MipsISelLowering.cpp revision b7656a9cc4bf36752df38e7c02b910c9390b9c39
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include <set>
16#include "MipsISelLowering.h"
17#include "InstPrinter/MipsInstPrinter.h"
18#include "MCTargetDesc/MipsBaseInfo.h"
19#include "MipsMachineFunction.h"
20#include "MipsSubtarget.h"
21#include "MipsTargetMachine.h"
22#include "MipsTargetObjectFile.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/CallingConvLower.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/SelectionDAGISel.h"
30#include "llvm/CodeGen/ValueTypes.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/GlobalVariable.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/raw_ostream.h"
39
40using namespace llvm;
41
42STATISTIC(NumTailCalls, "Number of tail calls");
43
44static cl::opt<bool>
45EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
46                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
47
48static cl::opt<bool>
49LargeGOT("mxgot", cl::Hidden,
50         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
51
52static cl::opt<bool>
53Mips16HardFloat("mips16-hard-float", cl::NotHidden,
54                cl::desc("MIPS: mips16 hard float enable."),
55                cl::init(false));
56
57static cl::opt<bool> DontExpandCondPseudos16(
58  "mips16-dont-expand-cond-pseudo",
59  cl::init(false),
60  cl::desc("Dont expand conditional move related "
61           "pseudos for Mips 16"),
62  cl::Hidden);
63
64
65static const uint16_t O32IntRegs[4] = {
66  Mips::A0, Mips::A1, Mips::A2, Mips::A3
67};
68
69static const uint16_t Mips64IntRegs[8] = {
70  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
71  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
72};
73
74static const uint16_t Mips64DPRegs[8] = {
75  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
76  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
77};
78
79// If I is a shifted mask, set the size (Size) and the first bit of the
80// mask (Pos), and return true.
81// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
82static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
83  if (!isShiftedMask_64(I))
84     return false;
85
86  Size = CountPopulation_64(I);
87  Pos = CountTrailingZeros_64(I);
88  return true;
89}
90
91static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
92  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
93  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
94}
95
96static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
97  EVT Ty = Op.getValueType();
98
99  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
100    return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
101                                      Flag);
102  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
103    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
104  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
105    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
106  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
107    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
108  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
109    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
110                                     N->getOffset(), Flag);
111
112  llvm_unreachable("Unexpected node type.");
113  return SDValue();
114}
115
116static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
117  DebugLoc DL = Op.getDebugLoc();
118  EVT Ty = Op.getValueType();
119  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
120  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
121  return DAG.getNode(ISD::ADD, DL, Ty,
122                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
123                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
124}
125
126static SDValue getAddrLocal(SDValue Op, SelectionDAG &DAG, bool HasMips64) {
127  DebugLoc DL = Op.getDebugLoc();
128  EVT Ty = Op.getValueType();
129  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
130  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
131                            getTargetNode(Op, DAG, GOTFlag));
132  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
133                             MachinePointerInfo::getGOT(), false, false, false,
134                             0);
135  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
136  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
137  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
138}
139
140static SDValue getAddrGlobal(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
141  DebugLoc DL = Op.getDebugLoc();
142  EVT Ty = Op.getValueType();
143  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
144                            getTargetNode(Op, DAG, Flag));
145  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
146                     MachinePointerInfo::getGOT(), false, false, false, 0);
147}
148
149static SDValue getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
150                                     unsigned HiFlag, unsigned LoFlag) {
151  DebugLoc DL = Op.getDebugLoc();
152  EVT Ty = Op.getValueType();
153  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
154  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, GetGlobalReg(DAG, Ty));
155  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
156                                getTargetNode(Op, DAG, LoFlag));
157  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
158                     MachinePointerInfo::getGOT(), false, false, false, 0);
159}
160
161const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
162  switch (Opcode) {
163  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
164  case MipsISD::TailCall:          return "MipsISD::TailCall";
165  case MipsISD::Hi:                return "MipsISD::Hi";
166  case MipsISD::Lo:                return "MipsISD::Lo";
167  case MipsISD::GPRel:             return "MipsISD::GPRel";
168  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
169  case MipsISD::Ret:               return "MipsISD::Ret";
170  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
171  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
172  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
173  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
174  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
175  case MipsISD::FPRound:           return "MipsISD::FPRound";
176  case MipsISD::MAdd:              return "MipsISD::MAdd";
177  case MipsISD::MAddu:             return "MipsISD::MAddu";
178  case MipsISD::MSub:              return "MipsISD::MSub";
179  case MipsISD::MSubu:             return "MipsISD::MSubu";
180  case MipsISD::DivRem:            return "MipsISD::DivRem";
181  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
182  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
183  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
184  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
185  case MipsISD::Sync:              return "MipsISD::Sync";
186  case MipsISD::Ext:               return "MipsISD::Ext";
187  case MipsISD::Ins:               return "MipsISD::Ins";
188  case MipsISD::LWL:               return "MipsISD::LWL";
189  case MipsISD::LWR:               return "MipsISD::LWR";
190  case MipsISD::SWL:               return "MipsISD::SWL";
191  case MipsISD::SWR:               return "MipsISD::SWR";
192  case MipsISD::LDL:               return "MipsISD::LDL";
193  case MipsISD::LDR:               return "MipsISD::LDR";
194  case MipsISD::SDL:               return "MipsISD::SDL";
195  case MipsISD::SDR:               return "MipsISD::SDR";
196  case MipsISD::EXTP:              return "MipsISD::EXTP";
197  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
198  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
199  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
200  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
201  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
202  case MipsISD::SHILO:             return "MipsISD::SHILO";
203  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
204  case MipsISD::MULT:              return "MipsISD::MULT";
205  case MipsISD::MULTU:             return "MipsISD::MULTU";
206  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
207  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
208  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
209  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
210  default:                         return NULL;
211  }
212}
213
214namespace {
215  struct ltstr {
216    bool operator()(const char *s1, const char *s2) const
217    {
218      return strcmp(s1, s2) < 0;
219    }
220  };
221
222  std::set<const char*, ltstr> noHelperNeeded;
223}
224
225void MipsTargetLowering::SetMips16LibcallName
226  (RTLIB::Libcall l, const char *Name) {
227  setLibcallName(l, Name);
228  noHelperNeeded.insert(Name);
229}
230
231void MipsTargetLowering::setMips16HardFloatLibCalls() {
232  SetMips16LibcallName(RTLIB::ADD_F32, "__mips16_addsf3");
233  SetMips16LibcallName(RTLIB::ADD_F64, "__mips16_adddf3");
234  SetMips16LibcallName(RTLIB::SUB_F32, "__mips16_subsf3");
235  SetMips16LibcallName(RTLIB::SUB_F64, "__mips16_subdf3");
236  SetMips16LibcallName(RTLIB::MUL_F32, "__mips16_mulsf3");
237  SetMips16LibcallName(RTLIB::MUL_F64, "__mips16_muldf3");
238  SetMips16LibcallName(RTLIB::DIV_F32, "__mips16_divsf3");
239  SetMips16LibcallName(RTLIB::DIV_F64, "__mips16_divdf3");
240  SetMips16LibcallName(RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2");
241  SetMips16LibcallName(RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2");
242  SetMips16LibcallName(RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi");
243  SetMips16LibcallName(RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi");
244  SetMips16LibcallName(RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf");
245  SetMips16LibcallName(RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf");
246  SetMips16LibcallName(RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf");
247  SetMips16LibcallName(RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf");
248  SetMips16LibcallName(RTLIB::OEQ_F32, "__mips16_eqsf2");
249  SetMips16LibcallName(RTLIB::OEQ_F64, "__mips16_eqdf2");
250  SetMips16LibcallName(RTLIB::UNE_F32, "__mips16_nesf2");
251  SetMips16LibcallName(RTLIB::UNE_F64, "__mips16_nedf2");
252  SetMips16LibcallName(RTLIB::OGE_F32, "__mips16_gesf2");
253  SetMips16LibcallName(RTLIB::OGE_F64, "__mips16_gedf2");
254  SetMips16LibcallName(RTLIB::OLT_F32, "__mips16_ltsf2");
255  SetMips16LibcallName(RTLIB::OLT_F64, "__mips16_ltdf2");
256  SetMips16LibcallName(RTLIB::OLE_F32, "__mips16_lesf2");
257  SetMips16LibcallName(RTLIB::OLE_F64, "__mips16_ledf2");
258  SetMips16LibcallName(RTLIB::OGT_F32, "__mips16_gtsf2");
259  SetMips16LibcallName(RTLIB::OGT_F64, "__mips16_gtdf2");
260  SetMips16LibcallName(RTLIB::UO_F32, "__mips16_unordsf2");
261  SetMips16LibcallName(RTLIB::UO_F64, "__mips16_unorddf2");
262  SetMips16LibcallName(RTLIB::O_F32, "__mips16_unordsf2");
263  SetMips16LibcallName(RTLIB::O_F64, "__mips16_unorddf2");
264}
265
266MipsTargetLowering::
267MipsTargetLowering(MipsTargetMachine &TM)
268  : TargetLowering(TM, new MipsTargetObjectFile()),
269    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
270    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
271    IsO32(Subtarget->isABI_O32()) {
272
273  // Mips does not have i1 type, so use i32 for
274  // setcc operations results (slt, sgt, ...).
275  setBooleanContents(ZeroOrOneBooleanContent);
276  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
277
278  // Set up the register classes
279  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
280
281  if (HasMips64)
282    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
283
284  if (Subtarget->inMips16Mode()) {
285    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
286    if (Mips16HardFloat)
287      setMips16HardFloatLibCalls();
288  }
289
290  if (Subtarget->hasDSP()) {
291    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
292
293    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
294      addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass);
295
296      // Expand all builtin opcodes.
297      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
298        setOperationAction(Opc, VecTys[i], Expand);
299
300      setOperationAction(ISD::LOAD, VecTys[i], Legal);
301      setOperationAction(ISD::STORE, VecTys[i], Legal);
302      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
303    }
304  }
305
306  if (!TM.Options.UseSoftFloat) {
307    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
308
309    // When dealing with single precision only, use libcalls
310    if (!Subtarget->isSingleFloat()) {
311      if (HasMips64)
312        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
313      else
314        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
315    }
316  }
317
318  // Load extented operations for i1 types must be promoted
319  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
320  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
321  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
322
323  // MIPS doesn't have extending float->double load/store
324  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
325  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
326
327  // Used by legalize types to correctly generate the setcc result.
328  // Without this, every float setcc comes with a AND/OR with the result,
329  // we don't want this, since the fpcmp result goes to a flag register,
330  // which is used implicitly by brcond and select operations.
331  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
332
333  // Mips Custom Operations
334  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
335  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
336  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
337  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
338  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
339  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
340  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
341  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
342  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
343  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
344  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
345  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
346  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
347  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
348  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
349  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
350  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
351  if (Subtarget->inMips16Mode()) {
352    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
353    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
354  }
355  else {
356    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
357    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
358  }
359  if (!Subtarget->inMips16Mode()) {
360    setOperationAction(ISD::LOAD,               MVT::i32, Custom);
361    setOperationAction(ISD::STORE,              MVT::i32, Custom);
362  }
363
364  if (!TM.Options.NoNaNsFPMath) {
365    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
366    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
367  }
368
369  if (HasMips64) {
370    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
371    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
372    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
373    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
374    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
375    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
376    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
377    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
378  }
379
380  if (!HasMips64) {
381    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
382    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
383    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
384  }
385
386  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
387  if (HasMips64)
388    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
389
390  setOperationAction(ISD::SDIV, MVT::i32, Expand);
391  setOperationAction(ISD::SREM, MVT::i32, Expand);
392  setOperationAction(ISD::UDIV, MVT::i32, Expand);
393  setOperationAction(ISD::UREM, MVT::i32, Expand);
394  setOperationAction(ISD::SDIV, MVT::i64, Expand);
395  setOperationAction(ISD::SREM, MVT::i64, Expand);
396  setOperationAction(ISD::UDIV, MVT::i64, Expand);
397  setOperationAction(ISD::UREM, MVT::i64, Expand);
398
399  // Operations not directly supported by Mips.
