MipsISelLowering.cpp revision a0ec3f9b7b826b9b40b80199923b664bad808cce
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37
38using namespace llvm;
39
40STATISTIC(NumTailCalls, "Number of tail calls");
41
42static cl::opt<bool>
43LargeGOT("mxgot", cl::Hidden,
44         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
45
46static cl::opt<bool>
47NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
48               cl::desc("MIPS: Don't trap on integer division by zero."),
49               cl::init(false));
50
51static const uint16_t O32IntRegs[4] = {
52  Mips::A0, Mips::A1, Mips::A2, Mips::A3
53};
54
55static const uint16_t Mips64IntRegs[8] = {
56  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
57  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
58};
59
60static const uint16_t Mips64DPRegs[8] = {
61  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
62  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
63};
64
65// If I is a shifted mask, set the size (Size) and the first bit of the
66// mask (Pos), and return true.
67// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
68static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
69  if (!isShiftedMask_64(I))
70     return false;
71
72  Size = CountPopulation_64(I);
73  Pos = countTrailingZeros(I);
74  return true;
75}
76
77SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
78  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
79  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
80}
81
82static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
83  EVT Ty = Op.getValueType();
84
85  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
86    return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(Op), Ty, 0,
87                                      Flag);
88  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
89    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
90  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
91    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
92  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
93    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
94  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
95    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
96                                     N->getOffset(), Flag);
97
98  llvm_unreachable("Unexpected node type.");
99  return SDValue();
100}
101
102static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
103  SDLoc DL(Op);
104  EVT Ty = Op.getValueType();
105  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
106  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
107  return DAG.getNode(ISD::ADD, DL, Ty,
108                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
109                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
110}
111
112SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
113                                         bool HasMips64) const {
114  SDLoc DL(Op);
115  EVT Ty = Op.getValueType();
116  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
117  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
118                            getTargetNode(Op, DAG, GOTFlag));
119  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
120                             MachinePointerInfo::getGOT(), false, false, false,
121                             0);
122  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
123  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
124  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
125}
126
127SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
128                                          unsigned Flag) const {
129  SDLoc DL(Op);
130  EVT Ty = Op.getValueType();
131  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
132                            getTargetNode(Op, DAG, Flag));
133  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
134                     MachinePointerInfo::getGOT(), false, false, false, 0);
135}
136
137SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
138                                                  unsigned HiFlag,
139                                                  unsigned LoFlag) const {
140  SDLoc DL(Op);
141  EVT Ty = Op.getValueType();
142  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
143  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
144  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
145                                getTargetNode(Op, DAG, LoFlag));
146  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
147                     MachinePointerInfo::getGOT(), false, false, false, 0);
148}
149
150const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
151  switch (Opcode) {
152  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
153  case MipsISD::TailCall:          return "MipsISD::TailCall";
154  case MipsISD::Hi:                return "MipsISD::Hi";
155  case MipsISD::Lo:                return "MipsISD::Lo";
156  case MipsISD::GPRel:             return "MipsISD::GPRel";
157  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
158  case MipsISD::Ret:               return "MipsISD::Ret";
159  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
160  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
161  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
162  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
163  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
164  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
165  case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
166  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
167  case MipsISD::Mult:              return "MipsISD::Mult";
168  case MipsISD::Multu:             return "MipsISD::Multu";
169  case MipsISD::MAdd:              return "MipsISD::MAdd";
170  case MipsISD::MAddu:             return "MipsISD::MAddu";
171  case MipsISD::MSub:              return "MipsISD::MSub";
172  case MipsISD::MSubu:             return "MipsISD::MSubu";
173  case MipsISD::DivRem:            return "MipsISD::DivRem";
174  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
175  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
176  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
177  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
178  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
179  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
180  case MipsISD::Sync:              return "MipsISD::Sync";
181  case MipsISD::Ext:               return "MipsISD::Ext";
182  case MipsISD::Ins:               return "MipsISD::Ins";
183  case MipsISD::LWL:               return "MipsISD::LWL";
184  case MipsISD::LWR:               return "MipsISD::LWR";
185  case MipsISD::SWL:               return "MipsISD::SWL";
186  case MipsISD::SWR:               return "MipsISD::SWR";
187  case MipsISD::LDL:               return "MipsISD::LDL";
188  case MipsISD::LDR:               return "MipsISD::LDR";
189  case MipsISD::SDL:               return "MipsISD::SDL";
190  case MipsISD::SDR:               return "MipsISD::SDR";
191  case MipsISD::EXTP:              return "MipsISD::EXTP";
192  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
193  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
194  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
195  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
196  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
197  case MipsISD::SHILO:             return "MipsISD::SHILO";
198  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
199  case MipsISD::MULT:              return "MipsISD::MULT";
200  case MipsISD::MULTU:             return "MipsISD::MULTU";
201  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
202  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
203  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
204  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
205  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
206  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
207  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
208  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
209  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
210  default:                         return NULL;
211  }
212}
213
214MipsTargetLowering::
215MipsTargetLowering(MipsTargetMachine &TM)
216  : TargetLowering(TM, new MipsTargetObjectFile()),
217    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
218    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
219    IsO32(Subtarget->isABI_O32()) {
220  // Mips does not have i1 type, so use i32 for
221  // setcc operations results (slt, sgt, ...).
222  setBooleanContents(ZeroOrOneBooleanContent);
223  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
224
225  // Load extented operations for i1 types must be promoted
226  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
227  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
228  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
229
230  // MIPS doesn't have extending float->double load/store
231  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
232  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
233
234  // Used by legalize types to correctly generate the setcc result.
235  // Without this, every float setcc comes with a AND/OR with the result,
236  // we don't want this, since the fpcmp result goes to a flag register,
237  // which is used implicitly by brcond and select operations.
238  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
239
240  // Mips Custom Operations
241  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
242  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
243  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
244  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
245  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
246  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
247  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
248  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
249  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
250  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
251  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
252  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
253  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
254  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
255  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
256  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
257  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
258  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
259
260  if (!TM.Options.NoNaNsFPMath) {
261    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
262    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
263  }
264
265  if (HasMips64) {
266    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
267    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
268    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
269    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
270    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
271    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
272    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
273    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
274    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
275  }
276
277  if (!HasMips64) {
278    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
279    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
280    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
281  }
282
283  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
284  if (HasMips64)
285    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
286
287  setOperationAction(ISD::SDIV, MVT::i32, Expand);
288  setOperationAction(ISD::SREM, MVT::i32, Expand);
289  setOperationAction(ISD::UDIV, MVT::i32, Expand);
290  setOperationAction(ISD::UREM, MVT::i32, Expand);
291  setOperationAction(ISD::SDIV, MVT::i64, Expand);
292  setOperationAction(ISD::SREM, MVT::i64, Expand);
293  setOperationAction(ISD::UDIV, MVT::i64, Expand);
294  setOperationAction(ISD::UREM, MVT::i64, Expand);
295
296  // Operations not directly supported by Mips.
297  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
298  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
299  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
300  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
301  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
302  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
303  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
304  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
305  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
306  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
307  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
308  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
309  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
310  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
311  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
312  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
313  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
314  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
315  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
316  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
317  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
318  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
319
320  if (!Subtarget->hasMips32r2())
321    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
322
323  if (!Subtarget->hasMips64r2())
324    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
325
326  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
327  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
328  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
329  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
330  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
331  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
332  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
333  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
334  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
335  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
336  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
337  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
338  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
339  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
340  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
341  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
342  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
343
344  if (!TM.Options.NoNaNsFPMath) {
345    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
346    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
347  }
348
349  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
350
351  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
352  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
353  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
354
355  // Use the default for now
356  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
357  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
358
359  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
360  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
361  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
362  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
363
364  setInsertFencesForAtomic(true);
365
366  if (!Subtarget->hasSEInReg()) {
367    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
368    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
369  }
370
371  if (!Subtarget->hasBitCount()) {
372    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
373    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
374  }
375
376  if (!Subtarget->hasSwap()) {
377    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
378    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
379  }
380
381  if (HasMips64) {
382    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
383    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
384    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
385    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
386  }
387
388  setTargetDAGCombine(ISD::SDIVREM);
389  setTargetDAGCombine(ISD::UDIVREM);
390  setTargetDAGCombine(ISD::SELECT);
391  setTargetDAGCombine(ISD::AND);
392  setTargetDAGCombine(ISD::OR);
393  setTargetDAGCombine(ISD::ADD);
394
395  setMinFunctionAlignment(HasMips64 ? 3 : 2);
396
397  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
398
399  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
400  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
401
402  MaxStoresPerMemcpy = 16;
403}
404
405const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
406  if (TM.getSubtargetImpl()->inMips16Mode())
407    return llvm::createMips16TargetLowering(TM);
408
409  return llvm::createMipsSETargetLowering(TM);
410}
411
412EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
413  if (!VT.isVector())
414    return MVT::i32;
415  return VT.changeVectorElementTypeToInteger();
416}
417
418static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
419                                    TargetLowering::DAGCombinerInfo &DCI,
420                                    const MipsSubtarget *Subtarget) {
421  if (DCI.isBeforeLegalizeOps())
422    return SDValue();
423
424  EVT Ty = N->getValueType(0);
425  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
426  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
427  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
428                                                  MipsISD::DivRemU16;
429  SDLoc DL(N);
430
431  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
432                               N->getOperand(0), N->getOperand(1));
433  SDValue InChain = DAG.getEntryNode();
434  SDValue InGlue = DivRem;
435
436  // insert MFLO
437  if (N->hasAnyUseOfValue(0)) {
438    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
439                                            InGlue);
440    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
441    InChain = CopyFromLo.getValue(1);
442    InGlue = CopyFromLo.getValue(2);
443  }
444
445  // insert MFHI
446  if (N->hasAnyUseOfValue(1)) {
447    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
448                                            HI, Ty, InGlue);
449    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
450  }
451
452  return SDValue();
453}
454
455static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
456  switch (CC) {
457  default: llvm_unreachable("Unknown fp condition code!");
458  case ISD::SETEQ:
459  case ISD::SETOEQ: return Mips::FCOND_OEQ;
460  case ISD::SETUNE: return Mips::FCOND_UNE;
461  case ISD::SETLT:
462  case ISD::SETOLT: return Mips::FCOND_OLT;
463  case ISD::SETGT:
464  case ISD::SETOGT: return Mips::FCOND_OGT;
465  case ISD::SETLE:
466  case ISD::SETOLE: return Mips::FCOND_OLE;
467  case ISD::SETGE:
468  case ISD::SETOGE: return Mips::FCOND_OGE;
469  case ISD::SETULT: return Mips::FCOND_ULT;
470  case ISD::SETULE: return Mips::FCOND_ULE;
471  case ISD::SETUGT: return Mips::FCOND_UGT;
472  case ISD::SETUGE: return Mips::FCOND_UGE;
473  case ISD::SETUO:  return Mips::FCOND_UN;
474  case ISD::SETO:   return Mips::FCOND_OR;
475  case ISD::SETNE:
476  case ISD::SETONE: return Mips::FCOND_ONE;
477  case ISD::SETUEQ: return Mips::FCOND_UEQ;
478  }
479}
480
481
482/// This function returns true if the floating point conditional branches and
483/// conditional moves which use condition code CC should be inverted.
484static bool invertFPCondCodeUser(Mips::CondCode CC) {
485  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
486    return false;
487
488  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
489         "Illegal Condition Code");
490
491  return true;
492}
493
494// Creates and returns an FPCmp node from a setcc node.
495// Returns Op if setcc is not a floating point comparison.
496static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
497  // must be a SETCC node
498  if (Op.getOpcode() != ISD::SETCC)
499    return Op;
500
501  SDValue LHS = Op.getOperand(0);
502
503  if (!LHS.getValueType().isFloatingPoint())
504    return Op;
505
506  SDValue RHS = Op.getOperand(1);
507  SDLoc DL(Op);
508
509  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
510  // node if necessary.
511  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
512
513  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
514                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
515}
516
517// Creates and returns a CMovFPT/F node.
