MipsISelLowering.cpp revision acfa5a203c01d99aac1bdc1e045c08153bcdbbf6
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include <cctype>
38
39using namespace llvm;
40
41STATISTIC(NumTailCalls, "Number of tail calls");
42
43static cl::opt<bool>
44LargeGOT("mxgot", cl::Hidden,
45         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
46
47static cl::opt<bool>
48NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
49               cl::desc("MIPS: Don't trap on integer division by zero."),
50               cl::init(false));
51
52static const uint16_t O32IntRegs[4] = {
53  Mips::A0, Mips::A1, Mips::A2, Mips::A3
54};
55
56static const uint16_t Mips64IntRegs[8] = {
57  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
58  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
59};
60
61static const uint16_t Mips64DPRegs[8] = {
62  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
63  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
64};
65
66// If I is a shifted mask, set the size (Size) and the first bit of the
67// mask (Pos), and return true.
68// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
69static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
70  if (!isShiftedMask_64(I))
71     return false;
72
73  Size = CountPopulation_64(I);
74  Pos = countTrailingZeros(I);
75  return true;
76}
77
78SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
79  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
80  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
81}
82
83static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
84  EVT Ty = Op.getValueType();
85
86  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
87    return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(Op), Ty, 0,
88                                      Flag);
89  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
90    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
91  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
92    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
93  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
94    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
95  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
96    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
97                                     N->getOffset(), Flag);
98
99  llvm_unreachable("Unexpected node type.");
100  return SDValue();
101}
102
103static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
104  SDLoc DL(Op);
105  EVT Ty = Op.getValueType();
106  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
107  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
108  return DAG.getNode(ISD::ADD, DL, Ty,
109                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
110                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
111}
112
113SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
114                                         bool HasMips64) const {
115  SDLoc DL(Op);
116  EVT Ty = Op.getValueType();
117  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
118  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
119                            getTargetNode(Op, DAG, GOTFlag));
120  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
121                             MachinePointerInfo::getGOT(), false, false, false,
122                             0);
123  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
124  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
125  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
126}
127
128SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
129                                          unsigned Flag) const {
130  SDLoc DL(Op);
131  EVT Ty = Op.getValueType();
132  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
133                            getTargetNode(Op, DAG, Flag));
134  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
135                     MachinePointerInfo::getGOT(), false, false, false, 0);
136}
137
138SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
139                                                  unsigned HiFlag,
140                                                  unsigned LoFlag) const {
141  SDLoc DL(Op);
142  EVT Ty = Op.getValueType();
143  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
144  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
145  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
146                                getTargetNode(Op, DAG, LoFlag));
147  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
148                     MachinePointerInfo::getGOT(), false, false, false, 0);
149}
150
151const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
152  switch (Opcode) {
153  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
154  case MipsISD::TailCall:          return "MipsISD::TailCall";
155  case MipsISD::Hi:                return "MipsISD::Hi";
156  case MipsISD::Lo:                return "MipsISD::Lo";
157  case MipsISD::GPRel:             return "MipsISD::GPRel";
158  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
159  case MipsISD::Ret:               return "MipsISD::Ret";
160  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
161  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
162  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
163  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
164  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
165  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
166  case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
167  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
168  case MipsISD::Mult:              return "MipsISD::Mult";
169  case MipsISD::Multu:             return "MipsISD::Multu";
170  case MipsISD::MAdd:              return "MipsISD::MAdd";
171  case MipsISD::MAddu:             return "MipsISD::MAddu";
172  case MipsISD::MSub:              return "MipsISD::MSub";
173  case MipsISD::MSubu:             return "MipsISD::MSubu";
174  case MipsISD::DivRem:            return "MipsISD::DivRem";
175  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
176  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
177  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
178  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
179  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
180  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
181  case MipsISD::Sync:              return "MipsISD::Sync";
182  case MipsISD::Ext:               return "MipsISD::Ext";
183  case MipsISD::Ins:               return "MipsISD::Ins";
184  case MipsISD::LWL:               return "MipsISD::LWL";
185  case MipsISD::LWR:               return "MipsISD::LWR";
186  case MipsISD::SWL:               return "MipsISD::SWL";
187  case MipsISD::SWR:               return "MipsISD::SWR";
188  case MipsISD::LDL:               return "MipsISD::LDL";
189  case MipsISD::LDR:               return "MipsISD::LDR";
190  case MipsISD::SDL:               return "MipsISD::SDL";
191  case MipsISD::SDR:               return "MipsISD::SDR";
192  case MipsISD::EXTP:              return "MipsISD::EXTP";
193  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
194  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
195  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
196  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
197  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
198  case MipsISD::SHILO:             return "MipsISD::SHILO";
199  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
200  case MipsISD::MULT:              return "MipsISD::MULT";
201  case MipsISD::MULTU:             return "MipsISD::MULTU";
202  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
203  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
204  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
205  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
206  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
207  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
208  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
209  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
210  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
211  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
212  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
213  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
214  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
215  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
216  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
217  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
218  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
219  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
220  case MipsISD::VSMAX:             return "MipsISD::VSMAX";
221  case MipsISD::VSMIN:             return "MipsISD::VSMIN";
222  case MipsISD::VUMAX:             return "MipsISD::VUMAX";
223  case MipsISD::VUMIN:             return "MipsISD::VUMIN";
224  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
225  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
226  case MipsISD::VNOR:              return "MipsISD::VNOR";
227  default:                         return NULL;
228  }
229}
230
231MipsTargetLowering::
232MipsTargetLowering(MipsTargetMachine &TM)
233  : TargetLowering(TM, new MipsTargetObjectFile()),
234    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
235    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
236    IsO32(Subtarget->isABI_O32()) {
237  // Mips does not have i1 type, so use i32 for
238  // setcc operations results (slt, sgt, ...).
239  setBooleanContents(ZeroOrOneBooleanContent);
240  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
241
242  // Load extented operations for i1 types must be promoted
243  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
244  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
245  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
246
247  // MIPS doesn't have extending float->double load/store
248  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
249  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
250
251  // Used by legalize types to correctly generate the setcc result.
252  // Without this, every float setcc comes with a AND/OR with the result,
253  // we don't want this, since the fpcmp result goes to a flag register,
254  // which is used implicitly by brcond and select operations.
255  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
256
257  // Mips Custom Operations
258  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
259  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
260  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
261  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
262  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
263  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
264  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
265  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
266  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
267  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
268  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
269  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
270  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
271  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
272  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
273  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
274  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
275  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
276
277  if (!TM.Options.NoNaNsFPMath) {
278    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
279    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
280  }
281
282  if (HasMips64) {
283    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
284    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
285    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
286    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
287    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
288    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
289    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
290    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
291    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
292  }
293
294  if (!HasMips64) {
295    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
296    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
297    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
298  }
299
300  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
301  if (HasMips64)
302    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
303
304  setOperationAction(ISD::SDIV, MVT::i32, Expand);
305  setOperationAction(ISD::SREM, MVT::i32, Expand);
306  setOperationAction(ISD::UDIV, MVT::i32, Expand);
307  setOperationAction(ISD::UREM, MVT::i32, Expand);
308  setOperationAction(ISD::SDIV, MVT::i64, Expand);
309  setOperationAction(ISD::SREM, MVT::i64, Expand);
310  setOperationAction(ISD::UDIV, MVT::i64, Expand);
311  setOperationAction(ISD::UREM, MVT::i64, Expand);
312
313  // Operations not directly supported by Mips.
314  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
315  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
316  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
317  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
318  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
319  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
320  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
321  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
322  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
323  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
324  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
325  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
326  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
327  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
328  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
329  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
330  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
331  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
332  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
333  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
334  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
335  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
336
337  if (!Subtarget->hasMips32r2())
338    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
339
340  if (!Subtarget->hasMips64r2())
341    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
342
343  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
344  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
345  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
346  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
347  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
348  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
349  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
350  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
351  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
352  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
353  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
354  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
355  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
356  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
357  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
358  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
359  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
360
361  if (!TM.Options.NoNaNsFPMath) {
362    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
363    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
364  }
365
366  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
367
368  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
369  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
370  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
371
372  // Use the default for now
373  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
374  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
375
376  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
377  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
378  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
379  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
380
381  setInsertFencesForAtomic(true);
382
383  if (!Subtarget->hasSEInReg()) {
384    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
385    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
386  }
387
388  if (!Subtarget->hasBitCount()) {
389    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
390    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
391  }
392
393  if (!Subtarget->hasSwap()) {
394    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
395    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
396  }
397
398  if (HasMips64) {
399    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
400    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
401    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
402    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
403  }
404
405  setOperationAction(ISD::TRAP, MVT::Other, Legal);
406
407  setTargetDAGCombine(ISD::SDIVREM);
408  setTargetDAGCombine(ISD::UDIVREM);
409  setTargetDAGCombine(ISD::SELECT);
410  setTargetDAGCombine(ISD::AND);
411  setTargetDAGCombine(ISD::OR);
412  setTargetDAGCombine(ISD::ADD);
413
414  setMinFunctionAlignment(HasMips64 ? 3 : 2);
415
416  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
417
418  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
419  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
420
421  MaxStoresPerMemcpy = 16;
422}
423
424const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
425  if (TM.getSubtargetImpl()->inMips16Mode())
426    return llvm::createMips16TargetLowering(TM);
427
428  return llvm::createMipsSETargetLowering(TM);
429}
430
431EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
432  if (!VT.isVector())
433    return MVT::i32;
434  return VT.changeVectorElementTypeToInteger();
435}
436
437static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
438                                    TargetLowering::DAGCombinerInfo &DCI,
439                                    const MipsSubtarget *Subtarget) {
440  if (DCI.isBeforeLegalizeOps())
441    return SDValue();
442
443  EVT Ty = N->getValueType(0);
444  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
445  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
446  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
447                                                  MipsISD::DivRemU16;
448  SDLoc DL(N);
449
450  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
451                               N->getOperand(0), N->getOperand(1));
452  SDValue InChain = DAG.getEntryNode();
453  SDValue InGlue = DivRem;
454
455  // insert MFLO
456  if (N->hasAnyUseOfValue(0)) {
457    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
458                                            InGlue);
459    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
460    InChain = CopyFromLo.getValue(1);
461    InGlue = CopyFromLo.getValue(2);
462  }
463
464  // insert MFHI
465  if (N->hasAnyUseOfValue(1)) {
466    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
467                                            HI, Ty, InGlue);
468    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
469  }
470
471  return SDValue();
472}
473
474static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
475  switch (CC) {
476  default: llvm_unreachable("Unknown fp condition code!");
477  case ISD::SETEQ:
478  case ISD::SETOEQ: return Mips::FCOND_OEQ;
479  case ISD::SETUNE: return Mips::FCOND_UNE;
480  case ISD::SETLT:
481  case ISD::SETOLT: return Mips::FCOND_OLT;
482  case ISD::SETGT:
483  case ISD::SETOGT: return Mips::FCOND_OGT;
484  case ISD::SETLE:
485  case ISD::SETOLE: return Mips::FCOND_OLE;
486  case ISD::SETGE:
487  case ISD::SETOGE: return Mips::FCOND_OGE;
488  case ISD::SETULT: return Mips::FCOND_ULT;
489  case ISD::SETULE: return Mips::FCOND_ULE;
490  case ISD::SETUGT: return Mips::FCOND_UGT;
491  case ISD::SETUGE: return Mips::FCOND_UGE;
492  case ISD::SETUO:  return Mips::FCOND_UN;
493  case ISD::SETO:   return Mips::FCOND_OR;
494  case ISD::SETNE:
495  case ISD::SETONE: return Mips::FCOND_ONE;
496  case ISD::SETUEQ: return Mips::FCOND_UEQ;
497  }
498}
499
500
501/// This function returns true if the floating point conditional branches and
502/// conditional moves which use condition code CC should be inverted.
503static bool invertFPCondCodeUser(Mips::CondCode CC) {
504  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
505    return false;
506
507  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
508         "Illegal Condition Code");
509
510  return true;
511}
512
513// Creates and returns an FPCmp node from a setcc node.
514// Returns Op if setcc is not a floating point comparison.
515static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
516  // must be a SETCC node
517  if (Op.getOpcode() != ISD::SETCC)
518    return Op;
519
520  SDValue LHS = Op.getOperand(0);
521
522  if (!LHS.getValueType().isFloatingPoint())
523    return Op;
524
525  SDValue RHS = Op.getOperand(1);
526  SDLoc DL(Op);
527
528  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
529  // node if necessary.
530  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
531
532  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
533                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
534}
535
536// Creates and returns a CMovFPT/F node.