400  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
401  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
402  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
403  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
404  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
405  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
406  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
407  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
408  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
409  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
410  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
411  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
412  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
413  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
414  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
415  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
416  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
417  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
418  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
419
420  if (!Subtarget->hasMips32r2())
421    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
422
423  if (!Subtarget->hasMips64r2())
424    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
425
426  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
427  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
428  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
429  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
430  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
431  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
432  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
433  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
434  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
435  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
436  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
437  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
438  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
439  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
440  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
441  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
442  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
443
444  if (!TM.Options.NoNaNsFPMath) {
445    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
446    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
447  }
448
449  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
450  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
451  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
452  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
453
454  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
455
456  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
457  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
458  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
459
460  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
461  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
462
463  // Use the default for now
464  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
465  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
466
467  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
468  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
469  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
470  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
471
472  if (Subtarget->inMips16Mode()) {
473    setOperationAction(ISD::ATOMIC_CMP_SWAP,       MVT::i32,    Expand);
474    setOperationAction(ISD::ATOMIC_SWAP,           MVT::i32,    Expand);
475    setOperationAction(ISD::ATOMIC_LOAD_ADD,       MVT::i32,    Expand);
476    setOperationAction(ISD::ATOMIC_LOAD_SUB,       MVT::i32,    Expand);
477    setOperationAction(ISD::ATOMIC_LOAD_AND,       MVT::i32,    Expand);
478    setOperationAction(ISD::ATOMIC_LOAD_OR,        MVT::i32,    Expand);
479    setOperationAction(ISD::ATOMIC_LOAD_XOR,       MVT::i32,    Expand);
480    setOperationAction(ISD::ATOMIC_LOAD_NAND,      MVT::i32,    Expand);
481    setOperationAction(ISD::ATOMIC_LOAD_MIN,       MVT::i32,    Expand);
482    setOperationAction(ISD::ATOMIC_LOAD_MAX,       MVT::i32,    Expand);
483    setOperationAction(ISD::ATOMIC_LOAD_UMIN,      MVT::i32,    Expand);
484    setOperationAction(ISD::ATOMIC_LOAD_UMAX,      MVT::i32,    Expand);
485  }
486
487  setInsertFencesForAtomic(true);
488
489  if (!Subtarget->hasSEInReg()) {
490    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
491    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
492  }
493
494  if (!Subtarget->hasBitCount()) {
495    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
496    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
497  }
498
499  if (!Subtarget->hasSwap()) {
500    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
501    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
502  }
503
504  if (HasMips64) {
505    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
506    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
507    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
508    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
509  }
510
511  setTargetDAGCombine(ISD::ADDE);
512  setTargetDAGCombine(ISD::SUBE);
513  setTargetDAGCombine(ISD::SDIVREM);
514  setTargetDAGCombine(ISD::UDIVREM);
515  setTargetDAGCombine(ISD::SELECT);
516  setTargetDAGCombine(ISD::AND);
517  setTargetDAGCombine(ISD::OR);
518  setTargetDAGCombine(ISD::ADD);
519
520  setMinFunctionAlignment(HasMips64 ? 3 : 2);
521
522  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
523  computeRegisterProperties();
524
525  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
526  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
527
528  MaxStoresPerMemcpy = 16;
529}
530
531bool
532MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
533  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
534
535  if (Subtarget->inMips16Mode())
536    return false;
537
538  switch (SVT) {
539  case MVT::i64:
540  case MVT::i32:
541    if (Fast)
542      *Fast = true;
543    return true;
544  default:
545    return false;
546  }
547}
548
549EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
550  if (!VT.isVector())
551    return MVT::i32;
552  return VT.changeVectorElementTypeToInteger();
553}
554
555// SelectMadd -
556// Transforms a subgraph in CurDAG if the following pattern is found:
557//  (addc multLo, Lo0), (adde multHi, Hi0),
558// where,
559//  multHi/Lo: product of multiplication
560//  Lo0: initial value of Lo register
561//  Hi0: initial value of Hi register
562// Return true if pattern matching was successful.
563static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
564  // ADDENode's second operand must be a flag output of an ADDC node in order
565  // for the matching to be successful.
566  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
567
568  if (ADDCNode->getOpcode() != ISD::ADDC)
569    return false;
570
571  SDValue MultHi = ADDENode->getOperand(0);
572  SDValue MultLo = ADDCNode->getOperand(0);
573  SDNode *MultNode = MultHi.getNode();
574  unsigned MultOpc = MultHi.getOpcode();
575
576  // MultHi and MultLo must be generated by the same node,
577  if (MultLo.getNode() != MultNode)
578    return false;
579
580  // and it must be a multiplication.
581  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
582    return false;
583
584  // MultLo amd MultHi must be the first and second output of MultNode
585  // respectively.
586  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
587    return false;
588
589  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
590  // of the values of MultNode, in which case MultNode will be removed in later
591  // phases.
592  // If there exist users other than ADDENode or ADDCNode, this function returns
593  // here, which will result in MultNode being mapped to a single MULT
594  // instruction node rather than a pair of MULT and MADD instructions being
595  // produced.
596  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
597    return false;
598
599  SDValue Chain = CurDAG->getEntryNode();
600  DebugLoc dl = ADDENode->getDebugLoc();
601
602  // create MipsMAdd(u) node
603  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
604
605  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
606                                 MultNode->getOperand(0),// Factor 0
607                                 MultNode->getOperand(1),// Factor 1
608                                 ADDCNode->getOperand(1),// Lo0
609                                 ADDENode->getOperand(1));// Hi0
610
611  // create CopyFromReg nodes
612  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
613                                              MAdd);
614  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
615                                              Mips::HI, MVT::i32,
616                                              CopyFromLo.getValue(2));
617
618  // replace uses of adde and addc here
619  if (!SDValue(ADDCNode, 0).use_empty())
620    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
621
622  if (!SDValue(ADDENode, 0).use_empty())
623    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
624
625  return true;
626}
627
628// SelectMsub -
629// Transforms a subgraph in CurDAG if the following pattern is found:
630//  (addc Lo0, multLo), (sube Hi0, multHi),
631// where,
632//  multHi/Lo: product of multiplication
633//  Lo0: initial value of Lo register
634//  Hi0: initial value of Hi register
635// Return true if pattern matching was successful.
636static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
637  // SUBENode's second operand must be a flag output of an SUBC node in order
638  // for the matching to be successful.
639  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
640
641  if (SUBCNode->getOpcode() != ISD::SUBC)
642    return false;
643
644  SDValue MultHi = SUBENode->getOperand(1);
645  SDValue MultLo = SUBCNode->getOperand(1);
646  SDNode *MultNode = MultHi.getNode();
647  unsigned MultOpc = MultHi.getOpcode();
648
649  // MultHi and MultLo must be generated by the same node,
650  if (MultLo.getNode() != MultNode)
651    return false;
652
653  // and it must be a multiplication.
654  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
655    return false;
656
657  // MultLo amd MultHi must be the first and second output of MultNode
658  // respectively.
659  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
660    return false;
661
662  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
663  // of the values of MultNode, in which case MultNode will be removed in later
664  // phases.
665  // If there exist users other than SUBENode or SUBCNode, this function returns
666  // here, which will result in MultNode being mapped to a single MULT
667  // instruction node rather than a pair of MULT and MSUB instructions being
668  // produced.
669  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
670    return false;
671
672  SDValue Chain = CurDAG->getEntryNode();
673  DebugLoc dl = SUBENode->getDebugLoc();
674
675  // create MipsSub(u) node
676  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
677
678  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
679                                 MultNode->getOperand(0),// Factor 0
680                                 MultNode->getOperand(1),// Factor 1
681                                 SUBCNode->getOperand(0),// Lo0
682                                 SUBENode->getOperand(0));// Hi0
683
684  // create CopyFromReg nodes
685  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
686                                              MSub);
687  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
688                                              Mips::HI, MVT::i32,
689                                              CopyFromLo.getValue(2));
690
691  // replace uses of sube and subc here
692  if (!SDValue(SUBCNode, 0).use_empty())
693    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
694
695  if (!SDValue(SUBENode, 0).use_empty())
696    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
697
698  return true;
699}
700
701static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
702                                  TargetLowering::DAGCombinerInfo &DCI,
703                                  const MipsSubtarget *Subtarget) {
704  if (DCI.isBeforeLegalize())
705    return SDValue();
706
707  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
708      SelectMadd(N, &DAG))
709    return SDValue(N, 0);
710
711  return SDValue();
712}
713
714static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
715                                  TargetLowering::DAGCombinerInfo &DCI,
716                                  const MipsSubtarget *Subtarget) {
717  if (DCI.isBeforeLegalize())
718    return SDValue();
719
720  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
721      SelectMsub(N, &DAG))
722    return SDValue(N, 0);
723
724  return SDValue();
725}
726
727static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
728                                    TargetLowering::DAGCombinerInfo &DCI,
729                                    const MipsSubtarget *Subtarget) {
730  if (DCI.isBeforeLegalizeOps())
731    return SDValue();
732
733  EVT Ty = N->getValueType(0);
734  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
735  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
736  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
737                                                  MipsISD::DivRemU;
738  DebugLoc dl = N->getDebugLoc();
739
740  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
741                               N->getOperand(0), N->getOperand(1));
742  SDValue InChain = DAG.getEntryNode();
743  SDValue InGlue = DivRem;
744
745  // insert MFLO
746  if (N->hasAnyUseOfValue(0)) {
747    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
748                                            InGlue);
749    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
750    InChain = CopyFromLo.getValue(1);
751    InGlue = CopyFromLo.getValue(2);
752  }
753
754  // insert MFHI
755  if (N->hasAnyUseOfValue(1)) {
756    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
757                                            HI, Ty, InGlue);
758    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
759  }
760
761  return SDValue();
762}
763
764static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
765  switch (CC) {
766  default: llvm_unreachable("Unknown fp condition code!");
767  case ISD::SETEQ:
768  case ISD::SETOEQ: return Mips::FCOND_OEQ;
769  case ISD::SETUNE: return Mips::FCOND_UNE;
770  case ISD::SETLT:
771  case ISD::SETOLT: return Mips::FCOND_OLT;
772  case ISD::SETGT:
773  case ISD::SETOGT: return Mips::FCOND_OGT;
774  case ISD::SETLE:
775  case ISD::SETOLE: return Mips::FCOND_OLE;
776  case ISD::SETGE:
777  case ISD::SETOGE: return Mips::FCOND_OGE;
778  case ISD::SETULT: return Mips::FCOND_ULT;
779  case ISD::SETULE: return Mips::FCOND_ULE;
780  case ISD::SETUGT: return Mips::FCOND_UGT;
781  case ISD::SETUGE: return Mips::FCOND_UGE;
782  case ISD::SETUO:  return Mips::FCOND_UN;
783  case ISD::SETO:   return Mips::FCOND_OR;
784  case ISD::SETNE:
785  case ISD::SETONE: return Mips::FCOND_ONE;
786  case ISD::SETUEQ: return Mips::FCOND_UEQ;
787  }
788}
789
790
791// Returns true if condition code has to be inverted.
792static bool InvertFPCondCode(Mips::CondCode CC) {
793  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
794    return false;
795
796  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
797         "Illegal Condition Code");
798
799  return true;
800}
801
802// Creates and returns an FPCmp node from a setcc node.
803// Returns Op if setcc is not a floating point comparison.
804static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
805  // must be a SETCC node
806  if (Op.getOpcode() != ISD::SETCC)
807    return Op;
808
809  SDValue LHS = Op.getOperand(0);
810
811  if (!LHS.getValueType().isFloatingPoint())
812    return Op;
813
814  SDValue RHS = Op.getOperand(1);
815  DebugLoc dl = Op.getDebugLoc();
816
817  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
818  // node if necessary.
819  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
820
821  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
822                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
823}
824
825// Creates and returns a CMovFPT/F node.
826static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
827                            SDValue False, DebugLoc DL) {
828  bool invert = InvertFPCondCode((Mips::CondCode)
829                                 cast<ConstantSDNode>(Cond.getOperand(2))
830                                 ->getSExtValue());
831
832  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
833                     True.getValueType(), True, False, Cond);
834}
835
836static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
837                                    TargetLowering::DAGCombinerInfo &DCI,
838                                    const MipsSubtarget *Subtarget) {
839  if (DCI.isBeforeLegalizeOps())
840    return SDValue();
841
842  SDValue SetCC = N->getOperand(0);
843
844  if ((SetCC.getOpcode() != ISD::SETCC) ||
845      !SetCC.getOperand(0).getValueType().isInteger())
846    return SDValue();
847
848  SDValue False = N->getOperand(2);
849  EVT FalseTy = False.getValueType();
850
851  if (!FalseTy.isInteger())
852    return SDValue();
853
854  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
855
856  if (!CN || CN->getZExtValue())
857    return SDValue();
858
859  const DebugLoc DL = N->getDebugLoc();
860  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
861  SDValue True = N->getOperand(1);
862
863  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
864                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
865
866  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
867}
868
869static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
870                                 TargetLowering::DAGCombinerInfo &DCI,
871                                 const MipsSubtarget *Subtarget) {
872  // Pattern match EXT.
873  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
874  //  => ext $dst, $src, size, pos
875  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
876    return SDValue();
877
878  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
879  unsigned ShiftRightOpc = ShiftRight.getOpcode();
880
881  // Op's first operand must be a shift right.
882  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
883    return SDValue();
884
885  // The second operand of the shift must be an immediate.
886  ConstantSDNode *CN;
887  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
888    return SDValue();
889
890  uint64_t Pos = CN->getZExtValue();
891  uint64_t SMPos, SMSize;
892
893  // Op's second operand must be a shifted mask.
894  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
895      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
896    return SDValue();
897
898  // Return if the shifted mask does not start at bit 0 or the sum of its size
899  // and Pos exceeds the word's size.
900  EVT ValTy = N->getValueType(0);
901  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
902    return SDValue();
903
904  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
905                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
906                     DAG.getConstant(SMSize, MVT::i32));
907}
908
909static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
910                                TargetLowering::DAGCombinerInfo &DCI,
911                                const MipsSubtarget *Subtarget) {
912  // Pattern match INS.
913  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
914  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
915  //  => ins $dst, $src, size, pos, $src1
916  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
917    return SDValue();
918
919  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
920  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
921  ConstantSDNode *CN;
922
923  // See if Op's first operand matches (and $src1 , mask0).
924  if (And0.getOpcode() != ISD::AND)
925    return SDValue();
926
927  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
928      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
929    return SDValue();
930
931  // See if Op's second operand matches (and (shl $src, pos), mask1).
932  if (And1.getOpcode() != ISD::AND)
933    return SDValue();
934
935  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
936      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
937    return SDValue();
938
939  // The shift masks must have the same position and size.
940  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
941    return SDValue();
942
943  SDValue Shl = And1.getOperand(0);
944  if (Shl.getOpcode() != ISD::SHL)
945    return SDValue();
946
947  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
948    return SDValue();
949
950  unsigned Shamt = CN->getZExtValue();
951
952  // Return if the shift amount and the first bit position of mask are not the
953  // same.
