 2);
417
418  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
419
420  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
421  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
422
423  MaxStoresPerMemcpy = 16;
424}
425
426const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
427  if (TM.getSubtargetImpl()->inMips16Mode())
428    return llvm::createMips16TargetLowering(TM);
429
430  return llvm::createMipsSETargetLowering(TM);
431}
432
433EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
434  if (!VT.isVector())
435    return MVT::i32;
436  return VT.changeVectorElementTypeToInteger();
437}
438
439static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
440                                    TargetLowering::DAGCombinerInfo &DCI,
441                                    const MipsSubtarget *Subtarget) {
442  if (DCI.isBeforeLegalizeOps())
443    return SDValue();
444
445  EVT Ty = N->getValueType(0);
446  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
447  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
448  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
449                                                  MipsISD::DivRemU16;
450  SDLoc DL(N);
451
452  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
453                               N->getOperand(0), N->getOperand(1));
454  SDValue InChain = DAG.getEntryNode();
455  SDValue InGlue = DivRem;
456
457  // insert MFLO
458  if (N->hasAnyUseOfValue(0)) {
459    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
460                                            InGlue);
461    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
462    InChain = CopyFromLo.getValue(1);
463    InGlue = CopyFromLo.getValue(2);
464  }
465
466  // insert MFHI
467  if (N->hasAnyUseOfValue(1)) {
468    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
469                                            HI, Ty, InGlue);
470    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
471  }
472
473  return SDValue();
474}
475
476static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
477  switch (CC) {
478  default: llvm_unreachable("Unknown fp condition code!");
479  case ISD::SETEQ:
480  case ISD::SETOEQ: return Mips::FCOND_OEQ;
481  case ISD::SETUNE: return Mips::FCOND_UNE;
482  case ISD::SETLT:
483  case ISD::SETOLT: return Mips::FCOND_OLT;
484  case ISD::SETGT:
485  case ISD::SETOGT: return Mips::FCOND_OGT;
486  case ISD::SETLE:
487  case ISD::SETOLE: return Mips::FCOND_OLE;
488  case ISD::SETGE:
489  case ISD::SETOGE: return Mips::FCOND_OGE;
490  case ISD::SETULT: return Mips::FCOND_ULT;
491  case ISD::SETULE: return Mips::FCOND_ULE;
492  case ISD::SETUGT: return Mips::FCOND_UGT;
493  case ISD::SETUGE: return Mips::FCOND_UGE;
494  case ISD::SETUO:  return Mips::FCOND_UN;
495  case ISD::SETO:   return Mips::FCOND_OR;
496  case ISD::SETNE:
497  case ISD::SETONE: return Mips::FCOND_ONE;
498  case ISD::SETUEQ: return Mips::FCOND_UEQ;
499  }
500}
501
502
503/// This function returns true if the floating point conditional branches and
504/// conditional moves which use condition code CC should be inverted.
505static bool invertFPCondCodeUser(Mips::CondCode CC) {
506  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
507    return false;
508
509  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
510         "Illegal Condition Code");
511
512  return true;
513}
514
515// Creates and returns an FPCmp node from a setcc node.
516// Returns Op if setcc is not a floating point comparison.
517static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
518  // must be a SETCC node
519  if (Op.getOpcode() != ISD::SETCC)
520    return Op;
521
522  SDValue LHS = Op.getOperand(0);
523
524  if (!LHS.getValueType().isFloatingPoint())
525    return Op;
526
527  SDValue RHS = Op.getOperand(1);
528  SDLoc DL(Op);
529
530  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
531  // node if necessary.
532  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
533
534  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
535                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
536}
537
538// Creates and returns a CMovFPT/F node.
539static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
540                            SDValue False, SDLoc DL) {
541  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
542  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
543  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
544
545  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
546                     True.getValueType(), True, FCC0, False, Cond);
547}
548
549static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
550                                    TargetLowering::DAGCombinerInfo &DCI,
551                                    const MipsSubtarget *Subtarget) {
552  if (DCI.isBeforeLegalizeOps())
553    return SDValue();
554
555  SDValue SetCC = N->getOperand(0);
556
557  if ((SetCC.getOpcode() != ISD::SETCC) ||
558      !SetCC.getOperand(0).getValueType().isInteger())
559    return SDValue();
560
561  SDValue False = N->getOperand(2);
562  EVT FalseTy = False.getValueType();
563
564  if (!FalseTy.isInteger())
565    return SDValue();
566
567  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
568
569  if (!CN || CN->getZExtValue())
570    return SDValue();
571
572  const SDLoc DL(N);
573  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
574  SDValue True = N->getOperand(1);
575
576  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
577                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
578
579  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
580}
581
582static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
583                                 TargetLowering::DAGCombinerInfo &DCI,
584                                 const MipsSubtarget *Subtarget) {
585  // Pattern match EXT.
586  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
587  //  => ext $dst, $src, size, pos
588  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
589    return SDValue();
590
591  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
592  unsigned ShiftRightOpc = ShiftRight.getOpcode();
593
594  // Op's first operand must be a shift right.
595  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
596    return SDValue();
597
598  // The second operand of the shift must be an immediate.
599  ConstantSDNode *CN;
600  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
601    return SDValue();
602
603  uint64_t Pos = CN->getZExtValue();
604  uint64_t SMPos, SMSize;
605
606  // Op's second operand must be a shifted mask.
607  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
608      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
609    return SDValue();
610
611  // Return if the shifted mask does not start at bit 0 or the sum of its size
612  // and Pos exceeds the word's size.
613  EVT ValTy = N->getValueType(0);
614  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
615    return SDValue();
616
617  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
618                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
619                     DAG.getConstant(SMSize, MVT::i32));
620}
621
622static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
623                                TargetLowering::DAGCombinerInfo &DCI,
624                                const MipsSubtarget *Subtarget) {
625  // Pattern match INS.
626  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
627  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
628  //  => ins $dst, $src, size, pos, $src1
629  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
630    return SDValue();
631
632  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
633  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
634  ConstantSDNode *CN;
635
636  // See if Op's first operand matches (and $src1 , mask0).
637  if (And0.getOpcode() != ISD::AND)
638    return SDValue();
639
640  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
641      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
642    return SDValue();
643
644  // See if Op's second operand matches (and (shl $src, pos), mask1).
645  if (And1.getOpcode() != ISD::AND)
646    return SDValue();
647
648  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
649      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
650    return SDValue();
651
652  // The shift masks must have the same position and size.
653  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
654    return SDValue();
655
656  SDValue Shl = And1.getOperand(0);
657  if (Shl.getOpcode() != ISD::SHL)
658    return SDValue();
659
660  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
661    return SDValue();
662
663  unsigned Shamt = CN->getZExtValue();
664
665  // Return if the shift amount and the first bit position of mask are not the
666  // same.
667  EVT ValTy = N->getValueType(0);
668  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
669    return SDValue();
670
671  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
672                     DAG.getConstant(SMPos0, MVT::i32),
673                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
674}
675
676static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
677                                 TargetLowering::DAGCombinerInfo &DCI,
678                                 const MipsSubtarget *Subtarget) {
679  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
680
681  if (DCI.isBeforeLegalizeOps())
682    return SDValue();
683
684  SDValue Add = N->getOperand(1);
685
686  if (Add.getOpcode() != ISD::ADD)
687    return SDValue();
688
689  SDValue Lo = Add.getOperand(1);
690
691  if ((Lo.getOpcode() != MipsISD::Lo) ||
692      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
693    return SDValue();
694
695  EVT ValTy = N->getValueType(0);
696  SDLoc DL(N);
697
698  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
699                             Add.getOperand(0));
700  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
701}
702
703SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
704  const {
705  SelectionDAG &DAG = DCI.DAG;
706  unsigned Opc = N->getOpcode();
707
708  switch (Opc) {
709  default: break;
710  case ISD::SDIVREM:
711  case ISD::UDIVREM:
712    return performDivRemCombine(N, DAG, DCI, Subtarget);
713  case ISD::SELECT:
714    return performSELECTCombine(N, DAG, DCI, Subtarget);
715  case ISD::AND:
716    return performANDCombine(N, DAG, DCI, Subtarget);
717  case ISD::OR:
718    return performORCombine(N, DAG, DCI, Subtarget);
719  case ISD::ADD:
720    return performADDCombine(N, DAG, DCI, Subtarget);
721  }
722
723  return SDValue();
724}
725
726void
727MipsTargetLowering::LowerOperationWrapper(SDNode *N,
728                                          SmallVectorImpl<SDValue> &Results,
729                                          SelectionDAG &DAG) const {
730  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
731
732  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
733    Results.push_back(Res.getValue(I));
734}
735
736void
737MipsTargetLowering::ReplaceNodeResults(SDNode *N,
738                                       SmallVectorImpl<SDValue> &Results,
739                                       SelectionDAG &DAG) const {
740  return LowerOperationWrapper(N, Results, DAG);
741}
742
743SDValue MipsTargetLowering::
744LowerOperation(SDValue Op, SelectionDAG &DAG) const
745{
746  switch (Op.getOpcode())
747  {
748  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
749  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
750  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
751  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
752  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
753  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
754  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
755  case ISD::SELECT:             return lowerSELECT(Op, DAG);
756  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
757  case ISD::SETCC:              return lowerSETCC(Op, DAG);
758  case ISD::VASTART:            return lowerVASTART(Op, DAG);
759  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
760  case ISD::FABS:               return lowerFABS(Op, DAG);
761  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
762  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
763  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
764  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
765  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
766  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
767  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
768  case ISD::LOAD:               return lowerLOAD(Op, DAG);
769  case ISD::STORE:              return lowerSTORE(Op, DAG);
770  case ISD::ADD:                return lowerADD(Op, DAG);
771  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
772  }
773  return SDValue();
774}
775
776//===----------------------------------------------------------------------===//
777//  Lower helper functions
778//===----------------------------------------------------------------------===//
779
780// addLiveIn - This helper function adds the specified physical register to the
781// MachineFunction as a live in value.  It also creates a corresponding
782// virtual register for it.
783static unsigned
784addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
785{
786  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
787  MF.getRegInfo().addLiveIn(PReg, VReg);
788  return VReg;
789}
790
791static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
792                                          MachineBasicBlock &MBB,
793                                          const TargetInstrInfo &TII,
794                                          bool Is64Bit) {
795  if (NoZeroDivCheck)
796    return &MBB;
797
798  // Insert instruction "teq $divisor_reg, $zero, 7".
799  MachineBasicBlock::iterator I(MI);
800  MachineInstrBuilder MIB;
801  MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
802    .addOperand(MI->getOperand(2)).addReg(Mips::ZERO).addImm(7);
803
804  // Use the 32-bit sub-register if this is a 64-bit division.