537static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
538                            SDValue False, SDLoc DL) {
539  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
540  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
541  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
542
543  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
544                     True.getValueType(), True, FCC0, False, Cond);
545}
546
547static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
548                                    TargetLowering::DAGCombinerInfo &DCI,
549                                    const MipsSubtarget *Subtarget) {
550  if (DCI.isBeforeLegalizeOps())
551    return SDValue();
552
553  SDValue SetCC = N->getOperand(0);
554
555  if ((SetCC.getOpcode() != ISD::SETCC) ||
556      !SetCC.getOperand(0).getValueType().isInteger())
557    return SDValue();
558
559  SDValue False = N->getOperand(2);
560  EVT FalseTy = False.getValueType();
561
562  if (!FalseTy.isInteger())
563    return SDValue();
564
565  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
566
567  if (!CN || CN->getZExtValue())
568    return SDValue();
569
570  const SDLoc DL(N);
571  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
572  SDValue True = N->getOperand(1);
573
574  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
575                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
576
577  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
578}
579
580static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
581                                 TargetLowering::DAGCombinerInfo &DCI,
582                                 const MipsSubtarget *Subtarget) {
583  // Pattern match EXT.
584  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
585  //  => ext $dst, $src, size, pos
586  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
587    return SDValue();
588
589  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
590  unsigned ShiftRightOpc = ShiftRight.getOpcode();
591
592  // Op's first operand must be a shift right.
593  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
594    return SDValue();
595
596  // The second operand of the shift must be an immediate.
597  ConstantSDNode *CN;
598  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
599    return SDValue();
600
601  uint64_t Pos = CN->getZExtValue();
602  uint64_t SMPos, SMSize;
603
604  // Op's second operand must be a shifted mask.
605  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
606      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
607    return SDValue();
608
609  // Return if the shifted mask does not start at bit 0 or the sum of its size
610  // and Pos exceeds the word's size.
611  EVT ValTy = N->getValueType(0);
612  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
613    return SDValue();
614
615  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
616                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
617                     DAG.getConstant(SMSize, MVT::i32));
618}
619
620static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
621                                TargetLowering::DAGCombinerInfo &DCI,
622                                const MipsSubtarget *Subtarget) {
623  // Pattern match INS.
624  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
625  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
626  //  => ins $dst, $src, size, pos, $src1
627  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
628    return SDValue();
629
630  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
631  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
632  ConstantSDNode *CN;
633
634  // See if Op's first operand matches (and $src1 , mask0).
635  if (And0.getOpcode() != ISD::AND)
636    return SDValue();
637
638  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
639      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
640    return SDValue();
641
642  // See if Op's second operand matches (and (shl $src, pos), mask1).
643  if (And1.getOpcode() != ISD::AND)
644    return SDValue();
645
646  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
647      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
648    return SDValue();
649
650  // The shift masks must have the same position and size.
651  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
652    return SDValue();
653
654  SDValue Shl = And1.getOperand(0);
655  if (Shl.getOpcode() != ISD::SHL)
656    return SDValue();
657
658  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
659    return SDValue();
660
661  unsigned Shamt = CN->getZExtValue();
662
663  // Return if the shift amount and the first bit position of mask are not the
664  // same.
665  EVT ValTy = N->getValueType(0);
666  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
667    return SDValue();
668
669  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
670                     DAG.getConstant(SMPos0, MVT::i32),
671                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
672}
673
674static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
675                                 TargetLowering::DAGCombinerInfo &DCI,
676                                 const MipsSubtarget *Subtarget) {
677  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
678
679  if (DCI.isBeforeLegalizeOps())
680    return SDValue();
681
682  SDValue Add = N->getOperand(1);
683
684  if (Add.getOpcode() != ISD::ADD)
685    return SDValue();
686
687  SDValue Lo = Add.getOperand(1);
688
689  if ((Lo.getOpcode() != MipsISD::Lo) ||
690      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
691    return SDValue();
692
693  EVT ValTy = N->getValueType(0);
694  SDLoc DL(N);
695
696  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
697                             Add.getOperand(0));
698  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
699}
700
701SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
702  const {
703  SelectionDAG &DAG = DCI.DAG;
704  unsigned Opc = N->getOpcode();
705
706  switch (Opc) {
707  default: break;
708  case ISD::SDIVREM:
709  case ISD::UDIVREM:
710    return performDivRemCombine(N, DAG, DCI, Subtarget);
711  case ISD::SELECT:
712    return performSELECTCombine(N, DAG, DCI, Subtarget);
713  case ISD::AND:
714    return performANDCombine(N, DAG, DCI, Subtarget);
715  case ISD::OR:
716    return performORCombine(N, DAG, DCI, Subtarget);
717  case ISD::ADD:
718    return performADDCombine(N, DAG, DCI, Subtarget);
719  }
720
721  return SDValue();
722}
723
724void
725MipsTargetLowering::LowerOperationWrapper(SDNode *N,
726                                          SmallVectorImpl<SDValue> &Results,
727                                          SelectionDAG &DAG) const {
728  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
729
730  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
731    Results.push_back(Res.getValue(I));
732}
733
734void
735MipsTargetLowering::ReplaceNodeResults(SDNode *N,
736                                       SmallVectorImpl<SDValue> &Results,
737                                       SelectionDAG &DAG) const {
738  return LowerOperationWrapper(N, Results, DAG);
739}
740
741SDValue MipsTargetLowering::
742LowerOperation(SDValue Op, SelectionDAG &DAG) const
743{
744  switch (Op.getOpcode())
745  {
746  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
747  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
748  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
749  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
750  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
751  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
752  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
753  case ISD::SELECT:             return lowerSELECT(Op, DAG);
754  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
755  case ISD::SETCC:              return lowerSETCC(Op, DAG);
756  case ISD::VASTART:            return lowerVASTART(Op, DAG);
757  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
758  case ISD::FABS:               return lowerFABS(Op, DAG);
759  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
760  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
761  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
762  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
763  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
764  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
765  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
766  case ISD::LOAD:               return lowerLOAD(Op, DAG);
767  case ISD::STORE:              return lowerSTORE(Op, DAG);
768  case ISD::ADD:                return lowerADD(Op, DAG);
769  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
770  }
771  return SDValue();
772}
773
774//===----------------------------------------------------------------------===//
775//  Lower helper functions
776//===----------------------------------------------------------------------===//
777
778// addLiveIn - This helper function adds the specified physical register to the
779// MachineFunction as a live in value.  It also creates a corresponding
780// virtual register for it.
781static unsigned
782addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
783{
784  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
785  MF.getRegInfo().addLiveIn(PReg, VReg);
786  return VReg;
787}
788
789static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
790                                          MachineBasicBlock &MBB,
791                                          const TargetInstrInfo &TII,
792                                          bool Is64Bit) {
793  if (NoZeroDivCheck)
794    return &MBB;
795
796  // Insert instruction "teq $divisor_reg, $zero, 7".
797  MachineBasicBlock::iterator I(MI);
798  MachineInstrBuilder MIB;
799  MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
800    .addOperand(MI->getOperand(2)).addReg(Mips::ZERO).addImm(7);
801
802  // Use the 32-bit sub-register if this is a 64-bit division.
803  if (Is64Bit)
804    MIB->getOperand(0).setSubReg(Mips::sub_32);
805
806  return &MBB;
807}
808
809MachineBasicBlock *
810MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
811                                                MachineBasicBlock *BB) const {
812  switch (MI->getOpcode()) {
813  default:
814    llvm_unreachable("Unexpected instr type to insert");
815  case Mips::ATOMIC_LOAD_ADD_I8:
816    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
817  case Mips::ATOMIC_LOAD_ADD_I16:
818    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
819  case Mips::ATOMIC_LOAD_ADD_I32:
820    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
821  case Mips::ATOMIC_LOAD_ADD_I64:
822    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
823
824  case Mips::ATOMIC_LOAD_AND_I8:
825    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
826  case Mips::ATOMIC_LOAD_AND_I16:
827    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
828  case Mips::ATOMIC_LOAD_AND_I32:
829    return emitAtomicBinary(MI, BB, 4, Mips::AND);
830  case Mips::ATOMIC_LOAD_AND_I64:
831    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
832
833  case Mips::ATOMIC_LOAD_OR_I8:
834    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
835  case Mips::ATOMIC_LOAD_OR_I16:
836    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
837  case Mips::ATOMIC_LOAD_OR_I32:
838    return emitAtomicBinary(MI, BB, 4, Mips::OR);
839  case Mips::ATOMIC_LOAD_OR_I64:
840    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
841
842  case Mips::ATOMIC_LOAD_XOR_I8:
843    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
844  case Mips::ATOMIC_LOAD_XOR_I16:
845    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
846  case Mips::ATOMIC_LOAD_XOR_I32:
847    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
848  case Mips::ATOMIC_LOAD_XOR_I64:
849    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
850
851  case Mips::ATOMIC_LOAD_NAND_I8:
852    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
853  case Mips::ATOMIC_LOAD_NAND_I16:
854    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
855  case Mips::ATOMIC_LOAD_NAND_I32:
856    return emitAtomicBinary(MI, BB, 4, 0, true);
857  case Mips::ATOMIC_LOAD_NAND_I64:
858    return emitAtomicBinary(MI, BB, 8, 0, true);
859
860  case Mips::ATOMIC_LOAD_SUB_I8:
861    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
862  case Mips::ATOMIC_LOAD_SUB_I16:
863    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
864  case Mips::ATOMIC_LOAD_SUB_I32:
865    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
866  case Mips::ATOMIC_LOAD_SUB_I64:
867    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
868
869  case Mips::ATOMIC_SWAP_I8:
870    return emitAtomicBinaryPartword(MI, BB, 1, 0);
871  case Mips::ATOMIC_SWAP_I16:
872    return emitAtomicBinaryPartword(MI, BB, 2, 0);
873  case Mips::ATOMIC_SWAP_I32:
874    return emitAtomicBinary(MI, BB, 4, 0);
875  case Mips::ATOMIC_SWAP_I64:
876    return emitAtomicBinary(MI, BB, 8, 0);
877
878  case Mips::ATOMIC_CMP_SWAP_I8:
879    return emitAtomicCmpSwapPartword(MI, BB, 1);
880  case Mips::ATOMIC_CMP_SWAP_I16:
881    return emitAtomicCmpSwapPartword(MI, BB, 2);
882  case Mips::ATOMIC_CMP_SWAP_I32:
883    return emitAtomicCmpSwap(MI, BB, 4);
884  case Mips::ATOMIC_CMP_SWAP_I64:
885    return emitAtomicCmpSwap(MI, BB, 8);
886  case Mips::PseudoSDIV:
887  case Mips::PseudoUDIV:
888    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
889  case Mips::PseudoDSDIV:
890  case Mips::PseudoDUDIV:
891    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
892  }
893}
894
895// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
896// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
897MachineBasicBlock *
898MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
899                                     unsigned Size, unsigned BinOpcode,
900                                     bool Nand) const {
901  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
902
903  MachineFunction *MF = BB->getParent();
904  MachineRegisterInfo &RegInfo = MF->getRegInfo();
905  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
906  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
907  DebugLoc DL = MI->getDebugLoc();
908  unsigned LL, SC, AND, NOR, ZERO, BEQ;
909
910  if (Size == 4) {
911    LL = Mips::LL;
912    SC = Mips::SC;
913    AND = Mips::AND;
914    NOR = Mips::NOR;
915    ZERO = Mips::ZERO;
916    BEQ = Mips::BEQ;
917  }
918  else {
919    LL = Mips::LLD;
920    SC = Mips::SCD;
921    AND = Mips::AND64;
922    NOR = Mips::NOR64;
923    ZERO = Mips::ZERO_64;
924    BEQ = Mips::BEQ64;
925  }
926
927  unsigned OldVal = MI->getOperand(0).getReg();
928  unsigned Ptr = MI->getOperand(1).getReg();
929  unsigned Incr = MI->getOperand(2).getReg();
930
931  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
932  unsigned AndRes = RegInfo.createVirtualRegister(RC);
933  unsigned Success = RegInfo.createVirtualRegister(RC);
934
935  // insert new blocks after the current block
936  const BasicBlock *LLVM_BB = BB->getBasicBlock();
937  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
938  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
939  MachineFunction::iterator It = BB;
940  ++It;
941  MF->insert(It, loopMBB);
942  MF->insert(It, exitMBB);
943
944  // Transfer the remainder of BB and its successor edges to exitMBB.
945  exitMBB->splice(exitMBB->begin(), BB,
946                  llvm::next(MachineBasicBlock::iterator(MI)),
947                  BB->end());
948  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
949
950  //  thisMBB:
951  //    ...