954  EVT ValTy = N->getValueType(0);
955  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
956    return SDValue();
957
958  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
959                     DAG.getConstant(SMPos0, MVT::i32),
960                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
961}
962
963static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
964                                 TargetLowering::DAGCombinerInfo &DCI,
965                                 const MipsSubtarget *Subtarget) {
966  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
967
968  if (DCI.isBeforeLegalizeOps())
969    return SDValue();
970
971  SDValue Add = N->getOperand(1);
972
973  if (Add.getOpcode() != ISD::ADD)
974    return SDValue();
975
976  SDValue Lo = Add.getOperand(1);
977
978  if ((Lo.getOpcode() != MipsISD::Lo) ||
979      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
980    return SDValue();
981
982  EVT ValTy = N->getValueType(0);
983  DebugLoc DL = N->getDebugLoc();
984
985  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
986                             Add.getOperand(0));
987  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
988}
989
990SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
991  const {
992  SelectionDAG &DAG = DCI.DAG;
993  unsigned opc = N->getOpcode();
994
995  switch (opc) {
996  default: break;
997  case ISD::ADDE:
998    return PerformADDECombine(N, DAG, DCI, Subtarget);
999  case ISD::SUBE:
1000    return PerformSUBECombine(N, DAG, DCI, Subtarget);
1001  case ISD::SDIVREM:
1002  case ISD::UDIVREM:
1003    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
1004  case ISD::SELECT:
1005    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
1006  case ISD::AND:
1007    return PerformANDCombine(N, DAG, DCI, Subtarget);
1008  case ISD::OR:
1009    return PerformORCombine(N, DAG, DCI, Subtarget);
1010  case ISD::ADD:
1011    return PerformADDCombine(N, DAG, DCI, Subtarget);
1012  }
1013
1014  return SDValue();
1015}
1016
1017void
1018MipsTargetLowering::LowerOperationWrapper(SDNode *N,
1019                                          SmallVectorImpl<SDValue> &Results,
1020                                          SelectionDAG &DAG) const {
1021  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1022
1023  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1024    Results.push_back(Res.getValue(I));
1025}
1026
1027void
1028MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1029                                       SmallVectorImpl<SDValue> &Results,
1030                                       SelectionDAG &DAG) const {
1031  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1032
1033  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1034    Results.push_back(Res.getValue(I));
1035}
1036
1037SDValue MipsTargetLowering::
1038LowerOperation(SDValue Op, SelectionDAG &DAG) const
1039{
1040  switch (Op.getOpcode())
1041  {
1042    case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
1043    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
1044    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
1045    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
1046    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
1047    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
1048    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
1049    case ISD::SELECT:             return LowerSELECT(Op, DAG);
1050    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
1051    case ISD::SETCC:              return LowerSETCC(Op, DAG);
1052    case ISD::VASTART:            return LowerVASTART(Op, DAG);
1053    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
1054    case ISD::FABS:               return LowerFABS(Op, DAG);
1055    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
1056    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
1057    case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
1058    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
1059    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
1060    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
1061    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
1062    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
1063    case ISD::LOAD:               return LowerLOAD(Op, DAG);
1064    case ISD::STORE:              return LowerSTORE(Op, DAG);
1065    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1066    case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
1067    case ISD::ADD:                return LowerADD(Op, DAG);
1068  }
1069  return SDValue();
1070}
1071
1072//===----------------------------------------------------------------------===//
1073//  Lower helper functions
1074//===----------------------------------------------------------------------===//
1075
1076// AddLiveIn - This helper function adds the specified physical register to the
1077// MachineFunction as a live in value.  It also creates a corresponding
1078// virtual register for it.
1079static unsigned
1080AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1081{
1082  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1083  MF.getRegInfo().addLiveIn(PReg, VReg);
1084  return VReg;
1085}
1086
1087// Get fp branch code (not opcode) from condition code.
1088static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
1089  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
1090    return Mips::BRANCH_T;
1091
1092  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
1093         "Invalid CondCode.");
1094
1095  return Mips::BRANCH_F;
1096}
1097
1098/*
1099static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
1100                                        DebugLoc dl,
1101                                        const MipsSubtarget *Subtarget,
1102                                        const TargetInstrInfo *TII,
1103                                        bool isFPCmp, unsigned Opc) {
1104  // There is no need to expand CMov instructions if target has
1105  // conditional moves.
1106  if (Subtarget->hasCondMov())
1107    return BB;
1108
1109  // To "insert" a SELECT_CC instruction, we actually have to insert the
1110  // diamond control-flow pattern.  The incoming instruction knows the
1111  // destination vreg to set, the condition code register to branch on, the
1112  // true/false values to select between, and a branch opcode to use.
1113  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1114  MachineFunction::iterator It = BB;
1115  ++It;
1116
1117  //  thisMBB:
1118  //  ...
1119  //   TrueVal = ...
1120  //   setcc r1, r2, r3
1121  //   bNE   r1, r0, copy1MBB
1122  //   fallthrough --> copy0MBB
1123  MachineBasicBlock *thisMBB  = BB;
1124  MachineFunction *F = BB->getParent();
1125  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1126  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1127  F->insert(It, copy0MBB);
1128  F->insert(It, sinkMBB);
1129
1130  // Transfer the remainder of BB and its successor edges to sinkMBB.
1131  sinkMBB->splice(sinkMBB->begin(), BB,
1132                  llvm::next(MachineBasicBlock::iterator(MI)),
1133                  BB->end());
1134  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1135
1136  // Next, add the true and fallthrough blocks as its successors.
1137  BB->addSuccessor(copy0MBB);
1138  BB->addSuccessor(sinkMBB);
1139
1140  // Emit the right instruction according to the type of the operands compared
1141  if (isFPCmp)
1142    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
1143  else
1144    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
1145      .addReg(Mips::ZERO).addMBB(sinkMBB);
1146
1147  //  copy0MBB:
1148  //   %FalseValue = ...
1149  //   # fallthrough to sinkMBB
1150  BB = copy0MBB;
1151
1152  // Update machine-CFG edges
1153  BB->addSuccessor(sinkMBB);
1154
1155  //  sinkMBB:
1156  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1157  //  ...
1158  BB = sinkMBB;
1159
1160  if (isFPCmp)
1161    BuildMI(*BB, BB->begin(), dl,
1162            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1163      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
1164      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1165  else
1166    BuildMI(*BB, BB->begin(), dl,
1167            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1168      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
1169      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1170
1171  MI->eraseFromParent();   // The pseudo instruction is gone now.
1172  return BB;
1173}
1174*/
1175
1176MachineBasicBlock *
1177MipsTargetLowering::EmitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
1178  // $bb:
1179  //  bposge32_pseudo $vr0
1180  //  =>
1181  // $bb:
1182  //  bposge32 $tbb
1183  // $fbb:
1184  //  li $vr2, 0
1185  //  b $sink
1186  // $tbb:
1187  //  li $vr1, 1
1188  // $sink:
1189  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
1190
1191  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
1192  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1193  const TargetRegisterClass *RC = &Mips::CPURegsRegClass;
1194  DebugLoc DL = MI->getDebugLoc();
1195  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1196  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
1197  MachineFunction *F = BB->getParent();
1198  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
1199  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
1200  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
1201  F->insert(It, FBB);
1202  F->insert(It, TBB);
1203  F->insert(It, Sink);
1204
1205  // Transfer the remainder of BB and its successor edges to Sink.
1206  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
1207               BB->end());
1208  Sink->transferSuccessorsAndUpdatePHIs(BB);
1209
1210  // Add successors.
1211  BB->addSuccessor(FBB);
1212  BB->addSuccessor(TBB);
1213  FBB->addSuccessor(Sink);
1214  TBB->addSuccessor(Sink);
1215
1216  // Insert the real bposge32 instruction to $BB.
1217  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
1218
1219  // Fill $FBB.
1220  unsigned VR2 = RegInfo.createVirtualRegister(RC);
1221  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
1222    .addReg(Mips::ZERO).addImm(0);
1223  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
1224
1225  // Fill $TBB.
1226  unsigned VR1 = RegInfo.createVirtualRegister(RC);
1227  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
1228    .addReg(Mips::ZERO).addImm(1);
1229
1230  // Insert phi function to $Sink.
1231  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
1232          MI->getOperand(0).getReg())
1233    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
1234
1235  MI->eraseFromParent();   // The pseudo instruction is gone now.
1236  return Sink;
1237}
1238
1239MachineBasicBlock *MipsTargetLowering::EmitSel16(unsigned Opc, MachineInstr *MI,
1240                             MachineBasicBlock *BB) const {
1241  if (DontExpandCondPseudos16)
1242    return BB;
1243  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1244  DebugLoc dl = MI->getDebugLoc();
1245  // To "insert" a SELECT_CC instruction, we actually have to insert the
1246  // diamond control-flow pattern.  The incoming instruction knows the
1247  // destination vreg to set, the condition code register to branch on, the
1248  // true/false values to select between, and a branch opcode to use.
1249  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1250  MachineFunction::iterator It = BB;
1251  ++It;
1252
1253  //  thisMBB:
1254  //  ...
1255  //   TrueVal = ...
1256  //   setcc r1, r2, r3
1257  //   bNE   r1, r0, copy1MBB
1258  //   fallthrough --> copy0MBB
1259  MachineBasicBlock *thisMBB  = BB;
1260  MachineFunction *F = BB->getParent();
1261  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1262  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1263  F->insert(It, copy0MBB);
1264  F->insert(It, sinkMBB);
1265
1266  // Transfer the remainder of BB and its successor edges to sinkMBB.
1267  sinkMBB->splice(sinkMBB->begin(), BB,
1268                  llvm::next(MachineBasicBlock::iterator(MI)),
1269                  BB->end());
1270  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1271
1272  // Next, add the true and fallthrough blocks as its successors.
1273  BB->addSuccessor(copy0MBB);
1274  BB->addSuccessor(sinkMBB);
1275
1276  BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
1277    .addMBB(sinkMBB);
1278
1279  //  copy0MBB:
1280  //   %FalseValue = ...
1281  //   # fallthrough to sinkMBB
1282  BB = copy0MBB;
1283
1284  // Update machine-CFG edges
1285  BB->addSuccessor(sinkMBB);
1286
1287  //  sinkMBB:
1288  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1289  //  ...
1290  BB = sinkMBB;
1291
1292  BuildMI(*BB, BB->begin(), dl,
1293          TII->get(Mips::PHI), MI->getOperand(0).getReg())
1294    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
1295    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
1296
1297  MI->eraseFromParent();   // The pseudo instruction is gone now.
1298  return BB;
1299}
1300
1301MachineBasicBlock *MipsTargetLowering::EmitSelT16
1302  (unsigned Opc1, unsigned Opc2,
1303   MachineInstr *MI, MachineBasicBlock *BB) const {
1304  if (DontExpandCondPseudos16)
1305    return BB;
1306  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1307  DebugLoc dl = MI->getDebugLoc();
1308  // To "insert" a SELECT_CC instruction, we actually have to insert the
1309  // diamond control-flow pattern.  The incoming instruction knows the
1310  // destination vreg to set, the condition code register to branch on, the
1311  // true/false values to select between, and a branch opcode to use.
1312  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1313  MachineFunction::iterator It = BB;
1314  ++It;
1315
1316  //  thisMBB:
1317  //  ...
1318  //   TrueVal = ...
1319  //   setcc r1, r2, r3
1320  //   bNE   r1, r0, copy1MBB
1321  //   fallthrough --> copy0MBB
1322  MachineBasicBlock *thisMBB  = BB;
1323  MachineFunction *F = BB->getParent();
1324  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1325  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1326  F->insert(It, copy0MBB);
1327  F->insert(It, sinkMBB);
1328
1329  // Transfer the remainder of BB and its successor edges to sinkMBB.
1330  sinkMBB->splice(sinkMBB->begin(), BB,
1331                  llvm::next(MachineBasicBlock::iterator(MI)),
1332                  BB->end());
1333  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1334
1335  // Next, add the true and fallthrough blocks as its successors.
1336  BB->addSuccessor(copy0MBB);
1337  BB->addSuccessor(sinkMBB);
1338
1339  BuildMI(BB, dl, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
1340    .addReg(MI->getOperand(4).getReg());
1341  BuildMI(BB, dl, TII->get(Opc1)).addMBB(sinkMBB);
1342
1343  //  copy0MBB:
1344  //   %FalseValue = ...
1345  //   # fallthrough to sinkMBB
1346  BB = copy0MBB;
1347
1348  // Update machine-CFG edges
1349  BB->addSuccessor(sinkMBB);
1350
1351  //  sinkMBB:
1352  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1353  //  ...
1354  BB = sinkMBB;
1355
1356  BuildMI(*BB, BB->begin(), dl,
1357          TII->get(Mips::PHI), MI->getOperand(0).getReg())
1358    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
1359    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
1360
1361  MI->eraseFromParent();   // The pseudo instruction is gone now.
1362  return BB;
1363
1364}
1365
1366
1367MachineBasicBlock *MipsTargetLowering::EmitSeliT16
1368  (unsigned Opc1, unsigned Opc2,
1369   MachineInstr *MI, MachineBasicBlock *BB) const {
1370  if (DontExpandCondPseudos16)
1371    return BB;
1372  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1373  DebugLoc dl = MI->getDebugLoc();
1374  // To "insert" a SELECT_CC instruction, we actually have to insert the
1375  // diamond control-flow pattern.  The incoming instruction knows the
1376  // destination vreg to set, the condition code register to branch on, the
1377  // true/false values to select between, and a branch opcode to use.
1378  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1379  MachineFunction::iterator It = BB;
1380  ++It;
1381
1382  //  thisMBB:
1383  //  ...
1384  //   TrueVal = ...
1385  //   setcc r1, r2, r3
1386  //   bNE   r1, r0, copy1MBB
1387  //   fallthrough --> copy0MBB
1388  MachineBasicBlock *thisMBB  = BB;
1389  MachineFunction *F = BB->getParent();
1390  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1391  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1392  F->insert(It, copy0MBB);
1393  F->insert(It, sinkMBB);
1394
1395  // Transfer the remainder of BB and its successor edges to sinkMBB.