805  if (Is64Bit)
806    MIB->getOperand(0).setSubReg(Mips::sub_32);
807
808  return &MBB;
809}
810
811MachineBasicBlock *
812MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
813                                                MachineBasicBlock *BB) const {
814  switch (MI->getOpcode()) {
815  default:
816    llvm_unreachable("Unexpected instr type to insert");
817  case Mips::ATOMIC_LOAD_ADD_I8:
818    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
819  case Mips::ATOMIC_LOAD_ADD_I16:
820    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
821  case Mips::ATOMIC_LOAD_ADD_I32:
822    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
823  case Mips::ATOMIC_LOAD_ADD_I64:
824    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
825
826  case Mips::ATOMIC_LOAD_AND_I8:
827    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
828  case Mips::ATOMIC_LOAD_AND_I16:
829    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
830  case Mips::ATOMIC_LOAD_AND_I32:
831    return emitAtomicBinary(MI, BB, 4, Mips::AND);
832  case Mips::ATOMIC_LOAD_AND_I64:
833    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
834
835  case Mips::ATOMIC_LOAD_OR_I8:
836    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
837  case Mips::ATOMIC_LOAD_OR_I16:
838    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
839  case Mips::ATOMIC_LOAD_OR_I32:
840    return emitAtomicBinary(MI, BB, 4, Mips::OR);
841  case Mips::ATOMIC_LOAD_OR_I64:
842    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
843
844  case Mips::ATOMIC_LOAD_XOR_I8:
845    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
846  case Mips::ATOMIC_LOAD_XOR_I16:
847    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
848  case Mips::ATOMIC_LOAD_XOR_I32:
849    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
850  case Mips::ATOMIC_LOAD_XOR_I64:
851    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
852
853  case Mips::ATOMIC_LOAD_NAND_I8:
854    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
855  case Mips::ATOMIC_LOAD_NAND_I16:
856    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
857  case Mips::ATOMIC_LOAD_NAND_I32:
858    return emitAtomicBinary(MI, BB, 4, 0, true);
859  case Mips::ATOMIC_LOAD_NAND_I64:
860    return emitAtomicBinary(MI, BB, 8, 0, true);
861
862  case Mips::ATOMIC_LOAD_SUB_I8:
863    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
864  case Mips::ATOMIC_LOAD_SUB_I16:
865    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
866  case Mips::ATOMIC_LOAD_SUB_I32:
867    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
868  case Mips::ATOMIC_LOAD_SUB_I64:
869    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
870
871  case Mips::ATOMIC_SWAP_I8:
872    return emitAtomicBinaryPartword(MI, BB, 1, 0);
873  case Mips::ATOMIC_SWAP_I16:
874    return emitAtomicBinaryPartword(MI, BB, 2, 0);
875  case Mips::ATOMIC_SWAP_I32:
876    return emitAtomicBinary(MI, BB, 4, 0);
877  case Mips::ATOMIC_SWAP_I64:
878    return emitAtomicBinary(MI, BB, 8, 0);
879
880  case Mips::ATOMIC_CMP_SWAP_I8:
881    return emitAtomicCmpSwapPartword(MI, BB, 1);
882  case Mips::ATOMIC_CMP_SWAP_I16:
883    return emitAtomicCmpSwapPartword(MI, BB, 2);
884  case Mips::ATOMIC_CMP_SWAP_I32:
885    return emitAtomicCmpSwap(MI, BB, 4);
886  case Mips::ATOMIC_CMP_SWAP_I64:
887    return emitAtomicCmpSwap(MI, BB, 8);
888  case Mips::PseudoSDIV:
889  case Mips::PseudoUDIV:
890    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
891  case Mips::PseudoDSDIV:
892  case Mips::PseudoDUDIV:
893    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
894  }
895}
896
897// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
898// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
899MachineBasicBlock *
900MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
901                                     unsigned Size, unsigned BinOpcode,
902                                     bool Nand) const {
903  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
904
905  MachineFunction *MF = BB->getParent();
906  MachineRegisterInfo &RegInfo = MF->getRegInfo();
907  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
908  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
909  DebugLoc DL = MI->getDebugLoc();
910  unsigned LL, SC, AND, NOR, ZERO, BEQ;
911
912  if (Size == 4) {
913    LL = Mips::LL;
914    SC = Mips::SC;
915    AND = Mips::AND;
916    NOR = Mips::NOR;
917    ZERO = Mips::ZERO;
918    BEQ = Mips::BEQ;
919  }
920  else {
921    LL = Mips::LLD;
922    SC = Mips::SCD;
923    AND = Mips::AND64;
924    NOR = Mips::NOR64;
925    ZERO = Mips::ZERO_64;
926    BEQ = Mips::BEQ64;
927  }
928
929  unsigned OldVal = MI->getOperand(0).getReg();
930  unsigned Ptr = MI->getOperand(1).getReg();
931  unsigned Incr = MI->getOperand(2).getReg();
932
933  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
934  unsigned AndRes = RegInfo.createVirtualRegister(RC);
935  unsigned Success = RegInfo.createVirtualRegister(RC);
936
937  // insert new blocks after the current block
938  const BasicBlock *LLVM_BB = BB->getBasicBlock();
939  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
940  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
941  MachineFunction::iterator It = BB;
942  ++It;
943  MF->insert(It, loopMBB);
944  MF->insert(It, exitMBB);
945
946  // Transfer the remainder of BB and its successor edges to exitMBB.
947  exitMBB->splice(exitMBB->begin(), BB,
948                  llvm::next(MachineBasicBlock::iterator(MI)),
949                  BB->end());
950  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
951
952  //  thisMBB:
953  //    ...
954  //    fallthrough --> loopMBB
955  BB->addSuccessor(loopMBB);
956  loopMBB->addSuccessor(loopMBB);
957  loopMBB->addSuccessor(exitMBB);
958
959  //  loopMBB:
960  //    ll oldval, 0(ptr)
961  //    <binop> storeval, oldval, incr
962  //    sc success, storeval, 0(ptr)
963  //    beq success, $0, loopMBB
964  BB = loopMBB;
965  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
966  if (Nand) {
967    //  and andres, oldval, incr
968    //  nor storeval, $0, andres
969    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
970    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
971  } else if (BinOpcode) {
972    //  <binop> storeval, oldval, incr
973    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
974  } else {
975    StoreVal = Incr;
976  }
977  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
978  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
979
980  MI->eraseFromParent();   // The instruction is gone now.
981
982  return exitMBB;
983}
984
985MachineBasicBlock *
986MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
987                                             MachineBasicBlock *BB,
988                                             unsigned Size, unsigned BinOpcode,
989                                             bool Nand) const {
990  assert((Size == 1 || Size == 2) &&
991      "Unsupported size for EmitAtomicBinaryPartial.");
992
993  MachineFunction *MF = BB->getParent();
994  MachineRegisterInfo &RegInfo = MF->getRegInfo();
995  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
996  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
997  DebugLoc DL = MI->getDebugLoc();
998
999  unsigned Dest = MI->getOperand(0).getReg();
1000  unsigned Ptr = MI->getOperand(1).getReg();
1001  unsigned Incr = MI->getOperand(2).getReg();
1002
1003  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1004  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1005  unsigned Mask = RegInfo.createVirtualRegister(RC);
1006  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1007  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1008  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1009  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1010  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1011  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1012  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1013  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1014  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1015  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1016  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1017  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1018  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1019  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1020  unsigned Success = RegInfo.createVirtualRegister(RC);
1021
1022  // insert new blocks after the current block
1023  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1024  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1025  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1026  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1027  MachineFunction::iterator It = BB;
1028  ++It;
1029  MF->insert(It, loopMBB);
1030  MF->insert(It, sinkMBB);
1031  MF->insert(It, exitMBB);
1032
1033  // Transfer the remainder of BB and its successor edges to exitMBB.
1034  exitMBB->splice(exitMBB->begin(), BB,
1035                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1036  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1037
1038  BB->addSuccessor(loopMBB);
1039  loopMBB->addSuccessor(loopMBB);
1040  loopMBB->addSuccessor(sinkMBB);
1041  sinkMBB->addSuccessor(exitMBB);
1042
1043  //  thisMBB:
1044  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1045  //    and     alignedaddr,ptr,masklsb2
1046  //    andi    ptrlsb2,ptr,3
1047  //    sll     shiftamt,ptrlsb2,3
1048  //    ori     maskupper,$0,255               # 0xff
1049  //    sll     mask,maskupper,shiftamt
1050  //    nor     mask2,$0,mask
1051  //    sll     incr2,incr,shiftamt
1052
1053  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1054  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1055    .addReg(Mips::ZERO).addImm(-4);
1056  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1057    .addReg(Ptr).addReg(MaskLSB2);
1058  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1059  if (Subtarget->isLittle()) {
1060    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1061  } else {
1062    unsigned Off = RegInfo.createVirtualRegister(RC);
1063    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1064      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1065    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1066  }
1067  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1068    .addReg(Mips::ZERO).addImm(MaskImm);
1069  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1070    .addReg(MaskUpper).addReg(ShiftAmt);
1071  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1072  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1073
1074  // atomic.load.binop
1075  // loopMBB:
1076  //   ll      oldval,0(alignedaddr)
1077  //   binop   binopres,oldval,incr2
1078  //   and     newval,binopres,mask
1079  //   and     maskedoldval0,oldval,mask2
1080  //   or      storeval,maskedoldval0,newval
1081  //   sc      success,storeval,0(alignedaddr)
1082  //   beq     success,$0,loopMBB
1083
1084  // atomic.swap
1085  // loopMBB:
1086  //   ll      oldval,0(alignedaddr)
1087  //   and     newval,incr2,mask
1088  //   and     maskedoldval0,oldval,mask2
1089  //   or      storeval,maskedoldval0,newval
1090  //   sc      success,storeval,0(alignedaddr)
1091  //   beq     success,$0,loopMBB
1092
1093  BB = loopMBB;
1094  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1095  if (Nand) {
1096    //  and andres, oldval, incr2
1097    //  nor binopres, $0, andres
1098    //  and newval, binopres, mask
1099    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1100    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1101      .addReg(Mips::ZERO).addReg(AndRes);
1102    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1103  } else if (BinOpcode) {
1104    //  <binop> binopres, oldval, incr2
1105    //  and newval, binopres, mask
1106    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1107    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1108  } else {// atomic.swap
1109    //  and newval, incr2, mask
1110    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1111  }
1112
1113  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1114    .addReg(OldVal).addReg(Mask2);
1115  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1116    .addReg(MaskedOldVal0).addReg(NewVal);
1117  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1118    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1119  BuildMI(BB, DL, TII->get(Mips::BEQ))
1120    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1121
1122  //  sinkMBB:
1123  //    and     maskedoldval1,oldval,mask
1124  //    srl     srlres,maskedoldval1,shiftamt
1125  //    sll     sllres,srlres,24
1126  //    sra     dest,sllres,24
1127  BB = sinkMBB;
1128  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1129
1130  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1131    .addReg(OldVal).addReg(Mask);
1132  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1133      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1134  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1135      .addReg(SrlRes).addImm(ShiftImm);
1136  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1137      .addReg(SllRes).addImm(ShiftImm);
1138
1139  MI->eraseFromParent();   // The instruction is gone now.
1140
1141  return exitMBB;
1142}
1143
1144MachineBasicBlock *
1145MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1146                                      MachineBasicBlock *BB,
1147                                      unsigned Size) const {
1148  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1149
1150  MachineFunction *MF = BB->getParent();
1151  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1152  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1153  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1154  DebugLoc DL = MI->getDebugLoc();
1155  unsigned LL, SC, ZERO, BNE, BEQ;
1156
1157  if (Size == 4) {
1158    LL = Mips::LL;
1159    SC = Mips::SC;
1160    ZERO = Mips::ZERO;
1161    BNE = Mips::BNE;
1162    BEQ = Mips::BEQ;
1163  }
1164  else {
1165    LL = Mips::LLD;
1166    SC = Mips::SCD;
1167    ZERO = Mips::ZERO_64;
1168    BNE = Mips::BNE64;
1169    BEQ = Mips::BEQ64;
1170  }
1171
1172  unsigned Dest    = MI->getOperand(0).getReg();
1173  unsigned Ptr     = MI->getOperand(1).getReg();
1174  unsigned OldVal  = MI->getOperand(2).getReg();
1175  unsigned NewVal  = MI->getOperand(3).getReg();
1176
1177  unsigned Success = RegInfo.createVirtualRegister(RC);
1178
1179  // insert new blocks after the current block
1180  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1181  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1182  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1183  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1184  MachineFunction::iterator It = BB;
1185  ++It;
1186  MF->insert(It, loop1MBB);
1187  MF->insert(It, loop2MBB);
1188  MF->insert(It, exitMBB);
1189
1190  // Transfer the remainder of BB and its successor edges to exitMBB.