952  //    fallthrough --> loopMBB
953  BB->addSuccessor(loopMBB);
954  loopMBB->addSuccessor(loopMBB);
955  loopMBB->addSuccessor(exitMBB);
956
957  //  loopMBB:
958  //    ll oldval, 0(ptr)
959  //    <binop> storeval, oldval, incr
960  //    sc success, storeval, 0(ptr)
961  //    beq success, $0, loopMBB
962  BB = loopMBB;
963  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
964  if (Nand) {
965    //  and andres, oldval, incr
966    //  nor storeval, $0, andres
967    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
968    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
969  } else if (BinOpcode) {
970    //  <binop> storeval, oldval, incr
971    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
972  } else {
973    StoreVal = Incr;
974  }
975  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
976  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
977
978  MI->eraseFromParent();   // The instruction is gone now.
979
980  return exitMBB;
981}
982
983MachineBasicBlock *
984MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
985                                             MachineBasicBlock *BB,
986                                             unsigned Size, unsigned BinOpcode,
987                                             bool Nand) const {
988  assert((Size == 1 || Size == 2) &&
989      "Unsupported size for EmitAtomicBinaryPartial.");
990
991  MachineFunction *MF = BB->getParent();
992  MachineRegisterInfo &RegInfo = MF->getRegInfo();
993  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
994  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
995  DebugLoc DL = MI->getDebugLoc();
996
997  unsigned Dest = MI->getOperand(0).getReg();
998  unsigned Ptr = MI->getOperand(1).getReg();
999  unsigned Incr = MI->getOperand(2).getReg();
1000
1001  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1002  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1003  unsigned Mask = RegInfo.createVirtualRegister(RC);
1004  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1005  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1006  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1007  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1008  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1009  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1010  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1011  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1012  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1013  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1014  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1015  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1016  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1017  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1018  unsigned Success = RegInfo.createVirtualRegister(RC);
1019
1020  // insert new blocks after the current block
1021  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1022  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1023  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1024  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1025  MachineFunction::iterator It = BB;
1026  ++It;
1027  MF->insert(It, loopMBB);
1028  MF->insert(It, sinkMBB);
1029  MF->insert(It, exitMBB);
1030
1031  // Transfer the remainder of BB and its successor edges to exitMBB.
1032  exitMBB->splice(exitMBB->begin(), BB,
1033                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1034  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1035
1036  BB->addSuccessor(loopMBB);
1037  loopMBB->addSuccessor(loopMBB);
1038  loopMBB->addSuccessor(sinkMBB);
1039  sinkMBB->addSuccessor(exitMBB);
1040
1041  //  thisMBB:
1042  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1043  //    and     alignedaddr,ptr,masklsb2
1044  //    andi    ptrlsb2,ptr,3
1045  //    sll     shiftamt,ptrlsb2,3
1046  //    ori     maskupper,$0,255               # 0xff
1047  //    sll     mask,maskupper,shiftamt
1048  //    nor     mask2,$0,mask
1049  //    sll     incr2,incr,shiftamt
1050
1051  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1052  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1053    .addReg(Mips::ZERO).addImm(-4);
1054  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1055    .addReg(Ptr).addReg(MaskLSB2);
1056  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1057  if (Subtarget->isLittle()) {
1058    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1059  } else {
1060    unsigned Off = RegInfo.createVirtualRegister(RC);
1061    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1062      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1063    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1064  }
1065  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1066    .addReg(Mips::ZERO).addImm(MaskImm);
1067  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1068    .addReg(MaskUpper).addReg(ShiftAmt);
1069  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1070  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1071
1072  // atomic.load.binop
1073  // loopMBB:
1074  //   ll      oldval,0(alignedaddr)
1075  //   binop   binopres,oldval,incr2
1076  //   and     newval,binopres,mask
1077  //   and     maskedoldval0,oldval,mask2
1078  //   or      storeval,maskedoldval0,newval
1079  //   sc      success,storeval,0(alignedaddr)
1080  //   beq     success,$0,loopMBB
1081
1082  // atomic.swap
1083  // loopMBB:
1084  //   ll      oldval,0(alignedaddr)
1085  //   and     newval,incr2,mask
1086  //   and     maskedoldval0,oldval,mask2
1087  //   or      storeval,maskedoldval0,newval
1088  //   sc      success,storeval,0(alignedaddr)
1089  //   beq     success,$0,loopMBB
1090
1091  BB = loopMBB;
1092  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1093  if (Nand) {
1094    //  and andres, oldval, incr2
1095    //  nor binopres, $0, andres
1096    //  and newval, binopres, mask
1097    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1098    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1099      .addReg(Mips::ZERO).addReg(AndRes);
1100    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1101  } else if (BinOpcode) {
1102    //  <binop> binopres, oldval, incr2
1103    //  and newval, binopres, mask
1104    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1105    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1106  } else {// atomic.swap
1107    //  and newval, incr2, mask
1108    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1109  }
1110
1111  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1112    .addReg(OldVal).addReg(Mask2);
1113  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1114    .addReg(MaskedOldVal0).addReg(NewVal);
1115  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1116    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1117  BuildMI(BB, DL, TII->get(Mips::BEQ))
1118    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1119
1120  //  sinkMBB:
1121  //    and     maskedoldval1,oldval,mask
1122  //    srl     srlres,maskedoldval1,shiftamt
1123  //    sll     sllres,srlres,24
1124  //    sra     dest,sllres,24
1125  BB = sinkMBB;
1126  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1127
1128  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1129    .addReg(OldVal).addReg(Mask);
1130  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1131      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1132  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1133      .addReg(SrlRes).addImm(ShiftImm);
1134  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1135      .addReg(SllRes).addImm(ShiftImm);
1136
1137  MI->eraseFromParent();   // The instruction is gone now.
1138
1139  return exitMBB;
1140}
1141
1142MachineBasicBlock *
1143MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1144                                      MachineBasicBlock *BB,
1145                                      unsigned Size) const {
1146  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1147
1148  MachineFunction *MF = BB->getParent();
1149  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1150  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1151  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1152  DebugLoc DL = MI->getDebugLoc();
1153  unsigned LL, SC, ZERO, BNE, BEQ;
1154
1155  if (Size == 4) {
1156    LL = Mips::LL;
1157    SC = Mips::SC;
1158    ZERO = Mips::ZERO;
1159    BNE = Mips::BNE;
1160    BEQ = Mips::BEQ;
1161  }
1162  else {
1163    LL = Mips::LLD;
1164    SC = Mips::SCD;
1165    ZERO = Mips::ZERO_64;
1166    BNE = Mips::BNE64;
1167    BEQ = Mips::BEQ64;
1168  }
1169
1170  unsigned Dest    = MI->getOperand(0).getReg();
1171  unsigned Ptr     = MI->getOperand(1).getReg();
1172  unsigned OldVal  = MI->getOperand(2).getReg();
1173  unsigned NewVal  = MI->getOperand(3).getReg();
1174
1175  unsigned Success = RegInfo.createVirtualRegister(RC);
1176
1177  // insert new blocks after the current block
1178  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1179  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1180  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1181  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1182  MachineFunction::iterator It = BB;
1183  ++It;
1184  MF->insert(It, loop1MBB);
1185  MF->insert(It, loop2MBB);
1186  MF->insert(It, exitMBB);
1187
1188  // Transfer the remainder of BB and its successor edges to exitMBB.
1189  exitMBB->splice(exitMBB->begin(), BB,
1190                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1191  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1192
1193  //  thisMBB:
1194  //    ...
1195  //    fallthrough --> loop1MBB
1196  BB->addSuccessor(loop1MBB);
1197  loop1MBB->addSuccessor(exitMBB);
1198  loop1MBB->addSuccessor(loop2MBB);
1199  loop2MBB->addSuccessor(loop1MBB);
1200  loop2MBB->addSuccessor(exitMBB);
1201
1202  // loop1MBB:
1203  //   ll dest, 0(ptr)
1204  //   bne dest, oldval, exitMBB
1205  BB = loop1MBB;
1206  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1207  BuildMI(BB, DL, TII->get(BNE))
1208    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1209
1210  // loop2MBB:
1211  //   sc success, newval, 0(ptr)
1212  //   beq success, $0, loop1MBB
1213  BB = loop2MBB;
1214  BuildMI(BB, DL, TII->get(SC), Success)
1215    .addReg(NewVal).addReg(Ptr).addImm(0);
1216  BuildMI(BB, DL, TII->get(BEQ))
1217    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1218
1219  MI->eraseFromParent();   // The instruction is gone now.
1220
1221  return exitMBB;
1222}
1223
1224MachineBasicBlock *
1225MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1226                                              MachineBasicBlock *BB,
1227                                              unsigned Size) const {
1228  assert((Size == 1 || Size == 2) &&
1229      "Unsupported size for EmitAtomicCmpSwapPartial.");
1230
1231  MachineFunction *MF = BB->getParent();
1232  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1233  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1234  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1235  DebugLoc DL = MI->getDebugLoc();
1236
1237  unsigned Dest    = MI->getOperand(0).getReg();
1238  unsigned Ptr     = MI->getOperand(1).getReg();
1239  unsigned CmpVal  = MI->getOperand(2).getReg();
1240  unsigned NewVal  = MI->getOperand(3).getReg();
1241
1242  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1243  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1244  unsigned Mask = RegInfo.createVirtualRegister(RC);
1245  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1246  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1247  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1248  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1249  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1250  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1251  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1252  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1253  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1254  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1255  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1256  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1257  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1258  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1259  unsigned Success = RegInfo.createVirtualRegister(RC);
1260
1261  // insert new blocks after the current block
1262  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1263  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1264  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1265  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1266  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1267  MachineFunction::iterator It = BB;
1268  ++It;
1269  MF->insert(It, loop1MBB);
1270  MF->insert(It, loop2MBB);
1271  MF->insert(It, sinkMBB);
1272  MF->insert(It, exitMBB);
1273
1274  // Transfer the remainder of BB and its successor edges to exitMBB.
1275  exitMBB->splice(exitMBB->begin(), BB,
1276                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1277  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1278
1279  BB->addSuccessor(loop1MBB);
1280  loop1MBB->addSuccessor(sinkMBB);
1281  loop1MBB->addSuccessor(loop2MBB);
1282  loop2MBB->addSuccessor(loop1MBB);
1283  loop2MBB->addSuccessor(sinkMBB);
1284  sinkMBB->addSuccessor(exitMBB);
1285
1286  // FIXME: computation of newval2 can be moved to loop2MBB.
1287  //  thisMBB:
1288  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1289  //    and     alignedaddr,ptr,masklsb2
1290  //    andi    ptrlsb2,ptr,3
1291  //    sll     shiftamt,ptrlsb2,3
1292  //    ori     maskupper,$0,255               # 0xff
1293  //    sll     mask,maskupper,shiftamt
1294  //    nor     mask2,$0,mask
1295  //    andi    maskedcmpval,cmpval,255
1296  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1297  //    andi    maskednewval,newval,255
1298  //    sll     shiftednewval,maskednewval,shiftamt
1299  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1300  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1301    .addReg(Mips::ZERO).addImm(-4);
1302  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1303    .addReg(Ptr).addReg(MaskLSB2);
1304  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1305  if (Subtarget->isLittle()) {
1306    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1307  } else {
1308    unsigned Off = RegInfo.createVirtualRegister(RC);
1309    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1310      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1311    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1312  }
1313  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1314    .addReg(Mips::ZERO).addImm(MaskImm);
1315  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1316    .addReg(MaskUpper).addReg(ShiftAmt);
1317  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1318  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1319    .addReg(CmpVal).addImm(MaskImm);
1320  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1321    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1322  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1323    .addReg(NewVal).addImm(MaskImm);
1324  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1325    .addReg(MaskedNewVal).addReg(ShiftAmt);
1326
1327  //  loop1MBB:
1328  //    ll      oldval,0(alginedaddr)
1329  //    and     maskedoldval0,oldval,mask
1330  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1331  BB = loop1MBB;
1332  BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
1333  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1334    .addReg(OldVal).addReg(Mask);
1335  BuildMI(BB, DL, TII->get(Mips::BNE))
1336    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1337
1338  //  loop2MBB:
1339  //    and     maskedoldval1,oldval,mask2
1340  //    or      storeval,maskedoldval1,shiftednewval
1341  //    sc      success,storeval,0(alignedaddr)
1342  //    beq     success,$0,loop1MBB
1343  BB = loop2MBB;
1344  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1345    .addReg(OldVal).addReg(Mask2);
1346  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1347    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1348  BuildMI(BB, DL, TII->get(Mips::SC), Success)
1349      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1350  BuildMI(BB, DL, TII->get(Mips::BEQ))
1351      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1352
1353  //  sinkMBB:
1354  //    srl     srlres,maskedoldval0,shiftamt
1355  //    sll     sllres,srlres,24
1356  //    sra     dest,sllres,24
1357  BB = sinkMBB;
1358  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1359
1360  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1361      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1362  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1363      .addReg(SrlRes).addImm(ShiftImm);
1364  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1365      .addReg(SllRes).addImm(ShiftImm);
1366
1367  MI->eraseFromParent();   // The instruction is gone now.
1368
1369  return exitMBB;
1370}
1371
1372//===----------------------------------------------------------------------===//
1373//  Misc Lower Operation implementation
1374//===----------------------------------------------------------------------===//
1375SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1376  SDValue Chain = Op.getOperand(0);
1377  SDValue Table = Op.getOperand(1);
1378  SDValue Index = Op.getOperand(2);
1379  SDLoc DL(Op);
1380  EVT PTy = getPointerTy();
1381  unsigned EntrySize =
1382    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1383
1384  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1385                      DAG.getConstant(EntrySize, PTy));
1386  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1387
1388  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1389  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1390                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1391                        0);
1392  Chain = Addr.getValue(1);
1393
1394  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1395    // For PIC, the sequence is:
1396    // BRIND(load(Jumptable + index) + RelocBase)
1397    // RelocBase can be JumpTable, GOT or some sort of global base.