1396  sinkMBB->splice(sinkMBB->begin(), BB,
1397                  llvm::next(MachineBasicBlock::iterator(MI)),
1398                  BB->end());
1399  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1400
1401  // Next, add the true and fallthrough blocks as its successors.
1402  BB->addSuccessor(copy0MBB);
1403  BB->addSuccessor(sinkMBB);
1404
1405  BuildMI(BB, dl, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
1406    .addImm(MI->getOperand(4).getImm());
1407  BuildMI(BB, dl, TII->get(Opc1)).addMBB(sinkMBB);
1408
1409  //  copy0MBB:
1410  //   %FalseValue = ...
1411  //   # fallthrough to sinkMBB
1412  BB = copy0MBB;
1413
1414  // Update machine-CFG edges
1415  BB->addSuccessor(sinkMBB);
1416
1417  //  sinkMBB:
1418  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1419  //  ...
1420  BB = sinkMBB;
1421
1422  BuildMI(*BB, BB->begin(), dl,
1423          TII->get(Mips::PHI), MI->getOperand(0).getReg())
1424    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
1425    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
1426
1427  MI->eraseFromParent();   // The pseudo instruction is gone now.
1428  return BB;
1429
1430}
1431
1432
1433MachineBasicBlock
1434  *MipsTargetLowering::EmitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
1435                           MachineInstr *MI,
1436                           MachineBasicBlock *BB) const {
1437  if (DontExpandCondPseudos16)
1438    return BB;
1439  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1440  unsigned regX = MI->getOperand(0).getReg();
1441  unsigned regY = MI->getOperand(1).getReg();
1442  MachineBasicBlock *target = MI->getOperand(2).getMBB();
1443  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX).addReg(regY);
1444  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
1445  MI->eraseFromParent();   // The pseudo instruction is gone now.
1446  return BB;
1447}
1448
1449
1450MachineBasicBlock *MipsTargetLowering::EmitFEXT_T8I8I16_ins(
1451  unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc,
1452  MachineInstr *MI,  MachineBasicBlock *BB) const {
1453  if (DontExpandCondPseudos16)
1454    return BB;
1455  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1456  unsigned regX = MI->getOperand(0).getReg();
1457  int64_t imm = MI->getOperand(1).getImm();
1458  MachineBasicBlock *target = MI->getOperand(2).getMBB();
1459  unsigned CmpOpc;
1460  if (isUInt<8>(imm))
1461    CmpOpc = CmpiOpc;
1462  else if (isUInt<16>(imm))
1463    CmpOpc = CmpiXOpc;
1464  else
1465    llvm_unreachable("immediate field not usable");
1466  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX).addImm(imm);
1467  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
1468  MI->eraseFromParent();   // The pseudo instruction is gone now.
1469  return BB;
1470}
1471
1472
1473static unsigned Mips16WhichOp8uOr16simm
1474  (unsigned shortOp, unsigned longOp, int64_t Imm) {
1475  if (isUInt<8>(Imm))
1476    return shortOp;
1477  else if (isInt<16>(Imm))
1478    return longOp;
1479  else
1480    llvm_unreachable("immediate field not usable");
1481}
1482
1483MachineBasicBlock *MipsTargetLowering::EmitFEXT_CCRX16_ins(
1484  unsigned SltOpc,
1485  MachineInstr *MI,  MachineBasicBlock *BB) const {
1486  if (DontExpandCondPseudos16)
1487    return BB;
1488  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1489  unsigned CC = MI->getOperand(0).getReg();
1490  unsigned regX = MI->getOperand(1).getReg();
1491  unsigned regY = MI->getOperand(2).getReg();
1492  BuildMI(*BB, MI, MI->getDebugLoc(),
1493		  TII->get(SltOpc)).addReg(regX).addReg(regY);
1494  BuildMI(*BB, MI, MI->getDebugLoc(),
1495          TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
1496  MI->eraseFromParent();   // The pseudo instruction is gone now.
1497  return BB;
1498}
1499MachineBasicBlock *MipsTargetLowering::EmitFEXT_CCRXI16_ins(
1500  unsigned SltiOpc, unsigned SltiXOpc,
1501  MachineInstr *MI,  MachineBasicBlock *BB )const {
1502  if (DontExpandCondPseudos16)
1503    return BB;
1504  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1505  unsigned CC = MI->getOperand(0).getReg();
1506  unsigned regX = MI->getOperand(1).getReg();
1507  int64_t Imm = MI->getOperand(2).getImm();
1508  unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
1509  BuildMI(*BB, MI, MI->getDebugLoc(),
1510          TII->get(SltOpc)).addReg(regX).addImm(Imm);
1511  BuildMI(*BB, MI, MI->getDebugLoc(),
1512          TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
1513  MI->eraseFromParent();   // The pseudo instruction is gone now.
1514  return BB;
1515
1516}
1517MachineBasicBlock *
1518MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1519                                                MachineBasicBlock *BB) const {
1520  switch (MI->getOpcode()) {
1521  default:
1522    llvm_unreachable("Unexpected instr type to insert");
1523  case Mips::ATOMIC_LOAD_ADD_I8:
1524  case Mips::ATOMIC_LOAD_ADD_I8_P8:
1525    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
1526  case Mips::ATOMIC_LOAD_ADD_I16:
1527  case Mips::ATOMIC_LOAD_ADD_I16_P8:
1528    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
1529  case Mips::ATOMIC_LOAD_ADD_I32:
1530  case Mips::ATOMIC_LOAD_ADD_I32_P8:
1531    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
1532  case Mips::ATOMIC_LOAD_ADD_I64:
1533  case Mips::ATOMIC_LOAD_ADD_I64_P8:
1534    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
1535
1536  case Mips::ATOMIC_LOAD_AND_I8:
1537  case Mips::ATOMIC_LOAD_AND_I8_P8:
1538    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
1539  case Mips::ATOMIC_LOAD_AND_I16:
1540  case Mips::ATOMIC_LOAD_AND_I16_P8:
1541    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
1542  case Mips::ATOMIC_LOAD_AND_I32:
1543  case Mips::ATOMIC_LOAD_AND_I32_P8:
1544    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
1545  case Mips::ATOMIC_LOAD_AND_I64:
1546  case Mips::ATOMIC_LOAD_AND_I64_P8:
1547    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
1548
1549  case Mips::ATOMIC_LOAD_OR_I8:
1550  case Mips::ATOMIC_LOAD_OR_I8_P8:
1551    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
1552  case Mips::ATOMIC_LOAD_OR_I16:
1553  case Mips::ATOMIC_LOAD_OR_I16_P8:
1554    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
1555  case Mips::ATOMIC_LOAD_OR_I32:
1556  case Mips::ATOMIC_LOAD_OR_I32_P8:
1557    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
1558  case Mips::ATOMIC_LOAD_OR_I64:
1559  case Mips::ATOMIC_LOAD_OR_I64_P8:
1560    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
1561
1562  case Mips::ATOMIC_LOAD_XOR_I8:
1563  case Mips::ATOMIC_LOAD_XOR_I8_P8:
1564    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
1565  case Mips::ATOMIC_LOAD_XOR_I16:
1566  case Mips::ATOMIC_LOAD_XOR_I16_P8:
1567    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
1568  case Mips::ATOMIC_LOAD_XOR_I32:
1569  case Mips::ATOMIC_LOAD_XOR_I32_P8:
1570    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
1571  case Mips::ATOMIC_LOAD_XOR_I64:
1572  case Mips::ATOMIC_LOAD_XOR_I64_P8:
1573    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
1574
1575  case Mips::ATOMIC_LOAD_NAND_I8:
1576  case Mips::ATOMIC_LOAD_NAND_I8_P8:
1577    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
1578  case Mips::ATOMIC_LOAD_NAND_I16:
1579  case Mips::ATOMIC_LOAD_NAND_I16_P8:
1580    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
1581  case Mips::ATOMIC_LOAD_NAND_I32:
1582  case Mips::ATOMIC_LOAD_NAND_I32_P8:
1583    return EmitAtomicBinary(MI, BB, 4, 0, true);
1584  case Mips::ATOMIC_LOAD_NAND_I64:
1585  case Mips::ATOMIC_LOAD_NAND_I64_P8:
1586    return EmitAtomicBinary(MI, BB, 8, 0, true);
1587
1588  case Mips::ATOMIC_LOAD_SUB_I8:
1589  case Mips::ATOMIC_LOAD_SUB_I8_P8:
1590    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
1591  case Mips::ATOMIC_LOAD_SUB_I16:
1592  case Mips::ATOMIC_LOAD_SUB_I16_P8:
1593    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1594  case Mips::ATOMIC_LOAD_SUB_I32:
1595  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1596    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1597  case Mips::ATOMIC_LOAD_SUB_I64:
1598  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1599    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1600
1601  case Mips::ATOMIC_SWAP_I8:
1602  case Mips::ATOMIC_SWAP_I8_P8:
1603    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1604  case Mips::ATOMIC_SWAP_I16:
1605  case Mips::ATOMIC_SWAP_I16_P8:
1606    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1607  case Mips::ATOMIC_SWAP_I32:
1608  case Mips::ATOMIC_SWAP_I32_P8:
1609    return EmitAtomicBinary(MI, BB, 4, 0);
1610  case Mips::ATOMIC_SWAP_I64:
1611  case Mips::ATOMIC_SWAP_I64_P8:
1612    return EmitAtomicBinary(MI, BB, 8, 0);
1613
1614  case Mips::ATOMIC_CMP_SWAP_I8:
1615  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1616    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1617  case Mips::ATOMIC_CMP_SWAP_I16:
1618  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1619    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1620  case Mips::ATOMIC_CMP_SWAP_I32:
1621  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1622    return EmitAtomicCmpSwap(MI, BB, 4);
1623  case Mips::ATOMIC_CMP_SWAP_I64:
1624  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1625    return EmitAtomicCmpSwap(MI, BB, 8);
1626  case Mips::BPOSGE32_PSEUDO:
1627    return EmitBPOSGE32(MI, BB);
1628  case Mips::SelBeqZ:
1629    return EmitSel16(Mips::BeqzRxImm16, MI, BB);
1630  case Mips::SelBneZ:
1631    return EmitSel16(Mips::BnezRxImm16, MI, BB);
1632  case Mips::SelTBteqZCmpi:
1633    return EmitSeliT16(Mips::BteqzX16, Mips::CmpiRxImmX16, MI, BB);
1634  case Mips::SelTBteqZSlti:
1635    return EmitSeliT16(Mips::BteqzX16, Mips::SltiRxImmX16, MI, BB);
1636  case Mips::SelTBteqZSltiu:
1637    return EmitSeliT16(Mips::BteqzX16, Mips::SltiuRxImmX16, MI, BB);
1638  case Mips::SelTBtneZCmpi:
1639    return EmitSeliT16(Mips::BtnezX16, Mips::CmpiRxImmX16, MI, BB);
1640  case Mips::SelTBtneZSlti:
1641    return EmitSeliT16(Mips::BtnezX16, Mips::SltiRxImmX16, MI, BB);
1642  case Mips::SelTBtneZSltiu:
1643    return EmitSeliT16(Mips::BtnezX16, Mips::SltiuRxImmX16, MI, BB);
1644  case Mips::SelTBteqZCmp:
1645    return EmitSelT16(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
1646  case Mips::SelTBteqZSlt:
1647    return EmitSelT16(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
1648  case Mips::SelTBteqZSltu:
1649    return EmitSelT16(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
1650  case Mips::SelTBtneZCmp:
1651    return EmitSelT16(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
1652  case Mips::SelTBtneZSlt:
1653    return EmitSelT16(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
1654  case Mips::SelTBtneZSltu:
1655    return EmitSelT16(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
1656  case Mips::BteqzT8CmpX16:
1657    return EmitFEXT_T8I816_ins(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
1658  case Mips::BteqzT8SltX16:
1659    return EmitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
1660  case Mips::BteqzT8SltuX16:
1661    // TBD: figure out a way to get this or remove the instruction
1662    // altogether.
1663    return EmitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
1664  case Mips::BtnezT8CmpX16:
1665    return EmitFEXT_T8I816_ins(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
1666  case Mips::BtnezT8SltX16:
1667    return EmitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
1668  case Mips::BtnezT8SltuX16:
1669    // TBD: figure out a way to get this or remove the instruction
1670    // altogether.
1671    return EmitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
1672  case Mips::BteqzT8CmpiX16: return EmitFEXT_T8I8I16_ins(
1673    Mips::BteqzX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, MI, BB);
1674  case Mips::BteqzT8SltiX16: return EmitFEXT_T8I8I16_ins(
1675    Mips::BteqzX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
1676  case Mips::BteqzT8SltiuX16: return EmitFEXT_T8I8I16_ins(
1677    Mips::BteqzX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
1678  case Mips::BtnezT8CmpiX16: return EmitFEXT_T8I8I16_ins(
1679    Mips::BtnezX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, MI, BB);
1680  case Mips::BtnezT8SltiX16: return EmitFEXT_T8I8I16_ins(
1681    Mips::BtnezX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
1682  case Mips::BtnezT8SltiuX16: return EmitFEXT_T8I8I16_ins(
1683    Mips::BtnezX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
1684    break;
1685  case Mips::SltCCRxRy16:
1686    return EmitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
1687    break;
1688  case Mips::SltiCCRxImmX16:
1689    return EmitFEXT_CCRXI16_ins
1690      (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
1691  case Mips::SltiuCCRxImmX16:
1692    return EmitFEXT_CCRXI16_ins
1693      (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
1694  case Mips::SltuCCRxRy16:
1695    return EmitFEXT_CCRX16_ins
1696      (Mips::SltuRxRy16, MI, BB);
1697  }
1698}
1699
1700// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1701// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1702MachineBasicBlock *
1703MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1704                                     unsigned Size, unsigned BinOpcode,
1705                                     bool Nand) const {
1706  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1707
1708  MachineFunction *MF = BB->getParent();
1709  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1710  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1711  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1712  DebugLoc dl = MI->getDebugLoc();
1713  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1714
1715  if (Size == 4) {
1716    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1717    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1718    AND = Mips::AND;
1719    NOR = Mips::NOR;
1720    ZERO = Mips::ZERO;
1721    BEQ = Mips::BEQ;
1722  }
1723  else {
1724    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1725    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1726    AND = Mips::AND64;
1727    NOR = Mips::NOR64;
1728    ZERO = Mips::ZERO_64;
1729    BEQ = Mips::BEQ64;
1730  }
1731
1732  unsigned OldVal = MI->getOperand(0).getReg();
1733  unsigned Ptr = MI->getOperand(1).getReg();
1734  unsigned Incr = MI->getOperand(2).getReg();
1735
1736  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1737  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1738  unsigned Success = RegInfo.createVirtualRegister(RC);
1739
1740  // insert new blocks after the current block
1741  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1742  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1743  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1744  MachineFunction::iterator It = BB;
1745  ++It;
1746  MF->insert(It, loopMBB);
1747  MF->insert(It, exitMBB);
1748
1749  // Transfer the remainder of BB and its successor edges to exitMBB.