518static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
519                            SDValue False, SDLoc DL) {
520  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
521  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
522
523  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
524                     True.getValueType(), True, False, Cond);
525}
526
527static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
528                                    TargetLowering::DAGCombinerInfo &DCI,
529                                    const MipsSubtarget *Subtarget) {
530  if (DCI.isBeforeLegalizeOps())
531    return SDValue();
532
533  SDValue SetCC = N->getOperand(0);
534
535  if ((SetCC.getOpcode() != ISD::SETCC) ||
536      !SetCC.getOperand(0).getValueType().isInteger())
537    return SDValue();
538
539  SDValue False = N->getOperand(2);
540  EVT FalseTy = False.getValueType();
541
542  if (!FalseTy.isInteger())
543    return SDValue();
544
545  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
546
547  if (!CN || CN->getZExtValue())
548    return SDValue();
549
550  const SDLoc DL(N);
551  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
552  SDValue True = N->getOperand(1);
553
554  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
555                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
556
557  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
558}
559
560static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
561                                 TargetLowering::DAGCombinerInfo &DCI,
562                                 const MipsSubtarget *Subtarget) {
563  // Pattern match EXT.
564  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
565  //  => ext $dst, $src, size, pos
566  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
567    return SDValue();
568
569  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
570  unsigned ShiftRightOpc = ShiftRight.getOpcode();
571
572  // Op's first operand must be a shift right.
573  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
574    return SDValue();
575
576  // The second operand of the shift must be an immediate.
577  ConstantSDNode *CN;
578  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
579    return SDValue();
580
581  uint64_t Pos = CN->getZExtValue();
582  uint64_t SMPos, SMSize;
583
584  // Op's second operand must be a shifted mask.
585  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
586      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
587    return SDValue();
588
589  // Return if the shifted mask does not start at bit 0 or the sum of its size
590  // and Pos exceeds the word's size.
591  EVT ValTy = N->getValueType(0);
592  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
593    return SDValue();
594
595  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
596                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
597                     DAG.getConstant(SMSize, MVT::i32));
598}
599
600static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
601                                TargetLowering::DAGCombinerInfo &DCI,
602                                const MipsSubtarget *Subtarget) {
603  // Pattern match INS.
604  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
605  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
606  //  => ins $dst, $src, size, pos, $src1
607  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
608    return SDValue();
609
610  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
611  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
612  ConstantSDNode *CN;
613
614  // See if Op's first operand matches (and $src1 , mask0).
615  if (And0.getOpcode() != ISD::AND)
616    return SDValue();
617
618  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
619      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
620    return SDValue();
621
622  // See if Op's second operand matches (and (shl $src, pos), mask1).
623  if (And1.getOpcode() != ISD::AND)
624    return SDValue();
625
626  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
627      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
628    return SDValue();
629
630  // The shift masks must have the same position and size.
631  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
632    return SDValue();
633
634  SDValue Shl = And1.getOperand(0);
635  if (Shl.getOpcode() != ISD::SHL)
636    return SDValue();
637
638  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
639    return SDValue();
640
641  unsigned Shamt = CN->getZExtValue();
642
643  // Return if the shift amount and the first bit position of mask are not the
644  // same.
645  EVT ValTy = N->getValueType(0);
646  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
647    return SDValue();
648
649  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
650                     DAG.getConstant(SMPos0, MVT::i32),
651                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
652}
653
654static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
655                                 TargetLowering::DAGCombinerInfo &DCI,
656                                 const MipsSubtarget *Subtarget) {
657  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
658
659  if (DCI.isBeforeLegalizeOps())
660    return SDValue();
661
662  SDValue Add = N->getOperand(1);
663
664  if (Add.getOpcode() != ISD::ADD)
665    return SDValue();
666
667  SDValue Lo = Add.getOperand(1);
668
669  if ((Lo.getOpcode() != MipsISD::Lo) ||
670      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
671    return SDValue();
672
673  EVT ValTy = N->getValueType(0);
674  SDLoc DL(N);
675
676  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
677                             Add.getOperand(0));
678  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
679}
680
681SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
682  const {
683  SelectionDAG &DAG = DCI.DAG;
684  unsigned Opc = N->getOpcode();
685
686  switch (Opc) {
687  default: break;
688  case ISD::SDIVREM:
689  case ISD::UDIVREM:
690    return performDivRemCombine(N, DAG, DCI, Subtarget);
691  case ISD::SELECT:
692    return performSELECTCombine(N, DAG, DCI, Subtarget);
693  case ISD::AND:
694    return performANDCombine(N, DAG, DCI, Subtarget);
695  case ISD::OR:
696    return performORCombine(N, DAG, DCI, Subtarget);
697  case ISD::ADD:
698    return performADDCombine(N, DAG, DCI, Subtarget);
699  }
700
701  return SDValue();
702}
703
704void
705MipsTargetLowering::LowerOperationWrapper(SDNode *N,
706                                          SmallVectorImpl<SDValue> &Results,
707                                          SelectionDAG &DAG) const {
708  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
709
710  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
711    Results.push_back(Res.getValue(I));
712}
713
714void
715MipsTargetLowering::ReplaceNodeResults(SDNode *N,
716                                       SmallVectorImpl<SDValue> &Results,
717                                       SelectionDAG &DAG) const {
718  return LowerOperationWrapper(N, Results, DAG);
719}
720
721SDValue MipsTargetLowering::
722LowerOperation(SDValue Op, SelectionDAG &DAG) const
723{
724  switch (Op.getOpcode())
725  {
726  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
727  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
728  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
729  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
730  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
731  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
732  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
733  case ISD::SELECT:             return lowerSELECT(Op, DAG);
734  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
735  case ISD::SETCC:              return lowerSETCC(Op, DAG);
736  case ISD::VASTART:            return lowerVASTART(Op, DAG);
737  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
738  case ISD::FABS:               return lowerFABS(Op, DAG);
739  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
740  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
741  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
742  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
743  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
744  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
745  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
746  case ISD::LOAD:               return lowerLOAD(Op, DAG);
747  case ISD::STORE:              return lowerSTORE(Op, DAG);
748  case ISD::ADD:                return lowerADD(Op, DAG);
749  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
750  }
751  return SDValue();
752}
753
754//===----------------------------------------------------------------------===//
755//  Lower helper functions
756//===----------------------------------------------------------------------===//
757
758// addLiveIn - This helper function adds the specified physical register to the
759// MachineFunction as a live in value.  It also creates a corresponding
760// virtual register for it.
761static unsigned
762addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
763{
764  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
765  MF.getRegInfo().addLiveIn(PReg, VReg);
766  return VReg;
767}
768
769static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
770                                          MachineBasicBlock &MBB,
771                                          const TargetInstrInfo &TII,
772                                          bool Is64Bit) {
773  if (NoZeroDivCheck)
774    return &MBB;
775
776  // Insert instruction "teq $divisor_reg, $zero, 7".
777  MachineBasicBlock::iterator I(MI);
778  MachineInstrBuilder MIB;
779  MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
780    .addOperand(MI->getOperand(2)).addReg(Mips::ZERO).addImm(7);
781
782  // Use the 32-bit sub-register if this is a 64-bit division.
783  if (Is64Bit)
784    MIB->getOperand(0).setSubReg(Mips::sub_32);
785
786  return &MBB;
787}
788
789MachineBasicBlock *
790MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
791                                                MachineBasicBlock *BB) const {
792  switch (MI->getOpcode()) {
793  default:
794    llvm_unreachable("Unexpected instr type to insert");
795  case Mips::ATOMIC_LOAD_ADD_I8:
796  case Mips::ATOMIC_LOAD_ADD_I8_P8:
797    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
798  case Mips::ATOMIC_LOAD_ADD_I16:
799  case Mips::ATOMIC_LOAD_ADD_I16_P8:
800    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
801  case Mips::ATOMIC_LOAD_ADD_I32:
802  case Mips::ATOMIC_LOAD_ADD_I32_P8:
803    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
804  case Mips::ATOMIC_LOAD_ADD_I64:
805  case Mips::ATOMIC_LOAD_ADD_I64_P8:
806    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
807
808  case Mips::ATOMIC_LOAD_AND_I8:
809  case Mips::ATOMIC_LOAD_AND_I8_P8:
810    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
811  case Mips::ATOMIC_LOAD_AND_I16:
812  case Mips::ATOMIC_LOAD_AND_I16_P8:
813    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
814  case Mips::ATOMIC_LOAD_AND_I32:
815  case Mips::ATOMIC_LOAD_AND_I32_P8:
816    return emitAtomicBinary(MI, BB, 4, Mips::AND);
817  case Mips::ATOMIC_LOAD_AND_I64:
818  case Mips::ATOMIC_LOAD_AND_I64_P8:
819    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
820
821  case Mips::ATOMIC_LOAD_OR_I8:
822  case Mips::ATOMIC_LOAD_OR_I8_P8:
823    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
824  case Mips::ATOMIC_LOAD_OR_I16:
825  case Mips::ATOMIC_LOAD_OR_I16_P8:
826    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
827  case Mips::ATOMIC_LOAD_OR_I32:
828  case Mips::ATOMIC_LOAD_OR_I32_P8:
829    return emitAtomicBinary(MI, BB, 4, Mips::OR);
830  case Mips::ATOMIC_LOAD_OR_I64:
831  case Mips::ATOMIC_LOAD_OR_I64_P8:
832    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
833
834  case Mips::ATOMIC_LOAD_XOR_I8:
835  case Mips::ATOMIC_LOAD_XOR_I8_P8:
836    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
837  case Mips::ATOMIC_LOAD_XOR_I16:
838  case Mips::ATOMIC_LOAD_XOR_I16_P8:
839    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
840  case Mips::ATOMIC_LOAD_XOR_I32:
841  case Mips::ATOMIC_LOAD_XOR_I32_P8:
842    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
843  case Mips::ATOMIC_LOAD_XOR_I64:
844  case Mips::ATOMIC_LOAD_XOR_I64_P8:
845    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
846
847  case Mips::ATOMIC_LOAD_NAND_I8:
848  case Mips::ATOMIC_LOAD_NAND_I8_P8:
849    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
850  case Mips::ATOMIC_LOAD_NAND_I16:
851  case Mips::ATOMIC_LOAD_NAND_I16_P8:
852    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
853  case Mips::ATOMIC_LOAD_NAND_I32:
854  case Mips::ATOMIC_LOAD_NAND_I32_P8:
855    return emitAtomicBinary(MI, BB, 4, 0, true);
856  case Mips::ATOMIC_LOAD_NAND_I64:
857  case Mips::ATOMIC_LOAD_NAND_I64_P8:
858    return emitAtomicBinary(MI, BB, 8, 0, true);
859
860  case Mips::ATOMIC_LOAD_SUB_I8:
861  case Mips::ATOMIC_LOAD_SUB_I8_P8:
862    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
863  case Mips::ATOMIC_LOAD_SUB_I16:
864  case Mips::ATOMIC_LOAD_SUB_I16_P8:
865    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
866  case Mips::ATOMIC_LOAD_SUB_I32:
867  case Mips::ATOMIC_LOAD_SUB_I32_P8:
868    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
869  case Mips::ATOMIC_LOAD_SUB_I64:
870  case Mips::ATOMIC_LOAD_SUB_I64_P8:
871    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
872
873  case Mips::ATOMIC_SWAP_I8:
874  case Mips::ATOMIC_SWAP_I8_P8:
875    return emitAtomicBinaryPartword(MI, BB, 1, 0);
876  case Mips::ATOMIC_SWAP_I16:
877  case Mips::ATOMIC_SWAP_I16_P8:
878    return emitAtomicBinaryPartword(MI, BB, 2, 0);
879  case Mips::ATOMIC_SWAP_I32:
880  case Mips::ATOMIC_SWAP_I32_P8:
881    return emitAtomicBinary(MI, BB, 4, 0);
882  case Mips::ATOMIC_SWAP_I64:
883  case Mips::ATOMIC_SWAP_I64_P8:
884    return emitAtomicBinary(MI, BB, 8, 0);
885
886  case Mips::ATOMIC_CMP_SWAP_I8:
887  case Mips::ATOMIC_CMP_SWAP_I8_P8:
888    return emitAtomicCmpSwapPartword(MI, BB, 1);
889  case Mips::ATOMIC_CMP_SWAP_I16:
890  case Mips::ATOMIC_CMP_SWAP_I16_P8:
891    return emitAtomicCmpSwapPartword(MI, BB, 2);
892  case Mips::ATOMIC_CMP_SWAP_I32:
893  case Mips::ATOMIC_CMP_SWAP_I32_P8:
894    return emitAtomicCmpSwap(MI, BB, 4);
895  case Mips::ATOMIC_CMP_SWAP_I64:
896  case Mips::ATOMIC_CMP_SWAP_I64_P8:
897    return emitAtomicCmpSwap(MI, BB, 8);
898  case Mips::PseudoSDIV:
899  case Mips::PseudoUDIV:
900    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
901  case Mips::PseudoDSDIV:
902  case Mips::PseudoDUDIV:
903    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
904  }
905}
906
907// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
908// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
909MachineBasicBlock *
910MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
911                                     unsigned Size, unsigned BinOpcode,
912                                     bool Nand) const {
913  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
914
915  MachineFunction *MF = BB->getParent();
916  MachineRegisterInfo &RegInfo = MF->getRegInfo();
917  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
918  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
919  DebugLoc DL = MI->getDebugLoc();
920  unsigned LL, SC, AND, NOR, ZERO, BEQ;
921
922  if (Size == 4) {
923    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
924    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
925    AND = Mips::AND;
926    NOR = Mips::NOR;
927    ZERO = Mips::ZERO;
928    BEQ = Mips::BEQ;
929  }
930  else {
931    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
932    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
933    AND = Mips::AND64;
934    NOR = Mips::NOR64;
935    ZERO = Mips::ZERO_64;
936    BEQ = Mips::BEQ64;
937  }
938
939  unsigned OldVal = MI->getOperand(0).getReg();
940  unsigned Ptr = MI->getOperand(1).getReg();
941  unsigned Incr = MI->getOperand(2).getReg();
942
943  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
944  unsigned AndRes = RegInfo.createVirtualRegister(RC);
945  unsigned Success = RegInfo.createVirtualRegister(RC);
946
947  // insert new blocks after the current block
948  const BasicBlock *LLVM_BB = BB->getBasicBlock();
949  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
950  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
951  MachineFunction::iterator It = BB;
952  ++It;
953  MF->insert(It, loopMBB);
954  MF->insert(It, exitMBB);
955
956  // Transfer the remainder of BB and its successor edges to exitMBB.