1398    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1399                       getPICJumpTableRelocBase(Table, DAG));
1400  }
1401
1402  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1403}
1404
1405SDValue MipsTargetLowering::
1406lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1407{
1408  // The first operand is the chain, the second is the condition, the third is
1409  // the block to branch to if the condition is true.
1410  SDValue Chain = Op.getOperand(0);
1411  SDValue Dest = Op.getOperand(2);
1412  SDLoc DL(Op);
1413
1414  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1415
1416  // Return if flag is not set by a floating point comparison.
1417  if (CondRes.getOpcode() != MipsISD::FPCmp)
1418    return Op;
1419
1420  SDValue CCNode  = CondRes.getOperand(2);
1421  Mips::CondCode CC =
1422    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1423  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1424  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1425  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1426  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1427                     FCC0, Dest, CondRes);
1428}
1429
1430SDValue MipsTargetLowering::
1431lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1432{
1433  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1434
1435  // Return if flag is not set by a floating point comparison.
1436  if (Cond.getOpcode() != MipsISD::FPCmp)
1437    return Op;
1438
1439  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1440                      SDLoc(Op));
1441}
1442
1443SDValue MipsTargetLowering::
1444lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1445{
1446  SDLoc DL(Op);
1447  EVT Ty = Op.getOperand(0).getValueType();
1448  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1449                             getSetCCResultType(*DAG.getContext(), Ty),
1450                             Op.getOperand(0), Op.getOperand(1),
1451                             Op.getOperand(4));
1452
1453  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1454                     Op.getOperand(3));
1455}
1456
1457SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1458  SDValue Cond = createFPCmp(DAG, Op);
1459
1460  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1461         "Floating point operand expected.");
1462
1463  SDValue True  = DAG.getConstant(1, MVT::i32);
1464  SDValue False = DAG.getConstant(0, MVT::i32);
1465
1466  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1467}
1468
1469SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1470                                               SelectionDAG &DAG) const {
1471  // FIXME there isn't actually debug info here
1472  SDLoc DL(Op);
1473  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1474
1475  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1476    const MipsTargetObjectFile &TLOF =
1477      (const MipsTargetObjectFile&)getObjFileLowering();
1478
1479    // %gp_rel relocation
1480    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1481      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1482                                              MipsII::MO_GPREL);
1483      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1484                                      DAG.getVTList(MVT::i32), &GA, 1);
1485      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1486      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1487    }
1488
1489    // %hi/%lo relocation
1490    return getAddrNonPIC(Op, DAG);
1491  }
1492
1493  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1494    return getAddrLocal(Op, DAG, HasMips64);
1495
1496  if (LargeGOT)
1497    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1498                                 MipsII::MO_GOT_LO16);
1499
1500  return getAddrGlobal(Op, DAG,
1501                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1502}
1503
1504SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1505                                              SelectionDAG &DAG) const {
1506  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1507    return getAddrNonPIC(Op, DAG);
1508
1509  return getAddrLocal(Op, DAG, HasMips64);
1510}
1511
1512SDValue MipsTargetLowering::
1513lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1514{
1515  // If the relocation model is PIC, use the General Dynamic TLS Model or
1516  // Local Dynamic TLS model, otherwise use the Initial Exec or
1517  // Local Exec TLS Model.
1518
1519  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1520  SDLoc DL(GA);
1521  const GlobalValue *GV = GA->getGlobal();
1522  EVT PtrVT = getPointerTy();
1523
1524  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1525
1526  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1527    // General Dynamic and Local Dynamic TLS Model.
1528    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1529                                                      : MipsII::MO_TLSGD;
1530
1531    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1532    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1533                                   getGlobalReg(DAG, PtrVT), TGA);
1534    unsigned PtrSize = PtrVT.getSizeInBits();
1535    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1536
1537    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1538
1539    ArgListTy Args;
1540    ArgListEntry Entry;
1541    Entry.Node = Argument;
1542    Entry.Ty = PtrTy;
1543    Args.push_back(Entry);
1544
1545    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1546                  false, false, false, false, 0, CallingConv::C,
1547                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1548                  /*isReturnValueUsed=*/true,
1549                  TlsGetAddr, Args, DAG, DL);
1550    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1551
1552    SDValue Ret = CallResult.first;
1553
1554    if (model != TLSModel::LocalDynamic)
1555      return Ret;
1556
1557    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1558                                               MipsII::MO_DTPREL_HI);
1559    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1560    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1561                                               MipsII::MO_DTPREL_LO);
1562    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1563    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1564    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1565  }
1566
1567  SDValue Offset;
1568  if (model == TLSModel::InitialExec) {
1569    // Initial Exec TLS Model
1570    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1571                                             MipsII::MO_GOTTPREL);
1572    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1573                      TGA);
1574    Offset = DAG.getLoad(PtrVT, DL,
1575                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1576                         false, false, false, 0);
1577  } else {
1578    // Local Exec TLS Model
1579    assert(model == TLSModel::LocalExec);
1580    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1581                                               MipsII::MO_TPREL_HI);
1582    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1583                                               MipsII::MO_TPREL_LO);
1584    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1585    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1586    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1587  }
1588
1589  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1590  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1591}
1592
1593SDValue MipsTargetLowering::
1594lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1595{
1596  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1597    return getAddrNonPIC(Op, DAG);
1598
1599  return getAddrLocal(Op, DAG, HasMips64);
1600}
1601
1602SDValue MipsTargetLowering::
1603lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1604{
1605  // gp_rel relocation
1606  // FIXME: we should reference the constant pool using small data sections,
1607  // but the asm printer currently doesn't support this feature without
1608  // hacking it. This feature should come soon so we can uncomment the
1609  // stuff below.
1610  //if (IsInSmallSection(C->getType())) {
1611  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1612  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1613  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1614
1615  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1616    return getAddrNonPIC(Op, DAG);
1617
1618  return getAddrLocal(Op, DAG, HasMips64);
1619}
1620
1621SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1622  MachineFunction &MF = DAG.getMachineFunction();
1623  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1624
1625  SDLoc DL(Op);
1626  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1627                                 getPointerTy());
1628
1629  // vastart just stores the address of the VarArgsFrameIndex slot into the
1630  // memory location argument.
1631  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1632  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1633                      MachinePointerInfo(SV), false, false, 0);
1634}
1635
1636static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1637  EVT TyX = Op.getOperand(0).getValueType();
1638  EVT TyY = Op.getOperand(1).getValueType();
1639  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1640  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1641  SDLoc DL(Op);
1642  SDValue Res;
1643
1644  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1645  // to i32.
1646  SDValue X = (TyX == MVT::f32) ?
1647    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1648    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1649                Const1);
1650  SDValue Y = (TyY == MVT::f32) ?
1651    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1652    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1653                Const1);
1654
1655  if (HasR2) {
1656    // ext  E, Y, 31, 1  ; extract bit31 of Y
1657    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1658    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1659    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1660  } else {
1661    // sll SllX, X, 1
1662    // srl SrlX, SllX, 1
1663    // srl SrlY, Y, 31
1664    // sll SllY, SrlX, 31
1665    // or  Or, SrlX, SllY
1666    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1667    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1668    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1669    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1670    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1671  }
1672
1673  if (TyX == MVT::f32)
1674    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1675
1676  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1677                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1678  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1679}
1680
1681static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1682  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1683  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1684  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1685  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1686  SDLoc DL(Op);
1687
1688  // Bitcast to integer nodes.
1689  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1690  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1691
1692  if (HasR2) {
1693    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1694    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1695    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1696                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1697
1698    if (WidthX > WidthY)
1699      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1700    else if (WidthY > WidthX)
1701      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1702
1703    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1704                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1705    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1706  }
1707
1708  // (d)sll SllX, X, 1
1709  // (d)srl SrlX, SllX, 1
1710  // (d)srl SrlY, Y, width(Y)-1
1711  // (d)sll SllY, SrlX, width(Y)-1
1712  // or     Or, SrlX, SllY
1713  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1714  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1715  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1716                             DAG.getConstant(WidthY - 1, MVT::i32));
1717
1718  if (WidthX > WidthY)
1719    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1720  else if (WidthY > WidthX)
1721    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1722
1723  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1724                             DAG.getConstant(WidthX - 1, MVT::i32));
1725  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1726  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1727}
1728
1729SDValue
1730MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1731  if (Subtarget->hasMips64())
1732    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1733
1734  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1735}
1736
1737static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1738  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1739  SDLoc DL(Op);
1740
1741  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1742  // to i32.
1743  SDValue X = (Op.getValueType() == MVT::f32) ?
1744    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1745    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1746                Const1);
1747
1748  // Clear MSB.
1749  if (HasR2)
1750    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1751                      DAG.getRegister(Mips::ZERO, MVT::i32),
1752                      DAG.getConstant(31, MVT::i32), Const1, X);
1753  else {
1754    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1755    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1756  }
1757
1758  if (Op.getValueType() == MVT::f32)
1759    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1760
1761  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1762                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1763  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1764}
1765
1766static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1767  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1768  SDLoc DL(Op);
1769
1770  // Bitcast to integer node.
1771  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1772
1773  // Clear MSB.
1774  if (HasR2)
1775    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1776                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1777                      DAG.getConstant(63, MVT::i32), Const1, X);
1778  else {
1779    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1780    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1781  }
1782
1783  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1784}
1785
1786SDValue
1787MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1788  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1789    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1790
1791  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1792}
1793
1794SDValue MipsTargetLowering::
1795lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1796  // check the depth
1797  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1798         "Frame address can only be determined for current frame.");
1799
1800  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1801  MFI->setFrameAddressIsTaken(true);
1802  EVT VT = Op.getValueType();
1803  SDLoc DL(Op);
1804  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1805                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1806  return FrameAddr;
1807}
1808
1809SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1810                                            SelectionDAG &DAG) const {
1811  // check the depth
1812  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1813         "Return address can be determined only for current frame.");
1814
1815  MachineFunction &MF = DAG.getMachineFunction();
1816  MachineFrameInfo *MFI = MF.getFrameInfo();
1817  MVT VT = Op.getSimpleValueType();
1818  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1819  MFI->setReturnAddressIsTaken(true);
1820
1821  // Return RA, which contains the return address. Mark it an implicit live-in.
1822  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1823  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1824}
1825
1826// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1827// generated from __builtin_eh_return (offset, handler)
1828// The effect of this is to adjust the stack pointer by "offset"
1829// and then branch to "handler".
1830SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1831                                                                     const {
1832  MachineFunction &MF = DAG.getMachineFunction();
1833  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1834
1835  MipsFI->setCallsEhReturn();
1836  SDValue Chain     = Op.getOperand(0);
1837  SDValue Offset    = Op.getOperand(1);
1838  SDValue Handler   = Op.getOperand(2);
1839  SDLoc DL(Op);
1840  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1841
1842  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1843  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1844  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1845  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1846  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1847  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1848  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1849                     DAG.getRegister(OffsetReg, Ty),
1850                     DAG.getRegister(AddrReg, getPointerTy()),
1851                     Chain.getValue(1));
1852}
1853
1854SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1855                                              SelectionDAG &DAG) const {
1856  // FIXME: Need pseudo-fence for 'singlethread' fences
1857  // FIXME: Set SType for weaker fences where supported/appropriate.
1858  unsigned SType = 0;
1859  SDLoc DL(Op);
1860  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1861                     DAG.getConstant(SType, MVT::i32));
1862}
1863
1864SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1865                                                SelectionDAG &DAG) const {
1866  SDLoc DL(Op);
1867  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1868  SDValue Shamt = Op.getOperand(2);
1869
1870  // if shamt < 32:
1871  //  lo = (shl lo, shamt)
1872  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1873  // else:
1874  //  lo = 0
1875  //  hi = (shl lo, shamt[4:0])
1876  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1877                            DAG.getConstant(-1, MVT::i32));
1878  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1879                                      DAG.getConstant(1, MVT::i32));
1880  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1881                                     Not);
1882  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1883  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1884  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1885  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1886                             DAG.getConstant(0x20, MVT::i32));
1887  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1888                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1889  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1890
1891  SDValue Ops[2] = {Lo, Hi};
1892  return DAG.getMergeValues(Ops, 2, DL);
1893}
1894
1895SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1896                                                 bool IsSRA) const {
1897  SDLoc DL(Op);
1898  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1899  SDValue Shamt = Op.getOperand(2);
1900
1901  // if shamt < 32:
1902  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1903  //  if isSRA:
1904  //    hi = (sra hi, shamt)
1905  //  else:
1906  //    hi = (srl hi, shamt)
1907  // else:
1908  //  if isSRA:
1909  //   lo = (sra hi, shamt[4:0])
1910  //   hi = (sra hi, 31)
1911  //  else:
1912  //   lo = (srl hi, shamt[4:0])
1913  //   hi = 0
1914  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1915                            DAG.getConstant(-1, MVT::i32));
1916  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1917                                     DAG.getConstant(1, MVT::i32));
1918  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1919  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1920  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1921  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1922                                     Hi, Shamt);
1923  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1924                             DAG.getConstant(0x20, MVT::i32));
1925  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1926                                DAG.getConstant(31, MVT::i32));
1927  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1928  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1929                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1930                   ShiftRightHi);
1931
1932  SDValue Ops[2] = {Lo, Hi};
1933  return DAG.getMergeValues(Ops, 2, DL);
1934}
1935
1936static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1937                            SDValue Chain, SDValue Src, unsigned Offset) {
1938  SDValue Ptr = LD->getBasePtr();
1939  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1940  EVT BasePtrVT = Ptr.getValueType();
1941  SDLoc DL(LD);
1942  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1943
1944  if (Offset)
1945    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1946                      DAG.getConstant(Offset, BasePtrVT));
1947
1948  SDValue Ops[] = { Chain, Ptr, Src };
1949  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1950                                 LD->getMemOperand());
1951}
1952
1953// Expand an unaligned 32 or 64-bit integer load node.
1954SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1955  LoadSDNode *LD = cast<LoadSDNode>(Op);
1956  EVT MemVT = LD->getMemoryVT();
1957
1958  // Return if load is aligned or if MemVT is neither i32 nor i64.
1959  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1960      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1961    return SDValue();
1962
1963  bool IsLittle = Subtarget->isLittle();
1964  EVT VT = Op.getValueType();
1965  ISD::LoadExtType ExtType = LD->getExtensionType();
1966  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1967
1968  assert((VT == MVT::i32) || (VT == MVT::i64));
1969
1970  // Expand
1971  //  (set dst, (i64 (load baseptr)))
1972  // to
1973  //  (set tmp, (ldl (add baseptr, 7), undef))
1974  //  (set dst, (ldr baseptr, tmp))
1975  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1976    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1977                               IsLittle ? 7 : 0);
1978    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1979                        IsLittle ? 0 : 7);
1980  }
1981
1982  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
1983                             IsLittle ? 3 : 0);
1984  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
1985                             IsLittle ? 0 : 3);
1986
1987  // Expand
1988  //  (set dst, (i32 (load baseptr))) or
1989  //  (set dst, (i64 (sextload baseptr))) or
1990  //  (set dst, (i64 (extload baseptr)))
1991  // to
1992  //  (set tmp, (lwl (add baseptr, 3), undef))
1993  //  (set dst, (lwr baseptr, tmp))
1994  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
1995      (ExtType == ISD::EXTLOAD))
1996    return LWR;
1997
1998  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
1999
2000  // Expand
2001  //  (set dst, (i64 (zextload baseptr)))
2002  // to
2003  //  (set tmp0, (lwl (add baseptr, 3), undef))
2004  //  (set tmp1, (lwr baseptr, tmp0))
2005  //  (set tmp2, (shl tmp1, 32))
2006  //  (set dst, (srl tmp2, 32))
2007  SDLoc DL(LD);
2008  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2009  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2010  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2011  SDValue Ops[] = { SRL, LWR.getValue(1) };
2012  return DAG.getMergeValues(Ops, 2, DL);
2013}
2014
2015static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2016                             SDValue Chain, unsigned Offset) {
2017  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2018  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2019  SDLoc DL(SD);
2020  SDVTList VTList = DAG.getVTList(MVT::Other);
2021
2022  if (Offset)
2023    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2024                      DAG.getConstant(Offset, BasePtrVT));
2025
2026  SDValue Ops[] = { Chain, Value, Ptr };
2027  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2028                                 SD->getMemOperand());
2029}
2030
2031// Expand an unaligned 32 or 64-bit integer store node.
2032static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2033                                      bool IsLittle) {
2034  SDValue Value = SD->getValue(), Chain = SD->getChain();
2035  EVT VT = Value.getValueType();
2036
2037  // Expand
2038  //  (store val, baseptr) or
2039  //  (truncstore val, baseptr)
2040  // to
2041  //  (swl val, (add baseptr, 3))
2042  //  (swr val, baseptr)
2043  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2044    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2045                                IsLittle ? 3 : 0);
2046    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2047  }
2048
2049  assert(VT == MVT::i64);
2050
2051  // Expand
2052  //  (store val, baseptr)
2053  // to
2054  //  (sdl val, (add baseptr, 7))
2055  //  (sdr val, baseptr)
2056  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2057  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2058}
2059
2060// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2061static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2062  SDValue Val = SD->getValue();
2063
2064  if (Val.getOpcode() != ISD::FP_TO_SINT)
2065    return SDValue();
2066
2067  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2068  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2069                           Val.getOperand(0));
2070
2071  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2072                      SD->getPointerInfo(), SD->isVolatile(),
2073                      SD->isNonTemporal(), SD->getAlignment());
2074}
2075
2076SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2077  StoreSDNode *SD = cast<StoreSDNode>(Op);
2078  EVT MemVT = SD->getMemoryVT();
2079
2080  // Lower unaligned integer stores.
2081  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2082      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2083    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2084
2085  return lowerFP_TO_SINT_STORE(SD, DAG);
2086}
2087
2088SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2089  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2090      || cast<ConstantSDNode>
2091        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2092      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2093    return SDValue();
2094
2095  // The pattern
2096  //   (add (frameaddr 0), (frame_to_args_offset))
2097  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2098  //   (add FrameObject, 0)
2099  // where FrameObject is a fixed StackObject with offset 0 which points to
2100  // the old stack pointer.
2101  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2102  EVT ValTy = Op->getValueType(0);
2103  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2104  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2105  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2106                     DAG.getConstant(0, ValTy));
2107}
2108
2109SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2110                                            SelectionDAG &DAG) const {
2111  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2112  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2113                              Op.getOperand(0));
2114  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2115}
2116
2117//===----------------------------------------------------------------------===//
2118//                      Calling Convention Implementation
2119//===----------------------------------------------------------------------===//
2120
2121//===----------------------------------------------------------------------===//
2122// TODO: Implement a generic logic using tblgen that can support this.
2123// Mips O32 ABI rules:
2124// ---
2125// i32 - Passed in A0, A1, A2, A3 and stack
2126// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2127//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2128// f64 - Only passed in two aliased f32 registers if no int reg has been used
2129//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2130//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2131//       go to stack.
2132//
2133//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2134//===----------------------------------------------------------------------===//
2135
2136static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2137                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2138                       ISD::ArgFlagsTy ArgFlags, CCState &State,
2139                       const uint16_t *F64Regs) {
2140
2141  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2142
2143  static const uint16_t IntRegs[] = {
2144      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2145  };
2146  static const uint16_t F32Regs[] = {
2147      Mips::F12, Mips::F14
2148  };
2149
2150  // Do not process byval args here.
2151  if (ArgFlags.isByVal())
2152    return true;
2153
2154  // Promote i8 and i16
2155  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2156    LocVT = MVT::i32;
2157    if (ArgFlags.isSExt())
2158      LocInfo = CCValAssign::SExt;
2159    else if (ArgFlags.isZExt())
2160      LocInfo = CCValAssign::ZExt;
2161    else
2162      LocInfo = CCValAssign::AExt;
2163  }
2164
2165  unsigned Reg;
2166
2167  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2168  // is true: function is vararg, argument is 3rd or higher, there is previous
2169  // argument which is not f32 or f64.
2170  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2171      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2172  unsigned OrigAlign = ArgFlags.getOrigAlign();
2173  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2174
2175  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2176    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2177    // If this is the first part of an i64 arg,
2178    // the allocated register must be either A0 or A2.
2179    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2180      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2181    LocVT = MVT::i32;
2182  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2183    // Allocate int register and shadow next int register. If first
2184    // available register is Mips::A1 or Mips::A3, shadow it too.
2185    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2186    if (Reg == Mips::A1 || Reg == Mips::A3)
2187      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2188    State.AllocateReg(IntRegs, IntRegsSize);
2189    LocVT = MVT::i32;
2190  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2191    // we are guaranteed to find an available float register
2192    if (ValVT == MVT::f32) {
2193      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2194      // Shadow int register
2195      State.AllocateReg(IntRegs, IntRegsSize);
2196    } else {
2197      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2198      // Shadow int registers
2199      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2200      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2201        State.AllocateReg(IntRegs, IntRegsSize);
2202      State.AllocateReg(IntRegs, IntRegsSize);
2203    }
2204  } else
2205    llvm_unreachable("Cannot handle this ValVT.");
2206
2207  if (!Reg) {
2208    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2209                                          OrigAlign);
2210    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2211  } else
2212    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2213
2214  return false;
2215}
2216
2217static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2218                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2219                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2220  static const uint16_t F64Regs[] = { Mips::D6, Mips::D7 };
2221
2222  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2223}
2224
2225static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2226                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2227                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2228  static const uint16_t F64Regs[] = { Mips::D12_64, Mips::D12_64 };
2229
2230  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2231}
2232
2233#include "MipsGenCallingConv.inc"
2234
2235//===----------------------------------------------------------------------===//
2236//                  Call Calling Convention Implementation
2237//===----------------------------------------------------------------------===//
2238
2239// Return next O32 integer argument register.
2240static unsigned getNextIntArgReg(unsigned Reg) {
2241  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2242  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2243}
2244
2245SDValue
2246MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2247                                   SDValue Chain, SDValue Arg, SDLoc DL,
2248                                   bool IsTailCall, SelectionDAG &DAG) const {
2249  if (!IsTailCall) {
2250    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2251                                 DAG.getIntPtrConstant(Offset));
2252    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2253                        false, 0);
2254  }
2255
2256  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2257  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2258  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2259  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2260                      /*isVolatile=*/ true, false, 0);
2261}
2262
2263void MipsTargetLowering::
2264getOpndList(SmallVectorImpl<SDValue> &Ops,
2265            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2266            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2267            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2268  // Insert node "GP copy globalreg" before call to function.
2269  //
2270  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2271  // in PIC mode) allow symbols to be resolved via lazy binding.
2272  // The lazy binding stub requires GP to point to the GOT.
2273  if (IsPICCall && !InternalLinkage) {
2274    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2275    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2276    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2277  }
2278
2279  // Build a sequence of copy-to-reg nodes chained together with token
2280  // chain and flag operands which copy the outgoing args into registers.
2281  // The InFlag in necessary since all emitted instructions must be
2282  // stuck together.
2283  SDValue InFlag;
2284
2285  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2286    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2287                                 RegsToPass[i].second, InFlag);
2288    InFlag = Chain.getValue(1);
2289  }
2290
2291  // Add argument registers to the end of the list so that they are
2292  // known live into the call.
2293  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2294    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2295                                      RegsToPass[i].second.getValueType()));
2296
2297  // Add a register mask operand representing the call-preserved registers.
2298  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2299  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2300  assert(Mask && "Missing call preserved mask for calling convention");
2301  if (Subtarget->inMips16HardFloat()) {
2302    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2303      llvm::StringRef Sym = G->getGlobal()->getName();
2304      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2305      if (F->hasFnAttribute("__Mips16RetHelper")) {
2306        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2307      }
2308    }
2309  }
2310  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2311
2312  if (InFlag.getNode())
2313    Ops.push_back(InFlag);
2314}
2315
2316/// LowerCall - functions arguments are copied from virtual regs to
2317/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2318SDValue
2319MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2320                              SmallVectorImpl<SDValue> &InVals) const {
2321  SelectionDAG &DAG                     = CLI.DAG;
2322  SDLoc DL                              = CLI.DL;
2323  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2324  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2325  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2326  SDValue Chain                         = CLI.Chain;
2327  SDValue Callee                        = CLI.Callee;
2328  bool &IsTailCall                      = CLI.IsTailCall;
2329  CallingConv::ID CallConv              = CLI.CallConv;
2330  bool IsVarArg                         = CLI.IsVarArg;
2331
2332  MachineFunction &MF = DAG.getMachineFunction();
2333  MachineFrameInfo *MFI = MF.getFrameInfo();
2334  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2335  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2336
2337  // Analyze operands of the call, assigning locations to each operand.
2338  SmallVector<CCValAssign, 16> ArgLocs;
2339  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2340                 getTargetMachine(), ArgLocs, *DAG.getContext());
2341  MipsCC::SpecialCallingConvType SpecialCallingConv =
2342    getSpecialCallingConv(Callee);
2343  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo,
2344                    SpecialCallingConv);
2345
2346  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2347                                 Subtarget->mipsSEUsesSoftFloat(),
2348                                 Callee.getNode(), CLI.Args);
2349
2350  // Get a count of how many bytes are to be pushed on the stack.
2351  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2352
2353  // Check if it's really possible to do a tail call.
2354  if (IsTailCall)
2355    IsTailCall =
2356      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2357                                        *MF.getInfo<MipsFunctionInfo>());
2358
2359  if (IsTailCall)
2360    ++NumTailCalls;
2361
2362  // Chain is the output chain of the last Load/Store or CopyToReg node.
2363  // ByValChain is the output chain of the last Memcpy node created for copying
2364  // byval arguments to the stack.
2365  unsigned StackAlignment = TFL->getStackAlignment();
2366  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2367  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2368
2369  if (!IsTailCall)
2370    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2371
2372  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2373                                        IsN64 ? Mips::SP_64 : Mips::SP,
2374                                        getPointerTy());
2375
2376  // With EABI is it possible to have 16 args on registers.
2377  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2378  SmallVector<SDValue, 8> MemOpChains;
2379  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2380
2381  // Walk the register/memloc assignments, inserting copies/loads.
2382  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2383    SDValue Arg = OutVals[i];
2384    CCValAssign &VA = ArgLocs[i];
2385    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2386    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2387
2388    // ByVal Arg.
2389    if (Flags.isByVal()) {
2390      assert(Flags.getByValSize() &&
2391             "ByVal args of size 0 should have been ignored by front-end.");
2392      assert(ByValArg != MipsCCInfo.byval_end());
2393      assert(!IsTailCall &&
2394             "Do not tail-call optimize if there is a byval argument.");
2395      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2396                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2397      ++ByValArg;
2398      continue;
2399    }
2400
2401    // Promote the value if needed.
2402    switch (VA.getLocInfo()) {
2403    default: llvm_unreachable("Unknown loc info!");
2404    case CCValAssign::Full:
2405      if (VA.isRegLoc()) {
2406        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2407            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2408            (ValVT == MVT::i64 && LocVT == MVT::f64))
2409          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2410        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2411          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2412                                   Arg, DAG.getConstant(0, MVT::i32));
2413          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2414                                   Arg, DAG.getConstant(1, MVT::i32));
2415          if (!Subtarget->isLittle())
2416            std::swap(Lo, Hi);
2417          unsigned LocRegLo = VA.getLocReg();
2418          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2419          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2420          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2421          continue;
2422        }
2423      }
2424      break;
2425    case CCValAssign::SExt:
2426      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2427      break;
2428    case CCValAssign::ZExt:
2429      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2430      break;
2431    case CCValAssign::AExt:
2432      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2433      break;
2434    }
2435
2436    // Arguments that can be passed on register must be kept at
2437    // RegsToPass vector
2438    if (VA.isRegLoc()) {
2439      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2440      continue;
2441    }
2442
2443    // Register can't get to this point...
2444    assert(VA.isMemLoc());
2445
2446    // emit ISD::STORE whichs stores the
2447    // parameter value to a stack Location
2448    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2449                                         Chain, Arg, DL, IsTailCall, DAG));
2450  }
2451
2452  // Transform all store nodes into one single node because all store
2453  // nodes are independent of each other.
2454  if (!MemOpChains.empty())
2455    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2456                        &MemOpChains[0], MemOpChains.size());
2457
2458  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2459  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2460  // node so that legalize doesn't hack it.
2461  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2462  bool GlobalOrExternal = false, InternalLinkage = false;
2463  SDValue CalleeLo;
2464
2465  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2466    if (IsPICCall) {
2467      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2468
2469      if (InternalLinkage)
2470        Callee = getAddrLocal(Callee, DAG, HasMips64);
2471      else if (LargeGOT)
2472        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2473                                       MipsII::MO_CALL_LO16);
2474      else
2475        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2476    } else
2477      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2478                                          MipsII::MO_NO_FLAG);
2479    GlobalOrExternal = true;
2480  }
2481  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2482    if (!IsN64 && !IsPIC) // !N64 && static
2483      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2484                                            MipsII::MO_NO_FLAG);
2485    else if (LargeGOT)
2486      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2487                                     MipsII::MO_CALL_LO16);
2488    else // N64 || PIC
2489      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2490
2491    GlobalOrExternal = true;
2492  }
2493
2494  SmallVector<SDValue, 8> Ops(1, Chain);
2495  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2496
2497  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2498              CLI, Callee, Chain);
2499
2500  if (IsTailCall)
2501    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2502
2503  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2504  SDValue InFlag = Chain.getValue(1);
2505
2506  // Create the CALLSEQ_END node.
2507  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2508                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2509  InFlag = Chain.getValue(1);
2510
2511  // Handle result values, copying them out of physregs into vregs that we
2512  // return.
2513  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2514                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2515}
2516
2517/// LowerCallResult - Lower the result values of a call into the
2518/// appropriate copies out of appropriate physical registers.
2519SDValue
2520MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2521                                    CallingConv::ID CallConv, bool IsVarArg,
2522                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2523                                    SDLoc DL, SelectionDAG &DAG,
2524                                    SmallVectorImpl<SDValue> &InVals,
2525                                    const SDNode *CallNode,
2526                                    const Type *RetTy) const {
2527  // Assign locations to each value returned by this call.
2528  SmallVector<CCValAssign, 16> RVLocs;
2529  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2530                 getTargetMachine(), RVLocs, *DAG.getContext());
2531  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2532
2533  MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
2534                               CallNode, RetTy);
2535
2536  // Copy all of the result registers out of their specified physreg.
2537  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2538    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2539                                     RVLocs[i].getLocVT(), InFlag);
2540    Chain = Val.getValue(1);
2541    InFlag = Val.getValue(2);
2542
2543    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2544      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2545
2546    InVals.push_back(Val);
2547  }
2548
2549  return Chain;
2550}
2551
2552//===----------------------------------------------------------------------===//
2553//             Formal Arguments Calling Convention Implementation
2554//===----------------------------------------------------------------------===//
2555/// LowerFormalArguments - transform physical registers into virtual registers
2556/// and generate load operations for arguments places on the stack.
2557SDValue
2558MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2559                                         CallingConv::ID CallConv,
2560                                         bool IsVarArg,
2561                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2562                                         SDLoc DL, SelectionDAG &DAG,
2563                                         SmallVectorImpl<SDValue> &InVals)
2564                                          const {
2565  MachineFunction &MF = DAG.getMachineFunction();
2566  MachineFrameInfo *MFI = MF.getFrameInfo();
2567  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2568
2569  MipsFI->setVarArgsFrameIndex(0);
2570
2571  // Used with vargs to acumulate store chains.
2572  std::vector<SDValue> OutChains;
2573
2574  // Assign locations to all of the incoming arguments.
2575  SmallVector<CCValAssign, 16> ArgLocs;
2576  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2577                 getTargetMachine(), ArgLocs, *DAG.getContext());
2578  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2579  Function::const_arg_iterator FuncArg =
2580    DAG.getMachineFunction().getFunction()->arg_begin();
2581  bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
2582
2583  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2584  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2585                           MipsCCInfo.hasByValArg());
2586
2587  unsigned CurArgIdx = 0;
2588  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2589
2590  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2591    CCValAssign &VA = ArgLocs[i];
2592    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2593    CurArgIdx = Ins[i].OrigArgIndex;
2594    EVT ValVT = VA.getValVT();
2595    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2596    bool IsRegLoc = VA.isRegLoc();
2597
2598    if (Flags.isByVal()) {
2599      assert(Flags.getByValSize() &&
2600             "ByVal args of size 0 should have been ignored by front-end.");
2601      assert(ByValArg != MipsCCInfo.byval_end());
2602      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2603                    MipsCCInfo, *ByValArg);
2604      ++ByValArg;
2605      continue;
2606    }
2607
2608    // Arguments stored on registers
2609    if (IsRegLoc) {
2610      EVT RegVT = VA.getLocVT();
2611      unsigned ArgReg = VA.getLocReg();
2612      const TargetRegisterClass *RC;
2613
2614      if (RegVT == MVT::i32)
2615        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2616                                        &Mips::GPR32RegClass;
2617      else if (RegVT == MVT::i64)
2618        RC = &Mips::GPR64RegClass;
2619      else if (RegVT == MVT::f32)
2620        RC = &Mips::FGR32RegClass;
2621      else if (RegVT == MVT::f64)
2622        RC = Subtarget->isFP64bit() ? &Mips::FGR64RegClass :
2623                                      &Mips::AFGR64RegClass;
2624      else
2625        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2626
2627      // Transform the arguments stored on
2628      // physical registers into virtual ones
2629      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2630      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2631
2632      // If this is an 8 or 16-bit value, it has been passed promoted
2633      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2634      // truncate to the right size.
2635      if (VA.getLocInfo() != CCValAssign::Full) {
2636        unsigned Opcode = 0;
2637        if (VA.getLocInfo() == CCValAssign::SExt)
2638          Opcode = ISD::AssertSext;
2639        else if (VA.getLocInfo() == CCValAssign::ZExt)
2640          Opcode = ISD::AssertZext;
2641        if (Opcode)
2642          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2643                                 DAG.getValueType(ValVT));
2644        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2645      }
2646
2647      // Handle floating point arguments passed in integer registers and
2648      // long double arguments passed in floating point registers.
2649      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2650          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2651          (RegVT == MVT::f64 && ValVT == MVT::i64))
2652        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2653      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2654        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2655                                  getNextIntArgReg(ArgReg), RC);
2656        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2657        if (!Subtarget->isLittle())
2658          std::swap(ArgValue, ArgValue2);
2659        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2660                               ArgValue, ArgValue2);
2661      }
2662
2663      InVals.push_back(ArgValue);
2664    } else { // VA.isRegLoc()
2665
2666      // sanity check
2667      assert(VA.isMemLoc());
2668
2669      // The stack pointer offset is relative to the caller stack frame.
2670      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2671                                      VA.getLocMemOffset(), true);
2672
2673      // Create load nodes to retrieve arguments from the stack
2674      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2675      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2676                                   MachinePointerInfo::getFixedStack(FI),
2677                                   false, false, false, 0));
2678    }
2679  }
2680
2681  // The mips ABIs for returning structs by value requires that we copy
2682  // the sret argument into $v0 for the return. Save the argument into
2683  // a virtual register so that we can access it from the return points.
2684  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2685    unsigned Reg = MipsFI->getSRetReturnReg();
2686    if (!Reg) {
2687      Reg = MF.getRegInfo().
2688        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2689      MipsFI->setSRetReturnReg(Reg);
2690    }
2691    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2692    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2693  }
2694
2695  if (IsVarArg)
2696    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2697
2698  // All stores are grouped in one node to allow the matching between
2699  // the size of Ins and InVals. This only happens when on varg functions
2700  if (!OutChains.empty()) {
2701    OutChains.push_back(Chain);
2702    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2703                        &OutChains[0], OutChains.size());
2704  }
2705
2706  return Chain;
2707}
2708
2709//===----------------------------------------------------------------------===//
2710//               Return Value Calling Convention Implementation
2711//===----------------------------------------------------------------------===//
2712
2713bool
2714MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2715                                   MachineFunction &MF, bool IsVarArg,
2716                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2717                                   LLVMContext &Context) const {
2718  SmallVector<CCValAssign, 16> RVLocs;
2719  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2720                 RVLocs, Context);
2721  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2722}
2723
2724SDValue
2725MipsTargetLowering::LowerReturn(SDValue Chain,
2726                                CallingConv::ID CallConv, bool IsVarArg,
2727                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2728                                const SmallVectorImpl<SDValue> &OutVals,
2729                                SDLoc DL, SelectionDAG &DAG) const {
2730  // CCValAssign - represent the assignment of
2731  // the return value to a location
2732  SmallVector<CCValAssign, 16> RVLocs;
2733  MachineFunction &MF = DAG.getMachineFunction();
2734
2735  // CCState - Info about the registers and stack slot.