1750  exitMBB->splice(exitMBB->begin(), BB,
1751                  llvm::next(MachineBasicBlock::iterator(MI)),
1752                  BB->end());
1753  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1754
1755  //  thisMBB:
1756  //    ...
1757  //    fallthrough --> loopMBB
1758  BB->addSuccessor(loopMBB);
1759  loopMBB->addSuccessor(loopMBB);
1760  loopMBB->addSuccessor(exitMBB);
1761
1762  //  loopMBB:
1763  //    ll oldval, 0(ptr)
1764  //    <binop> storeval, oldval, incr
1765  //    sc success, storeval, 0(ptr)
1766  //    beq success, $0, loopMBB
1767  BB = loopMBB;
1768  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1769  if (Nand) {
1770    //  and andres, oldval, incr
1771    //  nor storeval, $0, andres
1772    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1773    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1774  } else if (BinOpcode) {
1775    //  <binop> storeval, oldval, incr
1776    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1777  } else {
1778    StoreVal = Incr;
1779  }
1780  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1781  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1782
1783  MI->eraseFromParent();   // The instruction is gone now.
1784
1785  return exitMBB;
1786}
1787
1788MachineBasicBlock *
1789MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1790                                             MachineBasicBlock *BB,
1791                                             unsigned Size, unsigned BinOpcode,
1792                                             bool Nand) const {
1793  assert((Size == 1 || Size == 2) &&
1794      "Unsupported size for EmitAtomicBinaryPartial.");
1795
1796  MachineFunction *MF = BB->getParent();
1797  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1798  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1799  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1800  DebugLoc dl = MI->getDebugLoc();
1801  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1802  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1803
1804  unsigned Dest = MI->getOperand(0).getReg();
1805  unsigned Ptr = MI->getOperand(1).getReg();
1806  unsigned Incr = MI->getOperand(2).getReg();
1807
1808  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1809  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1810  unsigned Mask = RegInfo.createVirtualRegister(RC);
1811  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1812  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1813  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1814  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1815  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1816  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1817  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1818  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1819  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1820  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1821  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1822  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1823  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1824  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1825  unsigned Success = RegInfo.createVirtualRegister(RC);
1826
1827  // insert new blocks after the current block
1828  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1829  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1830  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1831  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1832  MachineFunction::iterator It = BB;
1833  ++It;
1834  MF->insert(It, loopMBB);
1835  MF->insert(It, sinkMBB);
1836  MF->insert(It, exitMBB);
1837
1838  // Transfer the remainder of BB and its successor edges to exitMBB.
1839  exitMBB->splice(exitMBB->begin(), BB,
1840                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1841  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1842
1843  BB->addSuccessor(loopMBB);
1844  loopMBB->addSuccessor(loopMBB);
1845  loopMBB->addSuccessor(sinkMBB);
1846  sinkMBB->addSuccessor(exitMBB);
1847
1848  //  thisMBB:
1849  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1850  //    and     alignedaddr,ptr,masklsb2
1851  //    andi    ptrlsb2,ptr,3
1852  //    sll     shiftamt,ptrlsb2,3
1853  //    ori     maskupper,$0,255               # 0xff
1854  //    sll     mask,maskupper,shiftamt
1855  //    nor     mask2,$0,mask
1856  //    sll     incr2,incr,shiftamt
1857
1858  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1859  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1860    .addReg(Mips::ZERO).addImm(-4);
1861  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1862    .addReg(Ptr).addReg(MaskLSB2);
1863  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1864  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1865  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1866    .addReg(Mips::ZERO).addImm(MaskImm);
1867  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1868    .addReg(ShiftAmt).addReg(MaskUpper);
1869  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1870  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1871
1872  // atomic.load.binop
1873  // loopMBB:
1874  //   ll      oldval,0(alignedaddr)
1875  //   binop   binopres,oldval,incr2
1876  //   and     newval,binopres,mask
1877  //   and     maskedoldval0,oldval,mask2
1878  //   or      storeval,maskedoldval0,newval
1879  //   sc      success,storeval,0(alignedaddr)
1880  //   beq     success,$0,loopMBB
1881
1882  // atomic.swap
1883  // loopMBB:
1884  //   ll      oldval,0(alignedaddr)
1885  //   and     newval,incr2,mask
1886  //   and     maskedoldval0,oldval,mask2
1887  //   or      storeval,maskedoldval0,newval
1888  //   sc      success,storeval,0(alignedaddr)
1889  //   beq     success,$0,loopMBB
1890
1891  BB = loopMBB;
1892  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1893  if (Nand) {
1894    //  and andres, oldval, incr2
1895    //  nor binopres, $0, andres
1896    //  and newval, binopres, mask
1897    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1898    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1899      .addReg(Mips::ZERO).addReg(AndRes);
1900    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1901  } else if (BinOpcode) {
1902    //  <binop> binopres, oldval, incr2
1903    //  and newval, binopres, mask
1904    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1905    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1906  } else {// atomic.swap
1907    //  and newval, incr2, mask
1908    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1909  }
1910
1911  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1912    .addReg(OldVal).addReg(Mask2);
1913  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1914    .addReg(MaskedOldVal0).addReg(NewVal);
1915  BuildMI(BB, dl, TII->get(SC), Success)
1916    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1917  BuildMI(BB, dl, TII->get(Mips::BEQ))
1918    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1919
1920  //  sinkMBB:
1921  //    and     maskedoldval1,oldval,mask
1922  //    srl     srlres,maskedoldval1,shiftamt
1923  //    sll     sllres,srlres,24
1924  //    sra     dest,sllres,24
1925  BB = sinkMBB;
1926  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1927
1928  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1929    .addReg(OldVal).addReg(Mask);
1930  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1931      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1932  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1933      .addReg(SrlRes).addImm(ShiftImm);
1934  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1935      .addReg(SllRes).addImm(ShiftImm);
1936
1937  MI->eraseFromParent();   // The instruction is gone now.
1938
1939  return exitMBB;
1940}
1941
1942MachineBasicBlock *
1943MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1944                                      MachineBasicBlock *BB,
1945                                      unsigned Size) const {
1946  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1947
1948  MachineFunction *MF = BB->getParent();
1949  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1950  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1951  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1952  DebugLoc dl = MI->getDebugLoc();
1953  unsigned LL, SC, ZERO, BNE, BEQ;
1954
1955  if (Size == 4) {
1956    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1957    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1958    ZERO = Mips::ZERO;
1959    BNE = Mips::BNE;
1960    BEQ = Mips::BEQ;
1961  }
1962  else {
1963    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1964    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1965    ZERO = Mips::ZERO_64;
1966    BNE = Mips::BNE64;
1967    BEQ = Mips::BEQ64;
1968  }
1969
1970  unsigned Dest    = MI->getOperand(0).getReg();
1971  unsigned Ptr     = MI->getOperand(1).getReg();
1972  unsigned OldVal  = MI->getOperand(2).getReg();
1973  unsigned NewVal  = MI->getOperand(3).getReg();
1974
1975  unsigned Success = RegInfo.createVirtualRegister(RC);
1976
1977  // insert new blocks after the current block
1978  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1979  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1980  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1981  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1982  MachineFunction::iterator It = BB;
1983  ++It;
1984  MF->insert(It, loop1MBB);
1985  MF->insert(It, loop2MBB);
1986  MF->insert(It, exitMBB);
1987
1988  // Transfer the remainder of BB and its successor edges to exitMBB.
1989  exitMBB->splice(exitMBB->begin(), BB,
1990                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1991  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1992
1993  //  thisMBB:
1994  //    ...
1995  //    fallthrough --> loop1MBB
1996  BB->addSuccessor(loop1MBB);
1997  loop1MBB->addSuccessor(exitMBB);
1998  loop1MBB->addSuccessor(loop2MBB);
1999  loop2MBB->addSuccessor(loop1MBB);
2000  loop2MBB->addSuccessor(exitMBB);
2001
2002  // loop1MBB:
2003  //   ll dest, 0(ptr)
2004  //   bne dest, oldval, exitMBB
2005  BB = loop1MBB;
2006  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
2007  BuildMI(BB, dl, TII->get(BNE))
2008    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
2009
2010  // loop2MBB:
2011  //   sc success, newval, 0(ptr)
2012  //   beq success, $0, loop1MBB
2013  BB = loop2MBB;
2014  BuildMI(BB, dl, TII->get(SC), Success)
2015    .addReg(NewVal).addReg(Ptr).addImm(0);
2016  BuildMI(BB, dl, TII->get(BEQ))
2017    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
2018
2019  MI->eraseFromParent();   // The instruction is gone now.
2020
2021  return exitMBB;
2022}
2023
2024MachineBasicBlock *
2025MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
2026                                              MachineBasicBlock *BB,
2027                                              unsigned Size) const {
2028  assert((Size == 1 || Size == 2) &&
2029      "Unsupported size for EmitAtomicCmpSwapPartial.");
2030
2031  MachineFunction *MF = BB->getParent();
2032  MachineRegisterInfo &RegInfo = MF->getRegInfo();
2033  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
2034  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2035  DebugLoc dl = MI->getDebugLoc();
2036  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
2037  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
2038
2039  unsigned Dest    = MI->getOperand(0).getReg();
2040  unsigned Ptr     = MI->getOperand(1).getReg();
2041  unsigned CmpVal  = MI->getOperand(2).getReg();
2042  unsigned NewVal  = MI->getOperand(3).getReg();
2043
2044  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
2045  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
2046  unsigned Mask = RegInfo.createVirtualRegister(RC);
2047  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
2048  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
2049  unsigned OldVal = RegInfo.createVirtualRegister(RC);
2050  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
2051  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
2052  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
2053  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
2054  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
2055  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
2056  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
2057  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
2058  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
2059  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
2060  unsigned SllRes = RegInfo.createVirtualRegister(RC);
2061  unsigned Success = RegInfo.createVirtualRegister(RC);
2062
2063  // insert new blocks after the current block
2064  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2065  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
2066  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
2067  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
2068  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
2069  MachineFunction::iterator It = BB;
2070  ++It;
2071  MF->insert(It, loop1MBB);
2072  MF->insert(It, loop2MBB);
2073  MF->insert(It, sinkMBB);
2074  MF->insert(It, exitMBB);
2075
2076  // Transfer the remainder of BB and its successor edges to exitMBB.
2077  exitMBB->splice(exitMBB->begin(), BB,
2078                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
2079  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
2080
2081  BB->addSuccessor(loop1MBB);
2082  loop1MBB->addSuccessor(sinkMBB);
2083  loop1MBB->addSuccessor(loop2MBB);
2084  loop2MBB->addSuccessor(loop1MBB);
2085  loop2MBB->addSuccessor(sinkMBB);
2086  sinkMBB->addSuccessor(exitMBB);
2087
2088  // FIXME: computation of newval2 can be moved to loop2MBB.