957  exitMBB->splice(exitMBB->begin(), BB,
958                  llvm::next(MachineBasicBlock::iterator(MI)),
959                  BB->end());
960  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
961
962  //  thisMBB:
963  //    ...
964  //    fallthrough --> loopMBB
965  BB->addSuccessor(loopMBB);
966  loopMBB->addSuccessor(loopMBB);
967  loopMBB->addSuccessor(exitMBB);
968
969  //  loopMBB:
970  //    ll oldval, 0(ptr)
971  //    <binop> storeval, oldval, incr
972  //    sc success, storeval, 0(ptr)
973  //    beq success, $0, loopMBB
974  BB = loopMBB;
975  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
976  if (Nand) {
977    //  and andres, oldval, incr
978    //  nor storeval, $0, andres
979    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
980    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
981  } else if (BinOpcode) {
982    //  <binop> storeval, oldval, incr
983    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
984  } else {
985    StoreVal = Incr;
986  }
987  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
988  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
989
990  MI->eraseFromParent();   // The instruction is gone now.
991
992  return exitMBB;
993}
994
995MachineBasicBlock *
996MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
997                                             MachineBasicBlock *BB,
998                                             unsigned Size, unsigned BinOpcode,
999                                             bool Nand) const {
1000  assert((Size == 1 || Size == 2) &&
1001      "Unsupported size for EmitAtomicBinaryPartial.");
1002
1003  MachineFunction *MF = BB->getParent();
1004  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1005  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1006  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1007  DebugLoc DL = MI->getDebugLoc();
1008  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1009  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1010
1011  unsigned Dest = MI->getOperand(0).getReg();
1012  unsigned Ptr = MI->getOperand(1).getReg();
1013  unsigned Incr = MI->getOperand(2).getReg();
1014
1015  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1016  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1017  unsigned Mask = RegInfo.createVirtualRegister(RC);
1018  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1019  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1020  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1021  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1022  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1023  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1024  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1025  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1026  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1027  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1028  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1029  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1030  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1031  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1032  unsigned Success = RegInfo.createVirtualRegister(RC);
1033
1034  // insert new blocks after the current block
1035  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1036  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1037  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1038  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1039  MachineFunction::iterator It = BB;
1040  ++It;
1041  MF->insert(It, loopMBB);
1042  MF->insert(It, sinkMBB);
1043  MF->insert(It, exitMBB);
1044
1045  // Transfer the remainder of BB and its successor edges to exitMBB.
1046  exitMBB->splice(exitMBB->begin(), BB,
1047                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1048  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1049
1050  BB->addSuccessor(loopMBB);
1051  loopMBB->addSuccessor(loopMBB);
1052  loopMBB->addSuccessor(sinkMBB);
1053  sinkMBB->addSuccessor(exitMBB);
1054
1055  //  thisMBB:
1056  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1057  //    and     alignedaddr,ptr,masklsb2
1058  //    andi    ptrlsb2,ptr,3
1059  //    sll     shiftamt,ptrlsb2,3
1060  //    ori     maskupper,$0,255               # 0xff
1061  //    sll     mask,maskupper,shiftamt
1062  //    nor     mask2,$0,mask
1063  //    sll     incr2,incr,shiftamt
1064
1065  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1066  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1067    .addReg(Mips::ZERO).addImm(-4);
1068  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1069    .addReg(Ptr).addReg(MaskLSB2);
1070  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1071  if (Subtarget->isLittle()) {
1072    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1073  } else {
1074    unsigned Off = RegInfo.createVirtualRegister(RC);
1075    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1076      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1077    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1078  }
1079  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1080    .addReg(Mips::ZERO).addImm(MaskImm);
1081  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1082    .addReg(MaskUpper).addReg(ShiftAmt);
1083  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1084  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1085
1086  // atomic.load.binop
1087  // loopMBB:
1088  //   ll      oldval,0(alignedaddr)
1089  //   binop   binopres,oldval,incr2
1090  //   and     newval,binopres,mask
1091  //   and     maskedoldval0,oldval,mask2
1092  //   or      storeval,maskedoldval0,newval
1093  //   sc      success,storeval,0(alignedaddr)
1094  //   beq     success,$0,loopMBB
1095
1096  // atomic.swap
1097  // loopMBB:
1098  //   ll      oldval,0(alignedaddr)
1099  //   and     newval,incr2,mask
1100  //   and     maskedoldval0,oldval,mask2
1101  //   or      storeval,maskedoldval0,newval
1102  //   sc      success,storeval,0(alignedaddr)
1103  //   beq     success,$0,loopMBB
1104
1105  BB = loopMBB;
1106  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1107  if (Nand) {
1108    //  and andres, oldval, incr2
1109    //  nor binopres, $0, andres
1110    //  and newval, binopres, mask
1111    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1112    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1113      .addReg(Mips::ZERO).addReg(AndRes);
1114    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1115  } else if (BinOpcode) {
1116    //  <binop> binopres, oldval, incr2
1117    //  and newval, binopres, mask
1118    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1119    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1120  } else {// atomic.swap
1121    //  and newval, incr2, mask
1122    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1123  }
1124
1125  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1126    .addReg(OldVal).addReg(Mask2);
1127  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1128    .addReg(MaskedOldVal0).addReg(NewVal);
1129  BuildMI(BB, DL, TII->get(SC), Success)
1130    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1131  BuildMI(BB, DL, TII->get(Mips::BEQ))
1132    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1133
1134  //  sinkMBB:
1135  //    and     maskedoldval1,oldval,mask
1136  //    srl     srlres,maskedoldval1,shiftamt
1137  //    sll     sllres,srlres,24
1138  //    sra     dest,sllres,24
1139  BB = sinkMBB;
1140  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1141
1142  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1143    .addReg(OldVal).addReg(Mask);
1144  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1145      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1146  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1147      .addReg(SrlRes).addImm(ShiftImm);
1148  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1149      .addReg(SllRes).addImm(ShiftImm);
1150
1151  MI->eraseFromParent();   // The instruction is gone now.
1152
1153  return exitMBB;
1154}
1155
1156MachineBasicBlock *
1157MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1158                                      MachineBasicBlock *BB,
1159                                      unsigned Size) const {
1160  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1161
1162  MachineFunction *MF = BB->getParent();
1163  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1164  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1165  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1166  DebugLoc DL = MI->getDebugLoc();
1167  unsigned LL, SC, ZERO, BNE, BEQ;
1168
1169  if (Size == 4) {
1170    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1171    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1172    ZERO = Mips::ZERO;
1173    BNE = Mips::BNE;
1174    BEQ = Mips::BEQ;
1175  }
1176  else {
1177    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1178    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1179    ZERO = Mips::ZERO_64;
1180    BNE = Mips::BNE64;
1181    BEQ = Mips::BEQ64;
1182  }
1183
1184  unsigned Dest    = MI->getOperand(0).getReg();
1185  unsigned Ptr     = MI->getOperand(1).getReg();
1186  unsigned OldVal  = MI->getOperand(2).getReg();
1187  unsigned NewVal  = MI->getOperand(3).getReg();
1188
1189  unsigned Success = RegInfo.createVirtualRegister(RC);
1190
1191  // insert new blocks after the current block
1192  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1193  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1194  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1195  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1196  MachineFunction::iterator It = BB;
1197  ++It;
1198  MF->insert(It, loop1MBB);
1199  MF->insert(It, loop2MBB);
1200  MF->insert(It, exitMBB);
1201
1202  // Transfer the remainder of BB and its successor edges to exitMBB.
1203  exitMBB->splice(exitMBB->begin(), BB,
1204                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1205  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1206
1207  //  thisMBB:
1208  //    ...
1209  //    fallthrough --> loop1MBB
1210  BB->addSuccessor(loop1MBB);
1211  loop1MBB->addSuccessor(exitMBB);
1212  loop1MBB->addSuccessor(loop2MBB);
1213  loop2MBB->addSuccessor(loop1MBB);
1214  loop2MBB->addSuccessor(exitMBB);
1215
1216  // loop1MBB:
1217  //   ll dest, 0(ptr)
1218  //   bne dest, oldval, exitMBB
1219  BB = loop1MBB;
1220  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1221  BuildMI(BB, DL, TII->get(BNE))
1222    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1223
1224  // loop2MBB:
1225  //   sc success, newval, 0(ptr)
1226  //   beq success, $0, loop1MBB
1227  BB = loop2MBB;
1228  BuildMI(BB, DL, TII->get(SC), Success)
1229    .addReg(NewVal).addReg(Ptr).addImm(0);
1230  BuildMI(BB, DL, TII->get(BEQ))
1231    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1232
1233  MI->eraseFromParent();   // The instruction is gone now.
1234
1235  return exitMBB;
1236}
1237
1238MachineBasicBlock *
1239MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1240                                              MachineBasicBlock *BB,
1241                                              unsigned Size) const {
1242  assert((Size == 1 || Size == 2) &&
1243      "Unsupported size for EmitAtomicCmpSwapPartial.");
1244
1245  MachineFunction *MF = BB->getParent();
1246  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1247  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1248  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1249  DebugLoc DL = MI->getDebugLoc();
1250  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1251  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1252
1253  unsigned Dest    = MI->getOperand(0).getReg();
1254  unsigned Ptr     = MI->getOperand(1).getReg();
1255  unsigned CmpVal  = MI->getOperand(2).getReg();
1256  unsigned NewVal  = MI->getOperand(3).getReg();
1257
1258  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1259  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1260  unsigned Mask = RegInfo.createVirtualRegister(RC);
1261  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1262  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1263  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1264  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1265  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1266  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1267  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1268  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1269  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1270  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1271  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1272  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1273  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1274  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1275  unsigned Success = RegInfo.createVirtualRegister(RC);
1276
1277  // insert new blocks after the current block
1278  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1279  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1280  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1281  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1282  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1283  MachineFunction::iterator It = BB;
1284  ++It;
1285  MF->insert(It, loop1MBB);
1286  MF->insert(It, loop2MBB);
1287  MF->insert(It, sinkMBB);
1288  MF->insert(It, exitMBB);
1289
1290  // Transfer the remainder of BB and its successor edges to exitMBB.
1291  exitMBB->splice(exitMBB->begin(), BB,
1292                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1293  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1294
1295  BB->addSuccessor(loop1MBB);
1296  loop1MBB->addSuccessor(sinkMBB);
1297  loop1MBB->addSuccessor(loop2MBB);
1298  loop2MBB->addSuccessor(loop1MBB);
1299  loop2MBB->addSuccessor(sinkMBB);
1300  sinkMBB->addSuccessor(exitMBB);
1301
1302  // FIXME: computation of newval2 can be moved to loop2MBB.
1303  //  thisMBB:
1304  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1305  //    and     alignedaddr,ptr,masklsb2
1306  //    andi    ptrlsb2,ptr,3
1307  //    sll     shiftamt,ptrlsb2,3
1308  //    ori     maskupper,$0,255               # 0xff
1309  //    sll     mask,maskupper,shiftamt
1310  //    nor     mask2,$0,mask
1311  //    andi    maskedcmpval,cmpval,255
1312  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1313  //    andi    maskednewval,newval,255
1314  //    sll     shiftednewval,maskednewval,shiftamt
1315  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1316  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1317    .addReg(Mips::ZERO).addImm(-4);
1318  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1319    .addReg(Ptr).addReg(MaskLSB2);
1320  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1321  if (Subtarget->isLittle()) {
1322    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1323  } else {
1324    unsigned Off = RegInfo.createVirtualRegister(RC);
1325    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1326      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1327    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1328  }
1329  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1330    .addReg(Mips::ZERO).addImm(MaskImm);
1331  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1332    .addReg(MaskUpper).addReg(ShiftAmt);
1333  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1334  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1335    .addReg(CmpVal).addImm(MaskImm);
1336  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1337    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1338  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1339    .addReg(NewVal).addImm(MaskImm);
1340  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1341    .addReg(MaskedNewVal).addReg(ShiftAmt);
1342
1343  //  loop1MBB:
1344  //    ll      oldval,0(alginedaddr)
1345  //    and     maskedoldval0,oldval,mask
1346  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1347  BB = loop1MBB;
1348  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1349  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1350    .addReg(OldVal).addReg(Mask);
1351  BuildMI(BB, DL, TII->get(Mips::BNE))
1352    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1353
1354  //  loop2MBB:
1355  //    and     maskedoldval1,oldval,mask2
1356  //    or      storeval,maskedoldval1,shiftednewval
1357  //    sc      success,storeval,0(alignedaddr)
1358  //    beq     success,$0,loop1MBB
1359  BB = loop2MBB;
1360  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1361    .addReg(OldVal).addReg(Mask2);
1362  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1363    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1364  BuildMI(BB, DL, TII->get(SC), Success)
1365      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1366  BuildMI(BB, DL, TII->get(Mips::BEQ))
1367      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1368
1369  //  sinkMBB:
1370  //    srl     srlres,maskedoldval0,shiftamt
1371  //    sll     sllres,srlres,24
1372  //    sra     dest,sllres,24
1373  BB = sinkMBB;
1374  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1375
1376  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1377      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1378  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1379      .addReg(SrlRes).addImm(ShiftImm);
1380  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1381      .addReg(SllRes).addImm(ShiftImm);
1382
1383  MI->eraseFromParent();   // The instruction is gone now.
1384
1385  return exitMBB;
1386}
1387
1388//===----------------------------------------------------------------------===//
1389//  Misc Lower Operation implementation
1390//===----------------------------------------------------------------------===//
1391SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1392  SDValue Chain = Op.getOperand(0);
1393  SDValue Table = Op.getOperand(1);
1394  SDValue Index = Op.getOperand(2);
1395  SDLoc DL(Op);
1396  EVT PTy = getPointerTy();
1397  unsigned EntrySize =
1398    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1399
1400  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1401                      DAG.getConstant(EntrySize, PTy));
1402  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1403
1404  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1405  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1406                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1407                        0);
1408  Chain = Addr.getValue(1);
1409
1410  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1411    // For PIC, the sequence is:
1412    // BRIND(load(Jumptable + index) + RelocBase)
1413    // RelocBase can be JumpTable, GOT or some sort of global base.
1414    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1415                       getPICJumpTableRelocBase(Table, DAG));
1416  }
1417
1418  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1419}
1420
1421SDValue MipsTargetLowering::
1422lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1423{
1424  // The first operand is the chain, the second is the condition, the third is
1425  // the block to branch to if the condition is true.
1426  SDValue Chain = Op.getOperand(0);
1427  SDValue Dest = Op.getOperand(2);
1428  SDLoc DL(Op);
1429
1430  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1431
1432  // Return if flag is not set by a floating point comparison.
1433  if (CondRes.getOpcode() != MipsISD::FPCmp)
1434    return Op;
1435
1436  SDValue CCNode  = CondRes.getOperand(2);
1437  Mips::CondCode CC =
1438    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1439  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1440  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1441  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1442                     Dest, CondRes);
1443}
1444
1445SDValue MipsTargetLowering::
1446lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1447{
1448  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1449
1450  // Return if flag is not set by a floating point comparison.
1451  if (Cond.getOpcode() != MipsISD::FPCmp)
1452    return Op;
1453
1454  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1455                      SDLoc(Op));
1456}
1457
1458SDValue MipsTargetLowering::
1459lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1460{
1461  SDLoc DL(Op);
1462  EVT Ty = Op.getOperand(0).getValueType();
1463  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1464                             getSetCCResultType(*DAG.getContext(), Ty),
1465                             Op.getOperand(0), Op.getOperand(1),
1466                             Op.getOperand(4));
1467
1468  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1469                     Op.getOperand(3));
1470}
1471
1472SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1473  SDValue Cond = createFPCmp(DAG, Op);
1474
1475  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1476         "Floating point operand expected.");
1477
1478  SDValue True  = DAG.getConstant(1, MVT::i32);
1479  SDValue False = DAG.getConstant(0, MVT::i32);
1480
1481  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1482}
1483
1484SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1485                                               SelectionDAG &DAG) const {
1486  // FIXME there isn't actually debug info here
1487  SDLoc DL(Op);
1488  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1489
1490  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1491    const MipsTargetObjectFile &TLOF =
1492      (const MipsTargetObjectFile&)getObjFileLowering();
1493
1494    // %gp_rel relocation
1495    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1496      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1497                                              MipsII::MO_GPREL);
1498      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1499                                      DAG.getVTList(MVT::i32), &GA, 1);
1500      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1501      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1502    }
1503
1504    // %hi/%lo relocation
1505    return getAddrNonPIC(Op, DAG);
1506  }
1507
1508  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1509    return getAddrLocal(Op, DAG, HasMips64);
1510
1511  if (LargeGOT)
1512    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1513                                 MipsII::MO_GOT_LO16);
1514
1515  return getAddrGlobal(Op, DAG,
1516                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1517}
1518
1519SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1520                                              SelectionDAG &DAG) const {
1521  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1522    return getAddrNonPIC(Op, DAG);
1523
1524  return getAddrLocal(Op, DAG, HasMips64);
1525}
1526
1527SDValue MipsTargetLowering::
1528lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1529{
1530  // If the relocation model is PIC, use the General Dynamic TLS Model or
1531  // Local Dynamic TLS model, otherwise use the Initial Exec or
1532  // Local Exec TLS Model.
1533
1534  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1535  SDLoc DL(GA);
1536  const GlobalValue *GV = GA->getGlobal();
1537  EVT PtrVT = getPointerTy();
1538
1539  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1540
1541  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1542    // General Dynamic and Local Dynamic TLS Model.
1543    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1544                                                      : MipsII::MO_TLSGD;
1545
1546    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1547    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1548                                   getGlobalReg(DAG, PtrVT), TGA);
1549    unsigned PtrSize = PtrVT.getSizeInBits();
1550    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1551
1552    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1553
1554    ArgListTy Args;
1555    ArgListEntry Entry;
1556    Entry.Node = Argument;
1557    Entry.Ty = PtrTy;
1558    Args.push_back(Entry);
1559
1560    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1561                  false, false, false, false, 0, CallingConv::C,
1562                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1563                  /*isReturnValueUsed=*/true,
1564                  TlsGetAddr, Args, DAG, DL);
1565    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1566
1567    SDValue Ret = CallResult.first;
1568
1569    if (model != TLSModel::LocalDynamic)
1570      return Ret;
1571
1572    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1573                                               MipsII::MO_DTPREL_HI);
1574    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1575    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1576                                               MipsII::MO_DTPREL_LO);
1577    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1578    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1579    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1580  }
1581
1582  SDValue Offset;
1583  if (model == TLSModel::InitialExec) {
1584    // Initial Exec TLS Model
1585    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1586                                             MipsII::MO_GOTTPREL);
1587    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1588                      TGA);
1589    Offset = DAG.getLoad(PtrVT, DL,
1590                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1591                         false, false, false, 0);
1592  } else {
1593    // Local Exec TLS Model
1594    assert(model == TLSModel::LocalExec);
1595    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1596                                               MipsII::MO_TPREL_HI);
1597    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1598                                               MipsII::MO_TPREL_LO);
1599    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1600    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1601    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1602  }
1603
1604  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1605  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1606}
1607
1608SDValue MipsTargetLowering::
1609lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1610{
1611  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1612    return getAddrNonPIC(Op, DAG);
1613
1614  return getAddrLocal(Op, DAG, HasMips64);
1615}
1616
1617SDValue MipsTargetLowering::
1618lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1619{
1620  // gp_rel relocation
1621  // FIXME: we should reference the constant pool using small data sections,
1622  // but the asm printer currently doesn't support this feature without
1623  // hacking it. This feature should come soon so we can uncomment the
1624  // stuff below.
1625  //if (IsInSmallSection(C->getType())) {
1626  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1627  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1628  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1629
1630  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1631    return getAddrNonPIC(Op, DAG);
1632
1633  return getAddrLocal(Op, DAG, HasMips64);
1634}
1635
1636SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1637  MachineFunction &MF = DAG.getMachineFunction();
1638  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1639
1640  SDLoc DL(Op);
1641  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1642                                 getPointerTy());
1643
1644  // vastart just stores the address of the VarArgsFrameIndex slot into the
1645  // memory location argument.
1646  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1647  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1648                      MachinePointerInfo(SV), false, false, 0);
1649}
1650
1651static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1652  EVT TyX = Op.getOperand(0).getValueType();
1653  EVT TyY = Op.getOperand(1).getValueType();
1654  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1655  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1656  SDLoc DL(Op);
1657  SDValue Res;
1658
1659  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1660  // to i32.
1661  SDValue X = (TyX == MVT::f32) ?
1662    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1663    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1664                Const1);
1665  SDValue Y = (TyY == MVT::f32) ?
1666    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1667    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1668                Const1);
1669
1670  if (HasR2) {
1671    // ext  E, Y, 31, 1  ; extract bit31 of Y
1672    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1673    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1674    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1675  } else {
1676    // sll SllX, X, 1
1677    // srl SrlX, SllX, 1
1678    // srl SrlY, Y, 31
1679    // sll SllY, SrlX, 31
1680    // or  Or, SrlX, SllY
1681    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1682    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1683    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1684    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1685    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1686  }
1687
1688  if (TyX == MVT::f32)
1689    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1690
1691  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1692                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1693  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1694}
1695
1696static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1697  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1698  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1699  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1700  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1701  SDLoc DL(Op);
1702
1703  // Bitcast to integer nodes.
1704  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1705  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1706
1707  if (HasR2) {
1708    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1709    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1710    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1711                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1712
1713    if (WidthX > WidthY)
1714      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1715    else if (WidthY > WidthX)
1716      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1717
1718    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1719                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1720    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1721  }
1722
1723  // (d)sll SllX, X, 1
1724  // (d)srl SrlX, SllX, 1
1725  // (d)srl SrlY, Y, width(Y)-1
1726  // (d)sll SllY, SrlX, width(Y)-1
1727  // or     Or, SrlX, SllY
1728  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1729  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1730  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1731                             DAG.getConstant(WidthY - 1, MVT::i32));
1732
1733  if (WidthX > WidthY)
1734    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1735  else if (WidthY > WidthX)
1736    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1737
1738  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1739                             DAG.getConstant(WidthX - 1, MVT::i32));
1740  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1741  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1742}
1743
1744SDValue
1745MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1746  if (Subtarget->hasMips64())
1747    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1748
1749  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1750}
1751
1752static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1753  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1754  SDLoc DL(Op);
1755
1756  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1757  // to i32.
1758  SDValue X = (Op.getValueType() == MVT::f32) ?
1759    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1760    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1761                Const1);
1762
1763  // Clear MSB.
1764  if (HasR2)
1765    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1766                      DAG.getRegister(Mips::ZERO, MVT::i32),
1767                      DAG.getConstant(31, MVT::i32), Const1, X);
1768  else {
1769    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1770    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1771  }
1772
1773  if (Op.getValueType() == MVT::f32)
1774    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1775
1776  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1777                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1778  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1779}
1780
1781static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1782  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1783  SDLoc DL(Op);
1784
1785  // Bitcast to integer node.
1786  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1787
1788  // Clear MSB.
1789  if (HasR2)
1790    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1791                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1792                      DAG.getConstant(63, MVT::i32), Const1, X);
1793  else {
1794    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1795    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1796  }
1797
1798  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1799}
1800
1801SDValue
1802MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1803  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1804    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1805
1806  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1807}
1808
1809SDValue MipsTargetLowering::
1810lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1811  // check the depth
1812  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1813         "Frame address can only be determined for current frame.");
1814
1815  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1816  MFI->setFrameAddressIsTaken(true);
1817  EVT VT = Op.getValueType();
1818  SDLoc DL(Op);
1819  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1820                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1821  return FrameAddr;
1822}
1823
1824SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1825                                            SelectionDAG &DAG) const {
1826  // check the depth
1827  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1828         "Return address can be determined only for current frame.");
1829
1830  MachineFunction &MF = DAG.getMachineFunction();
1831  MachineFrameInfo *MFI = MF.getFrameInfo();
1832  MVT VT = Op.getSimpleValueType();
1833  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1834  MFI->setReturnAddressIsTaken(true);
1835
1836  // Return RA, which contains the return address. Mark it an implicit live-in.
1837  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1838  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1839}
1840
1841// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1842// generated from __builtin_eh_return (offset, handler)
1843// The effect of this is to adjust the stack pointer by "offset"
1844// and then branch to "handler".
1845SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1846                                                                     const {
1847  MachineFunction &MF = DAG.getMachineFunction();
1848  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1849
1850  MipsFI->setCallsEhReturn();
1851  SDValue Chain     = Op.getOperand(0);
1852  SDValue Offset    = Op.getOperand(1);
1853  SDValue Handler   = Op.getOperand(2);
1854  SDLoc DL(Op);
1855  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1856
1857  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1858  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1859  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1860  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1861  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1862  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1863  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1864                     DAG.getRegister(OffsetReg, Ty),
1865                     DAG.getRegister(AddrReg, getPointerTy()),
1866                     Chain.getValue(1));
1867}
1868
1869SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1870                                              SelectionDAG &DAG) const {
1871  // FIXME: Need pseudo-fence for 'singlethread' fences
1872  // FIXME: Set SType for weaker fences where supported/appropriate.
1873  unsigned SType = 0;
1874  SDLoc DL(Op);
1875  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1876                     DAG.getConstant(SType, MVT::i32));
1877}
1878
1879SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1880                                                SelectionDAG &DAG) const {
1881  SDLoc DL(Op);
1882  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1883  SDValue Shamt = Op.getOperand(2);
1884
1885  // if shamt < 32:
1886  //  lo = (shl lo, shamt)
1887  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1888  // else:
1889  //  lo = 0
1890  //  hi = (shl lo, shamt[4:0])
1891  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1892                            DAG.getConstant(-1, MVT::i32));
1893  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1894                                      DAG.getConstant(1, MVT::i32));
1895  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1896                                     Not);
1897  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1898  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1899  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1900  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1901                             DAG.getConstant(0x20, MVT::i32));
1902  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1903                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1904  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1905
1906  SDValue Ops[2] = {Lo, Hi};
1907  return DAG.getMergeValues(Ops, 2, DL);
1908}
1909
1910SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1911                                                 bool IsSRA) const {
1912  SDLoc DL(Op);
1913  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1914  SDValue Shamt = Op.getOperand(2);
1915
1916  // if shamt < 32:
1917  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1918  //  if isSRA:
1919  //    hi = (sra hi, shamt)
1920  //  else:
1921  //    hi = (srl hi, shamt)
1922  // else:
1923  //  if isSRA:
1924  //   lo = (sra hi, shamt[4:0])
1925  //   hi = (sra hi, 31)
1926  //  else:
1927  //   lo = (srl hi, shamt[4:0])
1928  //   hi = 0
1929  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1930                            DAG.getConstant(-1, MVT::i32));
1931  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1932                                     DAG.getConstant(1, MVT::i32));
1933  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1934  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1935  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1936  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1937                                     Hi, Shamt);
1938  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1939                             DAG.getConstant(0x20, MVT::i32));
1940  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1941                                DAG.getConstant(31, MVT::i32));
1942  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1943  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1944                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1945                   ShiftRightHi);
1946
1947  SDValue Ops[2] = {Lo, Hi};
1948  return DAG.getMergeValues(Ops, 2, DL);
1949}
1950
1951static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1952                            SDValue Chain, SDValue Src, unsigned Offset) {
1953  SDValue Ptr = LD->getBasePtr();
1954  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1955  EVT BasePtrVT = Ptr.getValueType();
1956  SDLoc DL(LD);
1957  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1958
1959  if (Offset)
1960    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1961                      DAG.getConstant(Offset, BasePtrVT));
1962
1963  SDValue Ops[] = { Chain, Ptr, Src };
1964  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1965                                 LD->getMemOperand());
1966}
1967
1968// Expand an unaligned 32 or 64-bit integer load node.
1969SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1970  LoadSDNode *LD = cast<LoadSDNode>(Op);
1971  EVT MemVT = LD->getMemoryVT();
1972
1973  // Return if load is aligned or if MemVT is neither i32 nor i64.
1974  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1975      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1976    return SDValue();
1977
1978  bool IsLittle = Subtarget->isLittle();
1979  EVT VT = Op.getValueType();
1980  ISD::LoadExtType ExtType = LD->getExtensionType();
1981  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1982
1983  assert((VT == MVT::i32) || (VT == MVT::i64));
1984
1985  // Expand
1986  //  (set dst, (i64 (load baseptr)))
1987  // to
1988  //  (set tmp, (ldl (add baseptr, 7), undef))
1989  //  (set dst, (ldr baseptr, tmp))
1990  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1991    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1992                               IsLittle ? 7 : 0);
1993    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1994                        IsLittle ? 0 : 7);
1995  }
1996
1997  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1998                             IsLittle ? 3 : 0);
1999  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2000                             IsLittle ? 0 : 3);
2001
2002  // Expand
2003  //  (set dst, (i32 (load baseptr))) or
2004  //  (set dst, (i64 (sextload baseptr))) or
2005  //  (set dst, (i64 (extload baseptr)))
2006  // to
2007  //  (set tmp, (lwl (add baseptr, 3), undef))
2008  //  (set dst, (lwr baseptr, tmp))
2009  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2010      (ExtType == ISD::EXTLOAD))
2011    return LWR;
2012
2013  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2014
2015  // Expand
2016  //  (set dst, (i64 (zextload baseptr)))
2017  // to
2018  //  (set tmp0, (lwl (add baseptr, 3), undef))
2019  //  (set tmp1, (lwr baseptr, tmp0))
2020  //  (set tmp2, (shl tmp1, 32))
2021  //  (set dst, (srl tmp2, 32))
2022  SDLoc DL(LD);
2023  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2024  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2025  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2026  SDValue Ops[] = { SRL, LWR.getValue(1) };
2027  return DAG.getMergeValues(Ops, 2, DL);
2028}
2029
2030static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2031                             SDValue Chain, unsigned Offset) {
2032  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2033  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2034  SDLoc DL(SD);
2035  SDVTList VTList = DAG.getVTList(MVT::Other);
2036
2037  if (Offset)
2038    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2039                      DAG.getConstant(Offset, BasePtrVT));
2040
2041  SDValue Ops[] = { Chain, Value, Ptr };
2042  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2043                                 SD->getMemOperand());
2044}
2045
2046// Expand an unaligned 32 or 64-bit integer store node.
2047static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2048                                      bool IsLittle) {
2049  SDValue Value = SD->getValue(), Chain = SD->getChain();
2050  EVT VT = Value.getValueType();
2051
2052  // Expand
2053  //  (store val, baseptr) or
2054  //  (truncstore val, baseptr)
2055  // to
2056  //  (swl val, (add baseptr, 3))
2057  //  (swr val, baseptr)
2058  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2059    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2060                                IsLittle ? 3 : 0);
2061    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2062  }
2063
2064  assert(VT == MVT::i64);
2065
2066  // Expand
2067  //  (store val, baseptr)
2068  // to
2069  //  (sdl val, (add baseptr, 7))
2070  //  (sdr val, baseptr)
2071  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2072  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2073}
2074
2075// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2076static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2077  SDValue Val = SD->getValue();
2078
2079  if (Val.getOpcode() != ISD::FP_TO_SINT)
2080    return SDValue();
2081
2082  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2083  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2084                           Val.getOperand(0));
2085
2086  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2087                      SD->getPointerInfo(), SD->isVolatile(),
2088                      SD->isNonTemporal(), SD->getAlignment());
2089}
2090
2091SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2092  StoreSDNode *SD = cast<StoreSDNode>(Op);
2093  EVT MemVT = SD->getMemoryVT();
2094
2095  // Lower unaligned integer stores.
2096  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2097      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2098    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2099
2100  return lowerFP_TO_SINT_STORE(SD, DAG);
2101}
2102
2103SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2104  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2105      || cast<ConstantSDNode>
2106        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2107      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2108    return SDValue();
2109
2110  // The pattern
2111  //   (add (frameaddr 0), (frame_to_args_offset))
2112  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2113  //   (add FrameObject, 0)
2114  // where FrameObject is a fixed StackObject with offset 0 which points to
2115  // the old stack pointer.
2116  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2117  EVT ValTy = Op->getValueType(0);
2118  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2119  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2120  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2121                     DAG.getConstant(0, ValTy));
2122}
2123
2124SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2125                                            SelectionDAG &DAG) const {
2126  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2127  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2128                              Op.getOperand(0));
2129  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2130}
2131
2132//===----------------------------------------------------------------------===//
2133//                      Calling Convention Implementation
2134//===----------------------------------------------------------------------===//
2135
2136//===----------------------------------------------------------------------===//
2137// TODO: Implement a generic logic using tblgen that can support this.
2138// Mips O32 ABI rules:
2139// ---
2140// i32 - Passed in A0, A1, A2, A3 and stack
2141// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2142//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2143// f64 - Only passed in two aliased f32 registers if no int reg has been used
2144//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2145//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2146//       go to stack.
2147//
2148//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2149//===----------------------------------------------------------------------===//
2150
2151static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2152                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2153                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2154
2155  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2156
2157  static const uint16_t IntRegs[] = {
2158      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2159  };
2160  static const uint16_t F32Regs[] = {
2161      Mips::F12, Mips::F14
2162  };
2163  static const uint16_t F64Regs[] = {
2164      Mips::D6, Mips::D7
2165  };
2166
2167  // Do not process byval args here.
2168  if (ArgFlags.isByVal())
2169    return true;
2170
2171  // Promote i8 and i16
2172  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2173    LocVT = MVT::i32;
2174    if (ArgFlags.isSExt())
2175      LocInfo = CCValAssign::SExt;
2176    else if (ArgFlags.isZExt())
2177      LocInfo = CCValAssign::ZExt;
2178    else
2179      LocInfo = CCValAssign::AExt;
2180  }
2181
2182  unsigned Reg;
2183
2184  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2185  // is true: function is vararg, argument is 3rd or higher, there is previous
2186  // argument which is not f32 or f64.
2187  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2188      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2189  unsigned OrigAlign = ArgFlags.getOrigAlign();
2190  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2191
2192  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2193    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2194    // If this is the first part of an i64 arg,
2195    // the allocated register must be either A0 or A2.
2196    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2197      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2198    LocVT = MVT::i32;
2199  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2200    // Allocate int register and shadow next int register. If first
2201    // available register is Mips::A1 or Mips::A3, shadow it too.
2202    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2203    if (Reg == Mips::A1 || Reg == Mips::A3)
2204      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2205    State.AllocateReg(IntRegs, IntRegsSize);
2206    LocVT = MVT::i32;
2207  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2208    // we are guaranteed to find an available float register
2209    if (ValVT == MVT::f32) {
2210      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2211      // Shadow int register
2212      State.AllocateReg(IntRegs, IntRegsSize);
2213    } else {
2214      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2215      // Shadow int registers
2216      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2217      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2218        State.AllocateReg(IntRegs, IntRegsSize);
2219      State.AllocateReg(IntRegs, IntRegsSize);
2220    }
2221  } else
2222    llvm_unreachable("Cannot handle this ValVT.");
2223
2224  if (!Reg) {
2225    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2226                                          OrigAlign);
2227    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2228  } else
2229    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2230
2231  return false;
2232}
2233
2234#include "MipsGenCallingConv.inc"
2235
2236//===----------------------------------------------------------------------===//
2237//                  Call Calling Convention Implementation
2238//===----------------------------------------------------------------------===//
2239
2240static const unsigned O32IntRegsSize = 4;
2241
2242// Return next O32 integer argument register.
2243static unsigned getNextIntArgReg(unsigned Reg) {
2244  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2245  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2246}
2247
2248SDValue
2249MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2250                                   SDValue Chain, SDValue Arg, SDLoc DL,
2251                                   bool IsTailCall, SelectionDAG &DAG) const {
2252  if (!IsTailCall) {
2253    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2254                                 DAG.getIntPtrConstant(Offset));
2255    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2256                        false, 0);
2257  }
2258
2259  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2260  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2261  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2262  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2263                      /*isVolatile=*/ true, false, 0);
2264}
2265
2266void MipsTargetLowering::
2267getOpndList(SmallVectorImpl<SDValue> &Ops,
2268            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2269            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2270            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2271  // Insert node "GP copy globalreg" before call to function.
2272  //
2273  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2274  // in PIC mode) allow symbols to be resolved via lazy binding.
2275  // The lazy binding stub requires GP to point to the GOT.
2276  if (IsPICCall && !InternalLinkage) {
2277    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2278    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2279    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2280  }
2281
2282  // Build a sequence of copy-to-reg nodes chained together with token
2283  // chain and flag operands which copy the outgoing args into registers.
2284  // The InFlag in necessary since all emitted instructions must be
2285  // stuck together.
2286  SDValue InFlag;
2287
2288  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2289    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2290                                 RegsToPass[i].second, InFlag);
2291    InFlag = Chain.getValue(1);
2292  }
2293
2294  // Add argument registers to the end of the list so that they are
2295  // known live into the call.
2296  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2297    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2298                                      RegsToPass[i].second.getValueType()));
2299
2300  // Add a register mask operand representing the call-preserved registers.
2301  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2302  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2303  assert(Mask && "Missing call preserved mask for calling convention");
2304  if (Subtarget->inMips16HardFloat()) {
2305    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2306      llvm::StringRef Sym = G->getGlobal()->getName();
2307      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2308      if (F->hasFnAttribute("__Mips16RetHelper")) {
2309        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2310      }
2311    }
2312  }
2313  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2314
2315  if (InFlag.getNode())
2316    Ops.push_back(InFlag);
2317}
2318
2319/// LowerCall - functions arguments are copied from virtual regs to
2320/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2321SDValue
2322MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2323                              SmallVectorImpl<SDValue> &InVals) const {
2324  SelectionDAG &DAG                     = CLI.DAG;
2325  SDLoc DL                              = CLI.DL;
2326  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2327  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2328  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2329  SDValue Chain                         = CLI.Chain;
2330  SDValue Callee                        = CLI.Callee;
2331  bool &IsTailCall                      = CLI.IsTailCall;
2332  CallingConv::ID CallConv              = CLI.CallConv;
2333  bool IsVarArg                         = CLI.IsVarArg;
2334
2335  MachineFunction &MF = DAG.getMachineFunction();
2336  MachineFrameInfo *MFI = MF.getFrameInfo();
2337  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2338  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2339
2340  // Analyze operands of the call, assigning locations to each operand.
2341  SmallVector<CCValAssign, 16> ArgLocs;
2342  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2343                 getTargetMachine(), ArgLocs, *DAG.getContext());
2344  MipsCC::SpecialCallingConvType SpecialCallingConv =
2345    getSpecialCallingConv(Callee);
2346  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo, SpecialCallingConv);
2347
2348  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2349                                 getTargetMachine().Options.UseSoftFloat,
2350                                 Callee.getNode(), CLI.Args);
2351
2352  // Get a count of how many bytes are to be pushed on the stack.
2353  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2354
2355  // Check if it's really possible to do a tail call.
2356  if (IsTailCall)
2357    IsTailCall =
2358      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2359                                        *MF.getInfo<MipsFunctionInfo>());
2360
2361  if (IsTailCall)
2362    ++NumTailCalls;
2363
2364  // Chain is the output chain of the last Load/Store or CopyToReg node.
2365  // ByValChain is the output chain of the last Memcpy node created for copying
2366  // byval arguments to the stack.
2367  unsigned StackAlignment = TFL->getStackAlignment();
2368  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2369  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2370
2371  if (!IsTailCall)
2372    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2373
2374  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2375                                        IsN64 ? Mips::SP_64 : Mips::SP,
2376                                        getPointerTy());
2377
2378  // With EABI is it possible to have 16 args on registers.
2379  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2380  SmallVector<SDValue, 8> MemOpChains;
2381  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2382
2383  // Walk the register/memloc assignments, inserting copies/loads.
2384  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2385    SDValue Arg = OutVals[i];
2386    CCValAssign &VA = ArgLocs[i];
2387    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2388    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2389
2390    // ByVal Arg.
2391    if (Flags.isByVal()) {
2392      assert(Flags.getByValSize() &&
2393             "ByVal args of size 0 should have been ignored by front-end.");
2394      assert(ByValArg != MipsCCInfo.byval_end());
2395      assert(!IsTailCall &&
2396             "Do not tail-call optimize if there is a byval argument.");
2397      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2398                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2399      ++ByValArg;
2400      continue;
2401    }
2402
2403    // Promote the value if needed.
2404    switch (VA.getLocInfo()) {
2405    default: llvm_unreachable("Unknown loc info!");
2406    case CCValAssign::Full:
2407      if (VA.isRegLoc()) {
2408        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2409            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2410            (ValVT == MVT::i64 && LocVT == MVT::f64))
2411          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2412        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2413          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2414                                   Arg, DAG.getConstant(0, MVT::i32));
2415          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2416                                   Arg, DAG.getConstant(1, MVT::i32));
2417          if (!Subtarget->isLittle())
2418            std::swap(Lo, Hi);
2419          unsigned LocRegLo = VA.getLocReg();
2420          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2421          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2422          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2423          continue;
2424        }
2425      }
2426      break;
2427    case CCValAssign::SExt:
2428      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2429      break;
2430    case CCValAssign::ZExt:
2431      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2432      break;
2433    case CCValAssign::AExt:
2434      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2435      break;
2436    }
2437
2438    // Arguments that can be passed on register must be kept at
2439    // RegsToPass vector
2440    if (VA.isRegLoc()) {
2441      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2442      continue;
2443    }
2444
2445    // Register can't get to this point...
2446    assert(VA.isMemLoc());
2447
2448    // emit ISD::STORE whichs stores the
2449    // parameter value to a stack Location
2450    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2451                                         Chain, Arg, DL, IsTailCall, DAG));
2452  }
2453
2454  // Transform all store nodes into one single node because all store
2455  // nodes are independent of each other.
2456  if (!MemOpChains.empty())
2457    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2458                        &MemOpChains[0], MemOpChains.size());
2459
2460  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2461  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2462  // node so that legalize doesn't hack it.
2463  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2464  bool GlobalOrExternal = false, InternalLinkage = false;
2465  SDValue CalleeLo;
2466
2467  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2468    if (IsPICCall) {
2469      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2470
2471      if (InternalLinkage)
2472        Callee = getAddrLocal(Callee, DAG, HasMips64);
2473      else if (LargeGOT)
2474        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2475                                       MipsII::MO_CALL_LO16);
2476      else
2477        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2478    } else
2479      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2480                                          MipsII::MO_NO_FLAG);
2481    GlobalOrExternal = true;
2482  }
2483  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2484    if (!IsN64 && !IsPIC) // !N64 && static
2485      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2486                                            MipsII::MO_NO_FLAG);
2487    else if (LargeGOT)
2488      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2489                                     MipsII::MO_CALL_LO16);
2490    else // N64 || PIC
2491      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2492
2493    GlobalOrExternal = true;
2494  }
2495
2496  SmallVector<SDValue, 8> Ops(1, Chain);
2497  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2498
2499  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2500              CLI, Callee, Chain);
2501
2502  if (IsTailCall)
2503    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2504
2505  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2506  SDValue InFlag = Chain.getValue(1);
2507
2508  // Create the CALLSEQ_END node.
2509  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2510                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2511  InFlag = Chain.getValue(1);
2512
2513  // Handle result values, copying them out of physregs into vregs that we
2514  // return.
2515  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2516                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2517}
2518
2519/// LowerCallResult - Lower the result values of a call into the
2520/// appropriate copies out of appropriate physical registers.
2521SDValue
2522MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2523                                    CallingConv::ID CallConv, bool IsVarArg,
2524                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2525                                    SDLoc DL, SelectionDAG &DAG,
2526                                    SmallVectorImpl<SDValue> &InVals,
2527                                    const SDNode *CallNode,
2528                                    const Type *RetTy) const {
2529  // Assign locations to each value returned by this call.
2530  SmallVector<CCValAssign, 16> RVLocs;
2531  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2532                 getTargetMachine(), RVLocs, *DAG.getContext());
2533  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2534
2535  MipsCCInfo.analyzeCallResult(Ins, getTargetMachine().Options.UseSoftFloat,
2536                               CallNode, RetTy);
2537
2538  // Copy all of the result registers out of their specified physreg.
2539  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2540    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2541                                     RVLocs[i].getLocVT(), InFlag);
2542    Chain = Val.getValue(1);
2543    InFlag = Val.getValue(2);
2544
2545    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2546      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2547
2548    InVals.push_back(Val);
2549  }
2550
2551  return Chain;
2552}
2553
2554//===----------------------------------------------------------------------===//
2555//             Formal Arguments Calling Convention Implementation
2556//===----------------------------------------------------------------------===//
2557/// LowerFormalArguments - transform physical registers into virtual registers
2558/// and generate load operations for arguments places on the stack.
2559SDValue
2560MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2561                                         CallingConv::ID CallConv,
2562                                         bool IsVarArg,
2563                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2564                                         SDLoc DL, SelectionDAG &DAG,
2565                                         SmallVectorImpl<SDValue> &InVals)
2566                                          const {
2567  MachineFunction &MF = DAG.getMachineFunction();
2568  MachineFrameInfo *MFI = MF.getFrameInfo();
2569  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2570
2571  MipsFI->setVarArgsFrameIndex(0);
2572
2573  // Used with vargs to acumulate store chains.
2574  std::vector<SDValue> OutChains;
2575
2576  // Assign locations to all of the incoming arguments.
2577  SmallVector<CCValAssign, 16> ArgLocs;
2578  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2579                 getTargetMachine(), ArgLocs, *DAG.getContext());
2580  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2581  Function::const_arg_iterator FuncArg =
2582    DAG.getMachineFunction().getFunction()->arg_begin();
2583  bool UseSoftFloat = getTargetMachine().Options.UseSoftFloat;
2584
2585  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2586  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2587                           MipsCCInfo.hasByValArg());
2588
2589  unsigned CurArgIdx = 0;
2590  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2591
2592  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2593    CCValAssign &VA = ArgLocs[i];
2594    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2595    CurArgIdx = Ins[i].OrigArgIndex;
2596    EVT ValVT = VA.getValVT();
2597    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2598    bool IsRegLoc = VA.isRegLoc();
2599
2600    if (Flags.isByVal()) {
2601      assert(Flags.getByValSize() &&
2602             "ByVal args of size 0 should have been ignored by front-end.");
2603      assert(ByValArg != MipsCCInfo.byval_end());
2604      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2605                    MipsCCInfo, *ByValArg);
2606      ++ByValArg;
2607      continue;
2608    }
2609
2610    // Arguments stored on registers
2611    if (IsRegLoc) {
2612      EVT RegVT = VA.getLocVT();
2613      unsigned ArgReg = VA.getLocReg();
2614      const TargetRegisterClass *RC;
2615
2616      if (RegVT == MVT::i32)
2617        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2618                                        &Mips::CPURegsRegClass;
2619      else if (RegVT == MVT::i64)
2620        RC = &Mips::CPU64RegsRegClass;
2621      else if (RegVT == MVT::f32)
2622        RC = &Mips::FGR32RegClass;
2623      else if (RegVT == MVT::f64)
2624        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
2625      else
2626        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2627
2628      // Transform the arguments stored on
2629      // physical registers into virtual ones
2630      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2631      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2632
2633      // If this is an 8 or 16-bit value, it has been passed promoted
2634      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2635      // truncate to the right size.
2636      if (VA.getLocInfo() != CCValAssign::Full) {
2637        unsigned Opcode = 0;
2638        if (VA.getLocInfo() == CCValAssign::SExt)
2639          Opcode = ISD::AssertSext;
2640        else if (VA.getLocInfo() == CCValAssign::ZExt)
2641          Opcode = ISD::AssertZext;
2642        if (Opcode)
2643          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2644                                 DAG.getValueType(ValVT));
2645        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2646      }
2647
2648      // Handle floating point arguments passed in integer registers and
2649      // long double arguments passed in floating point registers.
2650      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2651          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2652          (RegVT == MVT::f64 && ValVT == MVT::i64))
2653        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2654      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2655        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2656                                  getNextIntArgReg(ArgReg), RC);
2657        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2658        if (!Subtarget->isLittle())
2659          std::swap(ArgValue, ArgValue2);
2660        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2661                               ArgValue, ArgValue2);
2662      }
2663
2664      InVals.push_back(ArgValue);
2665    } else { // VA.isRegLoc()
2666
2667      // sanity check
2668      assert(VA.isMemLoc());
2669
2670      // The stack pointer offset is relative to the caller stack frame.
2671      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2672                                      VA.getLocMemOffset(), true);
2673
2674      // Create load nodes to retrieve arguments from the stack
2675      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2676      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2677                                   MachinePointerInfo::getFixedStack(FI),
2678                                   false, false, false, 0));
2679    }
2680  }
2681
2682  // The mips ABIs for returning structs by value requires that we copy
2683  // the sret argument into $v0 for the return. Save the argument into
2684  // a virtual register so that we can access it from the return points.
2685  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2686    unsigned Reg = MipsFI->getSRetReturnReg();
2687    if (!Reg) {
2688      Reg = MF.getRegInfo().
2689        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2690      MipsFI->setSRetReturnReg(Reg);
2691    }
2692    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2693    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2694  }
2695
2696  if (IsVarArg)
2697    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2698
2699  // All stores are grouped in one node to allow the matching between
2700  // the size of Ins and InVals. This only happens when on varg functions
2701  if (!OutChains.empty()) {
2702    OutChains.push_back(Chain);
2703    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2704                        &OutChains[0], OutChains.size());
2705  }
2706
2707  return Chain;
2708}
2709
2710//===----------------------------------------------------------------------===//
2711//               Return Value Calling Convention Implementation
2712//===----------------------------------------------------------------------===//
2713
2714bool
2715MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2716                                   MachineFunction &MF, bool IsVarArg,
2717                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2718                                   LLVMContext &Context) const {
2719  SmallVector<CCValAssign, 16> RVLocs;
2720  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2721                 RVLocs, Context);
2722  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2723}
2724
2725SDValue
2726MipsTargetLowering::LowerReturn(SDValue Chain,
2727                                CallingConv::ID CallConv, bool IsVarArg,
2728                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2729                                const SmallVectorImpl<SDValue> &OutVals,
2730                                SDLoc DL, SelectionDAG &DAG) const {
2731  // CCValAssign - represent the assignment of
2732  // the return value to a location
2733  SmallVector<CCValAssign, 16> RVLocs;
2734  MachineFunction &MF = DAG.getMachineFunction();
2735
2736  // CCState - Info about the registers and stack slot.
2737  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2738                 *DAG.getContext());
2739  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2740
2741  // Analyze return values.
2742  MipsCCInfo.analyzeReturn(Outs, getTargetMachine().Options.UseSoftFloat,
2743                           MF.getFunction()->getReturnType());
2744
2745  SDValue Flag;
2746  SmallVector<SDValue, 4> RetOps(1, Chain);
2747
2748  // Copy the result values into the output registers.
2749  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2750    SDValue Val = OutVals[i];
2751    CCValAssign &VA = RVLocs[i];
2752    assert(VA.isRegLoc() && "Can only return in registers!");
2753
2754    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2755      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2756
2757    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2758
2759    // Guarantee that all emitted copies are stuck together with flags.
2760    Flag = Chain.getValue(1);
2761    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2762  }
2763
2764  // The mips ABIs for returning structs by value requires that we copy
2765  // the sret argument into $v0 for the return. We saved the argument into
2766  // a virtual register in the entry block, so now we copy the value out
2767  // and into $v0.
2768  if (MF.getFunction()->hasStructRetAttr()) {
2769    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2770    unsigned Reg = MipsFI->getSRetReturnReg();
2771
2772    if (!Reg)
2773      llvm_unreachable("sret virtual register not created in the entry block");
2774    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2775    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2776
2777    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2778    Flag = Chain.getValue(1);
2779    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2780  }
2781
2782  RetOps[0] = Chain;  // Update chain.
2783
2784  // Add the flag if we have it.
2785  if (Flag.getNode())
2786    RetOps.push_back(Flag);
2787
2788  // Return on Mips is always a "jr $ra"
2789  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2790}
2791
2792//===----------------------------------------------------------------------===//
2793//                           Mips Inline Assembly Support
2794//===----------------------------------------------------------------------===//
2795
2796/// getConstraintType - Given a constraint letter, return the type of
2797/// constraint it is for this target.
2798MipsTargetLowering::ConstraintType MipsTargetLowering::
2799getConstraintType(const std::string &Constraint) const
2800{
2801  // Mips specific constrainy
2802  // GCC config/mips/constraints.md
2803  //
2804  // 'd' : An address register. Equivalent to r
2805  //       unless generating MIPS16 code.
2806  // 'y' : Equivalent to r; retained for
2807  //       backwards compatibility.
2808  // 'c' : A register suitable for use in an indirect
2809  //       jump. This will always be $25 for -mabicalls.
2810  // 'l' : The lo register. 1 word storage.
2811  // 'x' : The hilo register pair. Double word storage.
2812  if (Constraint.size() == 1) {
2813    switch (Constraint[0]) {
2814      default : break;
2815      case 'd':
2816      case 'y':
2817      case 'f':
2818      case 'c':
2819      case 'l':
2820      case 'x':
2821        return C_RegisterClass;
2822      case 'R':
2823        return C_Memory;
2824    }
2825  }
2826  return TargetLowering::getConstraintType(Constraint);
2827}
2828
2829/// Examine constraint type and operand type and determine a weight value.
2830/// This object must already have been set up with the operand type
2831/// and the current alternative constraint selected.
2832TargetLowering::ConstraintWeight
2833MipsTargetLowering::getSingleConstraintMatchWeight(
2834    AsmOperandInfo &info, const char *constraint) const {
2835  ConstraintWeight weight = CW_Invalid;
2836  Value *CallOperandVal = info.CallOperandVal;
2837    // If we don't have a value, we can't do a match,
2838    // but allow it at the lowest weight.
2839  if (CallOperandVal == NULL)
2840    return CW_Default;
2841  Type *type = CallOperandVal->getType();
2842  // Look at the constraint type.
2843  switch (*constraint) {
2844  default:
2845    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2846    break;
2847  case 'd':
2848  case 'y':
2849    if (type->isIntegerTy())
2850      weight = CW_Register;
2851    break;
2852  case 'f':
2853    if (type->isFloatTy())
2854      weight = CW_Register;
2855    break;
2856  case 'c': // $25 for indirect jumps
2857  case 'l': // lo register
2858  case 'x': // hilo register pair
2859      if (type->isIntegerTy())
2860      weight = CW_SpecificReg;
2861      break;
2862  case 'I': // signed 16 bit immediate
2863  case 'J': // integer zero
2864  case 'K': // unsigned 16 bit immediate
2865  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2866  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2867  case 'O': // signed 15 bit immediate (+- 16383)
2868  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2869    if (isa<ConstantInt>(CallOperandVal))
2870      weight = CW_Constant;
2871    break;
2872  case 'R':
2873    weight = CW_Memory;
2874    break;
2875  }
2876  return weight;
2877}
2878
2879/// Given a register class constraint, like 'r', if this corresponds directly
2880/// to an LLVM register class, return a register of 0 and the register class
2881/// pointer.
2882std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2883getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2884{
2885  if (Constraint.size() == 1) {
2886    switch (Constraint[0]) {
2887    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2888    case 'y': // Same as 'r'. Exists for compatibility.
2889    case 'r':
2890      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2891        if (Subtarget->inMips16Mode())
2892          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2893        return std::make_pair(0U, &Mips::CPURegsRegClass);
2894      }
2895      if (VT == MVT::i64 && !HasMips64)
2896        return std::make_pair(0U, &Mips::CPURegsRegClass);
2897      if (VT == MVT::i64 && HasMips64)
2898        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
2899      // This will generate an error message
2900      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2901    case 'f':
2902      if (VT == MVT::f32)
2903        return std::make_pair(0U, &Mips::FGR32RegClass);
2904      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2905        if (Subtarget->isFP64bit())
2906          return std::make_pair(0U, &Mips::FGR64RegClass);
2907        return std::make_pair(0U, &Mips::AFGR64RegClass);
2908      }
2909      break;
2910    case 'c': // register suitable for indirect jump
2911      if (VT == MVT::i32)
2912        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
2913      assert(VT == MVT::i64 && "Unexpected type.");
2914      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
2915    case 'l': // register suitable for indirect jump
2916      if (VT == MVT::i32)
2917        return std::make_pair((unsigned)Mips::LO, &Mips::LORegsRegClass);
2918      return std::make_pair((unsigned)Mips::LO64, &Mips::LORegs64RegClass);
2919    case 'x': // register suitable for indirect jump
2920      // Fixme: Not triggering the use of both hi and low
2921      // This will generate an error message
2922      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2923    }
2924  }
2925  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2926}
2927
2928/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2929/// vector.  If it is invalid, don't add anything to Ops.
2930void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2931                                                     std::string &Constraint,
2932                                                     std::vector<SDValue>&Ops,
2933                                                     SelectionDAG &DAG) const {
2934  SDValue Result(0, 0);
2935
2936  // Only support length 1 constraints for now.
2937  if (Constraint.length() > 1) return;
2938
2939  char ConstraintLetter = Constraint[0];
2940  switch (ConstraintLetter) {
2941  default: break; // This will fall through to the generic implementation
2942  case 'I': // Signed 16 bit constant
2943    // If this fails, the parent routine will give an error
2944    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2945      EVT Type = Op.getValueType();
2946      int64_t Val = C->getSExtValue();
2947      if (isInt<16>(Val)) {
2948        Result = DAG.getTargetConstant(Val, Type);
2949        break;
2950      }
2951    }
2952    return;
2953  case 'J': // integer zero
2954    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2955      EVT Type = Op.getValueType();
2956      int64_t Val = C->getZExtValue();
2957      if (Val == 0) {
2958        Result = DAG.getTargetConstant(0, Type);
2959        break;
2960      }
2961    }
2962    return;
2963  case 'K': // unsigned 16 bit immediate
2964    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2965      EVT Type = Op.getValueType();
2966      uint64_t Val = (uint64_t)C->getZExtValue();
2967      if (isUInt<16>(Val)) {
2968        Result = DAG.getTargetConstant(Val, Type);
2969        break;
2970      }
2971    }
2972    return;
2973  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2974    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2975      EVT Type = Op.getValueType();
2976      int64_t Val = C->getSExtValue();
2977      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
2978        Result = DAG.getTargetConstant(Val, Type);
2979        break;
2980      }
2981    }
2982    return;
2983  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2984    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2985      EVT Type = Op.getValueType();
2986      int64_t Val = C->getSExtValue();
2987      if ((Val >= -65535) && (Val <= -1)) {
2988        Result = DAG.getTargetConstant(Val, Type);
2989        break;
2990      }
2991    }
2992    return;
2993  case 'O': // signed 15 bit immediate
2994    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2995      EVT Type = Op.getValueType();
2996      int64_t Val = C->getSExtValue();
2997      if ((isInt<15>(Val))) {
2998        Result = DAG.getTargetConstant(Val, Type);
2999        break;
3000      }
3001    }
3002    return;
3003  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3004    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3005      EVT Type = Op.getValueType();
3006      int64_t Val = C->getSExtValue();
3007      if ((Val <= 65535) && (Val >= 1)) {
3008        Result = DAG.getTargetConstant(Val, Type);
3009        break;
3010      }
3011    }
3012    return;
3013  }
3014
3015  if (Result.getNode()) {
3016    Ops.push_back(Result);
3017    return;
3018  }
3019
3020  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3021}
3022
3023bool
3024MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3025  // No global is ever allowed as a base.
3026  if (AM.BaseGV)
3027    return false;
3028
3029  switch (AM.Scale) {
3030  case 0: // "r+i" or just "i", depending on HasBaseReg.
3031    break;
3032  case 1:
3033    if (!AM.HasBaseReg) // allow "r+i".
3034      break;
3035    return false; // disallow "r+r" or "r+r+i".
3036  default:
3037    return false;
3038  }
3039
3040  return true;
3041}
3042
3043bool
3044MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3045  // The Mips target isn't yet aware of offsets.
3046  return false;
3047}
3048
3049EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3050                                            unsigned SrcAlign,
3051                                            bool IsMemset, bool ZeroMemset,
3052                                            bool MemcpyStrSrc,
3053                                            MachineFunction &MF) const {
3054  if (Subtarget->hasMips64())
3055    return MVT::i64;
3056
3057  return MVT::i32;
3058}
3059
3060bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3061  if (VT != MVT::f32 && VT != MVT::f64)
3062    return false;
3063  if (Imm.isNegZero())
3064    return false;
3065  return Imm.isZero();
3066}
3067
3068unsigned MipsTargetLowering::getJumpTableEncoding() const {
3069  if (IsN64)
3070    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3071
3072  return TargetLowering::getJumpTableEncoding();
3073}
3074
3075/// This function returns true if CallSym is a long double emulation routine.
3076static bool isF128SoftLibCall(const char *CallSym) {
3077  const char *const LibCalls[] =
3078    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3079     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3080     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3081     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3082     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3083     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3084     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3085     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3086     "truncl"};
3087
3088  const char * const *End = LibCalls + array_lengthof(LibCalls);
3089
3090  // Check that LibCalls is sorted alphabetically.
3091  MipsTargetLowering::LTStr Comp;
3092
3093#ifndef NDEBUG
3094  for (const char * const *I = LibCalls; I < End - 1; ++I)
3095    assert(Comp(*I, *(I + 1)));
3096#endif
3097
3098  return std::binary_search(LibCalls, End, CallSym, Comp);
3099}
3100
3101/// This function returns true if Ty is fp128 or i128 which was originally a
3102/// fp128.
3103static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3104  if (Ty->isFP128Ty())
3105    return true;
3106
3107  const ExternalSymbolSDNode *ES =
3108    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3109
3110  // If the Ty is i128 and the function being called is a long double emulation
3111  // routine, then the original type is f128.
3112  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3113}
3114
3115MipsTargetLowering::MipsCC::SpecialCallingConvType
3116  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3117  MipsCC::SpecialCallingConvType SpecialCallingConv =
3118    MipsCC::NoSpecialCallingConv;;
3119  if (Subtarget->inMips16HardFloat()) {
3120    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3121      llvm::StringRef Sym = G->getGlobal()->getName();
3122      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3123      if (F->hasFnAttribute("__Mips16RetHelper")) {
3124        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3125      }
3126    }
3127  }
3128  return SpecialCallingConv;
3129}
3130
3131MipsTargetLowering::MipsCC::MipsCC(
3132  CallingConv::ID CC, bool IsO32_, CCState &Info,
3133    MipsCC::SpecialCallingConvType SpecialCallingConv_)
3134  : CCInfo(Info), CallConv(CC), IsO32(IsO32_),
3135    SpecialCallingConv(SpecialCallingConv_){
3136  // Pre-allocate reserved argument area.
3137  CCInfo.AllocateStack(reservedArgArea(), 1);
3138}
3139
3140
3141void MipsTargetLowering::MipsCC::
3142analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3143                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3144                    std::vector<ArgListEntry> &FuncArgs) {
3145  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3146         "CallingConv::Fast shouldn't be used for vararg functions.");
3147
3148  unsigned NumOpnds = Args.size();
3149  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3150
3151  for (unsigned I = 0; I != NumOpnds; ++I) {
3152    MVT ArgVT = Args[I].VT;
3153    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3154    bool R;
3155
3156    if (ArgFlags.isByVal()) {
3157      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3158      continue;
3159    }
3160
3161    if (IsVarArg && !Args[I].IsFixed)
3162      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3163    else {
3164      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3165                           IsSoftFloat);
3166      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3167    }
3168
3169    if (R) {
3170#ifndef NDEBUG
3171      dbgs() << "Call operand #" << I << " has unhandled type "
3172             << EVT(ArgVT).getEVTString();
3173#endif
3174      llvm_unreachable(0);
3175    }
3176  }
3177}
3178
3179void MipsTargetLowering::MipsCC::
3180analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3181                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3182  unsigned NumArgs = Args.size();
3183  llvm::CCAssignFn *FixedFn = fixedArgFn();
3184  unsigned CurArgIdx = 0;
3185
3186  for (unsigned I = 0; I != NumArgs; ++I) {
3187    MVT ArgVT = Args[I].VT;
3188    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3189    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3190    CurArgIdx = Args[I].OrigArgIndex;
3191
3192    if (ArgFlags.isByVal()) {
3193      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3194      continue;
3195    }
3196
3197    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3198
3199    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3200      continue;
3201
3202#ifndef NDEBUG
3203    dbgs() << "Formal Arg #" << I << " has unhandled type "
3204           << EVT(ArgVT).getEVTString();
3205#endif
3206    llvm_unreachable(0);
3207  }
3208}
3209
3210template<typename Ty>
3211void MipsTargetLowering::MipsCC::
3212analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3213              const SDNode *CallNode, const Type *RetTy) const {
3214  CCAssignFn *Fn;
3215
3216  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3217    Fn = RetCC_F128Soft;
3218  else
3219    Fn = RetCC_Mips;
3220
3221  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3222    MVT VT = RetVals[I].VT;
3223    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3224    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3225
3226    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3227#ifndef NDEBUG
3228      dbgs() << "Call result #" << I << " has unhandled type "
3229             << EVT(VT).getEVTString() << '\n';
3230#endif
3231      llvm_unreachable(0);
3232    }
3233  }
3234}
3235
3236void MipsTargetLowering::MipsCC::
3237analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3238                  const SDNode *CallNode, const Type *RetTy) const {
3239  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3240}
3241
3242void MipsTargetLowering::MipsCC::
3243analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3244              const Type *RetTy) const {
3245  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3246}
3247
3248void
3249MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3250                                           MVT LocVT,
3251                                           CCValAssign::LocInfo LocInfo,
3252                                           ISD::ArgFlagsTy ArgFlags) {
3253  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3254
3255  struct ByValArgInfo ByVal;
3256  unsigned RegSize = regSize();
3257  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3258  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3259                            RegSize * 2);
3260
3261  if (useRegsForByval())
3262    allocateRegs(ByVal, ByValSize, Align);
3263
3264  // Allocate space on caller's stack.
3265  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3266                                       Align);
3267  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3268                                    LocInfo));
3269  ByValArgs.push_back(ByVal);
3270}
3271
3272unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3273  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3274}
3275
3276unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3277  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3278}
3279
3280const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3281  return IsO32 ? O32IntRegs : Mips64IntRegs;
3282}
3283
3284llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3285  if (CallConv == CallingConv::Fast)
3286    return CC_Mips_FastCC;
3287
3288  if (SpecialCallingConv == Mips16RetHelperConv)
3289    return CC_Mips16RetHelper;
3290  return IsO32 ? CC_MipsO32 : CC_MipsN;
3291}
3292
3293llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3294  return IsO32 ? CC_MipsO32 : CC_MipsN_VarArg;
3295}
3296
3297const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3298  return IsO32 ? O32IntRegs : Mips64DPRegs;
3299}
3300
3301void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3302                                              unsigned ByValSize,
3303                                              unsigned Align) {
3304  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3305  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3306  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3307         "Byval argument's size and alignment should be a multiple of"
3308         "RegSize.");
3309
3310  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3311
3312  // If Align > RegSize, the first arg register must be even.
3313  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3314    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3315    ++ByVal.FirstIdx;
3316  }
3317
3318  // Mark the registers allocated.
3319  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3320       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3321    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3322}
3323
3324MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3325                                         const SDNode *CallNode,
3326                                         bool IsSoftFloat) const {
3327  if (IsSoftFloat || IsO32)
3328    return VT;
3329
3330  // Check if the original type was fp128.
3331  if (originalTypeIsF128(OrigTy, CallNode)) {
3332    assert(VT == MVT::i64);
3333    return MVT::f64;
3334  }
3335
3336  return VT;
3337}
3338
3339void MipsTargetLowering::
3340copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3341              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3342              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3343              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3344  MachineFunction &MF = DAG.getMachineFunction();
3345  MachineFrameInfo *MFI = MF.getFrameInfo();
3346  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3347  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3348  int FrameObjOffset;
3349
3350  if (RegAreaSize)
3351    FrameObjOffset = (int)CC.reservedArgArea() -
3352      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3353  else
3354    FrameObjOffset = ByVal.Address;
3355
3356  // Create frame object.
3357  EVT PtrTy = getPointerTy();
3358  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3359  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3360  InVals.push_back(FIN);
3361
3362  if (!ByVal.NumRegs)
3363    return;
3364
3365  // Copy arg registers.
3366  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3367  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3368
3369  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3370    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3371    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3372    unsigned Offset = I * CC.regSize();
3373    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3374                                   DAG.getConstant(Offset, PtrTy));
3375    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3376                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3377                                 false, false, 0);
3378    OutChains.push_back(Store);
3379  }
3380}
3381
3382// Copy byVal arg to registers and stack.
3383void MipsTargetLowering::
3384passByValArg(SDValue Chain, SDLoc DL,
3385             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3386             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3387             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3388             const MipsCC &CC, const ByValArgInfo &ByVal,
3389             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3390  unsigned ByValSize = Flags.getByValSize();
3391  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3392  unsigned RegSize = CC.regSize();
3393  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3394  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3395
3396  if (ByVal.NumRegs) {
3397    const uint16_t *ArgRegs = CC.intArgRegs();
3398    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3399    unsigned I = 0;
3400
3401    // Copy words to registers.
3402    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3403      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3404                                    DAG.getConstant(Offset, PtrTy));
3405      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3406                                    MachinePointerInfo(), false, false, false,
3407                                    Alignment);
3408      MemOpChains.push_back(LoadVal.getValue(1));
3409      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3410      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3411    }
3412
3413    // Return if the struct has been fully copied.
3414    if (ByValSize == Offset)
3415      return;
3416
3417    // Copy the remainder of the byval argument with sub-word loads and shifts.
3418    if (LeftoverBytes) {
3419      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3420             "Size of the remainder should be smaller than RegSize.");
3421      SDValue Val;
3422
3423      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3424           Offset < ByValSize; LoadSize /= 2) {
3425        unsigned RemSize = ByValSize - Offset;
3426
3427        if (RemSize < LoadSize)
3428          continue;
3429
3430        // Load subword.
3431        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3432                                      DAG.getConstant(Offset, PtrTy));
3433        SDValue LoadVal =
3434          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3435                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3436                         false, false, Alignment);
3437        MemOpChains.push_back(LoadVal.getValue(1));
3438
3439        // Shift the loaded value.
3440        unsigned Shamt;
3441
3442        if (isLittle)
3443          Shamt = TotalSizeLoaded;
3444        else
3445          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3446
3447        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3448                                    DAG.getConstant(Shamt, MVT::i32));
3449
3450        if (Val.getNode())
3451          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3452        else
3453          Val = Shift;
3454
3455        Offset += LoadSize;
3456        TotalSizeLoaded += LoadSize;
3457        Alignment = std::min(Alignment, LoadSize);
3458      }
3459
3460      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3461      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3462      return;
3463    }
3464  }
3465
3466  // Copy remainder of byval arg to it with memcpy.
3467  unsigned MemCpySize = ByValSize - Offset;
3468  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3469                            DAG.getConstant(Offset, PtrTy));
3470  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3471                            DAG.getIntPtrConstant(ByVal.Address));
3472  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3473                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3474                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3475                        MachinePointerInfo(0), MachinePointerInfo(0));
3476  MemOpChains.push_back(Chain);
3477}
3478
3479void
3480MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3481                                    const MipsCC &CC, SDValue Chain,
3482                                    SDLoc DL, SelectionDAG &DAG) const {
3483  unsigned NumRegs = CC.numIntArgRegs();
3484  const uint16_t *ArgRegs = CC.intArgRegs();
3485  const CCState &CCInfo = CC.getCCInfo();
3486  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3487  unsigned RegSize = CC.regSize();
3488  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3489  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3490  MachineFunction &MF = DAG.getMachineFunction();
3491  MachineFrameInfo *MFI = MF.getFrameInfo();
3492  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3493
3494  // Offset of the first variable argument from stack pointer.
3495  int VaArgOffset;
3496
3497  if (NumRegs == Idx)
3498    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3499  else
3500    VaArgOffset =
3501      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3502
3503  // Record the frame index of the first variable argument
3504  // which is a value necessary to VASTART.
3505  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3506  MipsFI->setVarArgsFrameIndex(FI);
3507
3508  // Copy the integer registers that have not been used for argument passing
3509  // to the argument register save area. For O32, the save area is allocated
3510  // in the caller's stack frame, while for N32/64, it is allocated in the
3511  // callee's stack frame.
3512  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3513    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3514    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3515    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3516    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3517    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3518                                 MachinePointerInfo(), false, false, 0);
3519    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3520    OutChains.push_back(Store);
3521  }
3522}
3523