1191  exitMBB->splice(exitMBB->begin(), BB,
1192                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1193  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1194
1195  //  thisMBB:
1196  //    ...
1197  //    fallthrough --> loop1MBB
1198  BB->addSuccessor(loop1MBB);
1199  loop1MBB->addSuccessor(exitMBB);
1200  loop1MBB->addSuccessor(loop2MBB);
1201  loop2MBB->addSuccessor(loop1MBB);
1202  loop2MBB->addSuccessor(exitMBB);
1203
1204  // loop1MBB:
1205  //   ll dest, 0(ptr)
1206  //   bne dest, oldval, exitMBB
1207  BB = loop1MBB;
1208  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1209  BuildMI(BB, DL, TII->get(BNE))
1210    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1211
1212  // loop2MBB:
1213  //   sc success, newval, 0(ptr)
1214  //   beq success, $0, loop1MBB
1215  BB = loop2MBB;
1216  BuildMI(BB, DL, TII->get(SC), Success)
1217    .addReg(NewVal).addReg(Ptr).addImm(0);
1218  BuildMI(BB, DL, TII->get(BEQ))
1219    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1220
1221  MI->eraseFromParent();   // The instruction is gone now.
1222
1223  return exitMBB;
1224}
1225
1226MachineBasicBlock *
1227MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1228                                              MachineBasicBlock *BB,
1229                                              unsigned Size) const {
1230  assert((Size == 1 || Size == 2) &&
1231      "Unsupported size for EmitAtomicCmpSwapPartial.");
1232
1233  MachineFunction *MF = BB->getParent();
1234  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1235  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1236  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1237  DebugLoc DL = MI->getDebugLoc();
1238
1239  unsigned Dest    = MI->getOperand(0).getReg();
1240  unsigned Ptr     = MI->getOperand(1).getReg();
1241  unsigned CmpVal  = MI->getOperand(2).getReg();
1242  unsigned NewVal  = MI->getOperand(3).getReg();
1243
1244  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1245  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1246  unsigned Mask = RegInfo.createVirtualRegister(RC);
1247  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1248  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1249  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1250  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1251  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1252  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1253  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1254  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1255  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1256  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1257  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1258  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1259  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1260  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1261  unsigned Success = RegInfo.createVirtualRegister(RC);
1262
1263  // insert new blocks after the current block
1264  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1265  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1266  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1267  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1268  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1269  MachineFunction::iterator It = BB;
1270  ++It;
1271  MF->insert(It, loop1MBB);
1272  MF->insert(It, loop2MBB);
1273  MF->insert(It, sinkMBB);
1274  MF->insert(It, exitMBB);
1275
1276  // Transfer the remainder of BB and its successor edges to exitMBB.
1277  exitMBB->splice(exitMBB->begin(), BB,
1278                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1279  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1280
1281  BB->addSuccessor(loop1MBB);
1282  loop1MBB->addSuccessor(sinkMBB);
1283  loop1MBB->addSuccessor(loop2MBB);
1284  loop2MBB->addSuccessor(loop1MBB);
1285  loop2MBB->addSuccessor(sinkMBB);
1286  sinkMBB->addSuccessor(exitMBB);
1287
1288  // FIXME: computation of newval2 can be moved to loop2MBB.
1289  //  thisMBB:
1290  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1291  //    and     alignedaddr,ptr,masklsb2
1292  //    andi    ptrlsb2,ptr,3
1293  //    sll     shiftamt,ptrlsb2,3
1294  //    ori     maskupper,$0,255               # 0xff
1295  //    sll     mask,maskupper,shiftamt
1296  //    nor     mask2,$0,mask
1297  //    andi    maskedcmpval,cmpval,255
1298  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1299  //    andi    maskednewval,newval,255
1300  //    sll     shiftednewval,maskednewval,shiftamt
1301  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1302  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1303    .addReg(Mips::ZERO).addImm(-4);
1304  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1305    .addReg(Ptr).addReg(MaskLSB2);
1306  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1307  if (Subtarget->isLittle()) {
1308    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1309  } else {
1310    unsigned Off = RegInfo.createVirtualRegister(RC);
1311    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1312      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1313    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1314  }
1315  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1316    .addReg(Mips::ZERO).addImm(MaskImm);
1317  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1318    .addReg(MaskUpper).addReg(ShiftAmt);
1319  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1320  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1321    .addReg(CmpVal).addImm(MaskImm);
1322  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1323    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1324  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1325    .addReg(NewVal).addImm(MaskImm);
1326  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1327    .addReg(MaskedNewVal).addReg(ShiftAmt);
1328
1329  //  loop1MBB:
1330  //    ll      oldval,0(alginedaddr)
1331  //    and     maskedoldval0,oldval,mask
1332  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1333  BB = loop1MBB;
1334  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1335  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1336    .addReg(OldVal).addReg(Mask);
1337  BuildMI(BB, DL, TII->get(Mips::BNE))
1338    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1339
1340  //  loop2MBB:
1341  //    and     maskedoldval1,oldval,mask2
1342  //    or      storeval,maskedoldval1,shiftednewval
1343  //    sc      success,storeval,0(alignedaddr)
1344  //    beq     success,$0,loop1MBB
1345  BB = loop2MBB;
1346  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1347    .addReg(OldVal).addReg(Mask2);
1348  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1349    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1350  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1351      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1352  BuildMI(BB, DL, TII->get(Mips::BEQ))
1353      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1354
1355  //  sinkMBB:
1356  //    srl     srlres,maskedoldval0,shiftamt
1357  //    sll     sllres,srlres,24
1358  //    sra     dest,sllres,24
1359  BB = sinkMBB;
1360  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1361
1362  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1363      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1364  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1365      .addReg(SrlRes).addImm(ShiftImm);
1366  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1367      .addReg(SllRes).addImm(ShiftImm);
1368
1369  MI->eraseFromParent();   // The instruction is gone now.
1370
1371  return exitMBB;
1372}
1373
1374//===----------------------------------------------------------------------===//
1375//  Misc Lower Operation implementation
1376//===----------------------------------------------------------------------===//
1377SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1378  SDValue Chain = Op.getOperand(0);
1379  SDValue Table = Op.getOperand(1);
1380  SDValue Index = Op.getOperand(2);
1381  SDLoc DL(Op);
1382  EVT PTy = getPointerTy();
1383  unsigned EntrySize =
1384    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1385
1386  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1387                      DAG.getConstant(EntrySize, PTy));
1388  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1389
1390  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1391  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1392                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1393                        0);
1394  Chain = Addr.getValue(1);
1395
1396  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1397    // For PIC, the sequence is:
1398    // BRIND(load(Jumptable + index) + RelocBase)
1399    // RelocBase can be JumpTable, GOT or some sort of global base.
1400    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1401                       getPICJumpTableRelocBase(Table, DAG));
1402  }
1403
1404  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1405}
1406
1407SDValue MipsTargetLowering::
1408lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1409{
1410  // The first operand is the chain, the second is the condition, the third is
1411  // the block to branch to if the condition is true.
1412  SDValue Chain = Op.getOperand(0);
1413  SDValue Dest = Op.getOperand(2);
1414  SDLoc DL(Op);
1415
1416  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1417
1418  // Return if flag is not set by a floating point comparison.
1419  if (CondRes.getOpcode() != MipsISD::FPCmp)
1420    return Op;
1421
1422  SDValue CCNode  = CondRes.getOperand(2);
1423  Mips::CondCode CC =
1424    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1425  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1426  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1427  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1428  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1429                     FCC0, Dest, CondRes);
1430}
1431
1432SDValue MipsTargetLowering::
1433lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1434{
1435  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1436
1437  // Return if flag is not set by a floating point comparison.
1438  if (Cond.getOpcode() != MipsISD::FPCmp)
1439    return Op;
1440
1441  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1442                      SDLoc(Op));
1443}
1444
1445SDValue MipsTargetLowering::
1446lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1447{
1448  SDLoc DL(Op);
1449  EVT Ty = Op.getOperand(0).getValueType();
1450  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1451                             getSetCCResultType(*DAG.getContext(), Ty),
1452                             Op.getOperand(0), Op.getOperand(1),
1453                             Op.getOperand(4));
1454
1455  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1456                     Op.getOperand(3));
1457}
1458
1459SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1460  SDValue Cond = createFPCmp(DAG, Op);
1461
1462  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1463         "Floating point operand expected.");
1464
1465  SDValue True  = DAG.getConstant(1, MVT::i32);
1466  SDValue False = DAG.getConstant(0, MVT::i32);
1467
1468  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1469}
1470
1471SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1472                                               SelectionDAG &DAG) const {
1473  // FIXME there isn't actually debug info here
1474  SDLoc DL(Op);
1475  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1476
1477  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1478    const MipsTargetObjectFile &TLOF =
1479      (const MipsTargetObjectFile&)getObjFileLowering();
1480
1481    // %gp_rel relocation
1482    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1483      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1484                                              MipsII::MO_GPREL);
1485      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1486                                      DAG.getVTList(MVT::i32), &GA, 1);
1487      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1488      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1489    }
1490
1491    // %hi/%lo relocation
1492    return getAddrNonPIC(Op, DAG);
1493  }
1494
1495  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1496    return getAddrLocal(Op, DAG, HasMips64);
1497
1498  if (LargeGOT)
1499    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1500                                 MipsII::MO_GOT_LO16);
1501
1502  return getAddrGlobal(Op, DAG,
1503                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1504}
1505
1506SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1507                                              SelectionDAG &DAG) const {
1508  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1509    return getAddrNonPIC(Op, DAG);
1510
1511  return getAddrLocal(Op, DAG, HasMips64);
1512}
1513
1514SDValue MipsTargetLowering::
1515lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1516{
1517  // If the relocation model is PIC, use the General Dynamic TLS Model or
1518  // Local Dynamic TLS model, otherwise use the Initial Exec or
1519  // Local Exec TLS Model.
1520
1521  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1522  SDLoc DL(GA);
1523  const GlobalValue *GV = GA->getGlobal();
1524  EVT PtrVT = getPointerTy();
1525
1526  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1527
1528  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1529    // General Dynamic and Local Dynamic TLS Model.
1530    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1531                                                      : MipsII::MO_TLSGD;
1532
1533    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1534    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1535                                   getGlobalReg(DAG, PtrVT), TGA);
1536    unsigned PtrSize = PtrVT.getSizeInBits();
1537    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1538
1539    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1540
1541    ArgListTy Args;
1542    ArgListEntry Entry;
1543    Entry.Node = Argument;
1544    Entry.Ty = PtrTy;
1545    Args.push_back(Entry);
1546
1547    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1548                  false, false, false, false, 0, CallingConv::C,
1549                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1550                  /*isReturnValueUsed=*/true,
1551                  TlsGetAddr, Args, DAG, DL);
1552    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1553
1554    SDValue Ret = CallResult.first;
1555
1556    if (model != TLSModel::LocalDynamic)
1557      return Ret;
1558
1559    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1560                                               MipsII::MO_DTPREL_HI);
1561    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1562    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1563                                               MipsII::MO_DTPREL_LO);
1564    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1565    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1566    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1567  }
1568
1569  SDValue Offset;
1570  if (model == TLSModel::InitialExec) {
1571    // Initial Exec TLS Model
1572    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1573                                             MipsII::MO_GOTTPREL);
1574    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1575                      TGA);
1576    Offset = DAG.getLoad(PtrVT, DL,
1577                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1578                         false, false, false, 0);
1579  } else {
1580    // Local Exec TLS Model
1581    assert(model == TLSModel::LocalExec);
1582    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1583                                               MipsII::MO_TPREL_HI);
1584    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1585                                               MipsII::MO_TPREL_LO);
1586    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1587    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1588    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1589  }
1590
1591  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1592  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1593}
1594
1595SDValue MipsTargetLowering::
1596lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1597{
1598  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1599    return getAddrNonPIC(Op, DAG);
1600
1601  return getAddrLocal(Op, DAG, HasMips64);
1602}
1603
1604SDValue MipsTargetLowering::
1605lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1606{
1607  // gp_rel relocation
1608  // FIXME: we should reference the constant pool using small data sections,
1609  // but the asm printer currently doesn't support this feature without
1610  // hacking it. This feature should come soon so we can uncomment the
1611  // stuff below.
1612  //if (IsInSmallSection(C->getType())) {
1613  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1614  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1615  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1616
1617  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1618    return getAddrNonPIC(Op, DAG);
1619
1620  return getAddrLocal(Op, DAG, HasMips64);
1621}
1622
1623SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1624  MachineFunction &MF = DAG.getMachineFunction();
1625  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1626
1627  SDLoc DL(Op);
1628  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1629                                 getPointerTy());
1630
1631  // vastart just stores the address of the VarArgsFrameIndex slot into the
1632  // memory location argument.
1633  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1634  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1635                      MachinePointerInfo(SV), false, false, 0);
1636}
1637
1638static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1639  EVT TyX = Op.getOperand(0).getValueType();
1640  EVT TyY = Op.getOperand(1).getValueType();
1641  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1642  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1643  SDLoc DL(Op);
1644  SDValue Res;
1645
1646  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1647  // to i32.
1648  SDValue X = (TyX == MVT::f32) ?
1649    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1650    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1651                Const1);
1652  SDValue Y = (TyY == MVT::f32) ?
1653    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1654    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1655                Const1);
1656
1657  if (HasR2) {
1658    // ext  E, Y, 31, 1  ; extract bit31 of Y
1659    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1660    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1661    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1662  } else {
1663    // sll SllX, X, 1
1664    // srl SrlX, SllX, 1
1665    // srl SrlY, Y, 31
1666    // sll SllY, SrlX, 31
1667    // or  Or, SrlX, SllY
1668    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1669    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1670    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1671    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1672    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1673  }
1674
1675  if (TyX == MVT::f32)
1676    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1677
1678  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1679                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1680  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1681}
1682
1683static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1684  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1685  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1686  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1687  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1688  SDLoc DL(Op);
1689
1690  // Bitcast to integer nodes.
1691  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1692  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1693
1694  if (HasR2) {
1695    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1696    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1697    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1698                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1699
1700    if (WidthX > WidthY)
1701      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1702    else if (WidthY > WidthX)
1703      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1704
1705    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1706                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1707    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1708  }
1709
1710  // (d)sll SllX, X, 1
1711  // (d)srl SrlX, SllX, 1
1712  // (d)srl SrlY, Y, width(Y)-1
1713  // (d)sll SllY, SrlX, width(Y)-1
1714  // or     Or, SrlX, SllY
1715  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1716  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1717  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1718                             DAG.getConstant(WidthY - 1, MVT::i32));
1719
1720  if (WidthX > WidthY)
1721    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1722  else if (WidthY > WidthX)
1723    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1724
1725  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1726                             DAG.getConstant(WidthX - 1, MVT::i32));
1727  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1728  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1729}
1730
1731SDValue
1732MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1733  if (Subtarget->hasMips64())
1734    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1735
1736  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1737}
1738
1739static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1740  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1741  SDLoc DL(Op);
1742
1743  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1744  // to i32.
1745  SDValue X = (Op.getValueType() == MVT::f32) ?
1746    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1747    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1748                Const1);
1749
1750  // Clear MSB.
1751  if (HasR2)
1752    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1753                      DAG.getRegister(Mips::ZERO, MVT::i32),
1754                      DAG.getConstant(31, MVT::i32), Const1, X);
1755  else {
1756    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1757    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1758  }
1759
1760  if (Op.getValueType() == MVT::f32)
1761    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1762
1763  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1764                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1765  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1766}
1767
1768static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1769  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1770  SDLoc DL(Op);
1771
1772  // Bitcast to integer node.
1773  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1774
1775  // Clear MSB.
1776  if (HasR2)
1777    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1778                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1779                      DAG.getConstant(63, MVT::i32), Const1, X);
1780  else {
1781    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1782    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1783  }
1784
1785  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1786}
1787
1788SDValue
1789MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1790  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1791    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1792
1793  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1794}
1795
1796SDValue MipsTargetLowering::
1797lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1798  // check the depth
1799  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1800         "Frame address can only be determined for current frame.");
1801
1802  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1803  MFI->setFrameAddressIsTaken(true);
1804  EVT VT = Op.getValueType();
1805  SDLoc DL(Op);
1806  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1807                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1808  return FrameAddr;
1809}
1810
1811SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1812                                            SelectionDAG &DAG) const {
1813  // check the depth
1814  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1815         "Return address can be determined only for current frame.");
1816
1817  MachineFunction &MF = DAG.getMachineFunction();
1818  MachineFrameInfo *MFI = MF.getFrameInfo();
1819  MVT VT = Op.getSimpleValueType();
1820  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1821  MFI->setReturnAddressIsTaken(true);
1822
1823  // Return RA, which contains the return address. Mark it an implicit live-in.
1824  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1825  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1826}
1827
1828// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1829// generated from __builtin_eh_return (offset, handler)
1830// The effect of this is to adjust the stack pointer by "offset"
1831// and then branch to "handler".
1832SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1833                                                                     const {
1834  MachineFunction &MF = DAG.getMachineFunction();
1835  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1836
1837  MipsFI->setCallsEhReturn();
1838  SDValue Chain     = Op.getOperand(0);
1839  SDValue Offset    = Op.getOperand(1);
1840  SDValue Handler   = Op.getOperand(2);
1841  SDLoc DL(Op);
1842  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1843
1844  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1845  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1846  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1847  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1848  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1849  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1850  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1851                     DAG.getRegister(OffsetReg, Ty),
1852                     DAG.getRegister(AddrReg, getPointerTy()),
1853                     Chain.getValue(1));
1854}
1855
1856SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1857                                              SelectionDAG &DAG) const {
1858  // FIXME: Need pseudo-fence for 'singlethread' fences
1859  // FIXME: Set SType for weaker fences where supported/appropriate.
1860  unsigned SType = 0;
1861  SDLoc DL(Op);
1862  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1863                     DAG.getConstant(SType, MVT::i32));
1864}
1865
1866SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1867                                                SelectionDAG &DAG) const {
1868  SDLoc DL(Op);
1869  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1870  SDValue Shamt = Op.getOperand(2);
1871
1872  // if shamt < 32:
1873  //  lo = (shl lo, shamt)
1874  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1875  // else:
1876  //  lo = 0
1877  //  hi = (shl lo, shamt[4:0])
1878  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1879                            DAG.getConstant(-1, MVT::i32));
1880  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1881                                      DAG.getConstant(1, MVT::i32));
1882  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1883                                     Not);
1884  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1885  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1886  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1887  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1888                             DAG.getConstant(0x20, MVT::i32));
1889  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1890                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1891  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1892
1893  SDValue Ops[2] = {Lo, Hi};
1894  return DAG.getMergeValues(Ops, 2, DL);
1895}
1896
1897SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1898                                                 bool IsSRA) const {
1899  SDLoc DL(Op);
1900  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1901  SDValue Shamt = Op.getOperand(2);
1902
1903  // if shamt < 32:
1904  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1905  //  if isSRA:
1906  //    hi = (sra hi, shamt)
1907  //  else:
1908  //    hi = (srl hi, shamt)
1909  // else:
1910  //  if isSRA:
1911  //   lo = (sra hi, shamt[4:0])
1912  //   hi = (sra hi, 31)
1913  //  else:
1914  //   lo = (srl hi, shamt[4:0])
1915  //   hi = 0
1916  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1917                            DAG.getConstant(-1, MVT::i32));
1918  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1919                                     DAG.getConstant(1, MVT::i32));
1920  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1921  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1922  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1923  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1924                                     Hi, Shamt);
1925  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1926                             DAG.getConstant(0x20, MVT::i32));
1927  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1928                                DAG.getConstant(31, MVT::i32));
1929  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1930  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1931                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1932                   ShiftRightHi);
1933
1934  SDValue Ops[2] = {Lo, Hi};
1935  return DAG.getMergeValues(Ops, 2, DL);
1936}
1937
1938static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1939                            SDValue Chain, SDValue Src, unsigned Offset) {
1940  SDValue Ptr = LD->getBasePtr();
1941  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1942  EVT BasePtrVT = Ptr.getValueType();
1943  SDLoc DL(LD);
1944  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1945
1946  if (Offset)
1947    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1948                      DAG.getConstant(Offset, BasePtrVT));
1949
1950  SDValue Ops[] = { Chain, Ptr, Src };
1951  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1952                                 LD->getMemOperand());
1953}
1954
1955// Expand an unaligned 32 or 64-bit integer load node.
1956SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1957  LoadSDNode *LD = cast<LoadSDNode>(Op);
1958  EVT MemVT = LD->getMemoryVT();
1959
1960  // Return if load is aligned or if MemVT is neither i32 nor i64.
1961  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1962      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1963    return SDValue();
1964
1965  bool IsLittle = Subtarget->isLittle();
1966  EVT VT = Op.getValueType();
1967  ISD::LoadExtType ExtType = LD->getExtensionType();
1968  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1969
1970  assert((VT == MVT::i32) || (VT == MVT::i64));
1971
1972  // Expand
1973  //  (set dst, (i64 (load baseptr)))
1974  // to
1975  //  (set tmp, (ldl (add baseptr, 7), undef))
1976  //  (set dst, (ldr baseptr, tmp))
1977  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1978    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1979                               IsLittle ? 7 : 0);
1980    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1981                        IsLittle ? 0 : 7);
1982  }
1983
1984  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1985                             IsLittle ? 3 : 0);
1986  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1987                             IsLittle ? 0 : 3);
1988
1989  // Expand
1990  //  (set dst, (i32 (load baseptr))) or
1991  //  (set dst, (i64 (sextload baseptr))) or
1992  //  (set dst, (i64 (extload baseptr)))
1993  // to
1994  //  (set tmp, (lwl (add baseptr, 3), undef))
1995  //  (set dst, (lwr baseptr, tmp))
1996  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1997      (ExtType == ISD::EXTLOAD))
1998    return LWR;
1999
2000  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2001
2002  // Expand
2003  //  (set dst, (i64 (zextload baseptr)))
2004  // to
2005  //  (set tmp0, (lwl (add baseptr, 3), undef))
2006  //  (set tmp1, (lwr baseptr, tmp0))
2007  //  (set tmp2, (shl tmp1, 32))
2008  //  (set dst, (srl tmp2, 32))
2009  SDLoc DL(LD);
2010  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2011  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2012  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2013  SDValue Ops[] = { SRL, LWR.getValue(1) };
2014  return DAG.getMergeValues(Ops, 2, DL);
2015}
2016
2017static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2018                             SDValue Chain, unsigned Offset) {
2019  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2020  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2021  SDLoc DL(SD);
2022  SDVTList VTList = DAG.getVTList(MVT::Other);
2023
2024  if (Offset)
2025    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2026                      DAG.getConstant(Offset, BasePtrVT));
2027
2028  SDValue Ops[] = { Chain, Value, Ptr };
2029  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2030                                 SD->getMemOperand());
2031}
2032
2033// Expand an unaligned 32 or 64-bit integer store node.
2034static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2035                                      bool IsLittle) {
2036  SDValue Value = SD->getValue(), Chain = SD->getChain();
2037  EVT VT = Value.getValueType();
2038
2039  // Expand
2040  //  (store val, baseptr) or
2041  //  (truncstore val, baseptr)
2042  // to
2043  //  (swl val, (add baseptr, 3))
2044  //  (swr val, baseptr)
2045  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2046    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2047                                IsLittle ? 3 : 0);
2048    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2049  }
2050
2051  assert(VT == MVT::i64);
2052
2053  // Expand
2054  //  (store val, baseptr)
2055  // to
2056  //  (sdl val, (add baseptr, 7))
2057  //  (sdr val, baseptr)
2058  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2059  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2060}
2061
2062// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2063static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2064  SDValue Val = SD->getValue();
2065
2066  if (Val.getOpcode() != ISD::FP_TO_SINT)
2067    return SDValue();
2068
2069  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2070  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2071                           Val.getOperand(0));
2072
2073  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2074                      SD->getPointerInfo(), SD->isVolatile(),
2075                      SD->isNonTemporal(), SD->getAlignment());
2076}
2077
2078SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2079  StoreSDNode *SD = cast<StoreSDNode>(Op);
2080  EVT MemVT = SD->getMemoryVT();
2081
2082  // Lower unaligned integer stores.
2083  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2084      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2085    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2086
2087  return lowerFP_TO_SINT_STORE(SD, DAG);
2088}
2089
2090SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2091  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2092      || cast<ConstantSDNode>
2093        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2094      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2095    return SDValue();
2096
2097  // The pattern
2098  //   (add (frameaddr 0), (frame_to_args_offset))
2099  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2100  //   (add FrameObject, 0)
2101  // where FrameObject is a fixed StackObject with offset 0 which points to
2102  // the old stack pointer.
2103  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2104  EVT ValTy = Op->getValueType(0);
2105  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2106  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2107  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2108                     DAG.getConstant(0, ValTy));
2109}
2110
2111SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2112                                            SelectionDAG &DAG) const {
2113  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2114  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2115                              Op.getOperand(0));
2116  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2117}
2118
2119//===----------------------------------------------------------------------===//
2120//                      Calling Convention Implementation
2121//===----------------------------------------------------------------------===//
2122
2123//===----------------------------------------------------------------------===//
2124// TODO: Implement a generic logic using tblgen that can support this.
2125// Mips O32 ABI rules:
2126// ---
2127// i32 - Passed in A0, A1, A2, A3 and stack
2128// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2129//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2130// f64 - Only passed in two aliased f32 registers if no int reg has been used
2131//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2132//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2133//       go to stack.
2134//
2135//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2136//===----------------------------------------------------------------------===//
2137
2138static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2139                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2140                       ISD::ArgFlagsTy ArgFlags, CCState &State,
2141                       const uint16_t *F64Regs) {
2142
2143  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2144
2145  static const uint16_t IntRegs[] = {
2146      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2147  };
2148  static const uint16_t F32Regs[] = {
2149      Mips::F12, Mips::F14
2150  };
2151
2152  // Do not process byval args here.
2153  if (ArgFlags.isByVal())
2154    return true;
2155
2156  // Promote i8 and i16
2157  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2158    LocVT = MVT::i32;
2159    if (ArgFlags.isSExt())
2160      LocInfo = CCValAssign::SExt;
2161    else if (ArgFlags.isZExt())
2162      LocInfo = CCValAssign::ZExt;
2163    else
2164      LocInfo = CCValAssign::AExt;
2165  }
2166
2167  unsigned Reg;
2168
2169  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2170  // is true: function is vararg, argument is 3rd or higher, there is previous
2171  // argument which is not f32 or f64.
2172  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2173      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2174  unsigned OrigAlign = ArgFlags.getOrigAlign();
2175  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2176
2177  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2178    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2179    // If this is the first part of an i64 arg,
2180    // the allocated register must be either A0 or A2.
2181    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2182      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2183    LocVT = MVT::i32;
2184  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2185    // Allocate int register and shadow next int register. If first
2186    // available register is Mips::A1 or Mips::A3, shadow it too.
2187    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2188    if (Reg == Mips::A1 || Reg == Mips::A3)
2189      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2190    State.AllocateReg(IntRegs, IntRegsSize);
2191    LocVT = MVT::i32;
2192  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2193    // we are guaranteed to find an available float register
2194    if (ValVT == MVT::f32) {
2195      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2196      // Shadow int register
2197      State.AllocateReg(IntRegs, IntRegsSize);
2198    } else {
2199      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2200      // Shadow int registers
2201      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2202      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2203        State.AllocateReg(IntRegs, IntRegsSize);
2204      State.AllocateReg(IntRegs, IntRegsSize);
2205    }
2206  } else
2207    llvm_unreachable("Cannot handle this ValVT.");
2208
2209  if (!Reg) {
2210    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2211                                          OrigAlign);
2212    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2213  } else
2214    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2215
2216  return false;
2217}
2218
2219static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2220                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2221                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2222  static const uint16_t F64Regs[] = { Mips::D6, Mips::D7 };
2223
2224  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2225}
2226
2227static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2228                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2229                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2230  static const uint16_t F64Regs[] = { Mips::D12_64, Mips::D12_64 };
2231
2232  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2233}
2234
2235#include "MipsGenCallingConv.inc"
2236
2237//===----------------------------------------------------------------------===//
2238//                  Call Calling Convention Implementation
2239//===----------------------------------------------------------------------===//
2240
2241// Return next O32 integer argument register.
2242static unsigned getNextIntArgReg(unsigned Reg) {
2243  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2244  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2245}
2246
2247SDValue
2248MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2249                                   SDValue Chain, SDValue Arg, SDLoc DL,
2250                                   bool IsTailCall, SelectionDAG &DAG) const {
2251  if (!IsTailCall) {
2252    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2253                                 DAG.getIntPtrConstant(Offset));
2254    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2255                        false, 0);
2256  }
2257
2258  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2259  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2260  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2261  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2262                      /*isVolatile=*/ true, false, 0);
2263}
2264
2265void MipsTargetLowering::
2266getOpndList(SmallVectorImpl<SDValue> &Ops,
2267            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2268            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2269            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2270  // Insert node "GP copy globalreg" before call to function.
2271  //
2272  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2273  // in PIC mode) allow symbols to be resolved via lazy binding.
2274  // The lazy binding stub requires GP to point to the GOT.
2275  if (IsPICCall && !InternalLinkage) {
2276    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2277    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2278    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2279  }
2280
2281  // Build a sequence of copy-to-reg nodes chained together with token
2282  // chain and flag operands which copy the outgoing args into registers.
2283  // The InFlag in necessary since all emitted instructions must be
2284  // stuck together.
2285  SDValue InFlag;
2286
2287  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2288    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2289                                 RegsToPass[i].second, InFlag);
2290    InFlag = Chain.getValue(1);
2291  }
2292
2293  // Add argument registers to the end of the list so that they are
2294  // known live into the call.
2295  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2296    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2297                                      RegsToPass[i].second.getValueType()));
2298
2299  // Add a register mask operand representing the call-preserved registers.
2300  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2301  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2302  assert(Mask && "Missing call preserved mask for calling convention");
2303  if (Subtarget->inMips16HardFloat()) {
2304    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2305      llvm::StringRef Sym = G->getGlobal()->getName();
2306      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2307      if (F->hasFnAttribute("__Mips16RetHelper")) {
2308        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2309      }
2310    }
2311  }
2312  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2313
2314  if (InFlag.getNode())
2315    Ops.push_back(InFlag);
2316}
2317
2318/// LowerCall - functions arguments are copied from virtual regs to
2319/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2320SDValue
2321MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2322                              SmallVectorImpl<SDValue> &InVals) const {
2323  SelectionDAG &DAG                     = CLI.DAG;
2324  SDLoc DL                              = CLI.DL;
2325  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2326  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2327  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2328  SDValue Chain                         = CLI.Chain;
2329  SDValue Callee                        = CLI.Callee;
2330  bool &IsTailCall                      = CLI.IsTailCall;
2331  CallingConv::ID CallConv              = CLI.CallConv;
2332  bool IsVarArg                         = CLI.IsVarArg;
2333
2334  MachineFunction &MF = DAG.getMachineFunction();
2335  MachineFrameInfo *MFI = MF.getFrameInfo();
2336  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2337  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2338
2339  // Analyze operands of the call, assigning locations to each operand.
2340  SmallVector<CCValAssign, 16> ArgLocs;
2341  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2342                 getTargetMachine(), ArgLocs, *DAG.getContext());
2343  MipsCC::SpecialCallingConvType SpecialCallingConv =
2344    getSpecialCallingConv(Callee);
2345  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo,
2346                    SpecialCallingConv);
2347
2348  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2349                                 Subtarget->mipsSEUsesSoftFloat(),
2350                                 Callee.getNode(), CLI.Args);
2351
2352  // Get a count of how many bytes are to be pushed on the stack.
2353  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2354
2355  // Check if it's really possible to do a tail call.
2356  if (IsTailCall)
2357    IsTailCall =
2358      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2359                                        *MF.getInfo<MipsFunctionInfo>());
2360
2361  if (IsTailCall)
2362    ++NumTailCalls;
2363
2364  // Chain is the output chain of the last Load/Store or CopyToReg node.
2365  // ByValChain is the output chain of the last Memcpy node created for copying
2366  // byval arguments to the stack.
2367  unsigned StackAlignment = TFL->getStackAlignment();
2368  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2369  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2370
2371  if (!IsTailCall)
2372    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2373
2374  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2375                                        IsN64 ? Mips::SP_64 : Mips::SP,
2376                                        getPointerTy());
2377
2378  // With EABI is it possible to have 16 args on registers.
2379  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2380  SmallVector<SDValue, 8> MemOpChains;
2381  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2382
2383  // Walk the register/memloc assignments, inserting copies/loads.
2384  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2385    SDValue Arg = OutVals[i];
2386    CCValAssign &VA = ArgLocs[i];
2387    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2388    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2389
2390    // ByVal Arg.
2391    if (Flags.isByVal()) {
2392      assert(Flags.getByValSize() &&
2393             "ByVal args of size 0 should have been ignored by front-end.");
2394      assert(ByValArg != MipsCCInfo.byval_end());
2395      assert(!IsTailCall &&
2396             "Do not tail-call optimize if there is a byval argument.");
2397      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2398                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2399      ++ByValArg;
2400      continue;
2401    }
2402
2403    // Promote the value if needed.
2404    switch (VA.getLocInfo()) {
2405    default: llvm_unreachable("Unknown loc info!");
2406    case CCValAssign::Full:
2407      if (VA.isRegLoc()) {
2408        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2409            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2410            (ValVT == MVT::i64 && LocVT == MVT::f64))
2411          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2412        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2413          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2414                                   Arg, DAG.getConstant(0, MVT::i32));
2415          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2416                                   Arg, DAG.getConstant(1, MVT::i32));
2417          if (!Subtarget->isLittle())
2418            std::swap(Lo, Hi);
2419          unsigned LocRegLo = VA.getLocReg();
2420          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2421          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2422          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2423          continue;
2424        }
2425      }
2426      break;
2427    case CCValAssign::SExt:
2428      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2429      break;
2430    case CCValAssign::ZExt:
2431      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2432      break;
2433    case CCValAssign::AExt:
2434      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2435      break;
2436    }
2437
2438    // Arguments that can be passed on register must be kept at
2439    // RegsToPass vector
2440    if (VA.isRegLoc()) {
2441      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2442      continue;
2443    }
2444
2445    // Register can't get to this point...
2446    assert(VA.isMemLoc());
2447
2448    // emit ISD::STORE whichs stores the
2449    // parameter value to a stack Location
2450    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2451                                         Chain, Arg, DL, IsTailCall, DAG));
2452  }
2453
2454  // Transform all store nodes into one single node because all store
2455  // nodes are independent of each other.
2456  if (!MemOpChains.empty())
2457    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2458                        &MemOpChains[0], MemOpChains.size());
2459
2460  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2461  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2462  // node so that legalize doesn't hack it.
2463  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2464  bool GlobalOrExternal = false, InternalLinkage = false;
2465  SDValue CalleeLo;
2466
2467  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2468    if (IsPICCall) {
2469      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2470
2471      if (InternalLinkage)
2472        Callee = getAddrLocal(Callee, DAG, HasMips64);
2473      else if (LargeGOT)
2474        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2475                                       MipsII::MO_CALL_LO16);
2476      else
2477        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2478    } else
2479      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2480                                          MipsII::MO_NO_FLAG);
2481    GlobalOrExternal = true;
2482  }
2483  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2484    if (!IsN64 && !IsPIC) // !N64 && static
2485      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2486                                            MipsII::MO_NO_FLAG);
2487    else if (LargeGOT)
2488      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2489                                     MipsII::MO_CALL_LO16);
2490    else // N64 || PIC
2491      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2492
2493    GlobalOrExternal = true;
2494  }
2495
2496  SmallVector<SDValue, 8> Ops(1, Chain);
2497  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2498
2499  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2500              CLI, Callee, Chain);
2501
2502  if (IsTailCall)
2503    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2504
2505  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2506  SDValue InFlag = Chain.getValue(1);
2507
2508  // Create the CALLSEQ_END node.
2509  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2510                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2511  InFlag = Chain.getValue(1);
2512
2513  // Handle result values, copying them out of physregs into vregs that we
2514  // return.
2515  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2516                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2517}
2518
2519/// LowerCallResult - Lower the result values of a call into the
2520/// appropriate copies out of appropriate physical registers.
2521SDValue
2522MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2523                                    CallingConv::ID CallConv, bool IsVarArg,
2524                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2525                                    SDLoc DL, SelectionDAG &DAG,
2526                                    SmallVectorImpl<SDValue> &InVals,
2527                                    const SDNode *CallNode,
2528                                    const Type *RetTy) const {
2529  // Assign locations to each value returned by this call.
2530  SmallVector<CCValAssign, 16> RVLocs;
2531  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2532                 getTargetMachine(), RVLocs, *DAG.getContext());
2533  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2534
2535  MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
2536                               CallNode, RetTy);
2537
2538  // Copy all of the result registers out of their specified physreg.
2539  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2540    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2541                                     RVLocs[i].getLocVT(), InFlag);
2542    Chain = Val.getValue(1);
2543    InFlag = Val.getValue(2);
2544
2545    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2546      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2547
2548    InVals.push_back(Val);
2549  }
2550
2551  return Chain;
2552}
2553
2554//===----------------------------------------------------------------------===//
2555//             Formal Arguments Calling Convention Implementation
2556//===----------------------------------------------------------------------===//
2557/// LowerFormalArguments - transform physical registers into virtual registers
2558/// and generate load operations for arguments places on the stack.
2559SDValue
2560MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2561                                         CallingConv::ID CallConv,
2562                                         bool IsVarArg,
2563                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2564                                         SDLoc DL, SelectionDAG &DAG,
2565                                         SmallVectorImpl<SDValue> &InVals)
2566                                          const {
2567  MachineFunction &MF = DAG.getMachineFunction();
2568  MachineFrameInfo *MFI = MF.getFrameInfo();
2569  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2570
2571  MipsFI->setVarArgsFrameIndex(0);
2572
2573  // Used with vargs to acumulate store chains.
2574  std::vector<SDValue> OutChains;
2575
2576  // Assign locations to all of the incoming arguments.
2577  SmallVector<CCValAssign, 16> ArgLocs;
2578  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2579                 getTargetMachine(), ArgLocs, *DAG.getContext());
2580  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2581  Function::const_arg_iterator FuncArg =
2582    DAG.getMachineFunction().getFunction()->arg_begin();
2583  bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
2584
2585  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2586  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2587                           MipsCCInfo.hasByValArg());
2588
2589  unsigned CurArgIdx = 0;
2590  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2591
2592  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2593    CCValAssign &VA = ArgLocs[i];
2594    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2595    CurArgIdx = Ins[i].OrigArgIndex;
2596    EVT ValVT = VA.getValVT();
2597    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2598    bool IsRegLoc = VA.isRegLoc();
2599
2600    if (Flags.isByVal()) {
2601      assert(Flags.getByValSize() &&
2602             "ByVal args of size 0 should have been ignored by front-end.");
2603      assert(ByValArg != MipsCCInfo.byval_end());
2604      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2605                    MipsCCInfo, *ByValArg);
2606      ++ByValArg;
2607      continue;
2608    }
2609
2610    // Arguments stored on registers
2611    if (IsRegLoc) {
2612      EVT RegVT = VA.getLocVT();
2613      unsigned ArgReg = VA.getLocReg();
2614      const TargetRegisterClass *RC;
2615
2616      if (RegVT == MVT::i32)
2617        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2618                                        &Mips::GPR32RegClass;
2619      else if (RegVT == MVT::i64)
2620        RC = &Mips::GPR64RegClass;
2621      else if (RegVT == MVT::f32)
2622        RC = &Mips::FGR32RegClass;
2623      else if (RegVT == MVT::f64)
2624        RC = Subtarget->isFP64bit() ? &Mips::FGR64RegClass :
2625                                      &Mips::AFGR64RegClass;
2626      else
2627        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2628
2629      // Transform the arguments stored on
2630      // physical registers into virtual ones
2631      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2632      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2633
2634      // If this is an 8 or 16-bit value, it has been passed promoted
2635      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2636      // truncate to the right size.
2637      if (VA.getLocInfo() != CCValAssign::Full) {
2638        unsigned Opcode = 0;
2639        if (VA.getLocInfo() == CCValAssign::SExt)
2640          Opcode = ISD::AssertSext;
2641        else if (VA.getLocInfo() == CCValAssign::ZExt)
2642          Opcode = ISD::AssertZext;
2643        if (Opcode)
2644          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2645                                 DAG.getValueType(ValVT));
2646        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2647      }
2648
2649      // Handle floating point arguments passed in integer registers and
2650      // long double arguments passed in floating point registers.
2651      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2652          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2653          (RegVT == MVT::f64 && ValVT == MVT::i64))
2654        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2655      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2656        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2657                                  getNextIntArgReg(ArgReg), RC);
2658        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2659        if (!Subtarget->isLittle())
2660          std::swap(ArgValue, ArgValue2);
2661        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2662                               ArgValue, ArgValue2);
2663      }
2664
2665      InVals.push_back(ArgValue);
2666    } else { // VA.isRegLoc()
2667
2668      // sanity check
2669      assert(VA.isMemLoc());
2670
2671      // The stack pointer offset is relative to the caller stack frame.
2672      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2673                                      VA.getLocMemOffset(), true);
2674
2675      // Create load nodes to retrieve arguments from the stack
2676      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2677      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2678                                   MachinePointerInfo::getFixedStack(FI),
2679                                   false, false, false, 0));
2680    }
2681  }
2682
2683  // The mips ABIs for returning structs by value requires that we copy
2684  // the sret argument into $v0 for the return. Save the argument into
2685  // a virtual register so that we can access it from the return points.
2686  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2687    unsigned Reg = MipsFI->getSRetReturnReg();
2688    if (!Reg) {
2689      Reg = MF.getRegInfo().
2690        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2691      MipsFI->setSRetReturnReg(Reg);
2692    }
2693    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2694    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2695  }
2696
2697  if (IsVarArg)
2698    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2699
2700  // All stores are grouped in one node to allow the matching between
2701  // the size of Ins and InVals. This only happens when on varg functions
2702  if (!OutChains.empty()) {
2703    OutChains.push_back(Chain);
2704    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2705                        &OutChains[0], OutChains.size());
2706  }
2707
2708  return Chain;
2709}
2710
2711//===----------------------------------------------------------------------===//
2712//               Return Value Calling Convention Implementation
2713//===----------------------------------------------------------------------===//
2714
2715bool
2716MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2717                                   MachineFunction &MF, bool IsVarArg,
2718                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2719                                   LLVMContext &Context) const {
2720  SmallVector<CCValAssign, 16> RVLocs;
2721  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2722                 RVLocs, Context);
2723  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2724}
2725
2726SDValue
2727MipsTargetLowering::LowerReturn(SDValue Chain,
2728                                CallingConv::ID CallConv, bool IsVarArg,
2729                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2730                                const SmallVectorImpl<SDValue> &OutVals,
2731                                SDLoc DL, SelectionDAG &DAG) const {
2732  // CCValAssign - represent the assignment of
2733  // the return value to a location
2734  SmallVector<CCValAssign, 16> RVLocs;
2735  MachineFunction &MF = DAG.getMachineFunction();
2736
2737  // CCState - Info about the registers and stack slot.
2738  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2739                 *DAG.getContext());
2740  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2741
2742  // Analyze return values.
2743  MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
2744                           MF.getFunction()->getReturnType());
2745
2746  SDValue Flag;
2747  SmallVector<SDValue, 4> RetOps(1, Chain);
2748
2749  // Copy the result values into the output registers.
2750  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2751    SDValue Val = OutVals[i];
2752    CCValAssign &VA = RVLocs[i];
2753    assert(VA.isRegLoc() && "Can only return in registers!");
2754
2755    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2756      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2757
2758    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2759
2760    // Guarantee that all emitted copies are stuck together with flags.
2761    Flag = Chain.getValue(1);
2762    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2763  }
2764
2765  // The mips ABIs for returning structs by value requires that we copy
2766  // the sret argument into $v0 for the return. We saved the argument into
2767  // a virtual register in the entry block, so now we copy the value out
2768  // and into $v0.
2769  if (MF.getFunction()->hasStructRetAttr()) {
2770    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2771    unsigned Reg = MipsFI->getSRetReturnReg();
2772
2773    if (!Reg)
2774      llvm_unreachable("sret virtual register not created in the entry block");
2775    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2776    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2777
2778    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2779    Flag = Chain.getValue(1);
2780    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2781  }
2782
2783  RetOps[0] = Chain;  // Update chain.
2784
2785  // Add the flag if we have it.
2786  if (Flag.getNode())
2787    RetOps.push_back(Flag);
2788
2789  // Return on Mips is always a "jr $ra"
2790  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2791}
2792
2793//===----------------------------------------------------------------------===//
2794//                           Mips Inline Assembly Support
2795//===----------------------------------------------------------------------===//
2796
2797/// getConstraintType - Given a constraint letter, return the type of
2798/// constraint it is for this target.
2799MipsTargetLowering::ConstraintType MipsTargetLowering::
2800getConstraintType(const std::string &Constraint) const
2801{
2802  // Mips specific constrainy
2803  // GCC config/mips/constraints.md
2804  //
2805  // 'd' : An address register. Equivalent to r
2806  //       unless generating MIPS16 code.
2807  // 'y' : Equivalent to r; retained for
2808  //       backwards compatibility.
2809  // 'c' : A register suitable for use in an indirect
2810  //       jump. This will always be $25 for -mabicalls.
2811  // 'l' : The lo register. 1 word storage.
2812  // 'x' : The hilo register pair. Double word storage.
2813  if (Constraint.size() == 1) {
2814    switch (Constraint[0]) {
2815      default : break;
2816      case 'd':
2817      case 'y':
2818      case 'f':
2819      case 'c':
2820      case 'l':
2821      case 'x':
2822        return C_RegisterClass;
2823      case 'R':
2824        return C_Memory;
2825    }
2826  }
2827  return TargetLowering::getConstraintType(Constraint);
2828}
2829
2830/// Examine constraint type and operand type and determine a weight value.
2831/// This object must already have been set up with the operand type
2832/// and the current alternative constraint selected.
2833TargetLowering::ConstraintWeight
2834MipsTargetLowering::getSingleConstraintMatchWeight(
2835    AsmOperandInfo &info, const char *constraint) const {
2836  ConstraintWeight weight = CW_Invalid;
2837  Value *CallOperandVal = info.CallOperandVal;
2838    // If we don't have a value, we can't do a match,
2839    // but allow it at the lowest weight.
2840  if (CallOperandVal == NULL)
2841    return CW_Default;
2842  Type *type = CallOperandVal->getType();
2843  // Look at the constraint type.
2844  switch (*constraint) {
2845  default:
2846    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2847    break;
2848  case 'd':
2849  case 'y':
2850    if (type->isIntegerTy())
2851      weight = CW_Register;
2852    break;
2853  case 'f':
2854    if (type->isFloatTy())
2855      weight = CW_Register;
2856    break;
2857  case 'c': // $25 for indirect jumps
2858  case 'l': // lo register
2859  case 'x': // hilo register pair
2860      if (type->isIntegerTy())
2861      weight = CW_SpecificReg;
2862      break;
2863  case 'I': // signed 16 bit immediate
2864  case 'J': // integer zero
2865  case 'K': // unsigned 16 bit immediate
2866  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2867  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2868  case 'O': // signed 15 bit immediate (+- 16383)
2869  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2870    if (isa<ConstantInt>(CallOperandVal))
2871      weight = CW_Constant;
2872    break;
2873  case 'R':
2874    weight = CW_Memory;
2875    break;
2876  }
2877  return weight;
2878}
2879
2880/// This is a helper function to parse a physical register string and split it
2881/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
2882/// that is returned indicates whether parsing was successful. The second flag
2883/// is true if the numeric part exists.
2884static std::pair<bool, bool>
2885parsePhysicalReg(const StringRef &C, std::string &Prefix,
2886                 unsigned long long &Reg) {
2887  if (C.front() != '{' || C.back() != '}')
2888    return std::make_pair(false, false);
2889
2890  // Search for the first numeric character.
2891  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
2892  I = std::find_if(B, E, std::ptr_fun(isdigit));
2893
2894  Prefix.assign(B, I - B);
2895
2896  // The second flag is set to false if no numeric characters were found.
2897  if (I == E)
2898    return std::make_pair(true, false);
2899
2900  // Parse the numeric characters.
2901  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
2902                        true);
2903}
2904
2905std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
2906parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
2907  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2908  const TargetRegisterClass *RC;
2909  std::string Prefix;
2910  unsigned long long Reg;
2911
2912  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
2913
2914  if (!R.first)
2915    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2916
2917  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
2918    // No numeric characters follow "hi" or "lo".
2919    if (R.second)
2920      return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2921
2922    RC = TRI->getRegClass(Prefix == "hi" ?
2923                          Mips::HI32RegClassID : Mips::LO32RegClassID);
2924    return std::make_pair(*(RC->begin()), RC);
2925  }
2926
2927  if (!R.second)
2928    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2929
2930  if (Prefix == "$f") { // Parse $f0-$f31.
2931    // If the size of FP registers is 64-bit or Reg is an even number, select
2932    // the 64-bit register class. Otherwise, select the 32-bit register class.
2933    if (VT == MVT::Other)
2934      VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
2935
2936    RC= getRegClassFor(VT);
2937
2938    if (RC == &Mips::AFGR64RegClass) {
2939      assert(Reg % 2 == 0);
2940      Reg >>= 1;
2941    }
2942  } else if (Prefix == "$fcc") { // Parse $fcc0-$fcc7.
2943    RC = TRI->getRegClass(Mips::FCCRegClassID);
2944  } else { // Parse $0-$31.
2945    assert(Prefix == "$");
2946    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
2947  }
2948
2949  assert(Reg < RC->getNumRegs());
2950  return std::make_pair(*(RC->begin() + Reg), RC);
2951}
2952
2953/// Given a register class constraint, like 'r', if this corresponds directly
2954/// to an LLVM register class, return a register of 0 and the register class
2955/// pointer.
2956std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2957getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2958{
2959  if (Constraint.size() == 1) {
2960    switch (Constraint[0]) {
2961    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2962    case 'y': // Same as 'r'. Exists for compatibility.
2963    case 'r':
2964      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2965        if (Subtarget->inMips16Mode())
2966          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2967        return std::make_pair(0U, &Mips::GPR32RegClass);
2968      }
2969      if (VT == MVT::i64 && !HasMips64)
2970        return std::make_pair(0U, &Mips::GPR32RegClass);
2971      if (VT == MVT::i64 && HasMips64)
2972        return std::make_pair(0U, &Mips::GPR64RegClass);
2973      // This will generate an error message
2974      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2975    case 'f':
2976      if (VT == MVT::f32)
2977        return std::make_pair(0U, &Mips::FGR32RegClass);
2978      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2979        if (Subtarget->isFP64bit())
2980          return std::make_pair(0U, &Mips::FGR64RegClass);
2981        return std::make_pair(0U, &Mips::AFGR64RegClass);
2982      }
2983      break;
2984    case 'c': // register suitable for indirect jump
2985      if (VT == MVT::i32)
2986        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
2987      assert(VT == MVT::i64 && "Unexpected type.");
2988      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
2989    case 'l': // register suitable for indirect jump
2990      if (VT == MVT::i32)
2991        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
2992      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
2993    case 'x': // register suitable for indirect jump
2994      // Fixme: Not triggering the use of both hi and low
2995      // This will generate an error message
2996      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2997    }
2998  }
2999
3000  std::pair<unsigned, const TargetRegisterClass *> R;
3001  R = parseRegForInlineAsmConstraint(Constraint, VT);
3002
3003  if (R.second)
3004    return R;
3005
3006  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3007}
3008
3009/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3010/// vector.  If it is invalid, don't add anything to Ops.
3011void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3012                                                     std::string &Constraint,
3013                                                     std::vector<SDValue>&Ops,
3014                                                     SelectionDAG &DAG) const {
3015  SDValue Result(0, 0);
3016
3017  // Only support length 1 constraints for now.
3018  if (Constraint.length() > 1) return;
3019
3020  char ConstraintLetter = Constraint[0];
3021  switch (ConstraintLetter) {
3022  default: break; // This will fall through to the generic implementation
3023  case 'I': // Signed 16 bit constant
3024    // If this fails, the parent routine will give an error
3025    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3026      EVT Type = Op.getValueType();
3027      int64_t Val = C->getSExtValue();
3028      if (isInt<16>(Val)) {
3029        Result = DAG.getTargetConstant(Val, Type);
3030        break;
3031      }
3032    }
3033    return;
3034  case 'J': // integer zero
3035    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3036      EVT Type = Op.getValueType();
3037      int64_t Val = C->getZExtValue();
3038      if (Val == 0) {
3039        Result = DAG.getTargetConstant(0, Type);
3040        break;
3041      }
3042    }
3043    return;
3044  case 'K': // unsigned 16 bit immediate
3045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3046      EVT Type = Op.getValueType();
3047      uint64_t Val = (uint64_t)C->getZExtValue();
3048      if (isUInt<16>(Val)) {
3049        Result = DAG.getTargetConstant(Val, Type);
3050        break;
3051      }
3052    }
3053    return;
3054  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3055    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3056      EVT Type = Op.getValueType();
3057      int64_t Val = C->getSExtValue();
3058      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3059        Result = DAG.getTargetConstant(Val, Type);
3060        break;
3061      }
3062    }
3063    return;
3064  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3065    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3066      EVT Type = Op.getValueType();
3067      int64_t Val = C->getSExtValue();
3068      if ((Val >= -65535) && (Val <= -1)) {
3069        Result = DAG.getTargetConstant(Val, Type);
3070        break;
3071      }
3072    }
3073    return;
3074  case 'O': // signed 15 bit immediate
3075    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3076      EVT Type = Op.getValueType();
3077      int64_t Val = C->getSExtValue();
3078      if ((isInt<15>(Val))) {
3079        Result = DAG.getTargetConstant(Val, Type);
3080        break;
3081      }
3082    }
3083    return;
3084  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3085    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3086      EVT Type = Op.getValueType();
3087      int64_t Val = C->getSExtValue();
3088      if ((Val <= 65535) && (Val >= 1)) {
3089        Result = DAG.getTargetConstant(Val, Type);
3090        break;
3091      }
3092    }
3093    return;
3094  }
3095
3096  if (Result.getNode()) {
3097    Ops.push_back(Result);
3098    return;
3099  }
3100
3101  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3102}
3103
3104bool
3105MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3106  // No global is ever allowed as a base.
3107  if (AM.BaseGV)
3108    return false;
3109
3110  switch (AM.Scale) {
3111  case 0: // "r+i" or just "i", depending on HasBaseReg.
3112    break;
3113  case 1:
3114    if (!AM.HasBaseReg) // allow "r+i".
3115      break;
3116    return false; // disallow "r+r" or "r+r+i".
3117  default:
3118    return false;
3119  }
3120
3121  return true;
3122}
3123
3124bool
3125MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3126  // The Mips target isn't yet aware of offsets.
3127  return false;
3128}
3129
3130EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3131                                            unsigned SrcAlign,
3132                                            bool IsMemset, bool ZeroMemset,
3133                                            bool MemcpyStrSrc,
3134                                            MachineFunction &MF) const {
3135  if (Subtarget->hasMips64())
3136    return MVT::i64;
3137
3138  return MVT::i32;
3139}
3140
3141bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3142  if (VT != MVT::f32 && VT != MVT::f64)
3143    return false;
3144  if (Imm.isNegZero())
3145    return false;
3146  return Imm.isZero();
3147}
3148
3149unsigned MipsTargetLowering::getJumpTableEncoding() const {
3150  if (IsN64)
3151    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3152
3153  return TargetLowering::getJumpTableEncoding();
3154}
3155
3156/// This function returns true if CallSym is a long double emulation routine.
3157static bool isF128SoftLibCall(const char *CallSym) {
3158  const char *const LibCalls[] =
3159    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3160     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3161     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3162     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3163     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3164     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3165     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3166     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3167     "truncl"};
3168
3169  const char * const *End = LibCalls + array_lengthof(LibCalls);
3170
3171  // Check that LibCalls is sorted alphabetically.
3172  MipsTargetLowering::LTStr Comp;
3173
3174#ifndef NDEBUG
3175  for (const char * const *I = LibCalls; I < End - 1; ++I)
3176    assert(Comp(*I, *(I + 1)));
3177#endif
3178
3179  return std::binary_search(LibCalls, End, CallSym, Comp);
3180}
3181
3182/// This function returns true if Ty is fp128 or i128 which was originally a
3183/// fp128.
3184static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3185  if (Ty->isFP128Ty())
3186    return true;
3187
3188  const ExternalSymbolSDNode *ES =
3189    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3190
3191  // If the Ty is i128 and the function being called is a long double emulation
3192  // routine, then the original type is f128.
3193  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3194}
3195
3196MipsTargetLowering::MipsCC::SpecialCallingConvType
3197  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3198  MipsCC::SpecialCallingConvType SpecialCallingConv =
3199    MipsCC::NoSpecialCallingConv;;
3200  if (Subtarget->inMips16HardFloat()) {
3201    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3202      llvm::StringRef Sym = G->getGlobal()->getName();
3203      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3204      if (F->hasFnAttribute("__Mips16RetHelper")) {
3205        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3206      }
3207    }
3208  }
3209  return SpecialCallingConv;
3210}
3211
3212MipsTargetLowering::MipsCC::MipsCC(
3213  CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
3214    MipsCC::SpecialCallingConvType SpecialCallingConv_)
3215  : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
3216    SpecialCallingConv(SpecialCallingConv_){
3217  // Pre-allocate reserved argument area.
3218  CCInfo.AllocateStack(reservedArgArea(), 1);
3219}
3220
3221
3222void MipsTargetLowering::MipsCC::
3223analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3224                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3225                    std::vector<ArgListEntry> &FuncArgs) {
3226  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3227         "CallingConv::Fast shouldn't be used for vararg functions.");
3228
3229  unsigned NumOpnds = Args.size();
3230  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3231
3232  for (unsigned I = 0; I != NumOpnds; ++I) {
3233    MVT ArgVT = Args[I].VT;
3234    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3235    bool R;
3236
3237    if (ArgFlags.isByVal()) {
3238      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3239      continue;
3240    }
3241
3242    if (IsVarArg && !Args[I].IsFixed)
3243      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3244    else {
3245      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3246                           IsSoftFloat);
3247      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3248    }
3249
3250    if (R) {
3251#ifndef NDEBUG
3252      dbgs() << "Call operand #" << I << " has unhandled type "
3253             << EVT(ArgVT).getEVTString();
3254#endif
3255      llvm_unreachable(0);
3256    }
3257  }
3258}
3259
3260void MipsTargetLowering::MipsCC::
3261analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3262                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3263  unsigned NumArgs = Args.size();
3264  llvm::CCAssignFn *FixedFn = fixedArgFn();
3265  unsigned CurArgIdx = 0;
3266
3267  for (unsigned I = 0; I != NumArgs; ++I) {
3268    MVT ArgVT = Args[I].VT;
3269    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3270    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3271    CurArgIdx = Args[I].OrigArgIndex;
3272
3273    if (ArgFlags.isByVal()) {
3274      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3275      continue;
3276    }
3277
3278    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3279
3280    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3281      continue;
3282
3283#ifndef NDEBUG
3284    dbgs() << "Formal Arg #" << I << " has unhandled type "
3285           << EVT(ArgVT).getEVTString();
3286#endif
3287    llvm_unreachable(0);
3288  }
3289}
3290
3291template<typename Ty>
3292void MipsTargetLowering::MipsCC::
3293analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3294              const SDNode *CallNode, const Type *RetTy) const {
3295  CCAssignFn *Fn;
3296
3297  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3298    Fn = RetCC_F128Soft;
3299  else
3300    Fn = RetCC_Mips;
3301
3302  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3303    MVT VT = RetVals[I].VT;
3304    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3305    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3306
3307    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3308#ifndef NDEBUG
3309      dbgs() << "Call result #" << I << " has unhandled type "
3310             << EVT(VT).getEVTString() << '\n';
3311#endif
3312      llvm_unreachable(0);
3313    }
3314  }
3315}
3316
3317void MipsTargetLowering::MipsCC::
3318analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3319                  const SDNode *CallNode, const Type *RetTy) const {
3320  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3321}
3322
3323void MipsTargetLowering::MipsCC::
3324analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3325              const Type *RetTy) const {
3326  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3327}
3328
3329void
3330MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3331                                           MVT LocVT,
3332                                           CCValAssign::LocInfo LocInfo,
3333                                           ISD::ArgFlagsTy ArgFlags) {
3334  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3335
3336  struct ByValArgInfo ByVal;
3337  unsigned RegSize = regSize();
3338  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3339  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3340                            RegSize * 2);
3341
3342  if (useRegsForByval())
3343    allocateRegs(ByVal, ByValSize, Align);
3344
3345  // Allocate space on caller's stack.
3346  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3347                                       Align);
3348  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3349                                    LocInfo));
3350  ByValArgs.push_back(ByVal);
3351}
3352
3353unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3354  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3355}
3356
3357unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3358  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3359}
3360
3361const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3362  return IsO32 ? O32IntRegs : Mips64IntRegs;
3363}
3364
3365llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3366  if (CallConv == CallingConv::Fast)
3367    return CC_Mips_FastCC;
3368
3369  if (SpecialCallingConv == Mips16RetHelperConv)
3370    return CC_Mips16RetHelper;
3371  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
3372}
3373
3374llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3375  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
3376}
3377
3378const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3379  return IsO32 ? O32IntRegs : Mips64DPRegs;
3380}
3381
3382void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3383                                              unsigned ByValSize,
3384                                              unsigned Align) {
3385  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3386  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3387  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3388         "Byval argument's size and alignment should be a multiple of"
3389         "RegSize.");
3390
3391  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3392
3393  // If Align > RegSize, the first arg register must be even.
3394  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3395    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3396    ++ByVal.FirstIdx;
3397  }
3398
3399  // Mark the registers allocated.
3400  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3401       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3402    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3403}
3404
3405MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3406                                         const SDNode *CallNode,
3407                                         bool IsSoftFloat) const {
3408  if (IsSoftFloat || IsO32)
3409    return VT;
3410
3411  // Check if the original type was fp128.
3412  if (originalTypeIsF128(OrigTy, CallNode)) {
3413    assert(VT == MVT::i64);
3414    return MVT::f64;
3415  }
3416
3417  return VT;
3418}
3419
3420void MipsTargetLowering::
3421copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3422              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3423              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3424              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3425  MachineFunction &MF = DAG.getMachineFunction();
3426  MachineFrameInfo *MFI = MF.getFrameInfo();
3427  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3428  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3429  int FrameObjOffset;
3430
3431  if (RegAreaSize)
3432    FrameObjOffset = (int)CC.reservedArgArea() -
3433      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3434  else
3435    FrameObjOffset = ByVal.Address;
3436
3437  // Create frame object.
3438  EVT PtrTy = getPointerTy();
3439  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3440  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3441  InVals.push_back(FIN);
3442
3443  if (!ByVal.NumRegs)
3444    return;
3445
3446  // Copy arg registers.
3447  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3448  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3449
3450  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3451    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3452    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3453    unsigned Offset = I * CC.regSize();
3454    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3455                                   DAG.getConstant(Offset, PtrTy));
3456    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3457                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3458                                 false, false, 0);
3459    OutChains.push_back(Store);
3460  }
3461}
3462
3463// Copy byVal arg to registers and stack.
3464void MipsTargetLowering::
3465passByValArg(SDValue Chain, SDLoc DL,
3466             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3467             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3468             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3469             const MipsCC &CC, const ByValArgInfo &ByVal,
3470             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3471  unsigned ByValSize = Flags.getByValSize();
3472  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3473  unsigned RegSize = CC.regSize();
3474  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3475  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3476
3477  if (ByVal.NumRegs) {
3478    const uint16_t *ArgRegs = CC.intArgRegs();
3479    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3480    unsigned I = 0;
3481
3482    // Copy words to registers.
3483    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3484      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3485                                    DAG.getConstant(Offset, PtrTy));
3486      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3487                                    MachinePointerInfo(), false, false, false,
3488                                    Alignment);
3489      MemOpChains.push_back(LoadVal.getValue(1));
3490      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3491      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3492    }
3493
3494    // Return if the struct has been fully copied.
3495    if (ByValSize == Offset)
3496      return;
3497
3498    // Copy the remainder of the byval argument with sub-word loads and shifts.
3499    if (LeftoverBytes) {
3500      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3501             "Size of the remainder should be smaller than RegSize.");
3502      SDValue Val;
3503
3504      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3505           Offset < ByValSize; LoadSize /= 2) {
3506        unsigned RemSize = ByValSize - Offset;
3507
3508        if (RemSize < LoadSize)
3509          continue;
3510
3511        // Load subword.
3512        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3513                                      DAG.getConstant(Offset, PtrTy));
3514        SDValue LoadVal =
3515          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3516                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3517                         false, false, Alignment);
3518        MemOpChains.push_back(LoadVal.getValue(1));
3519
3520        // Shift the loaded value.
3521        unsigned Shamt;
3522
3523        if (isLittle)
3524          Shamt = TotalSizeLoaded;
3525        else
3526          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3527
3528        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3529                                    DAG.getConstant(Shamt, MVT::i32));
3530
3531        if (Val.getNode())
3532          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3533        else
3534          Val = Shift;
3535
3536        Offset += LoadSize;
3537        TotalSizeLoaded += LoadSize;
3538        Alignment = std::min(Alignment, LoadSize);
3539      }
3540
3541      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3542      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3543      return;
3544    }
3545  }
3546
3547  // Copy remainder of byval arg to it with memcpy.
3548  unsigned MemCpySize = ByValSize - Offset;
3549  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3550                            DAG.getConstant(Offset, PtrTy));
3551  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3552                            DAG.getIntPtrConstant(ByVal.Address));
3553  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3554                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3555                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3556                        MachinePointerInfo(0), MachinePointerInfo(0));
3557  MemOpChains.push_back(Chain);
3558}
3559
3560void
3561MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3562                                    const MipsCC &CC, SDValue Chain,
3563                                    SDLoc DL, SelectionDAG &DAG) const {
3564  unsigned NumRegs = CC.numIntArgRegs();
3565  const uint16_t *ArgRegs = CC.intArgRegs();
3566  const CCState &CCInfo = CC.getCCInfo();
3567  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3568  unsigned RegSize = CC.regSize();
3569  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3570  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3571  MachineFunction &MF = DAG.getMachineFunction();
3572  MachineFrameInfo *MFI = MF.getFrameInfo();
3573  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3574
3575  // Offset of the first variable argument from stack pointer.
3576  int VaArgOffset;
3577
3578  if (NumRegs == Idx)
3579    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3580  else
3581    VaArgOffset =
3582      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3583
3584  // Record the frame index of the first variable argument
3585  // which is a value necessary to VASTART.
3586  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3587  MipsFI->setVarArgsFrameIndex(FI);
3588
3589  // Copy the integer registers that have not been used for argument passing
3590  // to the argument register save area. For O32, the save area is allocated
3591  // in the caller's stack frame, while for N32/64, it is allocated in the
3592  // callee's stack frame.
3593  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3594    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3595    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3596    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3597    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3598    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3599                                 MachinePointerInfo(), false, false, 0);
3600    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3601    OutChains.push_back(Store);
3602  }
3603}
3604