2089  //  thisMBB:
2090  //    addiu   masklsb2,$0,-4                # 0xfffffffc
2091  //    and     alignedaddr,ptr,masklsb2
2092  //    andi    ptrlsb2,ptr,3
2093  //    sll     shiftamt,ptrlsb2,3
2094  //    ori     maskupper,$0,255               # 0xff
2095  //    sll     mask,maskupper,shiftamt
2096  //    nor     mask2,$0,mask
2097  //    andi    maskedcmpval,cmpval,255
2098  //    sll     shiftedcmpval,maskedcmpval,shiftamt
2099  //    andi    maskednewval,newval,255
2100  //    sll     shiftednewval,maskednewval,shiftamt
2101  int64_t MaskImm = (Size == 1) ? 255 : 65535;
2102  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
2103    .addReg(Mips::ZERO).addImm(-4);
2104  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
2105    .addReg(Ptr).addReg(MaskLSB2);
2106  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
2107  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
2108  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
2109    .addReg(Mips::ZERO).addImm(MaskImm);
2110  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
2111    .addReg(ShiftAmt).addReg(MaskUpper);
2112  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
2113  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
2114    .addReg(CmpVal).addImm(MaskImm);
2115  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
2116    .addReg(ShiftAmt).addReg(MaskedCmpVal);
2117  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
2118    .addReg(NewVal).addImm(MaskImm);
2119  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
2120    .addReg(ShiftAmt).addReg(MaskedNewVal);
2121
2122  //  loop1MBB:
2123  //    ll      oldval,0(alginedaddr)
2124  //    and     maskedoldval0,oldval,mask
2125  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
2126  BB = loop1MBB;
2127  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
2128  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
2129    .addReg(OldVal).addReg(Mask);
2130  BuildMI(BB, dl, TII->get(Mips::BNE))
2131    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
2132
2133  //  loop2MBB:
2134  //    and     maskedoldval1,oldval,mask2
2135  //    or      storeval,maskedoldval1,shiftednewval
2136  //    sc      success,storeval,0(alignedaddr)
2137  //    beq     success,$0,loop1MBB
2138  BB = loop2MBB;
2139  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
2140    .addReg(OldVal).addReg(Mask2);
2141  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
2142    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
2143  BuildMI(BB, dl, TII->get(SC), Success)
2144      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
2145  BuildMI(BB, dl, TII->get(Mips::BEQ))
2146      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
2147
2148  //  sinkMBB:
2149  //    srl     srlres,maskedoldval0,shiftamt
2150  //    sll     sllres,srlres,24
2151  //    sra     dest,sllres,24
2152  BB = sinkMBB;
2153  int64_t ShiftImm = (Size == 1) ? 24 : 16;
2154
2155  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
2156      .addReg(ShiftAmt).addReg(MaskedOldVal0);
2157  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
2158      .addReg(SrlRes).addImm(ShiftImm);
2159  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
2160      .addReg(SllRes).addImm(ShiftImm);
2161
2162  MI->eraseFromParent();   // The instruction is gone now.
2163
2164  return exitMBB;
2165}
2166
2167//===----------------------------------------------------------------------===//
2168//  Misc Lower Operation implementation
2169//===----------------------------------------------------------------------===//
2170SDValue MipsTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2171  SDValue Chain = Op.getOperand(0);
2172  SDValue Table = Op.getOperand(1);
2173  SDValue Index = Op.getOperand(2);
2174  DebugLoc DL = Op.getDebugLoc();
2175  EVT PTy = getPointerTy();
2176  unsigned EntrySize =
2177    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
2178
2179  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
2180                      DAG.getConstant(EntrySize, PTy));
2181  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
2182
2183  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2184  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
2185                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
2186                        0);
2187  Chain = Addr.getValue(1);
2188
2189  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
2190    // For PIC, the sequence is:
2191    // BRIND(load(Jumptable + index) + RelocBase)
2192    // RelocBase can be JumpTable, GOT or some sort of global base.
2193    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
2194                       getPICJumpTableRelocBase(Table, DAG));
2195  }
2196
2197  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
2198}
2199
2200SDValue MipsTargetLowering::
2201LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
2202{
2203  // The first operand is the chain, the second is the condition, the third is
2204  // the block to branch to if the condition is true.
2205  SDValue Chain = Op.getOperand(0);
2206  SDValue Dest = Op.getOperand(2);
2207  DebugLoc dl = Op.getDebugLoc();
2208
2209  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
2210
2211  // Return if flag is not set by a floating point comparison.
2212  if (CondRes.getOpcode() != MipsISD::FPCmp)
2213    return Op;
2214
2215  SDValue CCNode  = CondRes.getOperand(2);
2216  Mips::CondCode CC =
2217    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
2218  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
2219
2220  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
2221                     Dest, CondRes);
2222}
2223
2224SDValue MipsTargetLowering::
2225LowerSELECT(SDValue Op, SelectionDAG &DAG) const
2226{
2227  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
2228
2229  // Return if flag is not set by a floating point comparison.
2230  if (Cond.getOpcode() != MipsISD::FPCmp)
2231    return Op;
2232
2233  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
2234                      Op.getDebugLoc());
2235}
2236
2237SDValue MipsTargetLowering::
2238LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
2239{
2240  DebugLoc DL = Op.getDebugLoc();
2241  EVT Ty = Op.getOperand(0).getValueType();
2242  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
2243                             Op.getOperand(0), Op.getOperand(1),
2244                             Op.getOperand(4));
2245
2246  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
2247                     Op.getOperand(3));
2248}
2249
2250SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2251  SDValue Cond = CreateFPCmp(DAG, Op);
2252
2253  assert(Cond.getOpcode() == MipsISD::FPCmp &&
2254         "Floating point operand expected.");
2255
2256  SDValue True  = DAG.getConstant(1, MVT::i32);
2257  SDValue False = DAG.getConstant(0, MVT::i32);
2258
2259  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
2260}
2261
2262SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
2263                                               SelectionDAG &DAG) const {
2264  // FIXME there isn't actually debug info here
2265  DebugLoc dl = Op.getDebugLoc();
2266  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2267
2268  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
2269    const MipsTargetObjectFile &TLOF =
2270      (const MipsTargetObjectFile&)getObjFileLowering();
2271
2272    // %gp_rel relocation
2273    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
2274      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
2275                                              MipsII::MO_GPREL);
2276      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl,
2277                                      DAG.getVTList(MVT::i32), &GA, 1);
2278      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
2279      return DAG.getNode(ISD::ADD, dl, MVT::i32, GPReg, GPRelNode);
2280    }
2281
2282    // %hi/%lo relocation
2283    return getAddrNonPIC(Op, DAG);
2284  }
2285
2286  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
2287    return getAddrLocal(Op, DAG, HasMips64);
2288
2289  if (LargeGOT)
2290    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
2291                                 MipsII::MO_GOT_LO16);
2292
2293  return getAddrGlobal(Op, DAG,
2294                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
2295}
2296
2297SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
2298                                              SelectionDAG &DAG) const {
2299  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2300    return getAddrNonPIC(Op, DAG);
2301
2302  return getAddrLocal(Op, DAG, HasMips64);
2303}
2304
2305SDValue MipsTargetLowering::
2306LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
2307{
2308  // If the relocation model is PIC, use the General Dynamic TLS Model or
2309  // Local Dynamic TLS model, otherwise use the Initial Exec or
2310  // Local Exec TLS Model.
2311
2312  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2313  DebugLoc dl = GA->getDebugLoc();
2314  const GlobalValue *GV = GA->getGlobal();
2315  EVT PtrVT = getPointerTy();
2316
2317  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2318
2319  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2320    // General Dynamic and Local Dynamic TLS Model.
2321    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
2322                                                      : MipsII::MO_TLSGD;
2323
2324    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
2325    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
2326                                   GetGlobalReg(DAG, PtrVT), TGA);
2327    unsigned PtrSize = PtrVT.getSizeInBits();
2328    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
2329
2330    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
2331
2332    ArgListTy Args;
2333    ArgListEntry Entry;
2334    Entry.Node = Argument;
2335    Entry.Ty = PtrTy;
2336    Args.push_back(Entry);
2337
2338    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
2339                  false, false, false, false, 0, CallingConv::C,
2340                  /*isTailCall=*/false, /*doesNotRet=*/false,
2341                  /*isReturnValueUsed=*/true,
2342                  TlsGetAddr, Args, DAG, dl);
2343    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2344
2345    SDValue Ret = CallResult.first;
2346
2347    if (model != TLSModel::LocalDynamic)
2348      return Ret;
2349
2350    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2351                                               MipsII::MO_DTPREL_HI);
2352    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
2353    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2354                                               MipsII::MO_DTPREL_LO);
2355    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
2356    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
2357    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
2358  }
2359
2360  SDValue Offset;
2361  if (model == TLSModel::InitialExec) {
2362    // Initial Exec TLS Model
2363    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2364                                             MipsII::MO_GOTTPREL);
2365    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
2366                      TGA);
2367    Offset = DAG.getLoad(PtrVT, dl,
2368                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
2369                         false, false, false, 0);
2370  } else {
2371    // Local Exec TLS Model
2372    assert(model == TLSModel::LocalExec);
2373    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2374                                               MipsII::MO_TPREL_HI);
2375    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2376                                               MipsII::MO_TPREL_LO);
2377    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
2378    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
2379    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
2380  }
2381
2382  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
2383  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2384}
2385
2386SDValue MipsTargetLowering::
2387LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2388{
2389  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2390    return getAddrNonPIC(Op, DAG);
2391
2392  return getAddrLocal(Op, DAG, HasMips64);
2393}
2394
2395SDValue MipsTargetLowering::
2396LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2397{
2398  // gp_rel relocation
2399  // FIXME: we should reference the constant pool using small data sections,
2400  // but the asm printer currently doesn't support this feature without
2401  // hacking it. This feature should come soon so we can uncomment the
2402  // stuff below.
2403  //if (IsInSmallSection(C->getType())) {
2404  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
2405  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
2406  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
2407
2408  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2409    return getAddrNonPIC(Op, DAG);
2410
2411  return getAddrLocal(Op, DAG, HasMips64);
2412}
2413
2414SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2415  MachineFunction &MF = DAG.getMachineFunction();
2416  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2417
2418  DebugLoc dl = Op.getDebugLoc();
2419  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2420                                 getPointerTy());
2421
2422  // vastart just stores the address of the VarArgsFrameIndex slot into the
2423  // memory location argument.
2424  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2425  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
2426                      MachinePointerInfo(SV), false, false, 0);
2427}
2428
2429static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2430  EVT TyX = Op.getOperand(0).getValueType();
2431  EVT TyY = Op.getOperand(1).getValueType();
2432  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2433  SDValue Const31 = DAG.getConstant(31, MVT::i32);
2434  DebugLoc DL = Op.getDebugLoc();
2435  SDValue Res;
2436
2437  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2438  // to i32.
2439  SDValue X = (TyX == MVT::f32) ?
2440    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2441    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2442                Const1);
2443  SDValue Y = (TyY == MVT::f32) ?
2444    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2445    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2446                Const1);
2447
2448  if (HasR2) {
2449    // ext  E, Y, 31, 1  ; extract bit31 of Y
2450    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
2451    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2452    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2453  } else {
2454    // sll SllX, X, 1
2455    // srl SrlX, SllX, 1
2456    // srl SrlY, Y, 31
2457    // sll SllY, SrlX, 31
2458    // or  Or, SrlX, SllY
2459    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2460    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2461    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2462    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2463    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2464  }
2465
2466  if (TyX == MVT::f32)
2467    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2468
2469  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2470                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2471  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2472}
2473
2474static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2475  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2476  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2477  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2478  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2479  DebugLoc DL = Op.getDebugLoc();
2480
2481  // Bitcast to integer nodes.
2482  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2483  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2484
2485  if (HasR2) {
2486    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2487    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2488    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2489                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
2490
2491    if (WidthX > WidthY)
2492      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2493    else if (WidthY > WidthX)
2494      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2495
2496    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2497                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
2498    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2499  }
2500
2501  // (d)sll SllX, X, 1
2502  // (d)srl SrlX, SllX, 1
2503  // (d)srl SrlY, Y, width(Y)-1
2504  // (d)sll SllY, SrlX, width(Y)-1
2505  // or     Or, SrlX, SllY
2506  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2507  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2508  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2509                             DAG.getConstant(WidthY - 1, MVT::i32));
2510
2511  if (WidthX > WidthY)
2512    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2513  else if (WidthY > WidthX)
2514    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2515
2516  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2517                             DAG.getConstant(WidthX - 1, MVT::i32));
2518  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2519  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2520}
2521
2522SDValue
2523MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2524  if (Subtarget->hasMips64())
2525    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
2526
2527  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
2528}
2529
2530static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2531  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2532  DebugLoc DL = Op.getDebugLoc();
2533
2534  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2535  // to i32.
2536  SDValue X = (Op.getValueType() == MVT::f32) ?
2537    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2538    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2539                Const1);
2540
2541  // Clear MSB.
2542  if (HasR2)
2543    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2544                      DAG.getRegister(Mips::ZERO, MVT::i32),
2545                      DAG.getConstant(31, MVT::i32), Const1, X);
2546  else {
2547    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2548    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2549  }
2550
2551  if (Op.getValueType() == MVT::f32)
2552    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2553
2554  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2555                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2556  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2557}
2558
2559static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2560  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2561  DebugLoc DL = Op.getDebugLoc();
2562
2563  // Bitcast to integer node.
2564  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2565
2566  // Clear MSB.
2567  if (HasR2)
2568    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2569                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
2570                      DAG.getConstant(63, MVT::i32), Const1, X);
2571  else {
2572    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2573    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2574  }
2575
2576  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2577}
2578
2579SDValue
2580MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
2581  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
2582    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
2583
2584  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
2585}
2586
2587SDValue MipsTargetLowering::
2588LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2589  // check the depth
2590  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2591         "Frame address can only be determined for current frame.");
2592
2593  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2594  MFI->setFrameAddressIsTaken(true);
2595  EVT VT = Op.getValueType();
2596  DebugLoc dl = Op.getDebugLoc();
2597  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2598                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
2599  return FrameAddr;
2600}
2601
2602SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
2603                                            SelectionDAG &DAG) const {
2604  // check the depth
2605  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2606         "Return address can be determined only for current frame.");
2607
2608  MachineFunction &MF = DAG.getMachineFunction();
2609  MachineFrameInfo *MFI = MF.getFrameInfo();
2610  MVT VT = Op.getSimpleValueType();
2611  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
2612  MFI->setReturnAddressIsTaken(true);
2613
2614  // Return RA, which contains the return address. Mark it an implicit live-in.
2615  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2616  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2617}
2618
2619// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2620// generated from __builtin_eh_return (offset, handler)
2621// The effect of this is to adjust the stack pointer by "offset"
2622// and then branch to "handler".
2623SDValue MipsTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2624                                                                     const {
2625  MachineFunction &MF = DAG.getMachineFunction();
2626  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2627
2628  MipsFI->setCallsEhReturn();
2629  SDValue Chain     = Op.getOperand(0);
2630  SDValue Offset    = Op.getOperand(1);
2631  SDValue Handler   = Op.getOperand(2);
2632  DebugLoc DL       = Op.getDebugLoc();
2633  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2634
2635  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2636  // EH_RETURN nodes, so that instructions are emitted back-to-back.