2736  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2737                 *DAG.getContext());
2738  MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
2739
2740  // Analyze return values.
2741  MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
2742                           MF.getFunction()->getReturnType());
2743
2744  SDValue Flag;
2745  SmallVector<SDValue, 4> RetOps(1, Chain);
2746
2747  // Copy the result values into the output registers.
2748  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2749    SDValue Val = OutVals[i];
2750    CCValAssign &VA = RVLocs[i];
2751    assert(VA.isRegLoc() && "Can only return in registers!");
2752
2753    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2754      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2755
2756    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2757
2758    // Guarantee that all emitted copies are stuck together with flags.
2759    Flag = Chain.getValue(1);
2760    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2761  }
2762
2763  // The mips ABIs for returning structs by value requires that we copy
2764  // the sret argument into $v0 for the return. We saved the argument into
2765  // a virtual register in the entry block, so now we copy the value out
2766  // and into $v0.
2767  if (MF.getFunction()->hasStructRetAttr()) {
2768    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2769    unsigned Reg = MipsFI->getSRetReturnReg();
2770
2771    if (!Reg)
2772      llvm_unreachable("sret virtual register not created in the entry block");
2773    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2774    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2775
2776    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2777    Flag = Chain.getValue(1);
2778    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2779  }
2780
2781  RetOps[0] = Chain;  // Update chain.
2782
2783  // Add the flag if we have it.
2784  if (Flag.getNode())
2785    RetOps.push_back(Flag);
2786
2787  // Return on Mips is always a "jr $ra"
2788  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2789}
2790
2791//===----------------------------------------------------------------------===//
2792//                           Mips Inline Assembly Support
2793//===----------------------------------------------------------------------===//
2794
2795/// getConstraintType - Given a constraint letter, return the type of
2796/// constraint it is for this target.
2797MipsTargetLowering::ConstraintType MipsTargetLowering::
2798getConstraintType(const std::string &Constraint) const
2799{
2800  // Mips specific constrainy
2801  // GCC config/mips/constraints.md
2802  //
2803  // 'd' : An address register. Equivalent to r
2804  //       unless generating MIPS16 code.
2805  // 'y' : Equivalent to r; retained for
2806  //       backwards compatibility.
2807  // 'c' : A register suitable for use in an indirect
2808  //       jump. This will always be $25 for -mabicalls.
2809  // 'l' : The lo register. 1 word storage.
2810  // 'x' : The hilo register pair. Double word storage.
2811  if (Constraint.size() == 1) {
2812    switch (Constraint[0]) {
2813      default : break;
2814      case 'd':
2815      case 'y':
2816      case 'f':
2817      case 'c':
2818      case 'l':
2819      case 'x':
2820        return C_RegisterClass;
2821      case 'R':
2822        return C_Memory;
2823    }
2824  }
2825  return TargetLowering::getConstraintType(Constraint);
2826}
2827
2828/// Examine constraint type and operand type and determine a weight value.
2829/// This object must already have been set up with the operand type
2830/// and the current alternative constraint selected.
2831TargetLowering::ConstraintWeight
2832MipsTargetLowering::getSingleConstraintMatchWeight(
2833    AsmOperandInfo &info, const char *constraint) const {
2834  ConstraintWeight weight = CW_Invalid;
2835  Value *CallOperandVal = info.CallOperandVal;
2836    // If we don't have a value, we can't do a match,
2837    // but allow it at the lowest weight.
2838  if (CallOperandVal == NULL)
2839    return CW_Default;
2840  Type *type = CallOperandVal->getType();
2841  // Look at the constraint type.
2842  switch (*constraint) {
2843  default:
2844    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2845    break;
2846  case 'd':
2847  case 'y':
2848    if (type->isIntegerTy())
2849      weight = CW_Register;
2850    break;
2851  case 'f':
2852    if (type->isFloatTy())
2853      weight = CW_Register;
2854    break;
2855  case 'c': // $25 for indirect jumps
2856  case 'l': // lo register
2857  case 'x': // hilo register pair
2858      if (type->isIntegerTy())
2859      weight = CW_SpecificReg;
2860      break;
2861  case 'I': // signed 16 bit immediate
2862  case 'J': // integer zero
2863  case 'K': // unsigned 16 bit immediate
2864  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2865  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2866  case 'O': // signed 15 bit immediate (+- 16383)
2867  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2868    if (isa<ConstantInt>(CallOperandVal))
2869      weight = CW_Constant;
2870    break;
2871  case 'R':
2872    weight = CW_Memory;
2873    break;
2874  }
2875  return weight;
2876}
2877
2878/// This is a helper function to parse a physical register string and split it
2879/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
2880/// that is returned indicates whether parsing was successful. The second flag
2881/// is true if the numeric part exists.
2882static std::pair<bool, bool>
2883parsePhysicalReg(const StringRef &C, std::string &Prefix,
2884                 unsigned long long &Reg) {
2885  if (C.front() != '{' || C.back() != '}')
2886    return std::make_pair(false, false);
2887
2888  // Search for the first numeric character.
2889  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
2890  I = std::find_if(B, E, std::ptr_fun(isdigit));
2891
2892  Prefix.assign(B, I - B);
2893
2894  // The second flag is set to false if no numeric characters were found.
2895  if (I == E)
2896    return std::make_pair(true, false);
2897
2898  // Parse the numeric characters.
2899  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
2900                        true);
2901}
2902
2903std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
2904parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
2905  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2906  const TargetRegisterClass *RC;
2907  std::string Prefix;
2908  unsigned long long Reg;
2909
2910  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
2911
2912  if (!R.first)
2913    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2914
2915  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
2916    // No numeric characters follow "hi" or "lo".
2917    if (R.second)
2918      return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2919
2920    RC = TRI->getRegClass(Prefix == "hi" ?
2921                          Mips::HI32RegClassID : Mips::LO32RegClassID);
2922    return std::make_pair(*(RC->begin()), RC);
2923  }
2924
2925  if (!R.second)
2926    return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
2927
2928  if (Prefix == "$f") { // Parse $f0-$f31.
2929    // If the size of FP registers is 64-bit or Reg is an even number, select
2930    // the 64-bit register class. Otherwise, select the 32-bit register class.
2931    if (VT == MVT::Other)
2932      VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
2933
2934    RC= getRegClassFor(VT);
2935
2936    if (RC == &Mips::AFGR64RegClass) {
2937      assert(Reg % 2 == 0);
2938      Reg >>= 1;
2939    }
2940  } else if (Prefix == "$fcc") { // Parse $fcc0-$fcc7.
2941    RC = TRI->getRegClass(Mips::FCCRegClassID);
2942  } else { // Parse $0-$31.
2943    assert(Prefix == "$");
2944    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
2945  }
2946
2947  assert(Reg < RC->getNumRegs());
2948  return std::make_pair(*(RC->begin() + Reg), RC);
2949}
2950
2951/// Given a register class constraint, like 'r', if this corresponds directly
2952/// to an LLVM register class, return a register of 0 and the register class
2953/// pointer.
2954std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2955getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2956{
2957  if (Constraint.size() == 1) {
2958    switch (Constraint[0]) {
2959    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2960    case 'y': // Same as 'r'. Exists for compatibility.
2961    case 'r':
2962      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2963        if (Subtarget->inMips16Mode())
2964          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2965        return std::make_pair(0U, &Mips::GPR32RegClass);
2966      }
2967      if (VT == MVT::i64 && !HasMips64)
2968        return std::make_pair(0U, &Mips::GPR32RegClass);
2969      if (VT == MVT::i64 && HasMips64)
2970        return std::make_pair(0U, &Mips::GPR64RegClass);
2971      // This will generate an error message
2972      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2973    case 'f':
2974      if (VT == MVT::f32)
2975        return std::make_pair(0U, &Mips::FGR32RegClass);
2976      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2977        if (Subtarget->isFP64bit())
2978          return std::make_pair(0U, &Mips::FGR64RegClass);
2979        return std::make_pair(0U, &Mips::AFGR64RegClass);
2980      }
2981      break;
2982    case 'c': // register suitable for indirect jump
2983      if (VT == MVT::i32)
2984        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
2985      assert(VT == MVT::i64 && "Unexpected type.");
2986      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
2987    case 'l': // register suitable for indirect jump
2988      if (VT == MVT::i32)
2989        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
2990      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
2991    case 'x': // register suitable for indirect jump
2992      // Fixme: Not triggering the use of both hi and low
2993      // This will generate an error message
2994      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2995    }
2996  }
2997
2998  std::pair<unsigned, const TargetRegisterClass *> R;
2999  R = parseRegForInlineAsmConstraint(Constraint, VT);
3000
3001  if (R.second)
3002    return R;
3003
3004  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3005}
3006
3007/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3008/// vector.  If it is invalid, don't add anything to Ops.
3009void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3010                                                     std::string &Constraint,
3011                                                     std::vector<SDValue>&Ops,
3012                                                     SelectionDAG &DAG) const {
3013  SDValue Result(0, 0);
3014
3015  // Only support length 1 constraints for now.
3016  if (Constraint.length() > 1) return;
3017
3018  char ConstraintLetter = Constraint[0];
3019  switch (ConstraintLetter) {
3020  default: break; // This will fall through to the generic implementation
3021  case 'I': // Signed 16 bit constant
3022    // If this fails, the parent routine will give an error
3023    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3024      EVT Type = Op.getValueType();
3025      int64_t Val = C->getSExtValue();
3026      if (isInt<16>(Val)) {
3027        Result = DAG.getTargetConstant(Val, Type);
3028        break;
3029      }
3030    }
3031    return;
3032  case 'J': // integer zero
3033    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3034      EVT Type = Op.getValueType();
3035      int64_t Val = C->getZExtValue();
3036      if (Val == 0) {
3037        Result = DAG.getTargetConstant(0, Type);
3038        break;
3039      }
3040    }
3041    return;
3042  case 'K': // unsigned 16 bit immediate
3043    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3044      EVT Type = Op.getValueType();
3045      uint64_t Val = (uint64_t)C->getZExtValue();
3046      if (isUInt<16>(Val)) {
3047        Result = DAG.getTargetConstant(Val, Type);
3048        break;
3049      }
3050    }
3051    return;
3052  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3053    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3054      EVT Type = Op.getValueType();
3055      int64_t Val = C->getSExtValue();
3056      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3057        Result = DAG.getTargetConstant(Val, Type);
3058        break;
3059      }
3060    }
3061    return;
3062  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3063    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3064      EVT Type = Op.getValueType();
3065      int64_t Val = C->getSExtValue();
3066      if ((Val >= -65535) && (Val <= -1)) {
3067        Result = DAG.getTargetConstant(Val, Type);
3068        break;
3069      }
3070    }
3071    return;
3072  case 'O': // signed 15 bit immediate
3073    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3074      EVT Type = Op.getValueType();
3075      int64_t Val = C->getSExtValue();
3076      if ((isInt<15>(Val))) {
3077        Result = DAG.getTargetConstant(Val, Type);
3078        break;
3079      }
3080    }
3081    return;
3082  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3083    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3084      EVT Type = Op.getValueType();
3085      int64_t Val = C->getSExtValue();
3086      if ((Val <= 65535) && (Val >= 1)) {
3087        Result = DAG.getTargetConstant(Val, Type);
3088        break;
3089      }
3090    }
3091    return;
3092  }
3093
3094  if (Result.getNode()) {
3095    Ops.push_back(Result);
3096    return;
3097  }
3098
3099  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3100}
3101
3102bool
3103MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3104  // No global is ever allowed as a base.
3105  if (AM.BaseGV)
3106    return false;
3107
3108  switch (AM.Scale) {
3109  case 0: // "r+i" or just "i", depending on HasBaseReg.
3110    break;
3111  case 1:
3112    if (!AM.HasBaseReg) // allow "r+i".
3113      break;
3114    return false; // disallow "r+r" or "r+r+i".
3115  default:
3116    return false;
3117  }
3118
3119  return true;
3120}
3121
3122bool
3123MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3124  // The Mips target isn't yet aware of offsets.
3125  return false;
3126}
3127
3128EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3129                                            unsigned SrcAlign,
3130                                            bool IsMemset, bool ZeroMemset,
3131                                            bool MemcpyStrSrc,
3132                                            MachineFunction &MF) const {
3133  if (Subtarget->hasMips64())
3134    return MVT::i64;
3135
3136  return MVT::i32;
3137}
3138
3139bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3140  if (VT != MVT::f32 && VT != MVT::f64)
3141    return false;
3142  if (Imm.isNegZero())
3143    return false;
3144  return Imm.isZero();
3145}
3146
3147unsigned MipsTargetLowering::getJumpTableEncoding() const {
3148  if (IsN64)
3149    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3150
3151  return TargetLowering::getJumpTableEncoding();
3152}
3153
3154/// This function returns true if CallSym is a long double emulation routine.
3155static bool isF128SoftLibCall(const char *CallSym) {
3156  const char *const LibCalls[] =
3157    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3158     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3159     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3160     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3161     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3162     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3163     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3164     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3165     "truncl"};
3166
3167  const char * const *End = LibCalls + array_lengthof(LibCalls);
3168
3169  // Check that LibCalls is sorted alphabetically.
3170  MipsTargetLowering::LTStr Comp;
3171
3172#ifndef NDEBUG
3173  for (const char * const *I = LibCalls; I < End - 1; ++I)
3174    assert(Comp(*I, *(I + 1)));
3175#endif
3176
3177  return std::binary_search(LibCalls, End, CallSym, Comp);
3178}
3179
3180/// This function returns true if Ty is fp128 or i128 which was originally a
3181/// fp128.
3182static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3183  if (Ty->isFP128Ty())
3184    return true;
3185
3186  const ExternalSymbolSDNode *ES =
3187    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3188
3189  // If the Ty is i128 and the function being called is a long double emulation
3190  // routine, then the original type is f128.
3191  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3192}
3193
3194MipsTargetLowering::MipsCC::SpecialCallingConvType
3195  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3196  MipsCC::SpecialCallingConvType SpecialCallingConv =
3197    MipsCC::NoSpecialCallingConv;;
3198  if (Subtarget->inMips16HardFloat()) {
3199    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3200      llvm::StringRef Sym = G->getGlobal()->getName();
3201      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3202      if (F->hasFnAttribute("__Mips16RetHelper")) {
3203        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3204      }
3205    }
3206  }
3207  return SpecialCallingConv;
3208}
3209
3210MipsTargetLowering::MipsCC::MipsCC(
3211  CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
3212    MipsCC::SpecialCallingConvType SpecialCallingConv_)
3213  : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
3214    SpecialCallingConv(SpecialCallingConv_){
3215  // Pre-allocate reserved argument area.
3216  CCInfo.AllocateStack(reservedArgArea(), 1);
3217}
3218
3219
3220void MipsTargetLowering::MipsCC::
3221analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3222                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3223                    std::vector<ArgListEntry> &FuncArgs) {
3224  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3225         "CallingConv::Fast shouldn't be used for vararg functions.");
3226
3227  unsigned NumOpnds = Args.size();
3228  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3229
3230  for (unsigned I = 0; I != NumOpnds; ++I) {
3231    MVT ArgVT = Args[I].VT;
3232    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3233    bool R;
3234
3235    if (ArgFlags.isByVal()) {
3236      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3237      continue;
3238    }
3239
3240    if (IsVarArg && !Args[I].IsFixed)
3241      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3242    else {
3243      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3244                           IsSoftFloat);
3245      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3246    }
3247
3248    if (R) {
3249#ifndef NDEBUG
3250      dbgs() << "Call operand #" << I << " has unhandled type "
3251             << EVT(ArgVT).getEVTString();
3252#endif
3253      llvm_unreachable(0);
3254    }
3255  }
3256}
3257
3258void MipsTargetLowering::MipsCC::
3259analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3260                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3261  unsigned NumArgs = Args.size();
3262  llvm::CCAssignFn *FixedFn = fixedArgFn();
3263  unsigned CurArgIdx = 0;
3264
3265  for (unsigned I = 0; I != NumArgs; ++I) {
3266    MVT ArgVT = Args[I].VT;
3267    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3268    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3269    CurArgIdx = Args[I].OrigArgIndex;
3270
3271    if (ArgFlags.isByVal()) {
3272      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3273      continue;
3274    }
3275
3276    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3277
3278    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3279      continue;
3280
3281#ifndef NDEBUG
3282    dbgs() << "Formal Arg #" << I << " has unhandled type "
3283           << EVT(ArgVT).getEVTString();
3284#endif
3285    llvm_unreachable(0);
3286  }
3287}
3288
3289template<typename Ty>
3290void MipsTargetLowering::MipsCC::
3291analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3292              const SDNode *CallNode, const Type *RetTy) const {
3293  CCAssignFn *Fn;
3294
3295  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3296    Fn = RetCC_F128Soft;
3297  else
3298    Fn = RetCC_Mips;
3299
3300  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3301    MVT VT = RetVals[I].VT;
3302    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3303    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3304
3305    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3306#ifndef NDEBUG
3307      dbgs() << "Call result #" << I << " has unhandled type "
3308             << EVT(VT).getEVTString() << '\n';
3309#endif
3310      llvm_unreachable(0);
3311    }
3312  }
3313}
3314
3315void MipsTargetLowering::MipsCC::
3316analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3317                  const SDNode *CallNode, const Type *RetTy) const {
3318  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3319}
3320
3321void MipsTargetLowering::MipsCC::
3322analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3323              const Type *RetTy) const {
3324  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3325}
3326
3327void
3328MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3329                                           MVT LocVT,
3330                                           CCValAssign::LocInfo LocInfo,
3331                                           ISD::ArgFlagsTy ArgFlags) {
3332  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3333
3334  struct ByValArgInfo ByVal;
3335  unsigned RegSize = regSize();
3336  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3337  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3338                            RegSize * 2);
3339
3340  if (useRegsForByval())
3341    allocateRegs(ByVal, ByValSize, Align);
3342
3343  // Allocate space on caller's stack.
3344  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3345                                       Align);
3346  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3347                                    LocInfo));
3348  ByValArgs.push_back(ByVal);
3349}
3350
3351unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3352  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3353}
3354
3355unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3356  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3357}
3358
3359const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3360  return IsO32 ? O32IntRegs : Mips64IntRegs;
3361}
3362
3363llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3364  if (CallConv == CallingConv::Fast)
3365    return CC_Mips_FastCC;
3366
3367  if (SpecialCallingConv == Mips16RetHelperConv)
3368    return CC_Mips16RetHelper;
3369  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
3370}
3371
3372llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3373  return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
3374}
3375
3376const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3377  return IsO32 ? O32IntRegs : Mips64DPRegs;
3378}
3379
3380void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3381                                              unsigned ByValSize,
3382                                              unsigned Align) {
3383  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3384  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3385  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3386         "Byval argument's size and alignment should be a multiple of"
3387         "RegSize.");
3388
3389  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3390
3391  // If Align > RegSize, the first arg register must be even.
3392  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3393    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3394    ++ByVal.FirstIdx;
3395  }
3396
3397  // Mark the registers allocated.
3398  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3399       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3400    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3401}
3402
3403MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3404                                         const SDNode *CallNode,
3405                                         bool IsSoftFloat) const {
3406  if (IsSoftFloat || IsO32)
3407    return VT;
3408
3409  // Check if the original type was fp128.
3410  if (originalTypeIsF128(OrigTy, CallNode)) {
3411    assert(VT == MVT::i64);
3412    return MVT::f64;
3413  }
3414
3415  return VT;
3416}
3417
3418void MipsTargetLowering::
3419copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3420              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3421              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3422              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3423  MachineFunction &MF = DAG.getMachineFunction();
3424  MachineFrameInfo *MFI = MF.getFrameInfo();
3425  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3426  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3427  int FrameObjOffset;
3428
3429  if (RegAreaSize)
3430    FrameObjOffset = (int)CC.reservedArgArea() -
3431      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3432  else
3433    FrameObjOffset = ByVal.Address;
3434
3435  // Create frame object.
3436  EVT PtrTy = getPointerTy();
3437  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3438  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3439  InVals.push_back(FIN);
3440
3441  if (!ByVal.NumRegs)
3442    return;
3443
3444  // Copy arg registers.
3445  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3446  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3447
3448  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3449    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3450    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3451    unsigned Offset = I * CC.regSize();
3452    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3453                                   DAG.getConstant(Offset, PtrTy));
3454    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3455                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3456                                 false, false, 0);
3457    OutChains.push_back(Store);
3458  }
3459}
3460
3461// Copy byVal arg to registers and stack.
3462void MipsTargetLowering::
3463passByValArg(SDValue Chain, SDLoc DL,
3464             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3465             SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3466             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3467             const MipsCC &CC, const ByValArgInfo &ByVal,
3468             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3469  unsigned ByValSize = Flags.getByValSize();
3470  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3471  unsigned RegSize = CC.regSize();
3472  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3473  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3474
3475  if (ByVal.NumRegs) {
3476    const uint16_t *ArgRegs = CC.intArgRegs();
3477    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3478    unsigned I = 0;
3479
3480    // Copy words to registers.
3481    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3482      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3483                                    DAG.getConstant(Offset, PtrTy));
3484      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3485                                    MachinePointerInfo(), false, false, false,
3486                                    Alignment);
3487      MemOpChains.push_back(LoadVal.getValue(1));
3488      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3489      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3490    }
3491
3492    // Return if the struct has been fully copied.
3493    if (ByValSize == Offset)
3494      return;
3495
3496    // Copy the remainder of the byval argument with sub-word loads and shifts.
3497    if (LeftoverBytes) {
3498      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3499             "Size of the remainder should be smaller than RegSize.");
3500      SDValue Val;
3501
3502      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3503           Offset < ByValSize; LoadSize /= 2) {
3504        unsigned RemSize = ByValSize - Offset;
3505
3506        if (RemSize < LoadSize)
3507          continue;
3508
3509        // Load subword.
3510        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3511                                      DAG.getConstant(Offset, PtrTy));
3512        SDValue LoadVal =
3513          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3514                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3515                         false, false, Alignment);
3516        MemOpChains.push_back(LoadVal.getValue(1));
3517
3518        // Shift the loaded value.
3519        unsigned Shamt;
3520
3521        if (isLittle)
3522          Shamt = TotalSizeLoaded;
3523        else
3524          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3525
3526        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3527                                    DAG.getConstant(Shamt, MVT::i32));
3528
3529        if (Val.getNode())
3530          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3531        else
3532          Val = Shift;
3533
3534        Offset += LoadSize;
3535        TotalSizeLoaded += LoadSize;
3536        Alignment = std::min(Alignment, LoadSize);
3537      }
3538
3539      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3540      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3541      return;
3542    }
3543  }
3544
3545  // Copy remainder of byval arg to it with memcpy.
3546  unsigned MemCpySize = ByValSize - Offset;
3547  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3548                            DAG.getConstant(Offset, PtrTy));
3549  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3550                            DAG.getIntPtrConstant(ByVal.Address));
3551  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3552                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3553                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3554                        MachinePointerInfo(0), MachinePointerInfo(0));
3555  MemOpChains.push_back(Chain);
3556}
3557
3558void
3559MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3560                                    const MipsCC &CC, SDValue Chain,
3561                                    SDLoc DL, SelectionDAG &DAG) const {
3562  unsigned NumRegs = CC.numIntArgRegs();
3563  const uint16_t *ArgRegs = CC.intArgRegs();
3564  const CCState &CCInfo = CC.getCCInfo();
3565  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3566  unsigned RegSize = CC.regSize();
3567  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3568  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3569  MachineFunction &MF = DAG.getMachineFunction();
3570  MachineFrameInfo *MFI = MF.getFrameInfo();
3571  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3572
3573  // Offset of the first variable argument from stack pointer.
3574  int VaArgOffset;
3575
3576  if (NumRegs == Idx)
3577    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3578  else
3579    VaArgOffset =
3580      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3581
3582  // Record the frame index of the first variable argument
3583  // which is a value necessary to VASTART.
3584  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3585  MipsFI->setVarArgsFrameIndex(FI);
3586
3587  // Copy the integer registers that have not been used for argument passing
3588  // to the argument register save area. For O32, the save area is allocated
3589  // in the caller's stack frame, while for N32/64, it is allocated in the
3590  // callee's stack frame.
3591  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3592    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3593    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3594    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3595    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3596    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3597                                 MachinePointerInfo(), false, false, 0);
3598    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3599    OutChains.push_back(Store);
3600  }
3601}
3602