MipsISelLowering.cpp revision 95830221bd4877816adc6707eb34ca68c5a515d2
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include <cctype>
38
39using namespace llvm;
40
41STATISTIC(NumTailCalls, "Number of tail calls");
42
43static cl::opt<bool>
44LargeGOT("mxgot", cl::Hidden,
45         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
46
47static cl::opt<bool>
48NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
49               cl::desc("MIPS: Don't trap on integer division by zero."),
50               cl::init(false));
51
52static const uint16_t O32IntRegs[4] = {
53  Mips::A0, Mips::A1, Mips::A2, Mips::A3
54};
55
56static const uint16_t Mips64IntRegs[8] = {
57  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
58  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
59};
60
61static const uint16_t Mips64DPRegs[8] = {
62  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
63  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
64};
65
66// If I is a shifted mask, set the size (Size) and the first bit of the
67// mask (Pos), and return true.
68// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
69static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
70  if (!isShiftedMask_64(I))
71    return false;
72
73  Size = CountPopulation_64(I);
74  Pos = countTrailingZeros(I);
75  return true;
76}
77
78SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
79  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
80  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
81}
82
83SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
84                                          SelectionDAG &DAG,
85                                          unsigned Flag) const {
86  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
87}
88
89SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
90                                          SelectionDAG &DAG,
91                                          unsigned Flag) const {
92  return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
93}
94
95SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
96                                          SelectionDAG &DAG,
97                                          unsigned Flag) const {
98  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
99}
100
101SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
102                                          SelectionDAG &DAG,
103                                          unsigned Flag) const {
104  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
105}
106
107SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
108                                          SelectionDAG &DAG,
109                                          unsigned Flag) const {
110  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
111                                   N->getOffset(), Flag);
112}
113
114const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
115  switch (Opcode) {
116  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
117  case MipsISD::TailCall:          return "MipsISD::TailCall";
118  case MipsISD::Hi:                return "MipsISD::Hi";
119  case MipsISD::Lo:                return "MipsISD::Lo";
120  case MipsISD::GPRel:             return "MipsISD::GPRel";
121  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
122  case MipsISD::Ret:               return "MipsISD::Ret";
123  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
124  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
125  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
126  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
127  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
128  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
129  case MipsISD::MFHI:              return "MipsISD::MFHI";
130  case MipsISD::MFLO:              return "MipsISD::MFLO";
131  case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
132  case MipsISD::Mult:              return "MipsISD::Mult";
133  case MipsISD::Multu:             return "MipsISD::Multu";
134  case MipsISD::MAdd:              return "MipsISD::MAdd";
135  case MipsISD::MAddu:             return "MipsISD::MAddu";
136  case MipsISD::MSub:              return "MipsISD::MSub";
137  case MipsISD::MSubu:             return "MipsISD::MSubu";
138  case MipsISD::DivRem:            return "MipsISD::DivRem";
139  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
140  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
141  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
142  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
143  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
144  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
145  case MipsISD::Sync:              return "MipsISD::Sync";
146  case MipsISD::Ext:               return "MipsISD::Ext";
147  case MipsISD::Ins:               return "MipsISD::Ins";
148  case MipsISD::LWL:               return "MipsISD::LWL";
149  case MipsISD::LWR:               return "MipsISD::LWR";
150  case MipsISD::SWL:               return "MipsISD::SWL";
151  case MipsISD::SWR:               return "MipsISD::SWR";
152  case MipsISD::LDL:               return "MipsISD::LDL";
153  case MipsISD::LDR:               return "MipsISD::LDR";
154  case MipsISD::SDL:               return "MipsISD::SDL";
155  case MipsISD::SDR:               return "MipsISD::SDR";
156  case MipsISD::EXTP:              return "MipsISD::EXTP";
157  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
158  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
159  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
160  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
161  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
162  case MipsISD::SHILO:             return "MipsISD::SHILO";
163  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
164  case MipsISD::MULT:              return "MipsISD::MULT";
165  case MipsISD::MULTU:             return "MipsISD::MULTU";
166  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
167  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
168  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
169  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
170  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
171  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
172  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
173  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
174  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
175  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
176  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
177  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
178  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
179  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
180  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
181  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
182  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
183  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
184  case MipsISD::VSMAX:             return "MipsISD::VSMAX";
185  case MipsISD::VSMIN:             return "MipsISD::VSMIN";
186  case MipsISD::VUMAX:             return "MipsISD::VUMAX";
187  case MipsISD::VUMIN:             return "MipsISD::VUMIN";
188  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
189  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
190  case MipsISD::VNOR:              return "MipsISD::VNOR";
191  case MipsISD::VSHF:              return "MipsISD::VSHF";
192  case MipsISD::SHF:               return "MipsISD::SHF";
193  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
194  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
195  case MipsISD::ILVL:              return "MipsISD::ILVL";
196  case MipsISD::ILVR:              return "MipsISD::ILVR";
197  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
198  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
199  default:                         return NULL;
200  }
201}
202
203MipsTargetLowering::
204MipsTargetLowering(MipsTargetMachine &TM)
205  : TargetLowering(TM, new MipsTargetObjectFile()),
206    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
207    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
208    IsO32(Subtarget->isABI_O32()) {
209  // Mips does not have i1 type, so use i32 for
210  // setcc operations results (slt, sgt, ...).
211  setBooleanContents(ZeroOrOneBooleanContent);
212  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
213
214  // Load extented operations for i1 types must be promoted
215  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
216  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
217  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
218
219  // MIPS doesn't have extending float->double load/store
220  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
221  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
222
223  // Used by legalize types to correctly generate the setcc result.
224  // Without this, every float setcc comes with a AND/OR with the result,
225  // we don't want this, since the fpcmp result goes to a flag register,
226  // which is used implicitly by brcond and select operations.
227  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
228
229  // Mips Custom Operations
230  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
231  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
232  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
233  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
234  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
235  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
236  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
237  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
238  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
239  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
240  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
241  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
242  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
243  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
244  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
245  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
246  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
247  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
248
249  if (!TM.Options.NoNaNsFPMath) {
250    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
251    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
252  }
253
254  if (HasMips64) {
255    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
256    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
257    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
258    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
259    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
260    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
261    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
262    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
263    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
264  }
265
266  if (!HasMips64) {
267    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
268    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
269    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
270  }
271
272  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
273  if (HasMips64)
274    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
275
276  setOperationAction(ISD::SDIV, MVT::i32, Expand);
277  setOperationAction(ISD::SREM, MVT::i32, Expand);
278  setOperationAction(ISD::UDIV, MVT::i32, Expand);
279  setOperationAction(ISD::UREM, MVT::i32, Expand);
280  setOperationAction(ISD::SDIV, MVT::i64, Expand);
281  setOperationAction(ISD::SREM, MVT::i64, Expand);
282  setOperationAction(ISD::UDIV, MVT::i64, Expand);
283  setOperationAction(ISD::UREM, MVT::i64, Expand);
284
285  // Operations not directly supported by Mips.
286  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
287  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
288  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
289  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
290  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
291  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
292  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
293  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
294  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
295  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
296  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
297  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
298  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
299  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
300  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
301  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
302  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
303  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
304  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
305  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
306  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
307  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
308
309  if (!Subtarget->hasMips32r2())
310    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
311
312  if (!Subtarget->hasMips64r2())
313    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
314
315  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
316  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
317  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
318  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
319  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
320  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
321  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
322  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
323  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
324  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
325  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
326  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
327  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
328  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
329  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
330  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
331  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
332
333  if (!TM.Options.NoNaNsFPMath) {
334    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
335    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
336  }
337
338  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
339
340  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
341  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
342  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
343
344  // Use the default for now
345  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
346  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
347
348  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
349  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
350  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
351  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
352
353  setInsertFencesForAtomic(true);
354
355  if (!Subtarget->hasSEInReg()) {
356    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
357    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
358  }
359
360  if (!Subtarget->hasBitCount()) {
361    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
362    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
363  }
364
365  if (!Subtarget->hasSwap()) {
366    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
367    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
368  }
369
370  if (HasMips64) {
371    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
372    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
373    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
374    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
375  }
376
377  setOperationAction(ISD::TRAP, MVT::Other, Legal);
378
379  setTargetDAGCombine(ISD::SDIVREM);
380  setTargetDAGCombine(ISD::UDIVREM);
381  setTargetDAGCombine(ISD::SELECT);
382  setTargetDAGCombine(ISD::AND);
383  setTargetDAGCombine(ISD::OR);
384  setTargetDAGCombine(ISD::ADD);
385
386  setMinFunctionAlignment(HasMips64 ? 3 : 2);
387
388  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
389
390  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
391  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
392
393  MaxStoresPerMemcpy = 16;
394}
395
396const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
397  if (TM.getSubtargetImpl()->inMips16Mode())
398    return llvm::createMips16TargetLowering(TM);
399
400  return llvm::createMipsSETargetLowering(TM);
401}
402
403EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
404  if (!VT.isVector())
405    return MVT::i32;
406  return VT.changeVectorElementTypeToInteger();
407}
408
409static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
410                                    TargetLowering::DAGCombinerInfo &DCI,
411                                    const MipsSubtarget *Subtarget) {
412  if (DCI.isBeforeLegalizeOps())
413    return SDValue();
414
415  EVT Ty = N->getValueType(0);
416  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
417  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
418  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
419                                                  MipsISD::DivRemU16;
420  SDLoc DL(N);
421
422  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
423                               N->getOperand(0), N->getOperand(1));
424  SDValue InChain = DAG.getEntryNode();
425  SDValue InGlue = DivRem;
426
427  // insert MFLO
428  if (N->hasAnyUseOfValue(0)) {
429    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
430                                            InGlue);
431    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
432    InChain = CopyFromLo.getValue(1);
433    InGlue = CopyFromLo.getValue(2);
434  }
435
436  // insert MFHI
437  if (N->hasAnyUseOfValue(1)) {
438    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
439                                            HI, Ty, InGlue);
440    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
441  }
442
443  return SDValue();
444}
445
446static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
447  switch (CC) {
448  default: llvm_unreachable("Unknown fp condition code!");
449  case ISD::SETEQ:
450  case ISD::SETOEQ: return Mips::FCOND_OEQ;
451  case ISD::SETUNE: return Mips::FCOND_UNE;
452  case ISD::SETLT:
453  case ISD::SETOLT: return Mips::FCOND_OLT;
454  case ISD::SETGT:
455  case ISD::SETOGT: return Mips::FCOND_OGT;
456  case ISD::SETLE:
457  case ISD::SETOLE: return Mips::FCOND_OLE;
458  case ISD::SETGE:
459  case ISD::SETOGE: return Mips::FCOND_OGE;
460  case ISD::SETULT: return Mips::FCOND_ULT;
461  case ISD::SETULE: return Mips::FCOND_ULE;
462  case ISD::SETUGT: return Mips::FCOND_UGT;
463  case ISD::SETUGE: return Mips::FCOND_UGE;
464  case ISD::SETUO:  return Mips::FCOND_UN;
465  case ISD::SETO:   return Mips::FCOND_OR;
466  case ISD::SETNE:
467  case ISD::SETONE: return Mips::FCOND_ONE;
468  case ISD::SETUEQ: return Mips::FCOND_UEQ;
469  }
470}
471
472
473/// This function returns true if the floating point conditional branches and
474/// conditional moves which use condition code CC should be inverted.
475static bool invertFPCondCodeUser(Mips::CondCode CC) {
476  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
477    return false;
478
479  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
480         "Illegal Condition Code");
481
482  return true;
483}
484
485// Creates and returns an FPCmp node from a setcc node.
486// Returns Op if setcc is not a floating point comparison.
487static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
488  // must be a SETCC node
489  if (Op.getOpcode() != ISD::SETCC)
490    return Op;
491
492  SDValue LHS = Op.getOperand(0);
493
494  if (!LHS.getValueType().isFloatingPoint())
495    return Op;
496
497  SDValue RHS = Op.getOperand(1);
498  SDLoc DL(Op);
499
500  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
501  // node if necessary.
502  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
503
504  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
505                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
506}
507
508// Creates and returns a CMovFPT/F node.
509static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
510                            SDValue False, SDLoc DL) {
511  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
512  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
513  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
514
515  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
516                     True.getValueType(), True, FCC0, False, Cond);
517}
518
519static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
520                                    TargetLowering::DAGCombinerInfo &DCI,
521                                    const MipsSubtarget *Subtarget) {
522  if (DCI.isBeforeLegalizeOps())
523    return SDValue();
524
525  SDValue SetCC = N->getOperand(0);
526
527  if ((SetCC.getOpcode() != ISD::SETCC) ||
528      !SetCC.getOperand(0).getValueType().isInteger())
529    return SDValue();
530
531  SDValue False = N->getOperand(2);
532  EVT FalseTy = False.getValueType();
533
534  if (!FalseTy.isInteger())
535    return SDValue();
536
537  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
538
539  if (!CN || CN->getZExtValue())
540    return SDValue();
541
542  const SDLoc DL(N);
543  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
544  SDValue True = N->getOperand(1);
545
546  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
547                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
548
549  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
550}
551
552static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
553                                 TargetLowering::DAGCombinerInfo &DCI,
554                                 const MipsSubtarget *Subtarget) {
555  // Pattern match EXT.
556  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
557  //  => ext $dst, $src, size, pos
558  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasExtractInsert())
559    return SDValue();
560
561  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
562  unsigned ShiftRightOpc = ShiftRight.getOpcode();
563
564  // Op's first operand must be a shift right.
565  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
566    return SDValue();
567
568  // The second operand of the shift must be an immediate.
569  ConstantSDNode *CN;
570  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
571    return SDValue();
572
573  uint64_t Pos = CN->getZExtValue();
574  uint64_t SMPos, SMSize;
575
576  // Op's second operand must be a shifted mask.
577  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
578      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
579    return SDValue();
580
581  // Return if the shifted mask does not start at bit 0 or the sum of its size
582  // and Pos exceeds the word's size.
583  EVT ValTy = N->getValueType(0);
584  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
585    return SDValue();
586
587  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
588                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
589                     DAG.getConstant(SMSize, MVT::i32));
590}
591
592static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
593                                TargetLowering::DAGCombinerInfo &DCI,
594                                const MipsSubtarget *Subtarget) {
595  // Pattern match INS.
596  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
597  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
598  //  => ins $dst, $src, size, pos, $src1
599  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasExtractInsert())
600    return SDValue();
601
602  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
603  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
604  ConstantSDNode *CN;
605
606  // See if Op's first operand matches (and $src1 , mask0).
607  if (And0.getOpcode() != ISD::AND)
608    return SDValue();
609
610  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
611      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
612    return SDValue();
613
614  // See if Op's second operand matches (and (shl $src, pos), mask1).
615  if (And1.getOpcode() != ISD::AND)
616    return SDValue();
617
618  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
619      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
620    return SDValue();
621
622  // The shift masks must have the same position and size.
623  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
624    return SDValue();
625
626  SDValue Shl = And1.getOperand(0);
627  if (Shl.getOpcode() != ISD::SHL)
628    return SDValue();
629
630  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
631    return SDValue();
632
633  unsigned Shamt = CN->getZExtValue();
634
635  // Return if the shift amount and the first bit position of mask are not the
636  // same.
637  EVT ValTy = N->getValueType(0);
638  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
639    return SDValue();
640
641  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
642                     DAG.getConstant(SMPos0, MVT::i32),
643                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
644}
645
646static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
647                                 TargetLowering::DAGCombinerInfo &DCI,
648                                 const MipsSubtarget *Subtarget) {
649  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
650
651  if (DCI.isBeforeLegalizeOps())
652    return SDValue();
653
654  SDValue Add = N->getOperand(1);
655
656  if (Add.getOpcode() != ISD::ADD)
657    return SDValue();
658
659  SDValue Lo = Add.getOperand(1);
660
661  if ((Lo.getOpcode() != MipsISD::Lo) ||
662      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
663    return SDValue();
664
665  EVT ValTy = N->getValueType(0);
666  SDLoc DL(N);
667
668  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
669                             Add.getOperand(0));
670  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
671}
672
673SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
674  const {
675  SelectionDAG &DAG = DCI.DAG;
676  unsigned Opc = N->getOpcode();
677
678  switch (Opc) {
679  default: break;
680  case ISD::SDIVREM:
681  case ISD::UDIVREM:
682    return performDivRemCombine(N, DAG, DCI, Subtarget);
683  case ISD::SELECT:
684    return performSELECTCombine(N, DAG, DCI, Subtarget);
685  case ISD::AND:
686    return performANDCombine(N, DAG, DCI, Subtarget);
687  case ISD::OR:
688    return performORCombine(N, DAG, DCI, Subtarget);
689  case ISD::ADD:
690    return performADDCombine(N, DAG, DCI, Subtarget);
691  }
692
693  return SDValue();
694}
695
696void
697MipsTargetLowering::LowerOperationWrapper(SDNode *N,
698                                          SmallVectorImpl<SDValue> &Results,
699                                          SelectionDAG &DAG) const {
700  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
701
702  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
703    Results.push_back(Res.getValue(I));
704}
705
706void
707MipsTargetLowering::ReplaceNodeResults(SDNode *N,
708                                       SmallVectorImpl<SDValue> &Results,
709                                       SelectionDAG &DAG) const {
710  return LowerOperationWrapper(N, Results, DAG);
711}
712
713SDValue MipsTargetLowering::
714LowerOperation(SDValue Op, SelectionDAG &DAG) const
715{
716  switch (Op.getOpcode())
717  {
718  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
719  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
720  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
721  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
722  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
723  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
724  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
725  case ISD::SELECT:             return lowerSELECT(Op, DAG);
726  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
727  case ISD::SETCC:              return lowerSETCC(Op, DAG);
728  case ISD::VASTART:            return lowerVASTART(Op, DAG);
729  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
730  case ISD::FABS:               return lowerFABS(Op, DAG);
731  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
732  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
733  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
734  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
735  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
736  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
737  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
738  case ISD::LOAD:               return lowerLOAD(Op, DAG);
739  case ISD::STORE:              return lowerSTORE(Op, DAG);
740  case ISD::ADD:                return lowerADD(Op, DAG);
741  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
742  }
743  return SDValue();
744}
745
746//===----------------------------------------------------------------------===//
747//  Lower helper functions
748//===----------------------------------------------------------------------===//
749
750// addLiveIn - This helper function adds the specified physical register to the
751// MachineFunction as a live in value.  It also creates a corresponding
752// virtual register for it.
753static unsigned
754addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
755{
756  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
757  MF.getRegInfo().addLiveIn(PReg, VReg);
758  return VReg;
759}
760
761static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
762                                          MachineBasicBlock &MBB,
763                                          const TargetInstrInfo &TII,
764                                          bool Is64Bit) {
765  if (NoZeroDivCheck)
766    return &MBB;
767
768  // Insert instruction "teq $divisor_reg, $zero, 7".
769  MachineBasicBlock::iterator I(MI);
770  MachineInstrBuilder MIB;
771  MachineOperand &Divisor = MI->getOperand(2);
772  MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
773    .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
774    .addReg(Mips::ZERO).addImm(7);
775
776  // Use the 32-bit sub-register if this is a 64-bit division.
777  if (Is64Bit)
778    MIB->getOperand(0).setSubReg(Mips::sub_32);
779
780  // Clear Divisor's kill flag.
781  Divisor.setIsKill(false);
782  return &MBB;
783}
784
785MachineBasicBlock *
786MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
787                                                MachineBasicBlock *BB) const {
788  switch (MI->getOpcode()) {
789  default:
790    llvm_unreachable("Unexpected instr type to insert");
791  case Mips::ATOMIC_LOAD_ADD_I8:
792    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
793  case Mips::ATOMIC_LOAD_ADD_I16:
794    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
795  case Mips::ATOMIC_LOAD_ADD_I32:
796    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
797  case Mips::ATOMIC_LOAD_ADD_I64:
798    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
799
800  case Mips::ATOMIC_LOAD_AND_I8:
801    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
802  case Mips::ATOMIC_LOAD_AND_I16:
803    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
804  case Mips::ATOMIC_LOAD_AND_I32:
805    return emitAtomicBinary(MI, BB, 4, Mips::AND);
806  case Mips::ATOMIC_LOAD_AND_I64:
807    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
808
809  case Mips::ATOMIC_LOAD_OR_I8:
810    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
811  case Mips::ATOMIC_LOAD_OR_I16:
812    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
813  case Mips::ATOMIC_LOAD_OR_I32:
814    return emitAtomicBinary(MI, BB, 4, Mips::OR);
815  case Mips::ATOMIC_LOAD_OR_I64:
816    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
817
818  case Mips::ATOMIC_LOAD_XOR_I8:
819    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
820  case Mips::ATOMIC_LOAD_XOR_I16:
821    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
822  case Mips::ATOMIC_LOAD_XOR_I32:
823    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
824  case Mips::ATOMIC_LOAD_XOR_I64:
825    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
826
827  case Mips::ATOMIC_LOAD_NAND_I8:
828    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
829  case Mips::ATOMIC_LOAD_NAND_I16:
830    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
831  case Mips::ATOMIC_LOAD_NAND_I32:
832    return emitAtomicBinary(MI, BB, 4, 0, true);
833  case Mips::ATOMIC_LOAD_NAND_I64:
834    return emitAtomicBinary(MI, BB, 8, 0, true);
835
836  case Mips::ATOMIC_LOAD_SUB_I8:
837    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
838  case Mips::ATOMIC_LOAD_SUB_I16:
839    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
840  case Mips::ATOMIC_LOAD_SUB_I32:
841    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
842  case Mips::ATOMIC_LOAD_SUB_I64:
843    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
844
845  case Mips::ATOMIC_SWAP_I8:
846    return emitAtomicBinaryPartword(MI, BB, 1, 0);
847  case Mips::ATOMIC_SWAP_I16:
848    return emitAtomicBinaryPartword(MI, BB, 2, 0);
849  case Mips::ATOMIC_SWAP_I32:
850    return emitAtomicBinary(MI, BB, 4, 0);
851  case Mips::ATOMIC_SWAP_I64:
852    return emitAtomicBinary(MI, BB, 8, 0);
853
854  case Mips::ATOMIC_CMP_SWAP_I8:
855    return emitAtomicCmpSwapPartword(MI, BB, 1);
856  case Mips::ATOMIC_CMP_SWAP_I16:
857    return emitAtomicCmpSwapPartword(MI, BB, 2);
858  case Mips::ATOMIC_CMP_SWAP_I32:
859    return emitAtomicCmpSwap(MI, BB, 4);
860  case Mips::ATOMIC_CMP_SWAP_I64:
861    return emitAtomicCmpSwap(MI, BB, 8);
862  case Mips::PseudoSDIV:
863  case Mips::PseudoUDIV:
864    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
865  case Mips::PseudoDSDIV:
866  case Mips::PseudoDUDIV:
867    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
868  }
869}
870
871// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
872// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
873MachineBasicBlock *
874MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
875                                     unsigned Size, unsigned BinOpcode,
876                                     bool Nand) const {
877  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
878
879  MachineFunction *MF = BB->getParent();
880  MachineRegisterInfo &RegInfo = MF->getRegInfo();
881  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
882  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
883  DebugLoc DL = MI->getDebugLoc();
884  unsigned LL, SC, AND, NOR, ZERO, BEQ;
885
886  if (Size == 4) {
887    LL = Mips::LL;
888    SC = Mips::SC;
889    AND = Mips::AND;
890    NOR = Mips::NOR;
891    ZERO = Mips::ZERO;
892    BEQ = Mips::BEQ;
893  }
894  else {
895    LL = Mips::LLD;
896    SC = Mips::SCD;
897    AND = Mips::AND64;
898    NOR = Mips::NOR64;
899    ZERO = Mips::ZERO_64;
900    BEQ = Mips::BEQ64;
901  }
902
903  unsigned OldVal = MI->getOperand(0).getReg();
904  unsigned Ptr = MI->getOperand(1).getReg();
905  unsigned Incr = MI->getOperand(2).getReg();
906
907  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
908  unsigned AndRes = RegInfo.createVirtualRegister(RC);
909  unsigned Success = RegInfo.createVirtualRegister(RC);
910
911  // insert new blocks after the current block
912  const BasicBlock *LLVM_BB = BB->getBasicBlock();
913  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
914  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
915  MachineFunction::iterator It = BB;
916  ++It;
917  MF->insert(It, loopMBB);
918  MF->insert(It, exitMBB);
919
920  // Transfer the remainder of BB and its successor edges to exitMBB.
921  exitMBB->splice(exitMBB->begin(), BB,
922                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
923  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
924
925  //  thisMBB:
926  //    ...
927  //    fallthrough --> loopMBB
928  BB->addSuccessor(loopMBB);
929  loopMBB->addSuccessor(loopMBB);
930  loopMBB->addSuccessor(exitMBB);
931
932  //  loopMBB:
933  //    ll oldval, 0(ptr)
934  //    <binop> storeval, oldval, incr
935  //    sc success, storeval, 0(ptr)
936  //    beq success, $0, loopMBB
937  BB = loopMBB;
938  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
939  if (Nand) {
940    //  and andres, oldval, incr
941    //  nor storeval, $0, andres
942    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
943    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
944  } else if (BinOpcode) {
945    //  <binop> storeval, oldval, incr
946    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
947  } else {
948    StoreVal = Incr;
949  }
950  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
951  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
952
953  MI->eraseFromParent(); // The instruction is gone now.
954
955  return exitMBB;
956}
957
958MachineBasicBlock *
959MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
960                                             MachineBasicBlock *BB,
961                                             unsigned Size, unsigned BinOpcode,
962                                             bool Nand) const {
963  assert((Size == 1 || Size == 2) &&
964         "Unsupported size for EmitAtomicBinaryPartial.");
965
966  MachineFunction *MF = BB->getParent();
967  MachineRegisterInfo &RegInfo = MF->getRegInfo();
968  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
969  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
970  DebugLoc DL = MI->getDebugLoc();
971
972  unsigned Dest = MI->getOperand(0).getReg();
973  unsigned Ptr = MI->getOperand(1).getReg();
974  unsigned Incr = MI->getOperand(2).getReg();
975
976  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
977  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
978  unsigned Mask = RegInfo.createVirtualRegister(RC);
979  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
980  unsigned NewVal = RegInfo.createVirtualRegister(RC);
981  unsigned OldVal = RegInfo.createVirtualRegister(RC);
982  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
983  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
984  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
985  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
986  unsigned AndRes = RegInfo.createVirtualRegister(RC);
987  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
988  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
989  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
990  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
991  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
992  unsigned SllRes = RegInfo.createVirtualRegister(RC);
993  unsigned Success = RegInfo.createVirtualRegister(RC);
994
995  // insert new blocks after the current block
996  const BasicBlock *LLVM_BB = BB->getBasicBlock();
997  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
998  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
999  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1000  MachineFunction::iterator It = BB;
1001  ++It;
1002  MF->insert(It, loopMBB);
1003  MF->insert(It, sinkMBB);
1004  MF->insert(It, exitMBB);
1005
1006  // Transfer the remainder of BB and its successor edges to exitMBB.
1007  exitMBB->splice(exitMBB->begin(), BB,
1008                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1009  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1010
1011  BB->addSuccessor(loopMBB);
1012  loopMBB->addSuccessor(loopMBB);
1013  loopMBB->addSuccessor(sinkMBB);
1014  sinkMBB->addSuccessor(exitMBB);
1015
1016  //  thisMBB:
1017  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1018  //    and     alignedaddr,ptr,masklsb2
1019  //    andi    ptrlsb2,ptr,3
1020  //    sll     shiftamt,ptrlsb2,3
1021  //    ori     maskupper,$0,255               # 0xff
1022  //    sll     mask,maskupper,shiftamt
1023  //    nor     mask2,$0,mask
1024  //    sll     incr2,incr,shiftamt
1025
1026  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1027  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1028    .addReg(Mips::ZERO).addImm(-4);
1029  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1030    .addReg(Ptr).addReg(MaskLSB2);
1031  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1032  if (Subtarget->isLittle()) {
1033    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1034  } else {
1035    unsigned Off = RegInfo.createVirtualRegister(RC);
1036    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1037      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1038    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1039  }
1040  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1041    .addReg(Mips::ZERO).addImm(MaskImm);
1042  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1043    .addReg(MaskUpper).addReg(ShiftAmt);
1044  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1045  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1046
1047  // atomic.load.binop
1048  // loopMBB:
1049  //   ll      oldval,0(alignedaddr)
1050  //   binop   binopres,oldval,incr2
1051  //   and     newval,binopres,mask
1052  //   and     maskedoldval0,oldval,mask2
1053  //   or      storeval,maskedoldval0,newval
1054  //   sc      success,storeval,0(alignedaddr)
1055  //   beq     success,$0,loopMBB
1056
1057  // atomic.swap
1058  // loopMBB:
1059  //   ll      oldval,0(alignedaddr)
1060  //   and     newval,incr2,mask
1061  //   and     maskedoldval0,oldval,mask2
1062  //   or      storeval,maskedoldval0,newval
1063  //   sc      success,storeval,0(alignedaddr)
1064  //   beq     success,$0,loopMBB
1065
1066  BB = loopMBB;
1067  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1068  if (Nand) {
1069    //  and andres, oldval, incr2
1070    //  nor binopres, $0, andres
1071    //  and newval, binopres, mask
1072    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1073    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1074      .addReg(Mips::ZERO).addReg(AndRes);
1075    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1076  } else if (BinOpcode) {
1077    //  <binop> binopres, oldval, incr2
1078    //  and newval, binopres, mask
1079    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1080    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1081  } else { // atomic.swap
1082    //  and newval, incr2, mask
1083    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1084  }
1085
1086  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1087    .addReg(OldVal).addReg(Mask2);
1088  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1089    .addReg(MaskedOldVal0).addReg(NewVal);
1090  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1091    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1092  BuildMI(BB, DL, TII->get(Mips::BEQ))
1093    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1094
1095  //  sinkMBB:
1096  //    and     maskedoldval1,oldval,mask
1097  //    srl     srlres,maskedoldval1,shiftamt
1098  //    sll     sllres,srlres,24
1099  //    sra     dest,sllres,24
1100  BB = sinkMBB;
1101  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1102
1103  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1104    .addReg(OldVal).addReg(Mask);
1105  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1106      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1107  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1108      .addReg(SrlRes).addImm(ShiftImm);
1109  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1110      .addReg(SllRes).addImm(ShiftImm);
1111
1112  MI->eraseFromParent(); // The instruction is gone now.
1113
1114  return exitMBB;
1115}
1116
1117MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1118                                                          MachineBasicBlock *BB,
1119                                                          unsigned Size) const {
1120  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1121
1122  MachineFunction *MF = BB->getParent();
1123  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1124  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1125  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1126  DebugLoc DL = MI->getDebugLoc();
1127  unsigned LL, SC, ZERO, BNE, BEQ;
1128
1129  if (Size == 4) {
1130    LL = Mips::LL;
1131    SC = Mips::SC;
1132    ZERO = Mips::ZERO;
1133    BNE = Mips::BNE;
1134    BEQ = Mips::BEQ;
1135  } else {
1136    LL = Mips::LLD;
1137    SC = Mips::SCD;
1138    ZERO = Mips::ZERO_64;
1139    BNE = Mips::BNE64;
1140    BEQ = Mips::BEQ64;
1141  }
1142
1143  unsigned Dest    = MI->getOperand(0).getReg();
1144  unsigned Ptr     = MI->getOperand(1).getReg();
1145  unsigned OldVal  = MI->getOperand(2).getReg();
1146  unsigned NewVal  = MI->getOperand(3).getReg();
1147
1148  unsigned Success = RegInfo.createVirtualRegister(RC);
1149
1150  // insert new blocks after the current block
1151  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1152  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1153  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1154  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1155  MachineFunction::iterator It = BB;
1156  ++It;
1157  MF->insert(It, loop1MBB);
1158  MF->insert(It, loop2MBB);
1159  MF->insert(It, exitMBB);
1160
1161  // Transfer the remainder of BB and its successor edges to exitMBB.
1162  exitMBB->splice(exitMBB->begin(), BB,
1163                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1164  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1165
1166  //  thisMBB:
1167  //    ...
1168  //    fallthrough --> loop1MBB
1169  BB->addSuccessor(loop1MBB);
1170  loop1MBB->addSuccessor(exitMBB);
1171  loop1MBB->addSuccessor(loop2MBB);
1172  loop2MBB->addSuccessor(loop1MBB);
1173  loop2MBB->addSuccessor(exitMBB);
1174
1175  // loop1MBB:
1176  //   ll dest, 0(ptr)
1177  //   bne dest, oldval, exitMBB
1178  BB = loop1MBB;
1179  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1180  BuildMI(BB, DL, TII->get(BNE))
1181    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1182
1183  // loop2MBB:
1184  //   sc success, newval, 0(ptr)
1185  //   beq success, $0, loop1MBB
1186  BB = loop2MBB;
1187  BuildMI(BB, DL, TII->get(SC), Success)
1188    .addReg(NewVal).addReg(Ptr).addImm(0);
1189  BuildMI(BB, DL, TII->get(BEQ))
1190    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1191
1192  MI->eraseFromParent(); // The instruction is gone now.
1193
1194  return exitMBB;
1195}
1196
1197MachineBasicBlock *
1198MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1199                                              MachineBasicBlock *BB,
1200                                              unsigned Size) const {
1201  assert((Size == 1 || Size == 2) &&
1202      "Unsupported size for EmitAtomicCmpSwapPartial.");
1203
1204  MachineFunction *MF = BB->getParent();
1205  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1206  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1207  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1208  DebugLoc DL = MI->getDebugLoc();
1209
1210  unsigned Dest    = MI->getOperand(0).getReg();
1211  unsigned Ptr     = MI->getOperand(1).getReg();
1212  unsigned CmpVal  = MI->getOperand(2).getReg();
1213  unsigned NewVal  = MI->getOperand(3).getReg();
1214
1215  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1216  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1217  unsigned Mask = RegInfo.createVirtualRegister(RC);
1218  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1219  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1220  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1221  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1222  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1223  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1224  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1225  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1226  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1227  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1228  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1229  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1230  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1231  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1232  unsigned Success = RegInfo.createVirtualRegister(RC);
1233
1234  // insert new blocks after the current block
1235  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1236  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1237  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1238  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1239  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1240  MachineFunction::iterator It = BB;
1241  ++It;
1242  MF->insert(It, loop1MBB);
1243  MF->insert(It, loop2MBB);
1244  MF->insert(It, sinkMBB);
1245  MF->insert(It, exitMBB);
1246
1247  // Transfer the remainder of BB and its successor edges to exitMBB.
1248  exitMBB->splice(exitMBB->begin(), BB,
1249                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1250  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1251
1252  BB->addSuccessor(loop1MBB);
1253  loop1MBB->addSuccessor(sinkMBB);
1254  loop1MBB->addSuccessor(loop2MBB);
1255  loop2MBB->addSuccessor(loop1MBB);
1256  loop2MBB->addSuccessor(sinkMBB);
1257  sinkMBB->addSuccessor(exitMBB);
1258
1259  // FIXME: computation of newval2 can be moved to loop2MBB.
1260  //  thisMBB:
1261  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1262  //    and     alignedaddr,ptr,masklsb2
1263  //    andi    ptrlsb2,ptr,3
1264  //    sll     shiftamt,ptrlsb2,3
1265  //    ori     maskupper,$0,255               # 0xff
1266  //    sll     mask,maskupper,shiftamt
1267  //    nor     mask2,$0,mask
1268  //    andi    maskedcmpval,cmpval,255
1269  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1270  //    andi    maskednewval,newval,255
1271  //    sll     shiftednewval,maskednewval,shiftamt
1272  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1273  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1274    .addReg(Mips::ZERO).addImm(-4);
1275  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1276    .addReg(Ptr).addReg(MaskLSB2);
1277  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1278  if (Subtarget->isLittle()) {
1279    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1280  } else {
1281    unsigned Off = RegInfo.createVirtualRegister(RC);
1282    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1283      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1284    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1285  }
1286  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1287    .addReg(Mips::ZERO).addImm(MaskImm);
1288  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1289    .addReg(MaskUpper).addReg(ShiftAmt);
1290  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1291  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1292    .addReg(CmpVal).addImm(MaskImm);
1293  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1294    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1295  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1296    .addReg(NewVal).addImm(MaskImm);
1297  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1298    .addReg(MaskedNewVal).addReg(ShiftAmt);
1299
1300  //  loop1MBB:
1301  //    ll      oldval,0(alginedaddr)
1302  //    and     maskedoldval0,oldval,mask
1303  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1304  BB = loop1MBB;
1305  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1306  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1307    .addReg(OldVal).addReg(Mask);
1308  BuildMI(BB, DL, TII->get(Mips::BNE))
1309    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1310
1311  //  loop2MBB:
1312  //    and     maskedoldval1,oldval,mask2
1313  //    or      storeval,maskedoldval1,shiftednewval
1314  //    sc      success,storeval,0(alignedaddr)
1315  //    beq     success,$0,loop1MBB
1316  BB = loop2MBB;
1317  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1318    .addReg(OldVal).addReg(Mask2);
1319  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1320    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1321  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1322      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1323  BuildMI(BB, DL, TII->get(Mips::BEQ))
1324      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1325
1326  //  sinkMBB:
1327  //    srl     srlres,maskedoldval0,shiftamt
1328  //    sll     sllres,srlres,24
1329  //    sra     dest,sllres,24
1330  BB = sinkMBB;
1331  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1332
1333  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1334      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1335  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1336      .addReg(SrlRes).addImm(ShiftImm);
1337  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1338      .addReg(SllRes).addImm(ShiftImm);
1339
1340  MI->eraseFromParent();   // The instruction is gone now.
1341
1342  return exitMBB;
1343}
1344
1345//===----------------------------------------------------------------------===//
1346//  Misc Lower Operation implementation
1347//===----------------------------------------------------------------------===//
1348SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1349  SDValue Chain = Op.getOperand(0);
1350  SDValue Table = Op.getOperand(1);
1351  SDValue Index = Op.getOperand(2);
1352  SDLoc DL(Op);
1353  EVT PTy = getPointerTy();
1354  unsigned EntrySize =
1355    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1356
1357  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1358                      DAG.getConstant(EntrySize, PTy));
1359  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1360
1361  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1362  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1363                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1364                        0);
1365  Chain = Addr.getValue(1);
1366
1367  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1368    // For PIC, the sequence is:
1369    // BRIND(load(Jumptable + index) + RelocBase)
1370    // RelocBase can be JumpTable, GOT or some sort of global base.
1371    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1372                       getPICJumpTableRelocBase(Table, DAG));
1373  }
1374
1375  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1376}
1377
1378SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1379  // The first operand is the chain, the second is the condition, the third is
1380  // the block to branch to if the condition is true.
1381  SDValue Chain = Op.getOperand(0);
1382  SDValue Dest = Op.getOperand(2);
1383  SDLoc DL(Op);
1384
1385  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1386
1387  // Return if flag is not set by a floating point comparison.
1388  if (CondRes.getOpcode() != MipsISD::FPCmp)
1389    return Op;
1390
1391  SDValue CCNode  = CondRes.getOperand(2);
1392  Mips::CondCode CC =
1393    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1394  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1395  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1396  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1397  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1398                     FCC0, Dest, CondRes);
1399}
1400
1401SDValue MipsTargetLowering::
1402lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1403{
1404  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1405
1406  // Return if flag is not set by a floating point comparison.
1407  if (Cond.getOpcode() != MipsISD::FPCmp)
1408    return Op;
1409
1410  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1411                      SDLoc(Op));
1412}
1413
1414SDValue MipsTargetLowering::
1415lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1416{
1417  SDLoc DL(Op);
1418  EVT Ty = Op.getOperand(0).getValueType();
1419  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1420                             getSetCCResultType(*DAG.getContext(), Ty),
1421                             Op.getOperand(0), Op.getOperand(1),
1422                             Op.getOperand(4));
1423
1424  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1425                     Op.getOperand(3));
1426}
1427
1428SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1429  SDValue Cond = createFPCmp(DAG, Op);
1430
1431  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1432         "Floating point operand expected.");
1433
1434  SDValue True  = DAG.getConstant(1, MVT::i32);
1435  SDValue False = DAG.getConstant(0, MVT::i32);
1436
1437  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1438}
1439
1440SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1441                                               SelectionDAG &DAG) const {
1442  // FIXME there isn't actually debug info here
1443  SDLoc DL(Op);
1444  EVT Ty = Op.getValueType();
1445  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1446  const GlobalValue *GV = N->getGlobal();
1447
1448  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1449    const MipsTargetObjectFile &TLOF =
1450      (const MipsTargetObjectFile&)getObjFileLowering();
1451
1452    // %gp_rel relocation
1453    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1454      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1455                                              MipsII::MO_GPREL);
1456      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1457                                      DAG.getVTList(MVT::i32), &GA, 1);
1458      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1459      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1460    }
1461
1462    // %hi/%lo relocation
1463    return getAddrNonPIC(N, Ty, DAG);
1464  }
1465
1466  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1467    return getAddrLocal(N, Ty, DAG, HasMips64);
1468
1469  if (LargeGOT)
1470    return getAddrGlobalLargeGOT(N, Ty, DAG, MipsII::MO_GOT_HI16,
1471                                 MipsII::MO_GOT_LO16, DAG.getEntryNode(),
1472                                 MachinePointerInfo::getGOT());
1473
1474  return getAddrGlobal(N, Ty, DAG,
1475                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16,
1476                       DAG.getEntryNode(), MachinePointerInfo::getGOT());
1477}
1478
1479SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1480                                              SelectionDAG &DAG) const {
1481  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1482  EVT Ty = Op.getValueType();
1483
1484  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1485    return getAddrNonPIC(N, Ty, DAG);
1486
1487  return getAddrLocal(N, Ty, DAG, HasMips64);
1488}
1489
1490SDValue MipsTargetLowering::
1491lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1492{
1493  // If the relocation model is PIC, use the General Dynamic TLS Model or
1494  // Local Dynamic TLS model, otherwise use the Initial Exec or
1495  // Local Exec TLS Model.
1496
1497  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1498  SDLoc DL(GA);
1499  const GlobalValue *GV = GA->getGlobal();
1500  EVT PtrVT = getPointerTy();
1501
1502  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1503
1504  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1505    // General Dynamic and Local Dynamic TLS Model.
1506    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1507                                                      : MipsII::MO_TLSGD;
1508
1509    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1510    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1511                                   getGlobalReg(DAG, PtrVT), TGA);
1512    unsigned PtrSize = PtrVT.getSizeInBits();
1513    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1514
1515    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1516
1517    ArgListTy Args;
1518    ArgListEntry Entry;
1519    Entry.Node = Argument;
1520    Entry.Ty = PtrTy;
1521    Args.push_back(Entry);
1522
1523    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1524                  false, false, false, false, 0, CallingConv::C,
1525                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1526                  /*isReturnValueUsed=*/true,
1527                  TlsGetAddr, Args, DAG, DL);
1528    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1529
1530    SDValue Ret = CallResult.first;
1531
1532    if (model != TLSModel::LocalDynamic)
1533      return Ret;
1534
1535    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1536                                               MipsII::MO_DTPREL_HI);
1537    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1538    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1539                                               MipsII::MO_DTPREL_LO);
1540    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1541    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1542    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1543  }
1544
1545  SDValue Offset;
1546  if (model == TLSModel::InitialExec) {
1547    // Initial Exec TLS Model
1548    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1549                                             MipsII::MO_GOTTPREL);
1550    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1551                      TGA);
1552    Offset = DAG.getLoad(PtrVT, DL,
1553                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1554                         false, false, false, 0);
1555  } else {
1556    // Local Exec TLS Model
1557    assert(model == TLSModel::LocalExec);
1558    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1559                                               MipsII::MO_TPREL_HI);
1560    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1561                                               MipsII::MO_TPREL_LO);
1562    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1563    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1564    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1565  }
1566
1567  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1568  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1569}
1570
1571SDValue MipsTargetLowering::
1572lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1573{
1574  JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
1575  EVT Ty = Op.getValueType();
1576
1577  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1578    return getAddrNonPIC(N, Ty, DAG);
1579
1580  return getAddrLocal(N, Ty, DAG, HasMips64);
1581}
1582
1583SDValue MipsTargetLowering::
1584lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1585{
1586  // gp_rel relocation
1587  // FIXME: we should reference the constant pool using small data sections,
1588  // but the asm printer currently doesn't support this feature without
1589  // hacking it. This feature should come soon so we can uncomment the
1590  // stuff below.
1591  //if (IsInSmallSection(C->getType())) {
1592  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1593  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1594  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1595  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1596  EVT Ty = Op.getValueType();
1597
1598  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1599    return getAddrNonPIC(N, Ty, DAG);
1600
1601  return getAddrLocal(N, Ty, DAG, HasMips64);
1602}
1603
1604SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1605  MachineFunction &MF = DAG.getMachineFunction();
1606  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1607
1608  SDLoc DL(Op);
1609  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1610                                 getPointerTy());
1611
1612  // vastart just stores the address of the VarArgsFrameIndex slot into the
1613  // memory location argument.
1614  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1615  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1616                      MachinePointerInfo(SV), false, false, 0);
1617}
1618
1619static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
1620                                bool HasExtractInsert) {
1621  EVT TyX = Op.getOperand(0).getValueType();
1622  EVT TyY = Op.getOperand(1).getValueType();
1623  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1624  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1625  SDLoc DL(Op);
1626  SDValue Res;
1627
1628  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1629  // to i32.
1630  SDValue X = (TyX == MVT::f32) ?
1631    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1632    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1633                Const1);
1634  SDValue Y = (TyY == MVT::f32) ?
1635    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1636    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1637                Const1);
1638
1639  if (HasExtractInsert) {
1640    // ext  E, Y, 31, 1  ; extract bit31 of Y
1641    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1642    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1643    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1644  } else {
1645    // sll SllX, X, 1
1646    // srl SrlX, SllX, 1
1647    // srl SrlY, Y, 31
1648    // sll SllY, SrlX, 31
1649    // or  Or, SrlX, SllY
1650    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1651    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1652    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1653    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1654    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1655  }
1656
1657  if (TyX == MVT::f32)
1658    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1659
1660  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1661                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1662  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1663}
1664
1665static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
1666                                bool HasExtractInsert) {
1667  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1668  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1669  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1670  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1671  SDLoc DL(Op);
1672
1673  // Bitcast to integer nodes.
1674  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1675  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1676
1677  if (HasExtractInsert) {
1678    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1679    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1680    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1681                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1682
1683    if (WidthX > WidthY)
1684      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1685    else if (WidthY > WidthX)
1686      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1687
1688    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1689                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1690    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1691  }
1692
1693  // (d)sll SllX, X, 1
1694  // (d)srl SrlX, SllX, 1
1695  // (d)srl SrlY, Y, width(Y)-1
1696  // (d)sll SllY, SrlX, width(Y)-1
1697  // or     Or, SrlX, SllY
1698  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1699  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1700  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1701                             DAG.getConstant(WidthY - 1, MVT::i32));
1702
1703  if (WidthX > WidthY)
1704    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1705  else if (WidthY > WidthX)
1706    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1707
1708  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1709                             DAG.getConstant(WidthX - 1, MVT::i32));
1710  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1711  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1712}
1713
1714SDValue
1715MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1716  if (Subtarget->hasMips64())
1717    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasExtractInsert());
1718
1719  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasExtractInsert());
1720}
1721
1722static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
1723                           bool HasExtractInsert) {
1724  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1725  SDLoc DL(Op);
1726
1727  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1728  // to i32.
1729  SDValue X = (Op.getValueType() == MVT::f32) ?
1730    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1731    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1732                Const1);
1733
1734  // Clear MSB.
1735  if (HasExtractInsert)
1736    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1737                      DAG.getRegister(Mips::ZERO, MVT::i32),
1738                      DAG.getConstant(31, MVT::i32), Const1, X);
1739  else {
1740    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1741    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1742  }
1743
1744  if (Op.getValueType() == MVT::f32)
1745    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1746
1747  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1748                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1749  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1750}
1751
1752static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
1753                           bool HasExtractInsert) {
1754  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1755  SDLoc DL(Op);
1756
1757  // Bitcast to integer node.
1758  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1759
1760  // Clear MSB.
1761  if (HasExtractInsert)
1762    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1763                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1764                      DAG.getConstant(63, MVT::i32), Const1, X);
1765  else {
1766    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1767    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1768  }
1769
1770  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1771}
1772
1773SDValue
1774MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1775  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1776    return lowerFABS64(Op, DAG, Subtarget->hasExtractInsert());
1777
1778  return lowerFABS32(Op, DAG, Subtarget->hasExtractInsert());
1779}
1780
1781SDValue MipsTargetLowering::
1782lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1783  // check the depth
1784  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1785         "Frame address can only be determined for current frame.");
1786
1787  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1788  MFI->setFrameAddressIsTaken(true);
1789  EVT VT = Op.getValueType();
1790  SDLoc DL(Op);
1791  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1792                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1793  return FrameAddr;
1794}
1795
1796SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1797                                            SelectionDAG &DAG) const {
1798  // check the depth
1799  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1800         "Return address can be determined only for current frame.");
1801
1802  MachineFunction &MF = DAG.getMachineFunction();
1803  MachineFrameInfo *MFI = MF.getFrameInfo();
1804  MVT VT = Op.getSimpleValueType();
1805  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1806  MFI->setReturnAddressIsTaken(true);
1807
1808  // Return RA, which contains the return address. Mark it an implicit live-in.
1809  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1810  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1811}
1812
1813// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1814// generated from __builtin_eh_return (offset, handler)
1815// The effect of this is to adjust the stack pointer by "offset"
1816// and then branch to "handler".
1817SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1818                                                                     const {
1819  MachineFunction &MF = DAG.getMachineFunction();
1820  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1821
1822  MipsFI->setCallsEhReturn();
1823  SDValue Chain     = Op.getOperand(0);
1824  SDValue Offset    = Op.getOperand(1);
1825  SDValue Handler   = Op.getOperand(2);
1826  SDLoc DL(Op);
1827  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1828
1829  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1830  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1831  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1832  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1833  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1834  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1835  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1836                     DAG.getRegister(OffsetReg, Ty),
1837                     DAG.getRegister(AddrReg, getPointerTy()),
1838                     Chain.getValue(1));
1839}
1840
1841SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1842                                              SelectionDAG &DAG) const {
1843  // FIXME: Need pseudo-fence for 'singlethread' fences
1844  // FIXME: Set SType for weaker fences where supported/appropriate.
1845  unsigned SType = 0;
1846  SDLoc DL(Op);
1847  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1848                     DAG.getConstant(SType, MVT::i32));
1849}
1850
1851SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1852                                                SelectionDAG &DAG) const {
1853  SDLoc DL(Op);
1854  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1855  SDValue Shamt = Op.getOperand(2);
1856
1857  // if shamt < 32:
1858  //  lo = (shl lo, shamt)
1859  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1860  // else:
1861  //  lo = 0
1862  //  hi = (shl lo, shamt[4:0])
1863  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1864                            DAG.getConstant(-1, MVT::i32));
1865  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1866                                      DAG.getConstant(1, MVT::i32));
1867  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1868                                     Not);
1869  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1870  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1871  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1872  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1873                             DAG.getConstant(0x20, MVT::i32));
1874  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1875                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1876  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1877
1878  SDValue Ops[2] = {Lo, Hi};
1879  return DAG.getMergeValues(Ops, 2, DL);
1880}
1881
1882SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1883                                                 bool IsSRA) const {
1884  SDLoc DL(Op);
1885  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1886  SDValue Shamt = Op.getOperand(2);
1887
1888  // if shamt < 32:
1889  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1890  //  if isSRA:
1891  //    hi = (sra hi, shamt)
1892  //  else:
1893  //    hi = (srl hi, shamt)
1894  // else:
1895  //  if isSRA:
1896  //   lo = (sra hi, shamt[4:0])
1897  //   hi = (sra hi, 31)
1898  //  else:
1899  //   lo = (srl hi, shamt[4:0])
1900  //   hi = 0
1901  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1902                            DAG.getConstant(-1, MVT::i32));
1903  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1904                                     DAG.getConstant(1, MVT::i32));
1905  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1906  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1907  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1908  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1909                                     Hi, Shamt);
1910  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1911                             DAG.getConstant(0x20, MVT::i32));
1912  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1913                                DAG.getConstant(31, MVT::i32));
1914  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1915  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1916                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1917                   ShiftRightHi);
1918
1919  SDValue Ops[2] = {Lo, Hi};
1920  return DAG.getMergeValues(Ops, 2, DL);
1921}
1922
1923static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1924                            SDValue Chain, SDValue Src, unsigned Offset) {
1925  SDValue Ptr = LD->getBasePtr();
1926  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1927  EVT BasePtrVT = Ptr.getValueType();
1928  SDLoc DL(LD);
1929  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1930
1931  if (Offset)
1932    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1933                      DAG.getConstant(Offset, BasePtrVT));
1934
1935  SDValue Ops[] = { Chain, Ptr, Src };
1936  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1937                                 LD->getMemOperand());
1938}
1939
1940// Expand an unaligned 32 or 64-bit integer load node.
1941SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1942  LoadSDNode *LD = cast<LoadSDNode>(Op);
1943  EVT MemVT = LD->getMemoryVT();
1944
1945  // Return if load is aligned or if MemVT is neither i32 nor i64.
1946  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1947      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1948    return SDValue();
1949
1950  bool IsLittle = Subtarget->isLittle();
1951  EVT VT = Op.getValueType();
1952  ISD::LoadExtType ExtType = LD->getExtensionType();
1953  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1954
1955  assert((VT == MVT::i32) || (VT == MVT::i64));
1956
1957  // Expand
1958  //  (set dst, (i64 (load baseptr)))
1959  // to
1960  //  (set tmp, (ldl (add baseptr, 7), undef))
1961  //  (set dst, (ldr baseptr, tmp))
1962  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1963    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1964                               IsLittle ? 7 : 0);
1965    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1966                        IsLittle ? 0 : 7);
1967  }
1968
1969  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1970                             IsLittle ? 3 : 0);
1971  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1972                             IsLittle ? 0 : 3);
1973
1974  // Expand
1975  //  (set dst, (i32 (load baseptr))) or
1976  //  (set dst, (i64 (sextload baseptr))) or
1977  //  (set dst, (i64 (extload baseptr)))
1978  // to
1979  //  (set tmp, (lwl (add baseptr, 3), undef))
1980  //  (set dst, (lwr baseptr, tmp))
1981  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1982      (ExtType == ISD::EXTLOAD))
1983    return LWR;
1984
1985  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
1986
1987  // Expand
1988  //  (set dst, (i64 (zextload baseptr)))
1989  // to
1990  //  (set tmp0, (lwl (add baseptr, 3), undef))
1991  //  (set tmp1, (lwr baseptr, tmp0))
1992  //  (set tmp2, (shl tmp1, 32))
1993  //  (set dst, (srl tmp2, 32))
1994  SDLoc DL(LD);
1995  SDValue Const32 = DAG.getConstant(32, MVT::i32);
1996  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
1997  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
1998  SDValue Ops[] = { SRL, LWR.getValue(1) };
1999  return DAG.getMergeValues(Ops, 2, DL);
2000}
2001
2002static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2003                             SDValue Chain, unsigned Offset) {
2004  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2005  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2006  SDLoc DL(SD);
2007  SDVTList VTList = DAG.getVTList(MVT::Other);
2008
2009  if (Offset)
2010    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2011                      DAG.getConstant(Offset, BasePtrVT));
2012
2013  SDValue Ops[] = { Chain, Value, Ptr };
2014  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2015                                 SD->getMemOperand());
2016}
2017
2018// Expand an unaligned 32 or 64-bit integer store node.
2019static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2020                                      bool IsLittle) {
2021  SDValue Value = SD->getValue(), Chain = SD->getChain();
2022  EVT VT = Value.getValueType();
2023
2024  // Expand
2025  //  (store val, baseptr) or
2026  //  (truncstore val, baseptr)
2027  // to
2028  //  (swl val, (add baseptr, 3))
2029  //  (swr val, baseptr)
2030  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2031    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2032                                IsLittle ? 3 : 0);
2033    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2034  }
2035
2036  assert(VT == MVT::i64);
2037
2038  // Expand
2039  //  (store val, baseptr)
2040  // to
2041  //  (sdl val, (add baseptr, 7))
2042  //  (sdr val, baseptr)
2043  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2044  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2045}
2046
2047// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2048static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2049  SDValue Val = SD->getValue();
2050
2051  if (Val.getOpcode() != ISD::FP_TO_SINT)
2052    return SDValue();
2053
2054  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2055  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2056                           Val.getOperand(0));
2057
2058  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2059                      SD->getPointerInfo(), SD->isVolatile(),
2060                      SD->isNonTemporal(), SD->getAlignment());
2061}
2062
2063SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2064  StoreSDNode *SD = cast<StoreSDNode>(Op);
2065  EVT MemVT = SD->getMemoryVT();
2066
2067  // Lower unaligned integer stores.
2068  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2069      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2070    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2071
2072  return lowerFP_TO_SINT_STORE(SD, DAG);
2073}
2074
2075SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2076  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2077      || cast<ConstantSDNode>
2078        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2079      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2080    return SDValue();
2081
2082  // The pattern
2083  //   (add (frameaddr 0), (frame_to_args_offset))
2084  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2085  //   (add FrameObject, 0)
2086  // where FrameObject is a fixed StackObject with offset 0 which points to
2087  // the old stack pointer.
2088  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2089  EVT ValTy = Op->getValueType(0);
2090  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2091  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2092  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2093                     DAG.getConstant(0, ValTy));
2094}
2095
2096SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2097                                            SelectionDAG &DAG) const {
2098  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2099  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2100                              Op.getOperand(0));
2101  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2102}
2103
2104//===----------------------------------------------------------------------===//
2105//                      Calling Convention Implementation
2106//===----------------------------------------------------------------------===//
2107
2108//===----------------------------------------------------------------------===//
2109// TODO: Implement a generic logic using tblgen that can support this.
2110// Mips O32 ABI rules:
2111// ---
2112// i32 - Passed in A0, A1, A2, A3 and stack
2113// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2114//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2115// f64 - Only passed in two aliased f32 registers if no int reg has been used
2116//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2117//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2118//       go to stack.
2119//
2120//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2121//===----------------------------------------------------------------------===//
2122
2123static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2124                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2125                       CCState &State, const uint16_t *F64Regs) {
2126
2127  static const unsigned IntRegsSize = 4, FloatRegsSize = 2;
2128
2129  static const uint16_t IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2130  static const uint16_t F32Regs[] = { Mips::F12, Mips::F14 };
2131
2132  // Do not process byval args here.
2133  if (ArgFlags.isByVal())
2134    return true;
2135
2136  // Promote i8 and i16
2137  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2138    LocVT = MVT::i32;
2139    if (ArgFlags.isSExt())
2140      LocInfo = CCValAssign::SExt;
2141    else if (ArgFlags.isZExt())
2142      LocInfo = CCValAssign::ZExt;
2143    else
2144      LocInfo = CCValAssign::AExt;
2145  }
2146
2147  unsigned Reg;
2148
2149  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2150  // is true: function is vararg, argument is 3rd or higher, there is previous
2151  // argument which is not f32 or f64.
2152  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2153      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2154  unsigned OrigAlign = ArgFlags.getOrigAlign();
2155  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2156
2157  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2158    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2159    // If this is the first part of an i64 arg,
2160    // the allocated register must be either A0 or A2.
2161    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2162      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2163    LocVT = MVT::i32;
2164  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2165    // Allocate int register and shadow next int register. If first
2166    // available register is Mips::A1 or Mips::A3, shadow it too.
2167    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2168    if (Reg == Mips::A1 || Reg == Mips::A3)
2169      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2170    State.AllocateReg(IntRegs, IntRegsSize);
2171    LocVT = MVT::i32;
2172  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2173    // we are guaranteed to find an available float register
2174    if (ValVT == MVT::f32) {
2175      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2176      // Shadow int register
2177      State.AllocateReg(IntRegs, IntRegsSize);
2178    } else {
2179      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2180      // Shadow int registers
2181      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2182      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2183        State.AllocateReg(IntRegs, IntRegsSize);
2184      State.AllocateReg(IntRegs, IntRegsSize);
2185    }
2186  } else
2187    llvm_unreachable("Cannot handle this ValVT.");
2188
2189  if (!Reg) {
2190    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2191                                          OrigAlign);
2192    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2193  } else
2194    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2195
2196  return false;
2197}
2198
2199static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2200                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2201                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2202  static const uint16_t F64Regs[] = { Mips::D6, Mips::D7 };
2203
2204  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2205}
2206
2207static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2208                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2209                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2210  static const uint16_t F64Regs[] = { Mips::D12_64, Mips::D12_64 };
2211
2212  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2213}
2214
2215#include "MipsGenCallingConv.inc"
2216
2217//===----------------------------------------------------------------------===//
2218//                  Call Calling Convention Implementation
2219//===----------------------------------------------------------------------===//
2220
2221// Return next O32 integer argument register.
2222static unsigned getNextIntArgReg(unsigned Reg) {
2223  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2224  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2225}
2226
2227SDValue
2228MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2229                                   SDValue Chain, SDValue Arg, SDLoc DL,
2230                                   bool IsTailCall, SelectionDAG &DAG) const {
2231  if (!IsTailCall) {
2232    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2233                                 DAG.getIntPtrConstant(Offset));
2234    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2235                        false, 0);
2236  }
2237
2238  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2239  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2240  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2241  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2242                      /*isVolatile=*/ true, false, 0);
2243}
2244
2245void MipsTargetLowering::
2246getOpndList(SmallVectorImpl<SDValue> &Ops,
2247            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2248            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2249            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2250  // Insert node "GP copy globalreg" before call to function.
2251  //
2252  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2253  // in PIC mode) allow symbols to be resolved via lazy binding.
2254  // The lazy binding stub requires GP to point to the GOT.
2255  if (IsPICCall && !InternalLinkage) {
2256    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2257    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2258    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2259  }
2260
2261  // Build a sequence of copy-to-reg nodes chained together with token
2262  // chain and flag operands which copy the outgoing args into registers.
2263  // The InFlag in necessary since all emitted instructions must be
2264  // stuck together.
2265  SDValue InFlag;
2266
2267  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2268    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2269                                 RegsToPass[i].second, InFlag);
2270    InFlag = Chain.getValue(1);
2271  }
2272
2273  // Add argument registers to the end of the list so that they are
2274  // known live into the call.
2275  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2276    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2277                                      RegsToPass[i].second.getValueType()));
2278
2279  // Add a register mask operand representing the call-preserved registers.
2280  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2281  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2282  assert(Mask && "Missing call preserved mask for calling convention");
2283  if (Subtarget->inMips16HardFloat()) {
2284    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2285      llvm::StringRef Sym = G->getGlobal()->getName();
2286      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2287      if (F->hasFnAttribute("__Mips16RetHelper")) {
2288        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2289      }
2290    }
2291  }
2292  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2293
2294  if (InFlag.getNode())
2295    Ops.push_back(InFlag);
2296}
2297
2298/// LowerCall - functions arguments are copied from virtual regs to
2299/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2300SDValue
2301MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2302                              SmallVectorImpl<SDValue> &InVals) const {
2303  SelectionDAG &DAG                     = CLI.DAG;
2304  SDLoc DL                              = CLI.DL;
2305  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2306  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2307  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2308  SDValue Chain                         = CLI.Chain;
2309  SDValue Callee                        = CLI.Callee;
2310  bool &IsTailCall                      = CLI.IsTailCall;
2311  CallingConv::ID CallConv              = CLI.CallConv;
2312  bool IsVarArg                         = CLI.IsVarArg;
2313
2314  MachineFunction &MF = DAG.getMachineFunction();
2315  MachineFrameInfo *MFI = MF.getFrameInfo();
2316  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2317  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2318  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2319
2320  // Analyze operands of the call, assigning locations to each operand.
2321  SmallVector<CCValAssign, 16> ArgLocs;
2322  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2323                 getTargetMachine(), ArgLocs, *DAG.getContext());
2324  MipsCC::SpecialCallingConvType SpecialCallingConv =
2325    getSpecialCallingConv(Callee);
2326  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo,
2327                    SpecialCallingConv);
2328
2329  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2330                                 Subtarget->mipsSEUsesSoftFloat(),
2331                                 Callee.getNode(), CLI.Args);
2332
2333  // Get a count of how many bytes are to be pushed on the stack.
2334  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2335
2336  // Check if it's really possible to do a tail call.
2337  if (IsTailCall)
2338    IsTailCall =
2339      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2340                                        *MF.getInfo<MipsFunctionInfo>());
2341
2342  if (IsTailCall)
2343    ++NumTailCalls;
2344
2345  // Chain is the output chain of the last Load/Store or CopyToReg node.
2346  // ByValChain is the output chain of the last Memcpy node created for copying
2347  // byval arguments to the stack.
2348  unsigned StackAlignment = TFL->getStackAlignment();
2349  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2350  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2351
2352  if (!IsTailCall)
2353    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2354
2355  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2356                                        IsN64 ? Mips::SP_64 : Mips::SP,
2357                                        getPointerTy());
2358
2359  // With EABI is it possible to have 16 args on registers.
2360  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2361  SmallVector<SDValue, 8> MemOpChains;
2362  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2363
2364  // Walk the register/memloc assignments, inserting copies/loads.
2365  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2366    SDValue Arg = OutVals[i];
2367    CCValAssign &VA = ArgLocs[i];
2368    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2369    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2370
2371    // ByVal Arg.
2372    if (Flags.isByVal()) {
2373      assert(Flags.getByValSize() &&
2374             "ByVal args of size 0 should have been ignored by front-end.");
2375      assert(ByValArg != MipsCCInfo.byval_end());
2376      assert(!IsTailCall &&
2377             "Do not tail-call optimize if there is a byval argument.");
2378      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2379                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2380      ++ByValArg;
2381      continue;
2382    }
2383
2384    // Promote the value if needed.
2385    switch (VA.getLocInfo()) {
2386    default: llvm_unreachable("Unknown loc info!");
2387    case CCValAssign::Full:
2388      if (VA.isRegLoc()) {
2389        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2390            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2391            (ValVT == MVT::i64 && LocVT == MVT::f64))
2392          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2393        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2394          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2395                                   Arg, DAG.getConstant(0, MVT::i32));
2396          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2397                                   Arg, DAG.getConstant(1, MVT::i32));
2398          if (!Subtarget->isLittle())
2399            std::swap(Lo, Hi);
2400          unsigned LocRegLo = VA.getLocReg();
2401          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2402          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2403          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2404          continue;
2405        }
2406      }
2407      break;
2408    case CCValAssign::SExt:
2409      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2410      break;
2411    case CCValAssign::ZExt:
2412      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2413      break;
2414    case CCValAssign::AExt:
2415      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2416      break;
2417    }
2418
2419    // Arguments that can be passed on register must be kept at
2420    // RegsToPass vector
2421    if (VA.isRegLoc()) {
2422      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2423      continue;
2424    }
2425
2426    // Register can't get to this point...
2427    assert(VA.isMemLoc());
2428
2429    // emit ISD::STORE whichs stores the
2430    // parameter value to a stack Location
2431    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2432                                         Chain, Arg, DL, IsTailCall, DAG));
2433  }
2434
2435  // Transform all store nodes into one single node because all store
2436  // nodes are independent of each other.
2437  if (!MemOpChains.empty())
2438    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2439                        &MemOpChains[0], MemOpChains.size());
2440
2441  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2442  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2443  // node so that legalize doesn't hack it.
2444  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2445  bool GlobalOrExternal = false, InternalLinkage = false;
2446  SDValue CalleeLo;
2447  EVT Ty = Callee.getValueType();
2448
2449  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2450    if (IsPICCall) {
2451      const GlobalValue *Val = G->getGlobal();
2452      InternalLinkage = Val->hasInternalLinkage();
2453
2454      if (InternalLinkage)
2455        Callee = getAddrLocal(G, Ty, DAG, HasMips64);
2456      else if (LargeGOT)
2457        Callee = getAddrGlobalLargeGOT(G, Ty, DAG, MipsII::MO_CALL_HI16,
2458                                       MipsII::MO_CALL_LO16, Chain,
2459                                       FuncInfo->callPtrInfo(Val));
2460      else
2461        Callee = getAddrGlobal(G, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2462                               FuncInfo->callPtrInfo(Val));
2463    } else
2464      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2465                                          MipsII::MO_NO_FLAG);
2466    GlobalOrExternal = true;
2467  }
2468  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2469    const char *Sym = S->getSymbol();
2470
2471    if (!IsN64 && !IsPIC) // !N64 && static
2472      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(),
2473                                            MipsII::MO_NO_FLAG);
2474    else if (LargeGOT)
2475      Callee = getAddrGlobalLargeGOT(S, Ty, DAG, MipsII::MO_CALL_HI16,
2476                                     MipsII::MO_CALL_LO16, Chain,
2477                                     FuncInfo->callPtrInfo(Sym));
2478    else // N64 || PIC
2479      Callee = getAddrGlobal(S, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2480                             FuncInfo->callPtrInfo(Sym));
2481
2482    GlobalOrExternal = true;
2483  }
2484
2485  SmallVector<SDValue, 8> Ops(1, Chain);
2486  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2487
2488  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2489              CLI, Callee, Chain);
2490
2491  if (IsTailCall)
2492    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2493
2494  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2495  SDValue InFlag = Chain.getValue(1);
2496
2497  // Create the CALLSEQ_END node.
2498  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2499                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2500  InFlag = Chain.getValue(1);
2501
2502  // Handle result values, copying them out of physregs into vregs that we
2503  // return.
2504  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2505                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2506}
2507
2508/// LowerCallResult - Lower the result values of a call into the
2509/// appropriate copies out of appropriate physical registers.
2510SDValue
2511MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2512                                    CallingConv::ID CallConv, bool IsVarArg,
2513                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2514                                    SDLoc DL, SelectionDAG &DAG,
2515                                    SmallVectorImpl<SDValue> &InVals,
2516                                    const SDNode *CallNode,
2517                                    const Type *RetTy) const {
2518  // Assign locations to each value returned by this call.
2519  SmallVector<CCValAssign, 16> RVLocs;
2520  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2521                 getTargetMachine(), RVLocs, *DAG.getContext());
2522  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2523
2524  MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
2525                               CallNode, RetTy);
2526
2527  // Copy all of the result registers out of their specified physreg.
2528  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2529    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2530                                     RVLocs[i].getLocVT(), InFlag);
2531    Chain = Val.getValue(1);
2532    InFlag = Val.getValue(2);
2533
2534    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2535      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2536
2537    InVals.push_back(Val);
2538  }
2539
2540  return Chain;
2541}
2542
2543//===----------------------------------------------------------------------===//
2544//             Formal Arguments Calling Convention Implementation
2545//===----------------------------------------------------------------------===//
2546/// LowerFormalArguments - transform physical registers into virtual registers
2547/// and generate load operations for arguments places on the stack.
2548SDValue
2549MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2550                                         CallingConv::ID CallConv,
2551                                         bool IsVarArg,
2552                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2553                                         SDLoc DL, SelectionDAG &DAG,
2554                                         SmallVectorImpl<SDValue> &InVals)
2555                                          const {
2556  MachineFunction &MF = DAG.getMachineFunction();
2557  MachineFrameInfo *MFI = MF.getFrameInfo();
2558  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2559
2560  MipsFI->setVarArgsFrameIndex(0);
2561
2562  // Used with vargs to acumulate store chains.
2563  std::vector<SDValue> OutChains;
2564
2565  // Assign locations to all of the incoming arguments.
2566  SmallVector<CCValAssign, 16> ArgLocs;
2567  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2568                 getTargetMachine(), ArgLocs, *DAG.getContext());
2569  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2570  Function::const_arg_iterator FuncArg =
2571    DAG.getMachineFunction().getFunction()->arg_begin();
2572  bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
2573
2574  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2575  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2576                           MipsCCInfo.hasByValArg());
2577
2578  unsigned CurArgIdx = 0;
2579  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2580
2581  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2582    CCValAssign &VA = ArgLocs[i];
2583    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2584    CurArgIdx = Ins[i].OrigArgIndex;
2585    EVT ValVT = VA.getValVT();
2586    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2587    bool IsRegLoc = VA.isRegLoc();
2588
2589    if (Flags.isByVal()) {
2590      assert(Flags.getByValSize() &&
2591             "ByVal args of size 0 should have been ignored by front-end.");
2592      assert(ByValArg != MipsCCInfo.byval_end());
2593      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2594                    MipsCCInfo, *ByValArg);
2595      ++ByValArg;
2596      continue;
2597    }
2598
2599    // Arguments stored on registers
2600    if (IsRegLoc) {
2601      MVT RegVT = VA.getLocVT();
2602      unsigned ArgReg = VA.getLocReg();
2603      const TargetRegisterClass *RC = getRegClassFor(RegVT);
2604
2605      // Transform the arguments stored on
2606      // physical registers into virtual ones
2607      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2608      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2609
2610      // If this is an 8 or 16-bit value, it has been passed promoted
2611      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2612      // truncate to the right size.
2613      if (VA.getLocInfo() != CCValAssign::Full) {
2614        unsigned Opcode = 0;
2615        if (VA.getLocInfo() == CCValAssign::SExt)
2616          Opcode = ISD::AssertSext;
2617        else if (VA.getLocInfo() == CCValAssign::ZExt)
2618          Opcode = ISD::AssertZext;
2619        if (Opcode)
2620          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2621                                 DAG.getValueType(ValVT));
2622        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2623      }
2624
2625      // Handle floating point arguments passed in integer registers and
2626      // long double arguments passed in floating point registers.
2627      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2628          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2629          (RegVT == MVT::f64 && ValVT == MVT::i64))
2630        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2631      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2632        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2633                                  getNextIntArgReg(ArgReg), RC);
2634        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2635        if (!Subtarget->isLittle())
2636          std::swap(ArgValue, ArgValue2);
2637        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2638                               ArgValue, ArgValue2);
2639      }
2640
2641      InVals.push_back(ArgValue);
2642    } else { // VA.isRegLoc()
2643
2644      // sanity check
2645      assert(VA.isMemLoc());
2646
2647      // The stack pointer offset is relative to the caller stack frame.
2648      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2649                                      VA.getLocMemOffset(), true);
2650
2651      // Create load nodes to retrieve arguments from the stack
2652      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2653      SDValue Load = DAG.getLoad(ValVT, DL, Chain, FIN,
2654                                 MachinePointerInfo::getFixedStack(FI),
2655                                 false, false, false, 0);
2656      InVals.push_back(Load);
2657      OutChains.push_back(Load.getValue(1));
2658    }
2659  }
2660
2661  // The mips ABIs for returning structs by value requires that we copy
2662  // the sret argument into $v0 for the return. Save the argument into
2663  // a virtual register so that we can access it from the return points.
2664  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2665    unsigned Reg = MipsFI->getSRetReturnReg();
2666    if (!Reg) {
2667      Reg = MF.getRegInfo().
2668        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2669      MipsFI->setSRetReturnReg(Reg);
2670    }
2671    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2672    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2673  }
2674
2675  if (IsVarArg)
2676    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2677
2678  // All stores are grouped in one node to allow the matching between
2679  // the size of Ins and InVals. This only happens when on varg functions
2680  if (!OutChains.empty()) {
2681    OutChains.push_back(Chain);
2682    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2683                        &OutChains[0], OutChains.size());
2684  }
2685
2686  return Chain;
2687}
2688
2689//===----------------------------------------------------------------------===//
2690//               Return Value Calling Convention Implementation
2691//===----------------------------------------------------------------------===//
2692
2693bool
2694MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2695                                   MachineFunction &MF, bool IsVarArg,
2696                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2697                                   LLVMContext &Context) const {
2698  SmallVector<CCValAssign, 16> RVLocs;
2699  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2700                 RVLocs, Context);
2701  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2702}
2703
2704SDValue
2705MipsTargetLowering::LowerReturn(SDValue Chain,
2706                                CallingConv::ID CallConv, bool IsVarArg,
2707                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2708                                const SmallVectorImpl<SDValue> &OutVals,
2709                                SDLoc DL, SelectionDAG &DAG) const {
2710  // CCValAssign - represent the assignment of
2711  // the return value to a location
2712  SmallVector<CCValAssign, 16> RVLocs;
2713  MachineFunction &MF = DAG.getMachineFunction();
2714
2715  // CCState - Info about the registers and stack slot.
2716  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2717                 *DAG.getContext());
2718  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2719
2720  // Analyze return values.
2721  MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
2722                           MF.getFunction()->getReturnType());
2723
2724  SDValue Flag;
2725  SmallVector<SDValue, 4> RetOps(1, Chain);
2726
2727  // Copy the result values into the output registers.
2728  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2729    SDValue Val = OutVals[i];
2730    CCValAssign &VA = RVLocs[i];
2731    assert(VA.isRegLoc() && "Can only return in registers!");
2732
2733    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2734      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2735
2736    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2737
2738    // Guarantee that all emitted copies are stuck together with flags.
2739    Flag = Chain.getValue(1);
2740    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2741  }
2742
2743  // The mips ABIs for returning structs by value requires that we copy
2744  // the sret argument into $v0 for the return. We saved the argument into
2745  // a virtual register in the entry block, so now we copy the value out
2746  // and into $v0.
2747  if (MF.getFunction()->hasStructRetAttr()) {
2748    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2749    unsigned Reg = MipsFI->getSRetReturnReg();
2750
2751    if (!Reg)
2752      llvm_unreachable("sret virtual register not created in the entry block");
2753    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2754    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2755
2756    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2757    Flag = Chain.getValue(1);
2758    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2759  }
2760
2761  RetOps[0] = Chain;  // Update chain.
2762
2763  // Add the flag if we have it.
2764  if (Flag.getNode())
2765    RetOps.push_back(Flag);
2766
2767  // Return on Mips is always a "jr $ra"
2768  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2769}
2770
2771//===----------------------------------------------------------------------===//
2772//                           Mips Inline Assembly Support
2773//===----------------------------------------------------------------------===//
2774
2775/// getConstraintType - Given a constraint letter, return the type of
2776/// constraint it is for this target.
2777MipsTargetLowering::ConstraintType MipsTargetLowering::
2778getConstraintType(const std::string &Constraint) const
2779{
2780  // Mips specific constrainy
2781  // GCC config/mips/constraints.md
2782  //
2783  // 'd' : An address register. Equivalent to r
2784  //       unless generating MIPS16 code.
2785  // 'y' : Equivalent to r; retained for
2786  //       backwards compatibility.
2787  // 'c' : A register suitable for use in an indirect
2788  //       jump. This will always be $25 for -mabicalls.
2789  // 'l' : The lo register. 1 word storage.
2790  // 'x' : The hilo register pair. Double word storage.
2791  if (Constraint.size() == 1) {
2792    switch (Constraint[0]) {
2793      default : break;
2794      case 'd':
2795      case 'y':
2796      case 'f':
2797      case 'c':
2798      case 'l':
2799      case 'x':
2800        return C_RegisterClass;
2801      case 'R':
2802        return C_Memory;
2803    }
2804  }
2805  return TargetLowering::getConstraintType(Constraint);
2806}
2807
2808/// Examine constraint type and operand type and determine a weight value.
2809/// This object must already have been set up with the operand type
2810/// and the current alternative constraint selected.
2811TargetLowering::ConstraintWeight
2812MipsTargetLowering::getSingleConstraintMatchWeight(
2813    AsmOperandInfo &info, const char *constraint) const {
2814  ConstraintWeight weight = CW_Invalid;
2815  Value *CallOperandVal = info.CallOperandVal;
2816    // If we don't have a value, we can't do a match,
2817    // but allow it at the lowest weight.
2818  if (CallOperandVal == NULL)
2819    return CW_Default;
2820  Type *type = CallOperandVal->getType();
2821  // Look at the constraint type.
2822  switch (*constraint) {
2823  default:
2824    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2825    break;
2826  case 'd':
2827  case 'y':
2828    if (type->isIntegerTy())
2829      weight = CW_Register;
2830    break;
2831  case 'f':
2832    if (type->isFloatTy())
2833      weight = CW_Register;
2834    break;
2835  case 'c': // $25 for indirect jumps
2836  case 'l': // lo register
2837  case 'x': // hilo register pair
2838      if (type->isIntegerTy())
2839      weight = CW_SpecificReg;
2840      break;
2841  case 'I': // signed 16 bit immediate
2842  case 'J': // integer zero
2843  case 'K': // unsigned 16 bit immediate
2844  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2845  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2846  case 'O': // signed 15 bit immediate (+- 16383)
2847  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2848    if (isa<ConstantInt>(CallOperandVal))
2849      weight = CW_Constant;
2850    break;
2851  case 'R':
2852    weight = CW_Memory;
2853    break;
2854  }
2855  return weight;
2856}
2857
2858/// This is a helper function to parse a physical register string and split it
2859/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
2860/// that is returned indicates whether parsing was successful. The second flag
2861/// is true if the numeric part exists.
2862static std::pair<bool, bool>
2863parsePhysicalReg(const StringRef &C, std::string &Prefix,
2864                 unsigned long long &Reg) {
2865  if (C.front() != '{' || C.back() != '}')
2866    return std::make_pair(false, false);
2867
2868  // Search for the first numeric character.
2869  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
2870  I = std::find_if(B, E, std::ptr_fun(isdigit));
2871
2872  Prefix.assign(B, I - B);
2873
2874  // The second flag is set to false if no numeric characters were found.
2875  if (I == E)
2876    return std::make_pair(true, false);
2877
2878  // Parse the numeric characters.
2879  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
2880                        true);
2881}
2882
2883std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
2884parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
2885  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2886  const TargetRegisterClass *RC;
2887  std::string Prefix;
2888  unsigned long long Reg;
2889
2890  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
2891
2892  if (!R.first)
2893    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2894
2895  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
2896    // No numeric characters follow "hi" or "lo".
2897    if (R.second)
2898      return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2899
2900    RC = TRI->getRegClass(Prefix == "hi" ?
2901                          Mips::HI32RegClassID : Mips::LO32RegClassID);
2902    return std::make_pair(*(RC->begin()), RC);
2903  }
2904
2905  if (!R.second)
2906    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2907
2908  if (Prefix == "$f") { // Parse $f0-$f31.
2909    // If the size of FP registers is 64-bit or Reg is an even number, select
2910    // the 64-bit register class. Otherwise, select the 32-bit register class.
2911    if (VT == MVT::Other)
2912      VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
2913
2914    RC = getRegClassFor(VT);
2915
2916    if (RC == &Mips::AFGR64RegClass) {
2917      assert(Reg % 2 == 0);
2918      Reg >>= 1;
2919    }
2920  } else if (Prefix == "$fcc") { // Parse $fcc0-$fcc7.
2921    RC = TRI->getRegClass(Mips::FCCRegClassID);
2922  } else { // Parse $0-$31.
2923    assert(Prefix == "$");
2924    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
2925  }
2926
2927  assert(Reg < RC->getNumRegs());
2928  return std::make_pair(*(RC->begin() + Reg), RC);
2929}
2930
2931/// Given a register class constraint, like 'r', if this corresponds directly
2932/// to an LLVM register class, return a register of 0 and the register class
2933/// pointer.
2934std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2935getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2936{
2937  if (Constraint.size() == 1) {
2938    switch (Constraint[0]) {
2939    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2940    case 'y': // Same as 'r'. Exists for compatibility.
2941    case 'r':
2942      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2943        if (Subtarget->inMips16Mode())
2944          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2945        return std::make_pair(0U, &Mips::GPR32RegClass);
2946      }
2947      if (VT == MVT::i64 && !HasMips64)
2948        return std::make_pair(0U, &Mips::GPR32RegClass);
2949      if (VT == MVT::i64 && HasMips64)
2950        return std::make_pair(0U, &Mips::GPR64RegClass);
2951      // This will generate an error message
2952      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2953    case 'f':
2954      if (VT == MVT::f32)
2955        return std::make_pair(0U, &Mips::FGR32RegClass);
2956      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2957        if (Subtarget->isFP64bit())
2958          return std::make_pair(0U, &Mips::FGR64RegClass);
2959        return std::make_pair(0U, &Mips::AFGR64RegClass);
2960      }
2961      break;
2962    case 'c': // register suitable for indirect jump
2963      if (VT == MVT::i32)
2964        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
2965      assert(VT == MVT::i64 && "Unexpected type.");
2966      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
2967    case 'l': // register suitable for indirect jump
2968      if (VT == MVT::i32)
2969        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
2970      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
2971    case 'x': // register suitable for indirect jump
2972      // Fixme: Not triggering the use of both hi and low
2973      // This will generate an error message
2974      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2975    }
2976  }
2977
2978  std::pair<unsigned, const TargetRegisterClass *> R;
2979  R = parseRegForInlineAsmConstraint(Constraint, VT);
2980
2981  if (R.second)
2982    return R;
2983
2984  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2985}
2986
2987/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2988/// vector.  If it is invalid, don't add anything to Ops.
2989void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2990                                                     std::string &Constraint,
2991                                                     std::vector<SDValue>&Ops,
2992                                                     SelectionDAG &DAG) const {
2993  SDValue Result(0, 0);
2994
2995  // Only support length 1 constraints for now.
2996  if (Constraint.length() > 1) return;
2997
2998  char ConstraintLetter = Constraint[0];
2999  switch (ConstraintLetter) {
3000  default: break; // This will fall through to the generic implementation
3001  case 'I': // Signed 16 bit constant
3002    // If this fails, the parent routine will give an error
3003    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3004      EVT Type = Op.getValueType();
3005      int64_t Val = C->getSExtValue();
3006      if (isInt<16>(Val)) {
3007        Result = DAG.getTargetConstant(Val, Type);
3008        break;
3009      }
3010    }
3011    return;
3012  case 'J': // integer zero
3013    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3014      EVT Type = Op.getValueType();
3015      int64_t Val = C->getZExtValue();
3016      if (Val == 0) {
3017        Result = DAG.getTargetConstant(0, Type);
3018        break;
3019      }
3020    }
3021    return;
3022  case 'K': // unsigned 16 bit immediate
3023    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3024      EVT Type = Op.getValueType();
3025      uint64_t Val = (uint64_t)C->getZExtValue();
3026      if (isUInt<16>(Val)) {
3027        Result = DAG.getTargetConstant(Val, Type);
3028        break;
3029      }
3030    }
3031    return;
3032  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3033    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3034      EVT Type = Op.getValueType();
3035      int64_t Val = C->getSExtValue();
3036      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3037        Result = DAG.getTargetConstant(Val, Type);
3038        break;
3039      }
3040    }
3041    return;
3042  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3043    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3044      EVT Type = Op.getValueType();
3045      int64_t Val = C->getSExtValue();
3046      if ((Val >= -65535) && (Val <= -1)) {
3047        Result = DAG.getTargetConstant(Val, Type);
3048        break;
3049      }
3050    }
3051    return;
3052  case 'O': // signed 15 bit immediate
3053    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3054      EVT Type = Op.getValueType();
3055      int64_t Val = C->getSExtValue();
3056      if ((isInt<15>(Val))) {
3057        Result = DAG.getTargetConstant(Val, Type);
3058        break;
3059      }
3060    }
3061    return;
3062  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3063    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3064      EVT Type = Op.getValueType();
3065      int64_t Val = C->getSExtValue();
3066      if ((Val <= 65535) && (Val >= 1)) {
3067        Result = DAG.getTargetConstant(Val, Type);
3068        break;
3069      }
3070    }
3071    return;
3072  }
3073
3074  if (Result.getNode()) {
3075    Ops.push_back(Result);
3076    return;
3077  }
3078
3079  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3080}
3081
3082bool MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3083                                               Type *Ty) const {
3084  // No global is ever allowed as a base.
3085  if (AM.BaseGV)
3086    return false;
3087
3088  switch (AM.Scale) {
3089  case 0: // "r+i" or just "i", depending on HasBaseReg.
3090    break;
3091  case 1:
3092    if (!AM.HasBaseReg) // allow "r+i".
3093      break;
3094    return false; // disallow "r+r" or "r+r+i".
3095  default:
3096    return false;
3097  }
3098
3099  return true;
3100}
3101
3102bool
3103MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3104  // The Mips target isn't yet aware of offsets.
3105  return false;
3106}
3107
3108EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3109                                            unsigned SrcAlign,
3110                                            bool IsMemset, bool ZeroMemset,
3111                                            bool MemcpyStrSrc,
3112                                            MachineFunction &MF) const {
3113  if (Subtarget->hasMips64())
3114    return MVT::i64;
3115
3116  return MVT::i32;
3117}
3118
3119bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3120  if (VT != MVT::f32 && VT != MVT::f64)
3121    return false;
3122  if (Imm.isNegZero())
3123    return false;
3124  return Imm.isZero();
3125}
3126
3127unsigned MipsTargetLowering::getJumpTableEncoding() const {
3128  if (IsN64)
3129    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3130
3131  return TargetLowering::getJumpTableEncoding();
3132}
3133
3134/// This function returns true if CallSym is a long double emulation routine.
3135static bool isF128SoftLibCall(const char *CallSym) {
3136  const char *const LibCalls[] =
3137    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3138     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3139     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3140     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3141     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3142     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3143     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3144     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3145     "truncl"};
3146
3147  const char *const *End = LibCalls + array_lengthof(LibCalls);
3148
3149  // Check that LibCalls is sorted alphabetically.
3150  MipsTargetLowering::LTStr Comp;
3151
3152#ifndef NDEBUG
3153  for (const char *const *I = LibCalls; I < End - 1; ++I)
3154    assert(Comp(*I, *(I + 1)));
3155#endif
3156
3157  return std::binary_search(LibCalls, End, CallSym, Comp);
3158}
3159
3160/// This function returns true if Ty is fp128 or i128 which was originally a
3161/// fp128.
3162static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3163  if (Ty->isFP128Ty())
3164    return true;
3165
3166  const ExternalSymbolSDNode *ES =
3167    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3168
3169  // If the Ty is i128 and the function being called is a long double emulation
3170  // routine, then the original type is f128.
3171  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3172}
3173
3174MipsTargetLowering::MipsCC::SpecialCallingConvType
3175  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3176  MipsCC::SpecialCallingConvType SpecialCallingConv =
3177    MipsCC::NoSpecialCallingConv;;
3178  if (Subtarget->inMips16HardFloat()) {
3179    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3180      llvm::StringRef Sym = G->getGlobal()->getName();
3181      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3182      if (F->hasFnAttribute("__Mips16RetHelper")) {
3183        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3184      }
3185    }
3186  }
3187  return SpecialCallingConv;
3188}
3189
3190MipsTargetLowering::MipsCC::MipsCC(
3191  CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
3192  MipsCC::SpecialCallingConvType SpecialCallingConv_)
3193  : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
3194    SpecialCallingConv(SpecialCallingConv_){
3195  // Pre-allocate reserved argument area.
3196  CCInfo.AllocateStack(reservedArgArea(), 1);
3197}
3198
3199
3200void MipsTargetLowering::MipsCC::
3201analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3202                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3203                    std::vector<ArgListEntry> &FuncArgs) {
3204  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3205         "CallingConv::Fast shouldn't be used for vararg functions.");
3206
3207  unsigned NumOpnds = Args.size();
3208  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3209
3210  for (unsigned I = 0; I != NumOpnds; ++I) {
3211    MVT ArgVT = Args[I].VT;
3212    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3213    bool R;
3214
3215    if (ArgFlags.isByVal()) {
3216      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3217      continue;
3218    }
3219
3220    if (IsVarArg && !Args[I].IsFixed)
3221      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3222    else {
3223      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3224                           IsSoftFloat);
3225      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3226    }
3227
3228    if (R) {
3229#ifndef NDEBUG
3230      dbgs() << "Call operand #" << I << " has unhandled type "
3231             << EVT(ArgVT).getEVTString();
3232#endif
3233      llvm_unreachable(0);
3234    }
3235  }
3236}
3237
3238void MipsTargetLowering::MipsCC::
3239analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3240                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3241  unsigned NumArgs = Args.size();
3242  llvm::CCAssignFn *FixedFn = fixedArgFn();
3243  unsigned CurArgIdx = 0;
3244
3245  for (unsigned I = 0; I != NumArgs; ++I) {
3246    MVT ArgVT = Args[I].VT;
3247    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3248    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3249    CurArgIdx = Args[I].OrigArgIndex;
3250
3251    if (ArgFlags.isByVal()) {
3252      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3253      continue;
3254    }
3255
3256    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3257
3258    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3259      continue;
3260
3261#ifndef NDEBUG
3262    dbgs() << "Formal Arg #" << I << " has unhandled type "
3263           << EVT(ArgVT).getEVTString();
3264#endif
3265    llvm_unreachable(0);
3266  }
3267}
3268
3269template<typename Ty>
3270void MipsTargetLowering::MipsCC::
3271analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3272              const SDNode *CallNode, const Type *RetTy) const {
3273  CCAssignFn *Fn;
3274
3275  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3276    Fn = RetCC_F128Soft;
3277  else
3278    Fn = RetCC_Mips;
3279
3280  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3281    MVT VT = RetVals[I].VT;
3282    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3283    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3284
3285    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3286#ifndef NDEBUG
3287      dbgs() << "Call result #" << I << " has unhandled type "
3288             << EVT(VT).getEVTString() << '\n';
3289#endif
3290      llvm_unreachable(0);
3291    }
3292  }
3293}
3294
3295void MipsTargetLowering::MipsCC::
3296analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3297                  const SDNode *CallNode, const Type *RetTy) const {
3298  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3299}
3300
3301void MipsTargetLowering::MipsCC::
3302analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3303              const Type *RetTy) const {
3304  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3305}
3306
3307void MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3308                                                MVT LocVT,
3309                                                CCValAssign::LocInfo LocInfo,
3310                                                ISD::ArgFlagsTy ArgFlags) {
3311  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3312
3313  struct ByValArgInfo ByVal;
3314  unsigned RegSize = regSize();
3315  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3316  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3317                            RegSize * 2);
3318
3319  if (useRegsForByval())
3320    allocateRegs(ByVal, ByValSize, Align);
3321
3322  // Allocate space on caller's stack.
3323  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3324                                       Align);
3325  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3326                                    LocInfo));
3327  ByValArgs.push_back(ByVal);
3328}
3329
3330unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3331  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3332}
3333
3334unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3335  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3336}
3337
3338const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3339  return IsO32 ? O32IntRegs : Mips64IntRegs;
3340}
3341
3342llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3343  if (CallConv == CallingConv::Fast)
3344    return CC_Mips_FastCC;
3345
3346  if (SpecialCallingConv == Mips16RetHelperConv)
3347    return CC_Mips16RetHelper;
3348  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
3349}
3350
3351llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3352  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
3353}
3354
3355const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3356  return IsO32 ? O32IntRegs : Mips64DPRegs;
3357}
3358
3359void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3360                                              unsigned ByValSize,
3361                                              unsigned Align) {
3362  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3363  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3364  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3365         "Byval argument's size and alignment should be a multiple of"
3366         "RegSize.");
3367
3368  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3369
3370  // If Align > RegSize, the first arg register must be even.
3371  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3372    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3373    ++ByVal.FirstIdx;
3374  }
3375
3376  // Mark the registers allocated.
3377  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3378       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3379    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3380}
3381
3382MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3383                                         const SDNode *CallNode,
3384                                         bool IsSoftFloat) const {
3385  if (IsSoftFloat || IsO32)
3386    return VT;
3387
3388  // Check if the original type was fp128.
3389  if (originalTypeIsF128(OrigTy, CallNode)) {
3390    assert(VT == MVT::i64);
3391    return MVT::f64;
3392  }
3393
3394  return VT;
3395}
3396
3397void MipsTargetLowering::
3398copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3399              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3400              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3401              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3402  MachineFunction &MF = DAG.getMachineFunction();
3403  MachineFrameInfo *MFI = MF.getFrameInfo();
3404  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3405  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3406  int FrameObjOffset;
3407
3408  if (RegAreaSize)
3409    FrameObjOffset = (int)CC.reservedArgArea() -
3410      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3411  else
3412    FrameObjOffset = ByVal.Address;
3413
3414  // Create frame object.
3415  EVT PtrTy = getPointerTy();
3416  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3417  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3418  InVals.push_back(FIN);
3419
3420  if (!ByVal.NumRegs)
3421    return;
3422
3423  // Copy arg registers.
3424  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3425  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3426
3427  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3428    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3429    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3430    unsigned Offset = I * CC.regSize();
3431    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3432                                   DAG.getConstant(Offset, PtrTy));
3433    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3434                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3435                                 false, false, 0);
3436    OutChains.push_back(Store);
3437  }
3438}
3439
3440// Copy byVal arg to registers and stack.
3441void MipsTargetLowering::
3442passByValArg(SDValue Chain, SDLoc DL,
3443             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3444             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3445             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3446             const MipsCC &CC, const ByValArgInfo &ByVal,
3447             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3448  unsigned ByValSize = Flags.getByValSize();
3449  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3450  unsigned RegSize = CC.regSize();
3451  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3452  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3453
3454  if (ByVal.NumRegs) {
3455    const uint16_t *ArgRegs = CC.intArgRegs();
3456    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3457    unsigned I = 0;
3458
3459    // Copy words to registers.
3460    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3461      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3462                                    DAG.getConstant(Offset, PtrTy));
3463      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3464                                    MachinePointerInfo(), false, false, false,
3465                                    Alignment);
3466      MemOpChains.push_back(LoadVal.getValue(1));
3467      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3468      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3469    }
3470
3471    // Return if the struct has been fully copied.
3472    if (ByValSize == Offset)
3473      return;
3474
3475    // Copy the remainder of the byval argument with sub-word loads and shifts.
3476    if (LeftoverBytes) {
3477      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3478             "Size of the remainder should be smaller than RegSize.");
3479      SDValue Val;
3480
3481      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3482           Offset < ByValSize; LoadSize /= 2) {
3483        unsigned RemSize = ByValSize - Offset;
3484
3485        if (RemSize < LoadSize)
3486          continue;
3487
3488        // Load subword.
3489        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3490                                      DAG.getConstant(Offset, PtrTy));
3491        SDValue LoadVal =
3492          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3493                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3494                         false, false, Alignment);
3495        MemOpChains.push_back(LoadVal.getValue(1));
3496
3497        // Shift the loaded value.
3498        unsigned Shamt;
3499
3500        if (isLittle)
3501          Shamt = TotalSizeLoaded;
3502        else
3503          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3504
3505        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3506                                    DAG.getConstant(Shamt, MVT::i32));
3507
3508        if (Val.getNode())
3509          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3510        else
3511          Val = Shift;
3512
3513        Offset += LoadSize;
3514        TotalSizeLoaded += LoadSize;
3515        Alignment = std::min(Alignment, LoadSize);
3516      }
3517
3518      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3519      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3520      return;
3521    }
3522  }
3523
3524  // Copy remainder of byval arg to it with memcpy.
3525  unsigned MemCpySize = ByValSize - Offset;
3526  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3527                            DAG.getConstant(Offset, PtrTy));
3528  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3529                            DAG.getIntPtrConstant(ByVal.Address));
3530  Chain = DAG.getMemcpy(Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, PtrTy),
3531                        Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
3532                        MachinePointerInfo(0), MachinePointerInfo(0));
3533  MemOpChains.push_back(Chain);
3534}
3535
3536void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3537                                         const MipsCC &CC, SDValue Chain,
3538                                         SDLoc DL, SelectionDAG &DAG) const {
3539  unsigned NumRegs = CC.numIntArgRegs();
3540  const uint16_t *ArgRegs = CC.intArgRegs();
3541  const CCState &CCInfo = CC.getCCInfo();
3542  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3543  unsigned RegSize = CC.regSize();
3544  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3545  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3546  MachineFunction &MF = DAG.getMachineFunction();
3547  MachineFrameInfo *MFI = MF.getFrameInfo();
3548  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3549
3550  // Offset of the first variable argument from stack pointer.
3551  int VaArgOffset;
3552
3553  if (NumRegs == Idx)
3554    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3555  else
3556    VaArgOffset = (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3557
3558  // Record the frame index of the first variable argument
3559  // which is a value necessary to VASTART.
3560  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3561  MipsFI->setVarArgsFrameIndex(FI);
3562
3563  // Copy the integer registers that have not been used for argument passing
3564  // to the argument register save area. For O32, the save area is allocated
3565  // in the caller's stack frame, while for N32/64, it is allocated in the
3566  // callee's stack frame.
3567  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3568    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3569    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3570    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3571    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3572    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3573                                 MachinePointerInfo(), false, false, 0);
3574    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3575    OutChains.push_back(Store);
3576  }
3577}
3578