2637  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
2638  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
2639  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2640  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2641  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2642                     DAG.getRegister(OffsetReg, Ty),
2643                     DAG.getRegister(AddrReg, getPointerTy()),
2644                     Chain.getValue(1));
2645}
2646
2647// TODO: set SType according to the desired memory barrier behavior.
2648SDValue
2649MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2650  unsigned SType = 0;
2651  DebugLoc dl = Op.getDebugLoc();
2652  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2653                     DAG.getConstant(SType, MVT::i32));
2654}
2655
2656SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2657                                              SelectionDAG &DAG) const {
2658  // FIXME: Need pseudo-fence for 'singlethread' fences
2659  // FIXME: Set SType for weaker fences where supported/appropriate.
2660  unsigned SType = 0;
2661  DebugLoc dl = Op.getDebugLoc();
2662  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2663                     DAG.getConstant(SType, MVT::i32));
2664}
2665
2666SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2667                                                SelectionDAG &DAG) const {
2668  DebugLoc DL = Op.getDebugLoc();
2669  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2670  SDValue Shamt = Op.getOperand(2);
2671
2672  // if shamt < 32:
2673  //  lo = (shl lo, shamt)
2674  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2675  // else:
2676  //  lo = 0
2677  //  hi = (shl lo, shamt[4:0])
2678  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2679                            DAG.getConstant(-1, MVT::i32));
2680  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2681                                      DAG.getConstant(1, MVT::i32));
2682  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2683                                     Not);
2684  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2685  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2686  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2687  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2688                             DAG.getConstant(0x20, MVT::i32));
2689  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2690                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2691  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2692
2693  SDValue Ops[2] = {Lo, Hi};
2694  return DAG.getMergeValues(Ops, 2, DL);
2695}
2696
2697SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2698                                                 bool IsSRA) const {
2699  DebugLoc DL = Op.getDebugLoc();
2700  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2701  SDValue Shamt = Op.getOperand(2);
2702
2703  // if shamt < 32:
2704  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2705  //  if isSRA:
2706  //    hi = (sra hi, shamt)
2707  //  else:
2708  //    hi = (srl hi, shamt)
2709  // else:
2710  //  if isSRA:
2711  //   lo = (sra hi, shamt[4:0])
2712  //   hi = (sra hi, 31)
2713  //  else:
2714  //   lo = (srl hi, shamt[4:0])
2715  //   hi = 0
2716  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2717                            DAG.getConstant(-1, MVT::i32));
2718  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2719                                     DAG.getConstant(1, MVT::i32));
2720  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2721  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2722  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2723  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2724                                     Hi, Shamt);
2725  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2726                             DAG.getConstant(0x20, MVT::i32));
2727  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2728                                DAG.getConstant(31, MVT::i32));
2729  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2730  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2731                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2732                   ShiftRightHi);
2733
2734  SDValue Ops[2] = {Lo, Hi};
2735  return DAG.getMergeValues(Ops, 2, DL);
2736}
2737
2738static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2739                            SDValue Chain, SDValue Src, unsigned Offset) {
2740  SDValue Ptr = LD->getBasePtr();
2741  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2742  EVT BasePtrVT = Ptr.getValueType();
2743  DebugLoc DL = LD->getDebugLoc();
2744  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2745
2746  if (Offset)
2747    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2748                      DAG.getConstant(Offset, BasePtrVT));
2749
2750  SDValue Ops[] = { Chain, Ptr, Src };
2751  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2752                                 LD->getMemOperand());
2753}
2754
2755// Expand an unaligned 32 or 64-bit integer load node.
2756SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2757  LoadSDNode *LD = cast<LoadSDNode>(Op);
2758  EVT MemVT = LD->getMemoryVT();
2759
2760  // Return if load is aligned or if MemVT is neither i32 nor i64.
2761  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2762      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2763    return SDValue();
2764
2765  bool IsLittle = Subtarget->isLittle();
2766  EVT VT = Op.getValueType();
2767  ISD::LoadExtType ExtType = LD->getExtensionType();
2768  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2769
2770  assert((VT == MVT::i32) || (VT == MVT::i64));
2771
2772  // Expand
2773  //  (set dst, (i64 (load baseptr)))
2774  // to
2775  //  (set tmp, (ldl (add baseptr, 7), undef))
2776  //  (set dst, (ldr baseptr, tmp))
2777  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2778    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2779                               IsLittle ? 7 : 0);
2780    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2781                        IsLittle ? 0 : 7);
2782  }
2783
2784  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2785                             IsLittle ? 3 : 0);
2786  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2787                             IsLittle ? 0 : 3);
2788
2789  // Expand
2790  //  (set dst, (i32 (load baseptr))) or
2791  //  (set dst, (i64 (sextload baseptr))) or
2792  //  (set dst, (i64 (extload baseptr)))
2793  // to
2794  //  (set tmp, (lwl (add baseptr, 3), undef))
2795  //  (set dst, (lwr baseptr, tmp))
2796  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2797      (ExtType == ISD::EXTLOAD))
2798    return LWR;
2799
2800  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2801
2802  // Expand
2803  //  (set dst, (i64 (zextload baseptr)))
2804  // to
2805  //  (set tmp0, (lwl (add baseptr, 3), undef))
2806  //  (set tmp1, (lwr baseptr, tmp0))
2807  //  (set tmp2, (shl tmp1, 32))
2808  //  (set dst, (srl tmp2, 32))
2809  DebugLoc DL = LD->getDebugLoc();
2810  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2811  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2812  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2813  SDValue Ops[] = { SRL, LWR.getValue(1) };
2814  return DAG.getMergeValues(Ops, 2, DL);
2815}
2816
2817static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2818                             SDValue Chain, unsigned Offset) {
2819  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2820  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2821  DebugLoc DL = SD->getDebugLoc();
2822  SDVTList VTList = DAG.getVTList(MVT::Other);
2823
2824  if (Offset)
2825    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2826                      DAG.getConstant(Offset, BasePtrVT));
2827
2828  SDValue Ops[] = { Chain, Value, Ptr };
2829  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2830                                 SD->getMemOperand());
2831}
2832
2833// Expand an unaligned 32 or 64-bit integer store node.
2834SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2835  StoreSDNode *SD = cast<StoreSDNode>(Op);
2836  EVT MemVT = SD->getMemoryVT();
2837
2838  // Return if store is aligned or if MemVT is neither i32 nor i64.
2839  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2840      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2841    return SDValue();
2842
2843  bool IsLittle = Subtarget->isLittle();
2844  SDValue Value = SD->getValue(), Chain = SD->getChain();
2845  EVT VT = Value.getValueType();
2846
2847  // Expand
2848  //  (store val, baseptr) or
2849  //  (truncstore val, baseptr)
2850  // to
2851  //  (swl val, (add baseptr, 3))
2852  //  (swr val, baseptr)
2853  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2854    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2855                                IsLittle ? 3 : 0);
2856    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2857  }
2858
2859  assert(VT == MVT::i64);
2860
2861  // Expand
2862  //  (store val, baseptr)
2863  // to
2864  //  (sdl val, (add baseptr, 7))
2865  //  (sdr val, baseptr)
2866  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2867  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2868}
2869
2870// This function expands mips intrinsic nodes which have 64-bit input operands
2871// or output values.
2872//
2873// out64 = intrinsic-node in64
2874// =>
2875// lo = copy (extract-element (in64, 0))
2876// hi = copy (extract-element (in64, 1))
2877// mips-specific-node
2878// v0 = copy lo
2879// v1 = copy hi
2880// out64 = merge-values (v0, v1)
2881//
2882static SDValue LowerDSPIntr(SDValue Op, SelectionDAG &DAG,
2883                            unsigned Opc, bool HasI64In, bool HasI64Out) {
2884  DebugLoc DL = Op.getDebugLoc();
2885  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
2886  SDValue Chain = HasChainIn ? Op->getOperand(0) : DAG.getEntryNode();
2887  SmallVector<SDValue, 3> Ops;
2888
2889  if (HasI64In) {
2890    SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2891                               Op->getOperand(1 + HasChainIn),
2892                               DAG.getConstant(0, MVT::i32));
2893    SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2894                               Op->getOperand(1 + HasChainIn),
2895                               DAG.getConstant(1, MVT::i32));
2896
2897    Chain = DAG.getCopyToReg(Chain, DL, Mips::LO, InLo, SDValue());
2898    Chain = DAG.getCopyToReg(Chain, DL, Mips::HI, InHi, Chain.getValue(1));
2899
2900    Ops.push_back(Chain);
2901    Ops.append(Op->op_begin() + HasChainIn + 2, Op->op_end());
2902    Ops.push_back(Chain.getValue(1));
2903  } else {
2904    Ops.push_back(Chain);
2905    Ops.append(Op->op_begin() + HasChainIn + 1, Op->op_end());
2906  }
2907
2908  if (!HasI64Out)
2909    return DAG.getNode(Opc, DL, Op->value_begin(), Op->getNumValues(),
2910                       Ops.begin(), Ops.size());
2911
2912  SDValue Intr = DAG.getNode(Opc, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2913                             Ops.begin(), Ops.size());
2914  SDValue OutLo = DAG.getCopyFromReg(Intr.getValue(0), DL, Mips::LO, MVT::i32,
2915                                     Intr.getValue(1));
2916  SDValue OutHi = DAG.getCopyFromReg(OutLo.getValue(1), DL, Mips::HI, MVT::i32,
2917                                     OutLo.getValue(2));
2918  SDValue Out = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, OutLo, OutHi);
2919
2920  if (!HasChainIn)
2921    return Out;
2922
2923  SDValue Vals[] = { Out, OutHi.getValue(1) };
2924  return DAG.getMergeValues(Vals, 2, DL);
2925}
2926
2927SDValue MipsTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2928                                                    SelectionDAG &DAG) const {
2929  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
2930  default:
2931    return SDValue();
2932  case Intrinsic::mips_shilo:
2933    return LowerDSPIntr(Op, DAG, MipsISD::SHILO, true, true);
2934  case Intrinsic::mips_dpau_h_qbl:
2935    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL, true, true);
2936  case Intrinsic::mips_dpau_h_qbr:
2937    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR, true, true);
2938  case Intrinsic::mips_dpsu_h_qbl:
2939    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL, true, true);
2940  case Intrinsic::mips_dpsu_h_qbr:
2941    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR, true, true);
2942  case Intrinsic::mips_dpa_w_ph:
2943    return LowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH, true, true);
2944  case Intrinsic::mips_dps_w_ph:
2945    return LowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH, true, true);
2946  case Intrinsic::mips_dpax_w_ph:
2947    return LowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH, true, true);
2948  case Intrinsic::mips_dpsx_w_ph:
2949    return LowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH, true, true);
2950  case Intrinsic::mips_mulsa_w_ph:
2951    return LowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH, true, true);
2952  case Intrinsic::mips_mult:
2953    return LowerDSPIntr(Op, DAG, MipsISD::MULT, false, true);
2954  case Intrinsic::mips_multu:
2955    return LowerDSPIntr(Op, DAG, MipsISD::MULTU, false, true);
2956  case Intrinsic::mips_madd:
2957    return LowerDSPIntr(Op, DAG, MipsISD::MADD_DSP, true, true);
2958  case Intrinsic::mips_maddu:
2959    return LowerDSPIntr(Op, DAG, MipsISD::MADDU_DSP, true, true);
2960  case Intrinsic::mips_msub:
2961    return LowerDSPIntr(Op, DAG, MipsISD::MSUB_DSP, true, true);
2962  case Intrinsic::mips_msubu:
2963    return LowerDSPIntr(Op, DAG, MipsISD::MSUBU_DSP, true, true);
2964  }
2965}
2966
2967SDValue MipsTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2968                                                   SelectionDAG &DAG) const {
2969  switch (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue()) {
2970  default:
2971    return SDValue();
2972  case Intrinsic::mips_extp:
2973    return LowerDSPIntr(Op, DAG, MipsISD::EXTP, true, false);
2974  case Intrinsic::mips_extpdp:
2975    return LowerDSPIntr(Op, DAG, MipsISD::EXTPDP, true, false);
2976  case Intrinsic::mips_extr_w:
2977    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_W, true, false);
2978  case Intrinsic::mips_extr_r_w:
2979    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W, true, false);
2980  case Intrinsic::mips_extr_rs_w:
2981    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W, true, false);
2982  case Intrinsic::mips_extr_s_h:
2983    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H, true, false);
2984  case Intrinsic::mips_mthlip:
2985    return LowerDSPIntr(Op, DAG, MipsISD::MTHLIP, true, true);
2986  case Intrinsic::mips_mulsaq_s_w_ph:
2987    return LowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH, true, true);
2988  case Intrinsic::mips_maq_s_w_phl:
2989    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL, true, true);
2990  case Intrinsic::mips_maq_s_w_phr:
2991    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR, true, true);
2992  case Intrinsic::mips_maq_sa_w_phl:
2993    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL, true, true);
2994  case Intrinsic::mips_maq_sa_w_phr:
2995    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR, true, true);
2996  case Intrinsic::mips_dpaq_s_w_ph:
2997    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH, true, true);
2998  case Intrinsic::mips_dpsq_s_w_ph:
2999    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH, true, true);
3000  case Intrinsic::mips_dpaq_sa_l_w:
3001    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W, true, true);
3002  case Intrinsic::mips_dpsq_sa_l_w:
3003    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W, true, true);
3004  case Intrinsic::mips_dpaqx_s_w_ph:
3005    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH, true, true);
3006  case Intrinsic::mips_dpaqx_sa_w_ph:
3007    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH, true, true);
3008  case Intrinsic::mips_dpsqx_s_w_ph:
3009    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH, true, true);
3010  case Intrinsic::mips_dpsqx_sa_w_ph:
3011    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH, true, true);
3012  }
3013}
3014
3015SDValue MipsTargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
3016  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
3017      || cast<ConstantSDNode>
3018        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
3019      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
3020    return SDValue();
3021
3022  // The pattern
3023  //   (add (frameaddr 0), (frame_to_args_offset))
3024  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
3025  //   (add FrameObject, 0)
3026  // where FrameObject is a fixed StackObject with offset 0 which points to
3027  // the old stack pointer.
3028  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3029  EVT ValTy = Op->getValueType(0);
3030  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
3031  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
3032  return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
3033                     DAG.getConstant(0, ValTy));
3034}
3035
3036//===----------------------------------------------------------------------===//
3037//                      Calling Convention Implementation
3038//===----------------------------------------------------------------------===//
3039
3040//===----------------------------------------------------------------------===//
3041// TODO: Implement a generic logic using tblgen that can support this.
3042// Mips O32 ABI rules:
3043// ---
3044// i32 - Passed in A0, A1, A2, A3 and stack
3045// f32 - Only passed in f32 registers if no int reg has been used yet to hold
3046//       an argument. Otherwise, passed in A1, A2, A3 and stack.
3047// f64 - Only passed in two aliased f32 registers if no int reg has been used
3048//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
3049//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
3050//       go to stack.
3051//
3052//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
3053//===----------------------------------------------------------------------===//
3054
3055static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
3056                       MVT LocVT, CCValAssign::LocInfo LocInfo,
3057                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
3058
3059  static const unsigned IntRegsSize=4, FloatRegsSize=2;
3060
3061  static const uint16_t IntRegs[] = {
3062      Mips::A0, Mips::A1, Mips::A2, Mips::A3
3063  };
3064  static const uint16_t F32Regs[] = {
3065      Mips::F12, Mips::F14
3066  };
3067  static const uint16_t F64Regs[] = {
3068      Mips::D6, Mips::D7
3069  };
3070
3071  // Do not process byval args here.
3072  if (ArgFlags.isByVal())
3073    return true;
3074
3075  // Promote i8 and i16
3076  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
3077    LocVT = MVT::i32;
3078    if (ArgFlags.isSExt())
3079      LocInfo = CCValAssign::SExt;
3080    else if (ArgFlags.isZExt())
3081      LocInfo = CCValAssign::ZExt;
3082    else
3083      LocInfo = CCValAssign::AExt;
3084  }
3085
3086  unsigned Reg;
3087
3088  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
3089  // is true: function is vararg, argument is 3rd or higher, there is previous
3090  // argument which is not f32 or f64.
3091  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
3092      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
3093  unsigned OrigAlign = ArgFlags.getOrigAlign();
3094  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
3095
3096  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
3097    Reg = State.AllocateReg(IntRegs, IntRegsSize);
3098    // If this is the first part of an i64 arg,
3099    // the allocated register must be either A0 or A2.
3100    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
3101      Reg = State.AllocateReg(IntRegs, IntRegsSize);
3102    LocVT = MVT::i32;
3103  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
3104    // Allocate int register and shadow next int register. If first
3105    // available register is Mips::A1 or Mips::A3, shadow it too.
3106    Reg = State.AllocateReg(IntRegs, IntRegsSize);
3107    if (Reg == Mips::A1 || Reg == Mips::A3)
3108      Reg = State.AllocateReg(IntRegs, IntRegsSize);
3109    State.AllocateReg(IntRegs, IntRegsSize);
3110    LocVT = MVT::i32;
3111  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
3112    // we are guaranteed to find an available float register
3113    if (ValVT == MVT::f32) {
3114      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
3115      // Shadow int register
3116      State.AllocateReg(IntRegs, IntRegsSize);
3117    } else {
3118      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
3119      // Shadow int registers
3120      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
3121      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
3122        State.AllocateReg(IntRegs, IntRegsSize);
3123      State.AllocateReg(IntRegs, IntRegsSize);
3124    }
3125  } else
3126    llvm_unreachable("Cannot handle this ValVT.");
3127
3128  if (!Reg) {
3129    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
3130                                          OrigAlign);
3131    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
3132  } else
3133    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
3134
3135  return false;
3136}
3137
3138#include "MipsGenCallingConv.inc"
3139
3140//===----------------------------------------------------------------------===//
3141//                  Call Calling Convention Implementation
3142//===----------------------------------------------------------------------===//
3143
3144static const unsigned O32IntRegsSize = 4;
3145
3146// Return next O32 integer argument register.
3147static unsigned getNextIntArgReg(unsigned Reg) {
3148  assert((Reg == Mips::A0) || (Reg == Mips::A2));
3149  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
3150}
3151
3152/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3153/// for tail call optimization.
3154bool MipsTargetLowering::
3155IsEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
3156                                  unsigned NextStackOffset,
3157                                  const MipsFunctionInfo& FI) const {
3158  if (!EnableMipsTailCalls)
3159    return false;
3160
3161  // No tail call optimization for mips16.
3162  if (Subtarget->inMips16Mode())
3163    return false;
3164
3165  // Return false if either the callee or caller has a byval argument.
3166  if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
3167    return false;
3168
3169  // Return true if the callee's argument area is no larger than the
3170  // caller's.
3171  return NextStackOffset <= FI.getIncomingArgSize();
3172}
3173
3174SDValue
3175MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
3176                                   SDValue Chain, SDValue Arg, DebugLoc DL,
3177                                   bool IsTailCall, SelectionDAG &DAG) const {
3178  if (!IsTailCall) {
3179    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
3180                                 DAG.getIntPtrConstant(Offset));
3181    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
3182                        false, 0);
3183  }
3184
3185  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3186  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
3187  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3188  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
3189                      /*isVolatile=*/ true, false, 0);
3190}
3191
3192//
3193// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
3194// cleaner way to do all of this but it will have to wait until the traditional
3195// gcc mechanism is completed.
3196//
3197// For Pic, in order for Mips16 code to call Mips32 code which according the abi
3198// have either arguments or returned values placed in floating point registers,
3199// we use a set of helper functions. (This includes functions which return type
3200//  complex which on Mips are returned in a pair of floating point registers).
3201//
3202// This is an encoding that we inherited from gcc.
3203// In Mips traditional O32, N32 ABI, floating point numbers are passed in
3204// floating point argument registers 1,2 only when the first and optionally
3205// the second arguments are float (sf) or double (df).
3206// For Mips16 we are only concerned with the situations where floating point
3207// arguments are being passed in floating point registers by the ABI, because
3208// Mips16 mode code cannot execute floating point instructions to load those
3209// values and hence helper functions are needed.
3210// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
3211// the helper function suffixs for these are:
3212//                        0,  1,    5,        9,         2,   6,        10
3213// this suffix can then be calculated as follows:
3214// for a given argument Arg:
3215//     Arg1x, Arg2x = 1 :  Arg is sf
3216//                    2 :  Arg is df
3217//                    0:   Arg is neither sf or df
3218// So this stub is the string for number Arg1x + Arg2x*4.
3219// However not all numbers between 0 and 10 are possible, we check anyway and
3220// assert if the impossible exists.
3221//
3222
3223unsigned int MipsTargetLowering::getMips16HelperFunctionStubNumber
3224  (ArgListTy &Args) const {
3225  unsigned int resultNum = 0;
3226  if (Args.size() >= 1) {
3227    Type *t = Args[0].Ty;
3228    if (t->isFloatTy()) {
3229      resultNum = 1;
3230    }
3231    else if (t->isDoubleTy()) {
3232      resultNum = 2;
3233    }
3234  }
3235  if (resultNum) {
3236    if (Args.size() >=2) {
3237      Type *t = Args[1].Ty;
3238      if (t->isFloatTy()) {
3239        resultNum += 4;
3240      }
3241      else if (t->isDoubleTy()) {
3242        resultNum += 8;
3243      }
3244    }
3245  }
3246  return resultNum;
3247}
3248
3249//
3250// prefixs are attached to stub numbers depending on the return type .
3251// return type: float  sf_
3252//              double df_
3253//              single complex sc_
3254//              double complext dc_
3255//              others  NO PREFIX
3256//
3257//
3258// The full name of a helper function is__mips16_call_stub +
3259//    return type dependent prefix + stub number
3260//
3261//
3262// This is something that probably should be in a different source file and
3263// perhaps done differently but my main purpose is to not waste runtime
3264// on something that we can enumerate in the source. Another possibility is
3265// to have a python script to generate these mapping tables. This will do
3266// for now. There are a whole series of helper function mapping arrays, one
3267// for each return type class as outlined above. There there are 11 possible
3268//  entries. Ones with 0 are ones which should never be selected
3269//
3270// All the arrays are similar except for ones which return neither
3271// sf, df, sc, dc, in which only care about ones which have sf or df as a
3272// first parameter.
3273//
3274#define P_ "__mips16_call_stub_"
3275#define MAX_STUB_NUMBER 10
3276#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
3277#define T P "0" , T1
3278#define P P_
3279static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
3280  {0, T1 };
3281#undef P
3282#define P P_ "sf_"
3283static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
3284  { T };
3285#undef P
3286#define P P_ "df_"
3287static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
3288  { T };
3289#undef P
3290#define P P_ "sc_"
3291static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
3292  { T };
3293#undef P
3294#define P P_ "dc_"
3295static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
3296  { T };
3297#undef P
3298#undef P_
3299
3300
3301const char* MipsTargetLowering::
3302  getMips16HelperFunction
3303    (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
3304  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
3305#ifndef NDEBUG
3306  const unsigned int maxStubNum = 10;
3307  assert(stubNum <= maxStubNum);
3308  const bool validStubNum[maxStubNum+1] =
3309    {true, true, true, false, false, true, true, false, false, true, true};
3310  assert(validStubNum[stubNum]);
3311#endif
3312  const char *result;
3313  if (RetTy->isFloatTy()) {
3314    result = sfMips16Helper[stubNum];
3315  }
3316  else if (RetTy ->isDoubleTy()) {
3317    result = dfMips16Helper[stubNum];
3318  }
3319  else if (RetTy->isStructTy()) {
3320    // check if it's complex
3321    if (RetTy->getNumContainedTypes() == 2) {
3322      if ((RetTy->getContainedType(0)->isFloatTy()) &&
3323          (RetTy->getContainedType(1)->isFloatTy())) {
3324        result = scMips16Helper[stubNum];
3325      }
3326      else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
3327               (RetTy->getContainedType(1)->isDoubleTy())) {
3328        result = dcMips16Helper[stubNum];
3329      }
3330      else {
3331        llvm_unreachable("Uncovered condition");
3332      }
3333    }
3334    else {
3335      llvm_unreachable("Uncovered condition");
3336    }
3337  }
3338  else {
3339    if (stubNum == 0) {
3340      needHelper = false;
3341      return "";
3342    }
3343    result = vMips16Helper[stubNum];
3344  }
3345  needHelper = true;
3346  return result;
3347}
3348
3349/// LowerCall - functions arguments are copied from virtual regs to
3350/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3351SDValue
3352MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3353                              SmallVectorImpl<SDValue> &InVals) const {
3354  SelectionDAG &DAG                     = CLI.DAG;
3355  DebugLoc &dl                          = CLI.DL;
3356  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3357  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3358  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3359  SDValue Chain                         = CLI.Chain;
3360  SDValue Callee                        = CLI.Callee;
3361  bool &isTailCall                      = CLI.IsTailCall;
3362  CallingConv::ID CallConv              = CLI.CallConv;
3363  bool isVarArg                         = CLI.IsVarArg;
3364
3365  const char* mips16HelperFunction = 0;
3366  bool needMips16Helper = false;
3367
3368  if (Subtarget->inMips16Mode() && getTargetMachine().Options.UseSoftFloat &&
3369      Mips16HardFloat) {
3370    //
3371    // currently we don't have symbols tagged with the mips16 or mips32
3372    // qualifier so we will assume that we don't know what kind it is.
3373    // and generate the helper
3374    //
3375    bool lookupHelper = true;
3376    if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3377      if (noHelperNeeded.find(S->getSymbol()) != noHelperNeeded.end()) {
3378        lookupHelper = false;
3379      }
3380    }
3381    if (lookupHelper) mips16HelperFunction =
3382      getMips16HelperFunction(CLI.RetTy, CLI.Args, needMips16Helper);
3383
3384  }
3385  MachineFunction &MF = DAG.getMachineFunction();
3386  MachineFrameInfo *MFI = MF.getFrameInfo();
3387  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
3388  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
3389
3390  // Analyze operands of the call, assigning locations to each operand.
3391  SmallVector<CCValAssign, 16> ArgLocs;
3392  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3393                 getTargetMachine(), ArgLocs, *DAG.getContext());
3394  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
3395
3396  MipsCCInfo.analyzeCallOperands(Outs, isVarArg,
3397                                 getTargetMachine().Options.UseSoftFloat,
3398                                 Callee.getNode(), CLI.Args);
3399
3400  // Get a count of how many bytes are to be pushed on the stack.
3401  unsigned NextStackOffset = CCInfo.getNextStackOffset();
3402
3403  // Check if it's really possible to do a tail call.
3404  if (isTailCall)
3405    isTailCall =
3406      IsEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
3407                                        *MF.getInfo<MipsFunctionInfo>());
3408
3409  if (isTailCall)
3410    ++NumTailCalls;
3411
3412  // Chain is the output chain of the last Load/Store or CopyToReg node.
3413  // ByValChain is the output chain of the last Memcpy node created for copying
3414  // byval arguments to the stack.
3415  unsigned StackAlignment = TFL->getStackAlignment();
3416  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
3417  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
3418
3419  if (!isTailCall)
3420    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
3421
3422  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
3423                                        IsN64 ? Mips::SP_64 : Mips::SP,
3424                                        getPointerTy());
3425
3426  // With EABI is it possible to have 16 args on registers.
3427  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
3428  SmallVector<SDValue, 8> MemOpChains;
3429  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3430
3431  // