MipsISelLowering.cpp revision 9a1aaeb012e593fba977015c5d8b6b1aa41a908c
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include <cctype>
38
39using namespace llvm;
40
41STATISTIC(NumTailCalls, "Number of tail calls");
42
43static cl::opt<bool>
44LargeGOT("mxgot", cl::Hidden,
45         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
46
47static cl::opt<bool>
48NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
49               cl::desc("MIPS: Don't trap on integer division by zero."),
50               cl::init(false));
51
52static const uint16_t O32IntRegs[4] = {
53  Mips::A0, Mips::A1, Mips::A2, Mips::A3
54};
55
56static const uint16_t Mips64IntRegs[8] = {
57  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
58  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
59};
60
61static const uint16_t Mips64DPRegs[8] = {
62  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
63  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
64};
65
66// If I is a shifted mask, set the size (Size) and the first bit of the
67// mask (Pos), and return true.
68// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
69static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
70  if (!isShiftedMask_64(I))
71     return false;
72
73  Size = CountPopulation_64(I);
74  Pos = countTrailingZeros(I);
75  return true;
76}
77
78SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
79  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
80  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
81}
82
83static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
84  EVT Ty = Op.getValueType();
85
86  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
87    return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(Op), Ty, 0,
88                                      Flag);
89  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
90    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
91  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
92    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
93  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
94    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
95  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
96    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
97                                     N->getOffset(), Flag);
98
99  llvm_unreachable("Unexpected node type.");
100  return SDValue();
101}
102
103static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
104  SDLoc DL(Op);
105  EVT Ty = Op.getValueType();
106  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
107  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
108  return DAG.getNode(ISD::ADD, DL, Ty,
109                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
110                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
111}
112
113SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
114                                         bool HasMips64) const {
115  SDLoc DL(Op);
116  EVT Ty = Op.getValueType();
117  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
118  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
119                            getTargetNode(Op, DAG, GOTFlag));
120  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
121                             MachinePointerInfo::getGOT(), false, false, false,
122                             0);
123  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
124  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
125  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
126}
127
128SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
129                                          unsigned Flag) const {
130  SDLoc DL(Op);
131  EVT Ty = Op.getValueType();
132  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
133                            getTargetNode(Op, DAG, Flag));
134  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
135                     MachinePointerInfo::getGOT(), false, false, false, 0);
136}
137
138SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
139                                                  unsigned HiFlag,
140                                                  unsigned LoFlag) const {
141  SDLoc DL(Op);
142  EVT Ty = Op.getValueType();
143  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
144  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
145  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
146                                getTargetNode(Op, DAG, LoFlag));
147  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
148                     MachinePointerInfo::getGOT(), false, false, false, 0);
149}
150
151const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
152  switch (Opcode) {
153  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
154  case MipsISD::TailCall:          return "MipsISD::TailCall";
155  case MipsISD::Hi:                return "MipsISD::Hi";
156  case MipsISD::Lo:                return "MipsISD::Lo";
157  case MipsISD::GPRel:             return "MipsISD::GPRel";
158  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
159  case MipsISD::Ret:               return "MipsISD::Ret";
160  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
161  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
162  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
163  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
164  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
165  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
166  case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
167  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
168  case MipsISD::Mult:              return "MipsISD::Mult";
169  case MipsISD::Multu:             return "MipsISD::Multu";
170  case MipsISD::MAdd:              return "MipsISD::MAdd";
171  case MipsISD::MAddu:             return "MipsISD::MAddu";
172  case MipsISD::MSub:              return "MipsISD::MSub";
173  case MipsISD::MSubu:             return "MipsISD::MSubu";
174  case MipsISD::DivRem:            return "MipsISD::DivRem";
175  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
176  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
177  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
178  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
179  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
180  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
181  case MipsISD::Sync:              return "MipsISD::Sync";
182  case MipsISD::Ext:               return "MipsISD::Ext";
183  case MipsISD::Ins:               return "MipsISD::Ins";
184  case MipsISD::LWL:               return "MipsISD::LWL";
185  case MipsISD::LWR:               return "MipsISD::LWR";
186  case MipsISD::SWL:               return "MipsISD::SWL";
187  case MipsISD::SWR:               return "MipsISD::SWR";
188  case MipsISD::LDL:               return "MipsISD::LDL";
189  case MipsISD::LDR:               return "MipsISD::LDR";
190  case MipsISD::SDL:               return "MipsISD::SDL";
191  case MipsISD::SDR:               return "MipsISD::SDR";
192  case MipsISD::EXTP:              return "MipsISD::EXTP";
193  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
194  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
195  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
196  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
197  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
198  case MipsISD::SHILO:             return "MipsISD::SHILO";
199  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
200  case MipsISD::MULT:              return "MipsISD::MULT";
201  case MipsISD::MULTU:             return "MipsISD::MULTU";
202  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
203  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
204  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
205  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
206  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
207  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
208  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
209  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
210  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
211  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
212  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
213  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
214  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
215  case MipsISD::VSPLAT:            return "MipsISD::VSPLAT";
216  case MipsISD::VSPLATD:           return "MipsISD::VSPLATD";
217  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
218  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
219  case MipsISD::VNOR:              return "MipsISD::VNOR";
220  default:                         return NULL;
221  }
222}
223
224MipsTargetLowering::
225MipsTargetLowering(MipsTargetMachine &TM)
226  : TargetLowering(TM, new MipsTargetObjectFile()),
227    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
228    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
229    IsO32(Subtarget->isABI_O32()) {
230  // Mips does not have i1 type, so use i32 for
231  // setcc operations results (slt, sgt, ...).
232  setBooleanContents(ZeroOrOneBooleanContent);
233  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
234
235  // Load extented operations for i1 types must be promoted
236  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
237  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
238  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
239
240  // MIPS doesn't have extending float->double load/store
241  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
242  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
243
244  // Used by legalize types to correctly generate the setcc result.
245  // Without this, every float setcc comes with a AND/OR with the result,
246  // we don't want this, since the fpcmp result goes to a flag register,
247  // which is used implicitly by brcond and select operations.
248  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
249
250  // Mips Custom Operations
251  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
252  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
253  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
254  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
255  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
256  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
257  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
258  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
259  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
260  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
261  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
262  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
263  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
264  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
265  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
266  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
267  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
268  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
269
270  if (!TM.Options.NoNaNsFPMath) {
271    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
272    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
273  }
274
275  if (HasMips64) {
276    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
277    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
278    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
279    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
280    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
281    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
282    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
283    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
284    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
285  }
286
287  if (!HasMips64) {
288    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
289    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
290    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
291  }
292
293  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
294  if (HasMips64)
295    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
296
297  setOperationAction(ISD::SDIV, MVT::i32, Expand);
298  setOperationAction(ISD::SREM, MVT::i32, Expand);
299  setOperationAction(ISD::UDIV, MVT::i32, Expand);
300  setOperationAction(ISD::UREM, MVT::i32, Expand);
301  setOperationAction(ISD::SDIV, MVT::i64, Expand);
302  setOperationAction(ISD::SREM, MVT::i64, Expand);
303  setOperationAction(ISD::UDIV, MVT::i64, Expand);
304  setOperationAction(ISD::UREM, MVT::i64, Expand);
305
306  // Operations not directly supported by Mips.
307  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
308  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
309  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
310  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
311  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
312  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
313  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
314  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
315  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
316  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
317  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
318  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
319  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
320  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
321  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
322  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
323  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
324  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
325  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
326  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
327  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
328  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
329
330  if (!Subtarget->hasMips32r2())
331    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
332
333  if (!Subtarget->hasMips64r2())
334    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
335
336  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
337  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
338  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
339  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
340  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
341  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
342  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
343  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
344  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
345  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
346  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
347  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
348  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
349  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
350  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
351  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
352  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
353
354  if (!TM.Options.NoNaNsFPMath) {
355    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
356    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
357  }
358
359  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
360
361  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
362  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
363  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
364
365  // Use the default for now
366  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
367  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
368
369  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
370  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
371  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
372  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
373
374  setInsertFencesForAtomic(true);
375
376  if (!Subtarget->hasSEInReg()) {
377    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
378    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
379  }
380
381  if (!Subtarget->hasBitCount()) {
382    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
383    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
384  }
385
386  if (!Subtarget->hasSwap()) {
387    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
388    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
389  }
390
391  if (HasMips64) {
392    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
393    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
394    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
395    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
396  }
397
398  setOperationAction(ISD::TRAP, MVT::Other, Legal);
399
400  setTargetDAGCombine(ISD::SDIVREM);
401  setTargetDAGCombine(ISD::UDIVREM);
402  setTargetDAGCombine(ISD::SELECT);
403  setTargetDAGCombine(ISD::AND);
404  setTargetDAGCombine(ISD::OR);
405  setTargetDAGCombine(ISD::ADD);
406
407  setMinFunctionAlignment(HasMips64 ? 3 : 2);
408
409  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
410
411  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
412  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
413
414  MaxStoresPerMemcpy = 16;
415}
416
417const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
418  if (TM.getSubtargetImpl()->inMips16Mode())
419    return llvm::createMips16TargetLowering(TM);
420
421  return llvm::createMipsSETargetLowering(TM);
422}
423
424EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
425  if (!VT.isVector())
426    return MVT::i32;
427  return VT.changeVectorElementTypeToInteger();
428}
429
430static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
431                                    TargetLowering::DAGCombinerInfo &DCI,
432                                    const MipsSubtarget *Subtarget) {
433  if (DCI.isBeforeLegalizeOps())
434    return SDValue();
435
436  EVT Ty = N->getValueType(0);
437  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
438  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
439  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
440                                                  MipsISD::DivRemU16;
441  SDLoc DL(N);
442
443  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
444                               N->getOperand(0), N->getOperand(1));
445  SDValue InChain = DAG.getEntryNode();
446  SDValue InGlue = DivRem;
447
448  // insert MFLO
449  if (N->hasAnyUseOfValue(0)) {
450    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
451                                            InGlue);
452    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
453    InChain = CopyFromLo.getValue(1);
454    InGlue = CopyFromLo.getValue(2);
455  }
456
457  // insert MFHI
458  if (N->hasAnyUseOfValue(1)) {
459    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
460                                            HI, Ty, InGlue);
461    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
462  }
463
464  return SDValue();
465}
466
467static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
468  switch (CC) {
469  default: llvm_unreachable("Unknown fp condition code!");
470  case ISD::SETEQ:
471  case ISD::SETOEQ: return Mips::FCOND_OEQ;
472  case ISD::SETUNE: return Mips::FCOND_UNE;
473  case ISD::SETLT:
474  case ISD::SETOLT: return Mips::FCOND_OLT;
475  case ISD::SETGT:
476  case ISD::SETOGT: return Mips::FCOND_OGT;
477  case ISD::SETLE:
478  case ISD::SETOLE: return Mips::FCOND_OLE;
479  case ISD::SETGE:
480  case ISD::SETOGE: return Mips::FCOND_OGE;
481  case ISD::SETULT: return Mips::FCOND_ULT;
482  case ISD::SETULE: return Mips::FCOND_ULE;
483  case ISD::SETUGT: return Mips::FCOND_UGT;
484  case ISD::SETUGE: return Mips::FCOND_UGE;
485  case ISD::SETUO:  return Mips::FCOND_UN;
486  case ISD::SETO:   return Mips::FCOND_OR;
487  case ISD::SETNE:
488  case ISD::SETONE: return Mips::FCOND_ONE;
489  case ISD::SETUEQ: return Mips::FCOND_UEQ;
490  }
491}
492
493
494/// This function returns true if the floating point conditional branches and
495/// conditional moves which use condition code CC should be inverted.
496static bool invertFPCondCodeUser(Mips::CondCode CC) {
497  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
498    return false;
499
500  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
501         "Illegal Condition Code");
502
503  return true;
504}
505
506// Creates and returns an FPCmp node from a setcc node.
507// Returns Op if setcc is not a floating point comparison.
508static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
509  // must be a SETCC node
510  if (Op.getOpcode() != ISD::SETCC)
511    return Op;
512
513  SDValue LHS = Op.getOperand(0);
514
515  if (!LHS.getValueType().isFloatingPoint())
516    return Op;
517
518  SDValue RHS = Op.getOperand(1);
519  SDLoc DL(Op);
520
521  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
522  // node if necessary.
523  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
524
525  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
526                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
527}
528
529// Creates and returns a CMovFPT/F node.
530static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
531                            SDValue False, SDLoc DL) {
532  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
533  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
534  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
535
536  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
537                     True.getValueType(), True, FCC0, False, Cond);
538}
539
540static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
541                                    TargetLowering::DAGCombinerInfo &DCI,
542                                    const MipsSubtarget *Subtarget) {
543  if (DCI.isBeforeLegalizeOps())
544    return SDValue();
545
546  SDValue SetCC = N->getOperand(0);
547
548  if ((SetCC.getOpcode() != ISD::SETCC) ||
549      !SetCC.getOperand(0).getValueType().isInteger())
550    return SDValue();
551
552  SDValue False = N->getOperand(2);
553  EVT FalseTy = False.getValueType();
554
555  if (!FalseTy.isInteger())
556    return SDValue();
557
558  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
559
560  if (!CN || CN->getZExtValue())
561    return SDValue();
562
563  const SDLoc DL(N);
564  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
565  SDValue True = N->getOperand(1);
566
567  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
568                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
569
570  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
571}
572
573static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
574                                 TargetLowering::DAGCombinerInfo &DCI,
575                                 const MipsSubtarget *Subtarget) {
576  // Pattern match EXT.
577  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
578  //  => ext $dst, $src, size, pos
579  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
580    return SDValue();
581
582  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
583  unsigned ShiftRightOpc = ShiftRight.getOpcode();
584
585  // Op's first operand must be a shift right.
586  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
587    return SDValue();
588
589  // The second operand of the shift must be an immediate.
590  ConstantSDNode *CN;
591  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
592    return SDValue();
593
594  uint64_t Pos = CN->getZExtValue();
595  uint64_t SMPos, SMSize;
596
597  // Op's second operand must be a shifted mask.
598  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
599      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
600    return SDValue();
601
602  // Return if the shifted mask does not start at bit 0 or the sum of its size
603  // and Pos exceeds the word's size.
604  EVT ValTy = N->getValueType(0);
605  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
606    return SDValue();
607
608  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
609                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
610                     DAG.getConstant(SMSize, MVT::i32));
611}
612
613static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
614                                TargetLowering::DAGCombinerInfo &DCI,
615                                const MipsSubtarget *Subtarget) {
616  // Pattern match INS.
617  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
618  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
619  //  => ins $dst, $src, size, pos, $src1
620  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
621    return SDValue();
622
623  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
624  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
625  ConstantSDNode *CN;
626
627  // See if Op's first operand matches (and $src1 , mask0).
628  if (And0.getOpcode() != ISD::AND)
629    return SDValue();
630
631  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
632      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
633    return SDValue();
634
635  // See if Op's second operand matches (and (shl $src, pos), mask1).
636  if (And1.getOpcode() != ISD::AND)
637    return SDValue();
638
639  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
640      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
641    return SDValue();
642
643  // The shift masks must have the same position and size.
644  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
645    return SDValue();
646
647  SDValue Shl = And1.getOperand(0);
648  if (Shl.getOpcode() != ISD::SHL)
649    return SDValue();
650
651  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
652    return SDValue();
653
654  unsigned Shamt = CN->getZExtValue();
655
656  // Return if the shift amount and the first bit position of mask are not the
657  // same.
658  EVT ValTy = N->getValueType(0);
659  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
660    return SDValue();
661
662  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
663                     DAG.getConstant(SMPos0, MVT::i32),
664                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
665}
666
667static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
668                                 TargetLowering::DAGCombinerInfo &DCI,
669                                 const MipsSubtarget *Subtarget) {
670  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
671
672  if (DCI.isBeforeLegalizeOps())
673    return SDValue();
674
675  SDValue Add = N->getOperand(1);
676
677  if (Add.getOpcode() != ISD::ADD)
678    return SDValue();
679
680  SDValue Lo = Add.getOperand(1);
681
682  if ((Lo.getOpcode() != MipsISD::Lo) ||
683      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
684    return SDValue();
685
686  EVT ValTy = N->getValueType(0);
687  SDLoc DL(N);
688
689  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
690                             Add.getOperand(0));
691  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
692}
693
694SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
695  const {
696  SelectionDAG &DAG = DCI.DAG;
697  unsigned Opc = N->getOpcode();
698
699  switch (Opc) {
700  default: break;
701  case ISD::SDIVREM:
702  case ISD::UDIVREM:
703    return performDivRemCombine(N, DAG, DCI, Subtarget);
704  case ISD::SELECT:
705    return performSELECTCombine(N, DAG, DCI, Subtarget);
706  case ISD::AND:
707    return performANDCombine(N, DAG, DCI, Subtarget);
708  case ISD::OR:
709    return performORCombine(N, DAG, DCI, Subtarget);
710  case ISD::ADD:
711    return performADDCombine(N, DAG, DCI, Subtarget);
712  }
713
714  return SDValue();
715}
716
717void
718MipsTargetLowering::LowerOperationWrapper(SDNode *N,
719                                          SmallVectorImpl<SDValue> &Results,
720                                          SelectionDAG &DAG) const {
721  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
722
723  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
724    Results.push_back(Res.getValue(I));
725}
726
727void
728MipsTargetLowering::ReplaceNodeResults(SDNode *N,
729                                       SmallVectorImpl<SDValue> &Results,
730                                       SelectionDAG &DAG) const {
731  return LowerOperationWrapper(N, Results, DAG);
732}
733
734SDValue MipsTargetLowering::
735LowerOperation(SDValue Op, SelectionDAG &DAG) const
736{
737  switch (Op.getOpcode())
738  {
739  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
740  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
741  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
742  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
743  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
744  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
745  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
746  case ISD::SELECT:             return lowerSELECT(Op, DAG);
747  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
748  case ISD::SETCC:              return lowerSETCC(Op, DAG);
749  case ISD::VASTART:            return lowerVASTART(Op, DAG);
750  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
751  case ISD::FABS:               return lowerFABS(Op, DAG);
752  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
753  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
754  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
755  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
756  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
757  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
758  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
759  case ISD::LOAD:               return lowerLOAD(Op, DAG);
760  case ISD::STORE:              return lowerSTORE(Op, DAG);
761  case ISD::ADD:                return lowerADD(Op, DAG);
762  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
763  }
764  return SDValue();
765}
766
767//===----------------------------------------------------------------------===//
768//  Lower helper functions
769//===----------------------------------------------------------------------===//
770
771// addLiveIn - This helper function adds the specified physical register to the
772// MachineFunction as a live in value.  It also creates a corresponding
773// virtual register for it.
774static unsigned
775addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
776{
777  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
778  MF.getRegInfo().addLiveIn(PReg, VReg);
779  return VReg;
780}
781
782static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
783                                          MachineBasicBlock &MBB,
784                                          const TargetInstrInfo &TII,
785                                          bool Is64Bit) {
786  if (NoZeroDivCheck)
787    return &MBB;
788
789  // Insert instruction "teq $divisor_reg, $zero, 7".
790  MachineBasicBlock::iterator I(MI);
791  MachineInstrBuilder MIB;
792  MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
793    .addOperand(MI->getOperand(2)).addReg(Mips::ZERO).addImm(7);
794
795  // Use the 32-bit sub-register if this is a 64-bit division.
796  if (Is64Bit)
797    MIB->getOperand(0).setSubReg(Mips::sub_32);
798
799  return &MBB;
800}
801
802MachineBasicBlock *
803MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
804                                                MachineBasicBlock *BB) const {
805  switch (MI->getOpcode()) {
806  default:
807    llvm_unreachable("Unexpected instr type to insert");
808  case Mips::ATOMIC_LOAD_ADD_I8:
809    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
810  case Mips::ATOMIC_LOAD_ADD_I16:
811    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
812  case Mips::ATOMIC_LOAD_ADD_I32:
813    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
814  case Mips::ATOMIC_LOAD_ADD_I64:
815    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
816
817  case Mips::ATOMIC_LOAD_AND_I8:
818    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
819  case Mips::ATOMIC_LOAD_AND_I16:
820    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
821  case Mips::ATOMIC_LOAD_AND_I32:
822    return emitAtomicBinary(MI, BB, 4, Mips::AND);
823  case Mips::ATOMIC_LOAD_AND_I64:
824    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
825
826  case Mips::ATOMIC_LOAD_OR_I8:
827    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
828  case Mips::ATOMIC_LOAD_OR_I16:
829    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
830  case Mips::ATOMIC_LOAD_OR_I32:
831    return emitAtomicBinary(MI, BB, 4, Mips::OR);
832  case Mips::ATOMIC_LOAD_OR_I64:
833    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
834
835  case Mips::ATOMIC_LOAD_XOR_I8:
836    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
837  case Mips::ATOMIC_LOAD_XOR_I16:
838    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
839  case Mips::ATOMIC_LOAD_XOR_I32:
840    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
841  case Mips::ATOMIC_LOAD_XOR_I64:
842    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
843
844  case Mips::ATOMIC_LOAD_NAND_I8:
845    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
846  case Mips::ATOMIC_LOAD_NAND_I16:
847    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
848  case Mips::ATOMIC_LOAD_NAND_I32:
849    return emitAtomicBinary(MI, BB, 4, 0, true);
850  case Mips::ATOMIC_LOAD_NAND_I64:
851    return emitAtomicBinary(MI, BB, 8, 0, true);
852
853  case Mips::ATOMIC_LOAD_SUB_I8:
854    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
855  case Mips::ATOMIC_LOAD_SUB_I16:
856    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
857  case Mips::ATOMIC_LOAD_SUB_I32:
858    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
859  case Mips::ATOMIC_LOAD_SUB_I64:
860    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
861
862  case Mips::ATOMIC_SWAP_I8:
863    return emitAtomicBinaryPartword(MI, BB, 1, 0);
864  case Mips::ATOMIC_SWAP_I16:
865    return emitAtomicBinaryPartword(MI, BB, 2, 0);
866  case Mips::ATOMIC_SWAP_I32:
867    return emitAtomicBinary(MI, BB, 4, 0);
868  case Mips::ATOMIC_SWAP_I64:
869    return emitAtomicBinary(MI, BB, 8, 0);
870
871  case Mips::ATOMIC_CMP_SWAP_I8:
872    return emitAtomicCmpSwapPartword(MI, BB, 1);
873  case Mips::ATOMIC_CMP_SWAP_I16:
874    return emitAtomicCmpSwapPartword(MI, BB, 2);
875  case Mips::ATOMIC_CMP_SWAP_I32:
876    return emitAtomicCmpSwap(MI, BB, 4);
877  case Mips::ATOMIC_CMP_SWAP_I64:
878    return emitAtomicCmpSwap(MI, BB, 8);
879  case Mips::PseudoSDIV:
880  case Mips::PseudoUDIV:
881    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
882  case Mips::PseudoDSDIV:
883  case Mips::PseudoDUDIV:
884    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
885  }
886}
887
888// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
889// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
890MachineBasicBlock *
891MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
892                                     unsigned Size, unsigned BinOpcode,
893                                     bool Nand) const {
894  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
895
896  MachineFunction *MF = BB->getParent();
897  MachineRegisterInfo &RegInfo = MF->getRegInfo();
898  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
899  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
900  DebugLoc DL = MI->getDebugLoc();
901  unsigned LL, SC, AND, NOR, ZERO, BEQ;
902
903  if (Size == 4) {
904    LL = Mips::LL;
905    SC = Mips::SC;
906    AND = Mips::AND;
907    NOR = Mips::NOR;
908    ZERO = Mips::ZERO;
909    BEQ = Mips::BEQ;
910  }
911  else {
912    LL = Mips::LLD;
913    SC = Mips::SCD;
914    AND = Mips::AND64;
915    NOR = Mips::NOR64;
916    ZERO = Mips::ZERO_64;
917    BEQ = Mips::BEQ64;
918  }
919
920  unsigned OldVal = MI->getOperand(0).getReg();
921  unsigned Ptr = MI->getOperand(1).getReg();
922  unsigned Incr = MI->getOperand(2).getReg();
923
924  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
925  unsigned AndRes = RegInfo.createVirtualRegister(RC);
926  unsigned Success = RegInfo.createVirtualRegister(RC);
927
928  // insert new blocks after the current block
929  const BasicBlock *LLVM_BB = BB->getBasicBlock();
930  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
931  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
932  MachineFunction::iterator It = BB;
933  ++It;
934  MF->insert(It, loopMBB);
935  MF->insert(It, exitMBB);
936
937  // Transfer the remainder of BB and its successor edges to exitMBB.
938  exitMBB->splice(exitMBB->begin(), BB,
939                  llvm::next(MachineBasicBlock::iterator(MI)),
940                  BB->end());
941  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
942
943  //  thisMBB:
944  //    ...
945  //    fallthrough --> loopMBB
946  BB->addSuccessor(loopMBB);
947  loopMBB->addSuccessor(loopMBB);
948  loopMBB->addSuccessor(exitMBB);
949
950  //  loopMBB:
951  //    ll oldval, 0(ptr)
952  //    <binop> storeval, oldval, incr
953  //    sc success, storeval, 0(ptr)
954  //    beq success, $0, loopMBB
955  BB = loopMBB;
956  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
957  if (Nand) {
958    //  and andres, oldval, incr
959    //  nor storeval, $0, andres
960    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
961    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
962  } else if (BinOpcode) {
963    //  <binop> storeval, oldval, incr
964    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
965  } else {
966    StoreVal = Incr;
967  }
968  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
969  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
970
971  MI->eraseFromParent();   // The instruction is gone now.
972
973  return exitMBB;
974}
975
976MachineBasicBlock *
977MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
978                                             MachineBasicBlock *BB,
979                                             unsigned Size, unsigned BinOpcode,
980                                             bool Nand) const {
981  assert((Size == 1 || Size == 2) &&
982      "Unsupported size for EmitAtomicBinaryPartial.");
983
984  MachineFunction *MF = BB->getParent();
985  MachineRegisterInfo &RegInfo = MF->getRegInfo();
986  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
987  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
988  DebugLoc DL = MI->getDebugLoc();
989
990  unsigned Dest = MI->getOperand(0).getReg();
991  unsigned Ptr = MI->getOperand(1).getReg();
992  unsigned Incr = MI->getOperand(2).getReg();
993
994  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
995  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
996  unsigned Mask = RegInfo.createVirtualRegister(RC);
997  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
998  unsigned NewVal = RegInfo.createVirtualRegister(RC);
999  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1000  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1001  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1002  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1003  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1004  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1005  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1006  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1007  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1008  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1009  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1010  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1011  unsigned Success = RegInfo.createVirtualRegister(RC);
1012
1013  // insert new blocks after the current block
1014  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1015  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1016  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1017  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1018  MachineFunction::iterator It = BB;
1019  ++It;
1020  MF->insert(It, loopMBB);
1021  MF->insert(It, sinkMBB);
1022  MF->insert(It, exitMBB);
1023
1024  // Transfer the remainder of BB and its successor edges to exitMBB.
1025  exitMBB->splice(exitMBB->begin(), BB,
1026                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1027  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1028
1029  BB->addSuccessor(loopMBB);
1030  loopMBB->addSuccessor(loopMBB);
1031  loopMBB->addSuccessor(sinkMBB);
1032  sinkMBB->addSuccessor(exitMBB);
1033
1034  //  thisMBB:
1035  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1036  //    and     alignedaddr,ptr,masklsb2
1037  //    andi    ptrlsb2,ptr,3
1038  //    sll     shiftamt,ptrlsb2,3
1039  //    ori     maskupper,$0,255               # 0xff
1040  //    sll     mask,maskupper,shiftamt
1041  //    nor     mask2,$0,mask
1042  //    sll     incr2,incr,shiftamt
1043
1044  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1045  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1046    .addReg(Mips::ZERO).addImm(-4);
1047  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1048    .addReg(Ptr).addReg(MaskLSB2);
1049  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1050  if (Subtarget->isLittle()) {
1051    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1052  } else {
1053    unsigned Off = RegInfo.createVirtualRegister(RC);
1054    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1055      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1056    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1057  }
1058  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1059    .addReg(Mips::ZERO).addImm(MaskImm);
1060  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1061    .addReg(MaskUpper).addReg(ShiftAmt);
1062  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1063  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1064
1065  // atomic.load.binop
1066  // loopMBB:
1067  //   ll      oldval,0(alignedaddr)
1068  //   binop   binopres,oldval,incr2
1069  //   and     newval,binopres,mask
1070  //   and     maskedoldval0,oldval,mask2
1071  //   or      storeval,maskedoldval0,newval
1072  //   sc      success,storeval,0(alignedaddr)
1073  //   beq     success,$0,loopMBB
1074
1075  // atomic.swap
1076  // loopMBB:
1077  //   ll      oldval,0(alignedaddr)
1078  //   and     newval,incr2,mask
1079  //   and     maskedoldval0,oldval,mask2
1080  //   or      storeval,maskedoldval0,newval
1081  //   sc      success,storeval,0(alignedaddr)
1082  //   beq     success,$0,loopMBB
1083
1084  BB = loopMBB;
1085  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1086  if (Nand) {
1087    //  and andres, oldval, incr2
1088    //  nor binopres, $0, andres
1089    //  and newval, binopres, mask
1090    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1091    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1092      .addReg(Mips::ZERO).addReg(AndRes);
1093    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1094  } else if (BinOpcode) {
1095    //  <binop> binopres, oldval, incr2
1096    //  and newval, binopres, mask
1097    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1098    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1099  } else {// atomic.swap
1100    //  and newval, incr2, mask
1101    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1102  }
1103
1104  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1105    .addReg(OldVal).addReg(Mask2);
1106  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1107    .addReg(MaskedOldVal0).addReg(NewVal);
1108  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1109    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1110  BuildMI(BB, DL, TII->get(Mips::BEQ))
1111    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1112
1113  //  sinkMBB:
1114  //    and     maskedoldval1,oldval,mask
1115  //    srl     srlres,maskedoldval1,shiftamt
1116  //    sll     sllres,srlres,24
1117  //    sra     dest,sllres,24
1118  BB = sinkMBB;
1119  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1120
1121  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1122    .addReg(OldVal).addReg(Mask);
1123  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1124      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1125  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1126      .addReg(SrlRes).addImm(ShiftImm);
1127  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1128      .addReg(SllRes).addImm(ShiftImm);
1129
1130  MI->eraseFromParent();   // The instruction is gone now.
1131
1132  return exitMBB;
1133}
1134
1135MachineBasicBlock *
1136MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1137                                      MachineBasicBlock *BB,
1138                                      unsigned Size) const {
1139  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1140
1141  MachineFunction *MF = BB->getParent();
1142  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1143  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1144  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1145  DebugLoc DL = MI->getDebugLoc();
1146  unsigned LL, SC, ZERO, BNE, BEQ;
1147
1148  if (Size == 4) {
1149    LL = Mips::LL;
1150    SC = Mips::SC;
1151    ZERO = Mips::ZERO;
1152    BNE = Mips::BNE;
1153    BEQ = Mips::BEQ;
1154  }
1155  else {
1156    LL = Mips::LLD;
1157    SC = Mips::SCD;
1158    ZERO = Mips::ZERO_64;
1159    BNE = Mips::BNE64;
1160    BEQ = Mips::BEQ64;
1161  }
1162
1163  unsigned Dest    = MI->getOperand(0).getReg();
1164  unsigned Ptr     = MI->getOperand(1).getReg();
1165  unsigned OldVal  = MI->getOperand(2).getReg();
1166  unsigned NewVal  = MI->getOperand(3).getReg();
1167
1168  unsigned Success = RegInfo.createVirtualRegister(RC);
1169
1170  // insert new blocks after the current block
1171  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1172  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1173  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1174  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1175  MachineFunction::iterator It = BB;
1176  ++It;
1177  MF->insert(It, loop1MBB);
1178  MF->insert(It, loop2MBB);
1179  MF->insert(It, exitMBB);
1180
1181  // Transfer the remainder of BB and its successor edges to exitMBB.
1182  exitMBB->splice(exitMBB->begin(), BB,
1183                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1184  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1185
1186  //  thisMBB:
1187  //    ...
1188  //    fallthrough --> loop1MBB
1189  BB->addSuccessor(loop1MBB);
1190  loop1MBB->addSuccessor(exitMBB);
1191  loop1MBB->addSuccessor(loop2MBB);
1192  loop2MBB->addSuccessor(loop1MBB);
1193  loop2MBB->addSuccessor(exitMBB);
1194
1195  // loop1MBB:
1196  //   ll dest, 0(ptr)
1197  //   bne dest, oldval, exitMBB
1198  BB = loop1MBB;
1199  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1200  BuildMI(BB, DL, TII->get(BNE))
1201    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1202
1203  // loop2MBB:
1204  //   sc success, newval, 0(ptr)
1205  //   beq success, $0, loop1MBB
1206  BB = loop2MBB;
1207  BuildMI(BB, DL, TII->get(SC), Success)
1208    .addReg(NewVal).addReg(Ptr).addImm(0);
1209  BuildMI(BB, DL, TII->get(BEQ))
1210    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1211
1212  MI->eraseFromParent();   // The instruction is gone now.
1213
1214  return exitMBB;
1215}
1216
1217MachineBasicBlock *
1218MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1219                                              MachineBasicBlock *BB,
1220                                              unsigned Size) const {
1221  assert((Size == 1 || Size == 2) &&
1222      "Unsupported size for EmitAtomicCmpSwapPartial.");
1223
1224  MachineFunction *MF = BB->getParent();
1225  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1226  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1227  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1228  DebugLoc DL = MI->getDebugLoc();
1229
1230  unsigned Dest    = MI->getOperand(0).getReg();
1231  unsigned Ptr     = MI->getOperand(1).getReg();
1232  unsigned CmpVal  = MI->getOperand(2).getReg();
1233  unsigned NewVal  = MI->getOperand(3).getReg();
1234
1235  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1236  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1237  unsigned Mask = RegInfo.createVirtualRegister(RC);
1238  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1239  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1240  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1241  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1242  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1243  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1244  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1245  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1246  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1247  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1248  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1249  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1250  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1251  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1252  unsigned Success = RegInfo.createVirtualRegister(RC);
1253
1254  // insert new blocks after the current block
1255  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1256  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1257  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1258  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1259  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1260  MachineFunction::iterator It = BB;
1261  ++It;
1262  MF->insert(It, loop1MBB);
1263  MF->insert(It, loop2MBB);
1264  MF->insert(It, sinkMBB);
1265  MF->insert(It, exitMBB);
1266
1267  // Transfer the remainder of BB and its successor edges to exitMBB.
1268  exitMBB->splice(exitMBB->begin(), BB,
1269                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1270  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1271
1272  BB->addSuccessor(loop1MBB);
1273  loop1MBB->addSuccessor(sinkMBB);
1274  loop1MBB->addSuccessor(loop2MBB);
1275  loop2MBB->addSuccessor(loop1MBB);
1276  loop2MBB->addSuccessor(sinkMBB);
1277  sinkMBB->addSuccessor(exitMBB);
1278
1279  // FIXME: computation of newval2 can be moved to loop2MBB.
1280  //  thisMBB:
1281  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1282  //    and     alignedaddr,ptr,masklsb2
1283  //    andi    ptrlsb2,ptr,3
1284  //    sll     shiftamt,ptrlsb2,3
1285  //    ori     maskupper,$0,255               # 0xff
1286  //    sll     mask,maskupper,shiftamt
1287  //    nor     mask2,$0,mask
1288  //    andi    maskedcmpval,cmpval,255
1289  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1290  //    andi    maskednewval,newval,255
1291  //    sll     shiftednewval,maskednewval,shiftamt
1292  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1293  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1294    .addReg(Mips::ZERO).addImm(-4);
1295  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1296    .addReg(Ptr).addReg(MaskLSB2);
1297  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1298  if (Subtarget->isLittle()) {
1299    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1300  } else {
1301    unsigned Off = RegInfo.createVirtualRegister(RC);
1302    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1303      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1304    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1305  }
1306  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1307    .addReg(Mips::ZERO).addImm(MaskImm);
1308  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1309    .addReg(MaskUpper).addReg(ShiftAmt);
1310  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1311  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1312    .addReg(CmpVal).addImm(MaskImm);
1313  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1314    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1315  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1316    .addReg(NewVal).addImm(MaskImm);
1317  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1318    .addReg(MaskedNewVal).addReg(ShiftAmt);
1319
1320  //  loop1MBB:
1321  //    ll      oldval,0(alginedaddr)
1322  //    and     maskedoldval0,oldval,mask
1323  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1324  BB = loop1MBB;
1325  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1326  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1327    .addReg(OldVal).addReg(Mask);
1328  BuildMI(BB, DL, TII->get(Mips::BNE))
1329    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1330
1331  //  loop2MBB:
1332  //    and     maskedoldval1,oldval,mask2
1333  //    or      storeval,maskedoldval1,shiftednewval
1334  //    sc      success,storeval,0(alignedaddr)
1335  //    beq     success,$0,loop1MBB
1336  BB = loop2MBB;
1337  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1338    .addReg(OldVal).addReg(Mask2);
1339  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1340    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1341  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1342      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1343  BuildMI(BB, DL, TII->get(Mips::BEQ))
1344      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1345
1346  //  sinkMBB:
1347  //    srl     srlres,maskedoldval0,shiftamt
1348  //    sll     sllres,srlres,24
1349  //    sra     dest,sllres,24
1350  BB = sinkMBB;
1351  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1352
1353  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1354      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1355  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1356      .addReg(SrlRes).addImm(ShiftImm);
1357  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1358      .addReg(SllRes).addImm(ShiftImm);
1359
1360  MI->eraseFromParent();   // The instruction is gone now.
1361
1362  return exitMBB;
1363}
1364
1365//===----------------------------------------------------------------------===//
1366//  Misc Lower Operation implementation
1367//===----------------------------------------------------------------------===//
1368SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1369  SDValue Chain = Op.getOperand(0);
1370  SDValue Table = Op.getOperand(1);
1371  SDValue Index = Op.getOperand(2);
1372  SDLoc DL(Op);
1373  EVT PTy = getPointerTy();
1374  unsigned EntrySize =
1375    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1376
1377  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1378                      DAG.getConstant(EntrySize, PTy));
1379  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1380
1381  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1382  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1383                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1384                        0);
1385  Chain = Addr.getValue(1);
1386
1387  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1388    // For PIC, the sequence is:
1389    // BRIND(load(Jumptable + index) + RelocBase)
1390    // RelocBase can be JumpTable, GOT or some sort of global base.
1391    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1392                       getPICJumpTableRelocBase(Table, DAG));
1393  }
1394
1395  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1396}
1397
1398SDValue MipsTargetLowering::
1399lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1400{
1401  // The first operand is the chain, the second is the condition, the third is
1402  // the block to branch to if the condition is true.
1403  SDValue Chain = Op.getOperand(0);
1404  SDValue Dest = Op.getOperand(2);
1405  SDLoc DL(Op);
1406
1407  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1408
1409  // Return if flag is not set by a floating point comparison.
1410  if (CondRes.getOpcode() != MipsISD::FPCmp)
1411    return Op;
1412
1413  SDValue CCNode  = CondRes.getOperand(2);
1414  Mips::CondCode CC =
1415    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1416  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1417  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1418  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1419  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1420                     FCC0, Dest, CondRes);
1421}
1422
1423SDValue MipsTargetLowering::
1424lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1425{
1426  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1427
1428  // Return if flag is not set by a floating point comparison.
1429  if (Cond.getOpcode() != MipsISD::FPCmp)
1430    return Op;
1431
1432  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1433                      SDLoc(Op));
1434}
1435
1436SDValue MipsTargetLowering::
1437lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1438{
1439  SDLoc DL(Op);
1440  EVT Ty = Op.getOperand(0).getValueType();
1441  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1442                             getSetCCResultType(*DAG.getContext(), Ty),
1443                             Op.getOperand(0), Op.getOperand(1),
1444                             Op.getOperand(4));
1445
1446  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1447                     Op.getOperand(3));
1448}
1449
1450SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1451  SDValue Cond = createFPCmp(DAG, Op);
1452
1453  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1454         "Floating point operand expected.");
1455
1456  SDValue True  = DAG.getConstant(1, MVT::i32);
1457  SDValue False = DAG.getConstant(0, MVT::i32);
1458
1459  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1460}
1461
1462SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1463                                               SelectionDAG &DAG) const {
1464  // FIXME there isn't actually debug info here
1465  SDLoc DL(Op);
1466  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1467
1468  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1469    const MipsTargetObjectFile &TLOF =
1470      (const MipsTargetObjectFile&)getObjFileLowering();
1471
1472    // %gp_rel relocation
1473    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1474      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1475                                              MipsII::MO_GPREL);
1476      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1477                                      DAG.getVTList(MVT::i32), &GA, 1);
1478      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1479      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1480    }
1481
1482    // %hi/%lo relocation
1483    return getAddrNonPIC(Op, DAG);
1484  }
1485
1486  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1487    return getAddrLocal(Op, DAG, HasMips64);
1488
1489  if (LargeGOT)
1490    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1491                                 MipsII::MO_GOT_LO16);
1492
1493  return getAddrGlobal(Op, DAG,
1494                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1495}
1496
1497SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1498                                              SelectionDAG &DAG) const {
1499  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1500    return getAddrNonPIC(Op, DAG);
1501
1502  return getAddrLocal(Op, DAG, HasMips64);
1503}
1504
1505SDValue MipsTargetLowering::
1506lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1507{
1508  // If the relocation model is PIC, use the General Dynamic TLS Model or
1509  // Local Dynamic TLS model, otherwise use the Initial Exec or
1510  // Local Exec TLS Model.
1511
1512  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1513  SDLoc DL(GA);
1514  const GlobalValue *GV = GA->getGlobal();
1515  EVT PtrVT = getPointerTy();
1516
1517  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1518
1519  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1520    // General Dynamic and Local Dynamic TLS Model.
1521    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1522                                                      : MipsII::MO_TLSGD;
1523
1524    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1525    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1526                                   getGlobalReg(DAG, PtrVT), TGA);
1527    unsigned PtrSize = PtrVT.getSizeInBits();
1528    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1529
1530    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1531
1532    ArgListTy Args;
1533    ArgListEntry Entry;
1534    Entry.Node = Argument;
1535    Entry.Ty = PtrTy;
1536    Args.push_back(Entry);
1537
1538    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1539                  false, false, false, false, 0, CallingConv::C,
1540                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1541                  /*isReturnValueUsed=*/true,
1542                  TlsGetAddr, Args, DAG, DL);
1543    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1544
1545    SDValue Ret = CallResult.first;
1546
1547    if (model != TLSModel::LocalDynamic)
1548      return Ret;
1549
1550    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1551                                               MipsII::MO_DTPREL_HI);
1552    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1553    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1554                                               MipsII::MO_DTPREL_LO);
1555    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1556    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1557    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1558  }
1559
1560  SDValue Offset;
1561  if (model == TLSModel::InitialExec) {
1562    // Initial Exec TLS Model
1563    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1564                                             MipsII::MO_GOTTPREL);
1565    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1566                      TGA);
1567    Offset = DAG.getLoad(PtrVT, DL,
1568                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1569                         false, false, false, 0);
1570  } else {
1571    // Local Exec TLS Model
1572    assert(model == TLSModel::LocalExec);
1573    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1574                                               MipsII::MO_TPREL_HI);
1575    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1576                                               MipsII::MO_TPREL_LO);
1577    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1578    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1579    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1580  }
1581
1582  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1583  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1584}
1585
1586SDValue MipsTargetLowering::
1587lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1588{
1589  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1590    return getAddrNonPIC(Op, DAG);
1591
1592  return getAddrLocal(Op, DAG, HasMips64);
1593}
1594
1595SDValue MipsTargetLowering::
1596lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1597{
1598  // gp_rel relocation
1599  // FIXME: we should reference the constant pool using small data sections,
1600  // but the asm printer currently doesn't support this feature without
1601  // hacking it. This feature should come soon so we can uncomment the
1602  // stuff below.
1603  //if (IsInSmallSection(C->getType())) {
1604  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1605  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1606  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1607
1608  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1609    return getAddrNonPIC(Op, DAG);
1610
1611  return getAddrLocal(Op, DAG, HasMips64);
1612}
1613
1614SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1615  MachineFunction &MF = DAG.getMachineFunction();
1616  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1617
1618  SDLoc DL(Op);
1619  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1620                                 getPointerTy());
1621
1622  // vastart just stores the address of the VarArgsFrameIndex slot into the
1623  // memory location argument.
1624  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1625  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1626                      MachinePointerInfo(SV), false, false, 0);
1627}
1628
1629static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1630  EVT TyX = Op.getOperand(0).getValueType();
1631  EVT TyY = Op.getOperand(1).getValueType();
1632  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1633  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1634  SDLoc DL(Op);
1635  SDValue Res;
1636
1637  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1638  // to i32.
1639  SDValue X = (TyX == MVT::f32) ?
1640    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1641    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1642                Const1);
1643  SDValue Y = (TyY == MVT::f32) ?
1644    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1645    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1646                Const1);
1647
1648  if (HasR2) {
1649    // ext  E, Y, 31, 1  ; extract bit31 of Y
1650    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1651    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1652    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1653  } else {
1654    // sll SllX, X, 1
1655    // srl SrlX, SllX, 1
1656    // srl SrlY, Y, 31
1657    // sll SllY, SrlX, 31
1658    // or  Or, SrlX, SllY
1659    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1660    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1661    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1662    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1663    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1664  }
1665
1666  if (TyX == MVT::f32)
1667    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1668
1669  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1670                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1671  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1672}
1673
1674static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1675  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1676  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1677  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1678  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1679  SDLoc DL(Op);
1680
1681  // Bitcast to integer nodes.
1682  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1683  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1684
1685  if (HasR2) {
1686    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1687    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1688    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1689                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1690
1691    if (WidthX > WidthY)
1692      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1693    else if (WidthY > WidthX)
1694      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1695
1696    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1697                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1698    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1699  }
1700
1701  // (d)sll SllX, X, 1
1702  // (d)srl SrlX, SllX, 1
1703  // (d)srl SrlY, Y, width(Y)-1
1704  // (d)sll SllY, SrlX, width(Y)-1
1705  // or     Or, SrlX, SllY
1706  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1707  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1708  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1709                             DAG.getConstant(WidthY - 1, MVT::i32));
1710
1711  if (WidthX > WidthY)
1712    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1713  else if (WidthY > WidthX)
1714    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1715
1716  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1717                             DAG.getConstant(WidthX - 1, MVT::i32));
1718  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1719  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1720}
1721
1722SDValue
1723MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1724  if (Subtarget->hasMips64())
1725    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1726
1727  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1728}
1729
1730static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1731  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1732  SDLoc DL(Op);
1733
1734  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1735  // to i32.
1736  SDValue X = (Op.getValueType() == MVT::f32) ?
1737    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1738    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1739                Const1);
1740
1741  // Clear MSB.
1742  if (HasR2)
1743    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1744                      DAG.getRegister(Mips::ZERO, MVT::i32),
1745                      DAG.getConstant(31, MVT::i32), Const1, X);
1746  else {
1747    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1748    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1749  }
1750
1751  if (Op.getValueType() == MVT::f32)
1752    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1753
1754  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1755                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1756  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1757}
1758
1759static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1760  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1761  SDLoc DL(Op);
1762
1763  // Bitcast to integer node.
1764  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1765
1766  // Clear MSB.
1767  if (HasR2)
1768    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1769                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1770                      DAG.getConstant(63, MVT::i32), Const1, X);
1771  else {
1772    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1773    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1774  }
1775
1776  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1777}
1778
1779SDValue
1780MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1781  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1782    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1783
1784  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1785}
1786
1787SDValue MipsTargetLowering::
1788lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1789  // check the depth
1790  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1791         "Frame address can only be determined for current frame.");
1792
1793  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1794  MFI->setFrameAddressIsTaken(true);
1795  EVT VT = Op.getValueType();
1796  SDLoc DL(Op);
1797  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1798                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1799  return FrameAddr;
1800}
1801
1802SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1803                                            SelectionDAG &DAG) const {
1804  // check the depth
1805  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1806         "Return address can be determined only for current frame.");
1807
1808  MachineFunction &MF = DAG.getMachineFunction();
1809  MachineFrameInfo *MFI = MF.getFrameInfo();
1810  MVT VT = Op.getSimpleValueType();
1811  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1812  MFI->setReturnAddressIsTaken(true);
1813
1814  // Return RA, which contains the return address. Mark it an implicit live-in.
1815  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1816  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1817}
1818
1819// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1820// generated from __builtin_eh_return (offset, handler)
1821// The effect of this is to adjust the stack pointer by "offset"
1822// and then branch to "handler".
1823SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1824                                                                     const {
1825  MachineFunction &MF = DAG.getMachineFunction();
1826  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1827
1828  MipsFI->setCallsEhReturn();
1829  SDValue Chain     = Op.getOperand(0);
1830  SDValue Offset    = Op.getOperand(1);
1831  SDValue Handler   = Op.getOperand(2);
1832  SDLoc DL(Op);
1833  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1834
1835  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1836  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1837  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1838  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1839  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1840  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1841  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1842                     DAG.getRegister(OffsetReg, Ty),
1843                     DAG.getRegister(AddrReg, getPointerTy()),
1844                     Chain.getValue(1));
1845}
1846
1847SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1848                                              SelectionDAG &DAG) const {
1849  // FIXME: Need pseudo-fence for 'singlethread' fences
1850  // FIXME: Set SType for weaker fences where supported/appropriate.
1851  unsigned SType = 0;
1852  SDLoc DL(Op);
1853  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1854                     DAG.getConstant(SType, MVT::i32));
1855}
1856
1857SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1858                                                SelectionDAG &DAG) const {
1859  SDLoc DL(Op);
1860  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1861  SDValue Shamt = Op.getOperand(2);
1862
1863  // if shamt < 32:
1864  //  lo = (shl lo, shamt)
1865  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1866  // else:
1867  //  lo = 0
1868  //  hi = (shl lo, shamt[4:0])
1869  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1870                            DAG.getConstant(-1, MVT::i32));
1871  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1872                                      DAG.getConstant(1, MVT::i32));
1873  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1874                                     Not);
1875  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1876  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1877  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1878  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1879                             DAG.getConstant(0x20, MVT::i32));
1880  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1881                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1882  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1883
1884  SDValue Ops[2] = {Lo, Hi};
1885  return DAG.getMergeValues(Ops, 2, DL);
1886}
1887
1888SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1889                                                 bool IsSRA) const {
1890  SDLoc DL(Op);
1891  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1892  SDValue Shamt = Op.getOperand(2);
1893
1894  // if shamt < 32:
1895  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1896  //  if isSRA:
1897  //    hi = (sra hi, shamt)
1898  //  else:
1899  //    hi = (srl hi, shamt)
1900  // else:
1901  //  if isSRA:
1902  //   lo = (sra hi, shamt[4:0])
1903  //   hi = (sra hi, 31)
1904  //  else:
1905  //   lo = (srl hi, shamt[4:0])
1906  //   hi = 0
1907  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1908                            DAG.getConstant(-1, MVT::i32));
1909  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1910                                     DAG.getConstant(1, MVT::i32));
1911  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1912  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1913  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1914  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1915                                     Hi, Shamt);
1916  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1917                             DAG.getConstant(0x20, MVT::i32));
1918  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1919                                DAG.getConstant(31, MVT::i32));
1920  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1921  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1922                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1923                   ShiftRightHi);
1924
1925  SDValue Ops[2] = {Lo, Hi};
1926  return DAG.getMergeValues(Ops, 2, DL);
1927}
1928
1929static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1930                            SDValue Chain, SDValue Src, unsigned Offset) {
1931  SDValue Ptr = LD->getBasePtr();
1932  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1933  EVT BasePtrVT = Ptr.getValueType();
1934  SDLoc DL(LD);
1935  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1936
1937  if (Offset)
1938    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1939                      DAG.getConstant(Offset, BasePtrVT));
1940
1941  SDValue Ops[] = { Chain, Ptr, Src };
1942  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1943                                 LD->getMemOperand());
1944}
1945
1946// Expand an unaligned 32 or 64-bit integer load node.
1947SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1948  LoadSDNode *LD = cast<LoadSDNode>(Op);
1949  EVT MemVT = LD->getMemoryVT();
1950
1951  // Return if load is aligned or if MemVT is neither i32 nor i64.
1952  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1953      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1954    return SDValue();
1955
1956  bool IsLittle = Subtarget->isLittle();
1957  EVT VT = Op.getValueType();
1958  ISD::LoadExtType ExtType = LD->getExtensionType();
1959  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1960
1961  assert((VT == MVT::i32) || (VT == MVT::i64));
1962
1963  // Expand
1964  //  (set dst, (i64 (load baseptr)))
1965  // to
1966  //  (set tmp, (ldl (add baseptr, 7), undef))
1967  //  (set dst, (ldr baseptr, tmp))
1968  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1969    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1970                               IsLittle ? 7 : 0);
1971    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1972                        IsLittle ? 0 : 7);
1973  }
1974
1975  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1976                             IsLittle ? 3 : 0);
1977  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1978                             IsLittle ? 0 : 3);
1979
1980  // Expand
1981  //  (set dst, (i32 (load baseptr))) or
1982  //  (set dst, (i64 (sextload baseptr))) or
1983  //  (set dst, (i64 (extload baseptr)))
1984  // to
1985  //  (set tmp, (lwl (add baseptr, 3), undef))
1986  //  (set dst, (lwr baseptr, tmp))
1987  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1988      (ExtType == ISD::EXTLOAD))
1989    return LWR;
1990
1991  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
1992
1993  // Expand
1994  //  (set dst, (i64 (zextload baseptr)))
1995  // to
1996  //  (set tmp0, (lwl (add baseptr, 3), undef))
1997  //  (set tmp1, (lwr baseptr, tmp0))
1998  //  (set tmp2, (shl tmp1, 32))
1999  //  (set dst, (srl tmp2, 32))
2000  SDLoc DL(LD);
2001  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2002  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2003  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2004  SDValue Ops[] = { SRL, LWR.getValue(1) };
2005  return DAG.getMergeValues(Ops, 2, DL);
2006}
2007
2008static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2009                             SDValue Chain, unsigned Offset) {
2010  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2011  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2012  SDLoc DL(SD);
2013  SDVTList VTList = DAG.getVTList(MVT::Other);
2014
2015  if (Offset)
2016    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2017                      DAG.getConstant(Offset, BasePtrVT));
2018
2019  SDValue Ops[] = { Chain, Value, Ptr };
2020  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2021                                 SD->getMemOperand());
2022}
2023
2024// Expand an unaligned 32 or 64-bit integer store node.
2025static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2026                                      bool IsLittle) {
2027  SDValue Value = SD->getValue(), Chain = SD->getChain();
2028  EVT VT = Value.getValueType();
2029
2030  // Expand
2031  //  (store val, baseptr) or
2032  //  (truncstore val, baseptr)
2033  // to
2034  //  (swl val, (add baseptr, 3))
2035  //  (swr val, baseptr)
2036  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2037    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2038                                IsLittle ? 3 : 0);
2039    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2040  }
2041
2042  assert(VT == MVT::i64);
2043
2044  // Expand
2045  //  (store val, baseptr)
2046  // to
2047  //  (sdl val, (add baseptr, 7))
2048  //  (sdr val, baseptr)
2049  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2050  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2051}
2052
2053// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2054static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2055  SDValue Val = SD->getValue();
2056
2057  if (Val.getOpcode() != ISD::FP_TO_SINT)
2058    return SDValue();
2059
2060  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2061  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2062                           Val.getOperand(0));
2063
2064  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2065                      SD->getPointerInfo(), SD->isVolatile(),
2066                      SD->isNonTemporal(), SD->getAlignment());
2067}
2068
2069SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2070  StoreSDNode *SD = cast<StoreSDNode>(Op);
2071  EVT MemVT = SD->getMemoryVT();
2072
2073  // Lower unaligned integer stores.
2074  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2075      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2076    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2077
2078  return lowerFP_TO_SINT_STORE(SD, DAG);
2079}
2080
2081SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2082  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2083      || cast<ConstantSDNode>
2084        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2085      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2086    return SDValue();
2087
2088  // The pattern
2089  //   (add (frameaddr 0), (frame_to_args_offset))
2090  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2091  //   (add FrameObject, 0)
2092  // where FrameObject is a fixed StackObject with offset 0 which points to
2093  // the old stack pointer.
2094  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2095  EVT ValTy = Op->getValueType(0);
2096  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2097  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2098  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2099                     DAG.getConstant(0, ValTy));
2100}
2101
2102SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2103                                            SelectionDAG &DAG) const {
2104  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2105  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2106                              Op.getOperand(0));
2107  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2108}
2109
2110//===----------------------------------------------------------------------===//
2111//                      Calling Convention Implementation
2112//===----------------------------------------------------------------------===//
2113
2114//===----------------------------------------------------------------------===//
2115// TODO: Implement a generic logic using tblgen that can support this.
2116// Mips O32 ABI rules:
2117// ---
2118// i32 - Passed in A0, A1, A2, A3 and stack
2119// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2120//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2121// f64 - Only passed in two aliased f32 registers if no int reg has been used
2122//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2123//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2124//       go to stack.
2125//
2126//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2127//===----------------------------------------------------------------------===//
2128
2129static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2130                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2131                       ISD::ArgFlagsTy ArgFlags, CCState &State,
2132                       const uint16_t *F64Regs) {
2133
2134  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2135
2136  static const uint16_t IntRegs[] = {
2137      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2138  };
2139  static const uint16_t F32Regs[] = {
2140      Mips::F12, Mips::F14
2141  };
2142
2143  // Do not process byval args here.
2144  if (ArgFlags.isByVal())
2145    return true;
2146
2147  // Promote i8 and i16
2148  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2149    LocVT = MVT::i32;
2150    if (ArgFlags.isSExt())
2151      LocInfo = CCValAssign::SExt;
2152    else if (ArgFlags.isZExt())
2153      LocInfo = CCValAssign::ZExt;
2154    else
2155      LocInfo = CCValAssign::AExt;
2156  }
2157
2158  unsigned Reg;
2159
2160  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2161  // is true: function is vararg, argument is 3rd or higher, there is previous
2162  // argument which is not f32 or f64.
2163  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2164      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2165  unsigned OrigAlign = ArgFlags.getOrigAlign();
2166  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2167
2168  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2169    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2170    // If this is the first part of an i64 arg,
2171    // the allocated register must be either A0 or A2.
2172    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2173      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2174    LocVT = MVT::i32;
2175  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2176    // Allocate int register and shadow next int register. If first
2177    // available register is Mips::A1 or Mips::A3, shadow it too.
2178    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2179    if (Reg == Mips::A1 || Reg == Mips::A3)
2180      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2181    State.AllocateReg(IntRegs, IntRegsSize);
2182    LocVT = MVT::i32;
2183  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2184    // we are guaranteed to find an available float register
2185    if (ValVT == MVT::f32) {
2186      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2187      // Shadow int register
2188      State.AllocateReg(IntRegs, IntRegsSize);
2189    } else {
2190      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2191      // Shadow int registers
2192      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2193      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2194        State.AllocateReg(IntRegs, IntRegsSize);
2195      State.AllocateReg(IntRegs, IntRegsSize);
2196    }
2197  } else
2198    llvm_unreachable("Cannot handle this ValVT.");
2199
2200  if (!Reg) {
2201    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2202                                          OrigAlign);
2203    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2204  } else
2205    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2206
2207  return false;
2208}
2209
2210static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2211                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2212                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2213  static const uint16_t F64Regs[] = { Mips::D6, Mips::D7 };
2214
2215  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2216}
2217
2218static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2219                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2220                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2221  static const uint16_t F64Regs[] = { Mips::D12_64, Mips::D12_64 };
2222
2223  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2224}
2225
2226#include "MipsGenCallingConv.inc"
2227
2228//===----------------------------------------------------------------------===//
2229//                  Call Calling Convention Implementation
2230//===----------------------------------------------------------------------===//
2231
2232// Return next O32 integer argument register.
2233static unsigned getNextIntArgReg(unsigned Reg) {
2234  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2235  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2236}
2237
2238SDValue
2239MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2240                                   SDValue Chain, SDValue Arg, SDLoc DL,
2241                                   bool IsTailCall, SelectionDAG &DAG) const {
2242  if (!IsTailCall) {
2243    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2244                                 DAG.getIntPtrConstant(Offset));
2245    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2246                        false, 0);
2247  }
2248
2249  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2250  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2251  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2252  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2253                      /*isVolatile=*/ true, false, 0);
2254}
2255
2256void MipsTargetLowering::
2257getOpndList(SmallVectorImpl<SDValue> &Ops,
2258            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2259            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2260            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2261  // Insert node "GP copy globalreg" before call to function.
2262  //
2263  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2264  // in PIC mode) allow symbols to be resolved via lazy binding.
2265  // The lazy binding stub requires GP to point to the GOT.
2266  if (IsPICCall && !InternalLinkage) {
2267    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2268    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2269    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2270  }
2271
2272  // Build a sequence of copy-to-reg nodes chained together with token
2273  // chain and flag operands which copy the outgoing args into registers.
2274  // The InFlag in necessary since all emitted instructions must be
2275  // stuck together.
2276  SDValue InFlag;
2277
2278  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2279    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2280                                 RegsToPass[i].second, InFlag);
2281    InFlag = Chain.getValue(1);
2282  }
2283
2284  // Add argument registers to the end of the list so that they are
2285  // known live into the call.
2286  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2287    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2288                                      RegsToPass[i].second.getValueType()));
2289
2290  // Add a register mask operand representing the call-preserved registers.
2291  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2292  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2293  assert(Mask && "Missing call preserved mask for calling convention");
2294  if (Subtarget->inMips16HardFloat()) {
2295    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2296      llvm::StringRef Sym = G->getGlobal()->getName();
2297      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2298      if (F->hasFnAttribute("__Mips16RetHelper")) {
2299        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2300      }
2301    }
2302  }
2303  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2304
2305  if (InFlag.getNode())
2306    Ops.push_back(InFlag);
2307}
2308
2309/// LowerCall - functions arguments are copied from virtual regs to
2310/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2311SDValue
2312MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2313                              SmallVectorImpl<SDValue> &InVals) const {
2314  SelectionDAG &DAG                     = CLI.DAG;
2315  SDLoc DL                              = CLI.DL;
2316  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2317  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2318  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2319  SDValue Chain                         = CLI.Chain;
2320  SDValue Callee                        = CLI.Callee;
2321  bool &IsTailCall                      = CLI.IsTailCall;
2322  CallingConv::ID CallConv              = CLI.CallConv;
2323  bool IsVarArg                         = CLI.IsVarArg;
2324
2325  MachineFunction &MF = DAG.getMachineFunction();
2326  MachineFrameInfo *MFI = MF.getFrameInfo();
2327  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2328  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2329
2330  // Analyze operands of the call, assigning locations to each operand.
2331  SmallVector<CCValAssign, 16> ArgLocs;
2332  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2333                 getTargetMachine(), ArgLocs, *DAG.getContext());
2334  MipsCC::SpecialCallingConvType SpecialCallingConv =
2335    getSpecialCallingConv(Callee);
2336  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo,
2337                    SpecialCallingConv);
2338
2339  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2340                                 Subtarget->mipsSEUsesSoftFloat(),
2341                                 Callee.getNode(), CLI.Args);
2342
2343  // Get a count of how many bytes are to be pushed on the stack.
2344  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2345
2346  // Check if it's really possible to do a tail call.
2347  if (IsTailCall)
2348    IsTailCall =
2349      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2350                                        *MF.getInfo<MipsFunctionInfo>());
2351
2352  if (IsTailCall)
2353    ++NumTailCalls;
2354
2355  // Chain is the output chain of the last Load/Store or CopyToReg node.
2356  // ByValChain is the output chain of the last Memcpy node created for copying
2357  // byval arguments to the stack.
2358  unsigned StackAlignment = TFL->getStackAlignment();
2359  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2360  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2361
2362  if (!IsTailCall)
2363    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2364
2365  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2366                                        IsN64 ? Mips::SP_64 : Mips::SP,
2367                                        getPointerTy());
2368
2369  // With EABI is it possible to have 16 args on registers.
2370  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2371  SmallVector<SDValue, 8> MemOpChains;
2372  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2373
2374  // Walk the register/memloc assignments, inserting copies/loads.
2375  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2376    SDValue Arg = OutVals[i];
2377    CCValAssign &VA = ArgLocs[i];
2378    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2379    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2380
2381    // ByVal Arg.
2382    if (Flags.isByVal()) {
2383      assert(Flags.getByValSize() &&
2384             "ByVal args of size 0 should have been ignored by front-end.");
2385      assert(ByValArg != MipsCCInfo.byval_end());
2386      assert(!IsTailCall &&
2387             "Do not tail-call optimize if there is a byval argument.");
2388      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2389                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2390      ++ByValArg;
2391      continue;
2392    }
2393
2394    // Promote the value if needed.
2395    switch (VA.getLocInfo()) {
2396    default: llvm_unreachable("Unknown loc info!");
2397    case CCValAssign::Full:
2398      if (VA.isRegLoc()) {
2399        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2400            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2401            (ValVT == MVT::i64 && LocVT == MVT::f64))
2402          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2403        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2404          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2405                                   Arg, DAG.getConstant(0, MVT::i32));
2406          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2407                                   Arg, DAG.getConstant(1, MVT::i32));
2408          if (!Subtarget->isLittle())
2409            std::swap(Lo, Hi);
2410          unsigned LocRegLo = VA.getLocReg();
2411          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2412          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2413          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2414          continue;
2415        }
2416      }
2417      break;
2418    case CCValAssign::SExt:
2419      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2420      break;
2421    case CCValAssign::ZExt:
2422      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2423      break;
2424    case CCValAssign::AExt:
2425      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2426      break;
2427    }
2428
2429    // Arguments that can be passed on register must be kept at
2430    // RegsToPass vector
2431    if (VA.isRegLoc()) {
2432      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2433      continue;
2434    }
2435
2436    // Register can't get to this point...
2437    assert(VA.isMemLoc());
2438
2439    // emit ISD::STORE whichs stores the
2440    // parameter value to a stack Location
2441    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2442                                         Chain, Arg, DL, IsTailCall, DAG));
2443  }
2444
2445  // Transform all store nodes into one single node because all store
2446  // nodes are independent of each other.
2447  if (!MemOpChains.empty())
2448    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2449                        &MemOpChains[0], MemOpChains.size());
2450
2451  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2452  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2453  // node so that legalize doesn't hack it.
2454  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2455  bool GlobalOrExternal = false, InternalLinkage = false;
2456  SDValue CalleeLo;
2457
2458  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2459    if (IsPICCall) {
2460      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2461
2462      if (InternalLinkage)
2463        Callee = getAddrLocal(Callee, DAG, HasMips64);
2464      else if (LargeGOT)
2465        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2466                                       MipsII::MO_CALL_LO16);
2467      else
2468        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2469    } else
2470      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2471                                          MipsII::MO_NO_FLAG);
2472    GlobalOrExternal = true;
2473  }
2474  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2475    if (!IsN64 && !IsPIC) // !N64 && static
2476      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2477                                            MipsII::MO_NO_FLAG);
2478    else if (LargeGOT)
2479      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2480                                     MipsII::MO_CALL_LO16);
2481    else // N64 || PIC
2482      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2483
2484    GlobalOrExternal = true;
2485  }
2486
2487  SmallVector<SDValue, 8> Ops(1, Chain);
2488  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2489
2490  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2491              CLI, Callee, Chain);
2492
2493  if (IsTailCall)
2494    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2495
2496  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2497  SDValue InFlag = Chain.getValue(1);
2498
2499  // Create the CALLSEQ_END node.
2500  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2501                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2502  InFlag = Chain.getValue(1);
2503
2504  // Handle result values, copying them out of physregs into vregs that we
2505  // return.
2506  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2507                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2508}
2509
2510/// LowerCallResult - Lower the result values of a call into the
2511/// appropriate copies out of appropriate physical registers.
2512SDValue
2513MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2514                                    CallingConv::ID CallConv, bool IsVarArg,
2515                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2516                                    SDLoc DL, SelectionDAG &DAG,
2517                                    SmallVectorImpl<SDValue> &InVals,
2518                                    const SDNode *CallNode,
2519                                    const Type *RetTy) const {
2520  // Assign locations to each value returned by this call.
2521  SmallVector<CCValAssign, 16> RVLocs;
2522  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2523                 getTargetMachine(), RVLocs, *DAG.getContext());
2524  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2525
2526  MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
2527                               CallNode, RetTy);
2528
2529  // Copy all of the result registers out of their specified physreg.
2530  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2531    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2532                                     RVLocs[i].getLocVT(), InFlag);
2533    Chain = Val.getValue(1);
2534    InFlag = Val.getValue(2);
2535
2536    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2537      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2538
2539    InVals.push_back(Val);
2540  }
2541
2542  return Chain;
2543}
2544
2545//===----------------------------------------------------------------------===//
2546//             Formal Arguments Calling Convention Implementation
2547//===----------------------------------------------------------------------===//
2548/// LowerFormalArguments - transform physical registers into virtual registers
2549/// and generate load operations for arguments places on the stack.
2550SDValue
2551MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2552                                         CallingConv::ID CallConv,
2553                                         bool IsVarArg,
2554                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2555                                         SDLoc DL, SelectionDAG &DAG,
2556                                         SmallVectorImpl<SDValue> &InVals)
2557                                          const {
2558  MachineFunction &MF = DAG.getMachineFunction();
2559  MachineFrameInfo *MFI = MF.getFrameInfo();
2560  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2561
2562  MipsFI->setVarArgsFrameIndex(0);
2563
2564  // Used with vargs to acumulate store chains.
2565  std::vector<SDValue> OutChains;
2566
2567  // Assign locations to all of the incoming arguments.
2568  SmallVector<CCValAssign, 16> ArgLocs;
2569  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2570                 getTargetMachine(), ArgLocs, *DAG.getContext());
2571  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2572  Function::const_arg_iterator FuncArg =
2573    DAG.getMachineFunction().getFunction()->arg_begin();
2574  bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
2575
2576  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2577  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2578                           MipsCCInfo.hasByValArg());
2579
2580  unsigned CurArgIdx = 0;
2581  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2582
2583  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2584    CCValAssign &VA = ArgLocs[i];
2585    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2586    CurArgIdx = Ins[i].OrigArgIndex;
2587    EVT ValVT = VA.getValVT();
2588    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2589    bool IsRegLoc = VA.isRegLoc();
2590
2591    if (Flags.isByVal()) {
2592      assert(Flags.getByValSize() &&
2593             "ByVal args of size 0 should have been ignored by front-end.");
2594      assert(ByValArg != MipsCCInfo.byval_end());
2595      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2596                    MipsCCInfo, *ByValArg);
2597      ++ByValArg;
2598      continue;
2599    }
2600
2601    // Arguments stored on registers
2602    if (IsRegLoc) {
2603      EVT RegVT = VA.getLocVT();
2604      unsigned ArgReg = VA.getLocReg();
2605      const TargetRegisterClass *RC;
2606
2607      if (RegVT == MVT::i32)
2608        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2609                                        &Mips::GPR32RegClass;
2610      else if (RegVT == MVT::i64)
2611        RC = &Mips::GPR64RegClass;
2612      else if (RegVT == MVT::f32)
2613        RC = &Mips::FGR32RegClass;
2614      else if (RegVT == MVT::f64)
2615        RC = Subtarget->isFP64bit() ? &Mips::FGR64RegClass :
2616                                      &Mips::AFGR64RegClass;
2617      else
2618        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2619
2620      // Transform the arguments stored on
2621      // physical registers into virtual ones
2622      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2623      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2624
2625      // If this is an 8 or 16-bit value, it has been passed promoted
2626      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2627      // truncate to the right size.
2628      if (VA.getLocInfo() != CCValAssign::Full) {
2629        unsigned Opcode = 0;
2630        if (VA.getLocInfo() == CCValAssign::SExt)
2631          Opcode = ISD::AssertSext;
2632        else if (VA.getLocInfo() == CCValAssign::ZExt)
2633          Opcode = ISD::AssertZext;
2634        if (Opcode)
2635          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2636                                 DAG.getValueType(ValVT));
2637        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2638      }
2639
2640      // Handle floating point arguments passed in integer registers and
2641      // long double arguments passed in floating point registers.
2642      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2643          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2644          (RegVT == MVT::f64 && ValVT == MVT::i64))
2645        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2646      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2647        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2648                                  getNextIntArgReg(ArgReg), RC);
2649        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2650        if (!Subtarget->isLittle())
2651          std::swap(ArgValue, ArgValue2);
2652        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2653                               ArgValue, ArgValue2);
2654      }
2655
2656      InVals.push_back(ArgValue);
2657    } else { // VA.isRegLoc()
2658
2659      // sanity check
2660      assert(VA.isMemLoc());
2661
2662      // The stack pointer offset is relative to the caller stack frame.
2663      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2664                                      VA.getLocMemOffset(), true);
2665
2666      // Create load nodes to retrieve arguments from the stack
2667      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2668      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2669                                   MachinePointerInfo::getFixedStack(FI),
2670                                   false, false, false, 0));
2671    }
2672  }
2673
2674  // The mips ABIs for returning structs by value requires that we copy
2675  // the sret argument into $v0 for the return. Save the argument into
2676  // a virtual register so that we can access it from the return points.
2677  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2678    unsigned Reg = MipsFI->getSRetReturnReg();
2679    if (!Reg) {
2680      Reg = MF.getRegInfo().
2681        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2682      MipsFI->setSRetReturnReg(Reg);
2683    }
2684    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2685    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2686  }
2687
2688  if (IsVarArg)
2689    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2690
2691  // All stores are grouped in one node to allow the matching between
2692  // the size of Ins and InVals. This only happens when on varg functions
2693  if (!OutChains.empty()) {
2694    OutChains.push_back(Chain);
2695    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2696                        &OutChains[0], OutChains.size());
2697  }
2698
2699  return Chain;
2700}
2701
2702//===----------------------------------------------------------------------===//
2703//               Return Value Calling Convention Implementation
2704//===----------------------------------------------------------------------===//
2705
2706bool
2707MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2708                                   MachineFunction &MF, bool IsVarArg,
2709                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2710                                   LLVMContext &Context) const {
2711  SmallVector<CCValAssign, 16> RVLocs;
2712  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2713                 RVLocs, Context);
2714  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2715}
2716
2717SDValue
2718MipsTargetLowering::LowerReturn(SDValue Chain,
2719                                CallingConv::ID CallConv, bool IsVarArg,
2720                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2721                                const SmallVectorImpl<SDValue> &OutVals,
2722                                SDLoc DL, SelectionDAG &DAG) const {
2723  // CCValAssign - represent the assignment of
2724  // the return value to a location
2725  SmallVector<CCValAssign, 16> RVLocs;
2726  MachineFunction &MF = DAG.getMachineFunction();
2727
2728  // CCState - Info about the registers and stack slot.
2729  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2730                 *DAG.getContext());
2731  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2732
2733  // Analyze return values.
2734  MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
2735                           MF.getFunction()->getReturnType());
2736
2737  SDValue Flag;
2738  SmallVector<SDValue, 4> RetOps(1, Chain);
2739
2740  // Copy the result values into the output registers.
2741  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2742    SDValue Val = OutVals[i];
2743    CCValAssign &VA = RVLocs[i];
2744    assert(VA.isRegLoc() && "Can only return in registers!");
2745
2746    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2747      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2748
2749    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2750
2751    // Guarantee that all emitted copies are stuck together with flags.
2752    Flag = Chain.getValue(1);
2753    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2754  }
2755
2756  // The mips ABIs for returning structs by value requires that we copy
2757  // the sret argument into $v0 for the return. We saved the argument into
2758  // a virtual register in the entry block, so now we copy the value out
2759  // and into $v0.
2760  if (MF.getFunction()->hasStructRetAttr()) {
2761    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2762    unsigned Reg = MipsFI->getSRetReturnReg();
2763
2764    if (!Reg)
2765      llvm_unreachable("sret virtual register not created in the entry block");
2766    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2767    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2768
2769    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2770    Flag = Chain.getValue(1);
2771    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2772  }
2773
2774  RetOps[0] = Chain;  // Update chain.
2775
2776  // Add the flag if we have it.
2777  if (Flag.getNode())
2778    RetOps.push_back(Flag);
2779
2780  // Return on Mips is always a "jr $ra"
2781  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2782}
2783
2784//===----------------------------------------------------------------------===//
2785//                           Mips Inline Assembly Support
2786//===----------------------------------------------------------------------===//
2787
2788/// getConstraintType - Given a constraint letter, return the type of
2789/// constraint it is for this target.
2790MipsTargetLowering::ConstraintType MipsTargetLowering::
2791getConstraintType(const std::string &Constraint) const
2792{
2793  // Mips specific constrainy
2794  // GCC config/mips/constraints.md
2795  //
2796  // 'd' : An address register. Equivalent to r
2797  //       unless generating MIPS16 code.
2798  // 'y' : Equivalent to r; retained for
2799  //       backwards compatibility.
2800  // 'c' : A register suitable for use in an indirect
2801  //       jump. This will always be $25 for -mabicalls.
2802  // 'l' : The lo register. 1 word storage.
2803  // 'x' : The hilo register pair. Double word storage.
2804  if (Constraint.size() == 1) {
2805    switch (Constraint[0]) {
2806      default : break;
2807      case 'd':
2808      case 'y':
2809      case 'f':
2810      case 'c':
2811      case 'l':
2812      case 'x':
2813        return C_RegisterClass;
2814      case 'R':
2815        return C_Memory;
2816    }
2817  }
2818  return TargetLowering::getConstraintType(Constraint);
2819}
2820
2821/// Examine constraint type and operand type and determine a weight value.
2822/// This object must already have been set up with the operand type
2823/// and the current alternative constraint selected.
2824TargetLowering::ConstraintWeight
2825MipsTargetLowering::getSingleConstraintMatchWeight(
2826    AsmOperandInfo &info, const char *constraint) const {
2827  ConstraintWeight weight = CW_Invalid;
2828  Value *CallOperandVal = info.CallOperandVal;
2829    // If we don't have a value, we can't do a match,
2830    // but allow it at the lowest weight.
2831  if (CallOperandVal == NULL)
2832    return CW_Default;
2833  Type *type = CallOperandVal->getType();
2834  // Look at the constraint type.
2835  switch (*constraint) {
2836  default:
2837    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2838    break;
2839  case 'd':
2840  case 'y':
2841    if (type->isIntegerTy())
2842      weight = CW_Register;
2843    break;
2844  case 'f':
2845    if (type->isFloatTy())
2846      weight = CW_Register;
2847    break;
2848  case 'c': // $25 for indirect jumps
2849  case 'l': // lo register
2850  case 'x': // hilo register pair
2851      if (type->isIntegerTy())
2852      weight = CW_SpecificReg;
2853      break;
2854  case 'I': // signed 16 bit immediate
2855  case 'J': // integer zero
2856  case 'K': // unsigned 16 bit immediate
2857  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2858  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2859  case 'O': // signed 15 bit immediate (+- 16383)
2860  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2861    if (isa<ConstantInt>(CallOperandVal))
2862      weight = CW_Constant;
2863    break;
2864  case 'R':
2865    weight = CW_Memory;
2866    break;
2867  }
2868  return weight;
2869}
2870
2871/// This is a helper function to parse a physical register string and split it
2872/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
2873/// that is returned indicates whether parsing was successful. The second flag
2874/// is true if the numeric part exists.
2875static std::pair<bool, bool>
2876parsePhysicalReg(const StringRef &C, std::string &Prefix,
2877                 unsigned long long &Reg) {
2878  if (C.front() != '{' || C.back() != '}')
2879    return std::make_pair(false, false);
2880
2881  // Search for the first numeric character.
2882  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
2883  I = std::find_if(B, E, std::ptr_fun(isdigit));
2884
2885  Prefix.assign(B, I - B);
2886
2887  // The second flag is set to false if no numeric characters were found.
2888  if (I == E)
2889    return std::make_pair(true, false);
2890
2891  // Parse the numeric characters.
2892  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
2893                        true);
2894}
2895
2896std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
2897parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
2898  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2899  const TargetRegisterClass *RC;
2900  std::string Prefix;
2901  unsigned long long Reg;
2902
2903  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
2904
2905  if (!R.first)
2906    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2907
2908  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
2909    // No numeric characters follow "hi" or "lo".
2910    if (R.second)
2911      return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2912
2913    RC = TRI->getRegClass(Prefix == "hi" ?
2914                          Mips::HI32RegClassID : Mips::LO32RegClassID);
2915    return std::make_pair(*(RC->begin()), RC);
2916  }
2917
2918  if (!R.second)
2919    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2920
2921  if (Prefix == "$f") { // Parse $f0-$f31.
2922    // If the size of FP registers is 64-bit or Reg is an even number, select
2923    // the 64-bit register class. Otherwise, select the 32-bit register class.
2924    if (VT == MVT::Other)
2925      VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
2926
2927    RC= getRegClassFor(VT);
2928
2929    if (RC == &Mips::AFGR64RegClass) {
2930      assert(Reg % 2 == 0);
2931      Reg >>= 1;
2932    }
2933  } else if (Prefix == "$fcc") { // Parse $fcc0-$fcc7.
2934    RC = TRI->getRegClass(Mips::FCCRegClassID);
2935  } else { // Parse $0-$31.
2936    assert(Prefix == "$");
2937    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
2938  }
2939
2940  assert(Reg < RC->getNumRegs());
2941  return std::make_pair(*(RC->begin() + Reg), RC);
2942}
2943
2944/// Given a register class constraint, like 'r', if this corresponds directly
2945/// to an LLVM register class, return a register of 0 and the register class
2946/// pointer.
2947std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2948getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2949{
2950  if (Constraint.size() == 1) {
2951    switch (Constraint[0]) {
2952    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2953    case 'y': // Same as 'r'. Exists for compatibility.
2954    case 'r':
2955      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2956        if (Subtarget->inMips16Mode())
2957          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2958        return std::make_pair(0U, &Mips::GPR32RegClass);
2959      }
2960      if (VT == MVT::i64 && !HasMips64)
2961        return std::make_pair(0U, &Mips::GPR32RegClass);
2962      if (VT == MVT::i64 && HasMips64)
2963        return std::make_pair(0U, &Mips::GPR64RegClass);
2964      // This will generate an error message
2965      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2966    case 'f':
2967      if (VT == MVT::f32)
2968        return std::make_pair(0U, &Mips::FGR32RegClass);
2969      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2970        if (Subtarget->isFP64bit())
2971          return std::make_pair(0U, &Mips::FGR64RegClass);
2972        return std::make_pair(0U, &Mips::AFGR64RegClass);
2973      }
2974      break;
2975    case 'c': // register suitable for indirect jump
2976      if (VT == MVT::i32)
2977        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
2978      assert(VT == MVT::i64 && "Unexpected type.");
2979      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
2980    case 'l': // register suitable for indirect jump
2981      if (VT == MVT::i32)
2982        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
2983      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
2984    case 'x': // register suitable for indirect jump
2985      // Fixme: Not triggering the use of both hi and low
2986      // This will generate an error message
2987      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2988    }
2989  }
2990
2991  std::pair<unsigned, const TargetRegisterClass *> R;
2992  R = parseRegForInlineAsmConstraint(Constraint, VT);
2993
2994  if (R.second)
2995    return R;
2996
2997  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2998}
2999
3000/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3001/// vector.  If it is invalid, don't add anything to Ops.
3002void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3003                                                     std::string &Constraint,
3004                                                     std::vector<SDValue>&Ops,
3005                                                     SelectionDAG &DAG) const {
3006  SDValue Result(0, 0);
3007
3008  // Only support length 1 constraints for now.
3009  if (Constraint.length() > 1) return;
3010
3011  char ConstraintLetter = Constraint[0];
3012  switch (ConstraintLetter) {
3013  default: break; // This will fall through to the generic implementation
3014  case 'I': // Signed 16 bit constant
3015    // If this fails, the parent routine will give an error
3016    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3017      EVT Type = Op.getValueType();
3018      int64_t Val = C->getSExtValue();
3019      if (isInt<16>(Val)) {
3020        Result = DAG.getTargetConstant(Val, Type);
3021        break;
3022      }
3023    }
3024    return;
3025  case 'J': // integer zero
3026    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3027      EVT Type = Op.getValueType();
3028      int64_t Val = C->getZExtValue();
3029      if (Val == 0) {
3030        Result = DAG.getTargetConstant(0, Type);
3031        break;
3032      }
3033    }
3034    return;
3035  case 'K': // unsigned 16 bit immediate
3036    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3037      EVT Type = Op.getValueType();
3038      uint64_t Val = (uint64_t)C->getZExtValue();
3039      if (isUInt<16>(Val)) {
3040        Result = DAG.getTargetConstant(Val, Type);
3041        break;
3042      }
3043    }
3044    return;
3045  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3046    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3047      EVT Type = Op.getValueType();
3048      int64_t Val = C->getSExtValue();
3049      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3050        Result = DAG.getTargetConstant(Val, Type);
3051        break;
3052      }
3053    }
3054    return;
3055  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3056    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3057      EVT Type = Op.getValueType();
3058      int64_t Val = C->getSExtValue();
3059      if ((Val >= -65535) && (Val <= -1)) {
3060        Result = DAG.getTargetConstant(Val, Type);
3061        break;
3062      }
3063    }
3064    return;
3065  case 'O': // signed 15 bit immediate
3066    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3067      EVT Type = Op.getValueType();
3068      int64_t Val = C->getSExtValue();
3069      if ((isInt<15>(Val))) {
3070        Result = DAG.getTargetConstant(Val, Type);
3071        break;
3072      }
3073    }
3074    return;
3075  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3076    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3077      EVT Type = Op.getValueType();
3078      int64_t Val = C->getSExtValue();
3079      if ((Val <= 65535) && (Val >= 1)) {
3080        Result = DAG.getTargetConstant(Val, Type);
3081        break;
3082      }
3083    }
3084    return;
3085  }
3086
3087  if (Result.getNode()) {
3088    Ops.push_back(Result);
3089    return;
3090  }
3091
3092  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3093}
3094
3095bool
3096MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3097  // No global is ever allowed as a base.
3098  if (AM.BaseGV)
3099    return false;
3100
3101  switch (AM.Scale) {
3102  case 0: // "r+i" or just "i", depending on HasBaseReg.
3103    break;
3104  case 1:
3105    if (!AM.HasBaseReg) // allow "r+i".
3106      break;
3107    return false; // disallow "r+r" or "r+r+i".
3108  default:
3109    return false;
3110  }
3111
3112  return true;
3113}
3114
3115bool
3116MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3117  // The Mips target isn't yet aware of offsets.
3118  return false;
3119}
3120
3121EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3122                                            unsigned SrcAlign,
3123                                            bool IsMemset, bool ZeroMemset,
3124                                            bool MemcpyStrSrc,
3125                                            MachineFunction &MF) const {
3126  if (Subtarget->hasMips64())
3127    return MVT::i64;
3128
3129  return MVT::i32;
3130}
3131
3132bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3133  if (VT != MVT::f32 && VT != MVT::f64)
3134    return false;
3135  if (Imm.isNegZero())
3136    return false;
3137  return Imm.isZero();
3138}
3139
3140unsigned MipsTargetLowering::getJumpTableEncoding() const {
3141  if (IsN64)
3142    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3143
3144  return TargetLowering::getJumpTableEncoding();
3145}
3146
3147/// This function returns true if CallSym is a long double emulation routine.
3148static bool isF128SoftLibCall(const char *CallSym) {
3149  const char *const LibCalls[] =
3150    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3151     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3152     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3153     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3154     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3155     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3156     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3157     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3158     "truncl"};
3159
3160  const char * const *End = LibCalls + array_lengthof(LibCalls);
3161
3162  // Check that LibCalls is sorted alphabetically.
3163  MipsTargetLowering::LTStr Comp;
3164
3165#ifndef NDEBUG
3166  for (const char * const *I = LibCalls; I < End - 1; ++I)
3167    assert(Comp(*I, *(I + 1)));
3168#endif
3169
3170  return std::binary_search(LibCalls, End, CallSym, Comp);
3171}
3172
3173/// This function returns true if Ty is fp128 or i128 which was originally a
3174/// fp128.
3175static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3176  if (Ty->isFP128Ty())
3177    return true;
3178
3179  const ExternalSymbolSDNode *ES =
3180    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3181
3182  // If the Ty is i128 and the function being called is a long double emulation
3183  // routine, then the original type is f128.
3184  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3185}
3186
3187MipsTargetLowering::MipsCC::SpecialCallingConvType
3188  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3189  MipsCC::SpecialCallingConvType SpecialCallingConv =
3190    MipsCC::NoSpecialCallingConv;;
3191  if (Subtarget->inMips16HardFloat()) {
3192    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3193      llvm::StringRef Sym = G->getGlobal()->getName();
3194      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3195      if (F->hasFnAttribute("__Mips16RetHelper")) {
3196        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3197      }
3198    }
3199  }
3200  return SpecialCallingConv;
3201}
3202
3203MipsTargetLowering::MipsCC::MipsCC(
3204  CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
3205    MipsCC::SpecialCallingConvType SpecialCallingConv_)
3206  : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
3207    SpecialCallingConv(SpecialCallingConv_){
3208  // Pre-allocate reserved argument area.
3209  CCInfo.AllocateStack(reservedArgArea(), 1);
3210}
3211
3212
3213void MipsTargetLowering::MipsCC::
3214analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3215                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3216                    std::vector<ArgListEntry> &FuncArgs) {
3217  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3218         "CallingConv::Fast shouldn't be used for vararg functions.");
3219
3220  unsigned NumOpnds = Args.size();
3221  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3222
3223  for (unsigned I = 0; I != NumOpnds; ++I) {
3224    MVT ArgVT = Args[I].VT;
3225    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3226    bool R;
3227
3228    if (ArgFlags.isByVal()) {
3229      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3230      continue;
3231    }
3232
3233    if (IsVarArg && !Args[I].IsFixed)
3234      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3235    else {
3236      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3237                           IsSoftFloat);
3238      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3239    }
3240
3241    if (R) {
3242#ifndef NDEBUG
3243      dbgs() << "Call operand #" << I << " has unhandled type "
3244             << EVT(ArgVT).getEVTString();
3245#endif
3246      llvm_unreachable(0);
3247    }
3248  }
3249}
3250
3251void MipsTargetLowering::MipsCC::
3252analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3253                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3254  unsigned NumArgs = Args.size();
3255  llvm::CCAssignFn *FixedFn = fixedArgFn();
3256  unsigned CurArgIdx = 0;
3257
3258  for (unsigned I = 0; I != NumArgs; ++I) {
3259    MVT ArgVT = Args[I].VT;
3260    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3261    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3262    CurArgIdx = Args[I].OrigArgIndex;
3263
3264    if (ArgFlags.isByVal()) {
3265      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3266      continue;
3267    }
3268
3269    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3270
3271    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3272      continue;
3273
3274#ifndef NDEBUG
3275    dbgs() << "Formal Arg #" << I << " has unhandled type "
3276           << EVT(ArgVT).getEVTString();
3277#endif
3278    llvm_unreachable(0);
3279  }
3280}
3281
3282template<typename Ty>
3283void MipsTargetLowering::MipsCC::
3284analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3285              const SDNode *CallNode, const Type *RetTy) const {
3286  CCAssignFn *Fn;
3287
3288  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3289    Fn = RetCC_F128Soft;
3290  else
3291    Fn = RetCC_Mips;
3292
3293  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3294    MVT VT = RetVals[I].VT;
3295    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3296    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3297
3298    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3299#ifndef NDEBUG
3300      dbgs() << "Call result #" << I << " has unhandled type "
3301             << EVT(VT).getEVTString() << '\n';
3302#endif
3303      llvm_unreachable(0);
3304    }
3305  }
3306}
3307
3308void MipsTargetLowering::MipsCC::
3309analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3310                  const SDNode *CallNode, const Type *RetTy) const {
3311  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3312}
3313
3314void MipsTargetLowering::MipsCC::
3315analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3316              const Type *RetTy) const {
3317  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3318}
3319
3320void
3321MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3322                                           MVT LocVT,
3323                                           CCValAssign::LocInfo LocInfo,
3324                                           ISD::ArgFlagsTy ArgFlags) {
3325  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3326
3327  struct ByValArgInfo ByVal;
3328  unsigned RegSize = regSize();
3329  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3330  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3331                            RegSize * 2);
3332
3333  if (useRegsForByval())
3334    allocateRegs(ByVal, ByValSize, Align);
3335
3336  // Allocate space on caller's stack.
3337  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3338                                       Align);
3339  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3340                                    LocInfo));
3341  ByValArgs.push_back(ByVal);
3342}
3343
3344unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3345  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3346}
3347
3348unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3349  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3350}
3351
3352const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3353  return IsO32 ? O32IntRegs : Mips64IntRegs;
3354}
3355
3356llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3357  if (CallConv == CallingConv::Fast)
3358    return CC_Mips_FastCC;
3359
3360  if (SpecialCallingConv == Mips16RetHelperConv)
3361    return CC_Mips16RetHelper;
3362  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
3363}
3364
3365llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3366  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
3367}
3368
3369const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3370  return IsO32 ? O32IntRegs : Mips64DPRegs;
3371}
3372
3373void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3374                                              unsigned ByValSize,
3375                                              unsigned Align) {
3376  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3377  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3378  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3379         "Byval argument's size and alignment should be a multiple of"
3380         "RegSize.");
3381
3382  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3383
3384  // If Align > RegSize, the first arg register must be even.
3385  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3386    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3387    ++ByVal.FirstIdx;
3388  }
3389
3390  // Mark the registers allocated.
3391  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3392       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3393    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3394}
3395
3396MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3397                                         const SDNode *CallNode,
3398                                         bool IsSoftFloat) const {
3399  if (IsSoftFloat || IsO32)
3400    return VT;
3401
3402  // Check if the original type was fp128.
3403  if (originalTypeIsF128(OrigTy, CallNode)) {
3404    assert(VT == MVT::i64);
3405    return MVT::f64;
3406  }
3407
3408  return VT;
3409}
3410
3411void MipsTargetLowering::
3412copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3413              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3414              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3415              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3416  MachineFunction &MF = DAG.getMachineFunction();
3417  MachineFrameInfo *MFI = MF.getFrameInfo();
3418  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3419  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3420  int FrameObjOffset;
3421
3422  if (RegAreaSize)
3423    FrameObjOffset = (int)CC.reservedArgArea() -
3424      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3425  else
3426    FrameObjOffset = ByVal.Address;
3427
3428  // Create frame object.
3429  EVT PtrTy = getPointerTy();
3430  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3431  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3432  InVals.push_back(FIN);
3433
3434  if (!ByVal.NumRegs)
3435    return;
3436
3437  // Copy arg registers.
3438  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3439  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3440
3441  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3442    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3443    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3444    unsigned Offset = I * CC.regSize();
3445    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3446                                   DAG.getConstant(Offset, PtrTy));
3447    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3448                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3449                                 false, false, 0);
3450    OutChains.push_back(Store);
3451  }
3452}
3453
3454// Copy byVal arg to registers and stack.
3455void MipsTargetLowering::
3456passByValArg(SDValue Chain, SDLoc DL,
3457             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3458             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3459             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3460             const MipsCC &CC, const ByValArgInfo &ByVal,
3461             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3462  unsigned ByValSize = Flags.getByValSize();
3463  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3464  unsigned RegSize = CC.regSize();
3465  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3466  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3467
3468  if (ByVal.NumRegs) {
3469    const uint16_t *ArgRegs = CC.intArgRegs();
3470    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3471    unsigned I = 0;
3472
3473    // Copy words to registers.
3474    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3475      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3476                                    DAG.getConstant(Offset, PtrTy));
3477      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3478                                    MachinePointerInfo(), false, false, false,
3479                                    Alignment);
3480      MemOpChains.push_back(LoadVal.getValue(1));
3481      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3482      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3483    }
3484
3485    // Return if the struct has been fully copied.
3486    if (ByValSize == Offset)
3487      return;
3488
3489    // Copy the remainder of the byval argument with sub-word loads and shifts.
3490    if (LeftoverBytes) {
3491      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3492             "Size of the remainder should be smaller than RegSize.");
3493      SDValue Val;
3494
3495      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3496           Offset < ByValSize; LoadSize /= 2) {
3497        unsigned RemSize = ByValSize - Offset;
3498
3499        if (RemSize < LoadSize)
3500          continue;
3501
3502        // Load subword.
3503        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3504                                      DAG.getConstant(Offset, PtrTy));
3505        SDValue LoadVal =
3506          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3507                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3508                         false, false, Alignment);
3509        MemOpChains.push_back(LoadVal.getValue(1));
3510
3511        // Shift the loaded value.
3512        unsigned Shamt;
3513
3514        if (isLittle)
3515          Shamt = TotalSizeLoaded;
3516        else
3517          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3518
3519        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3520                                    DAG.getConstant(Shamt, MVT::i32));
3521
3522        if (Val.getNode())
3523          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3524        else
3525          Val = Shift;
3526
3527        Offset += LoadSize;
3528        TotalSizeLoaded += LoadSize;
3529        Alignment = std::min(Alignment, LoadSize);
3530      }
3531
3532      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3533      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3534      return;
3535    }
3536  }
3537
3538  // Copy remainder of byval arg to it with memcpy.
3539  unsigned MemCpySize = ByValSize - Offset;
3540  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3541                            DAG.getConstant(Offset, PtrTy));
3542  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3543                            DAG.getIntPtrConstant(ByVal.Address));
3544  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3545                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3546                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3547                        MachinePointerInfo(0), MachinePointerInfo(0));
3548  MemOpChains.push_back(Chain);
3549}
3550
3551void
3552MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3553                                    const MipsCC &CC, SDValue Chain,
3554                                    SDLoc DL, SelectionDAG &DAG) const {
3555  unsigned NumRegs = CC.numIntArgRegs();
3556  const uint16_t *ArgRegs = CC.intArgRegs();
3557  const CCState &CCInfo = CC.getCCInfo();
3558  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3559  unsigned RegSize = CC.regSize();
3560  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3561  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3562  MachineFunction &MF = DAG.getMachineFunction();
3563  MachineFrameInfo *MFI = MF.getFrameInfo();
3564  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3565
3566  // Offset of the first variable argument from stack pointer.
3567  int VaArgOffset;
3568
3569  if (NumRegs == Idx)
3570    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3571  else
3572    VaArgOffset =
3573      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3574
3575  // Record the frame index of the first variable argument
3576  // which is a value necessary to VASTART.
3577  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3578  MipsFI->setVarArgsFrameIndex(FI);
3579
3580  // Copy the integer registers that have not been used for argument passing
3581  // to the argument register save area. For O32, the save area is allocated
3582  // in the caller's stack frame, while for N32/64, it is allocated in the
3583  // callee's stack frame.
3584  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3585    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3586    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3587    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3588    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3589    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3590                                 MachinePointerInfo(), false, false, 0);
3591    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3592    OutChains.push_back(Store);
3593  }
3594}
3595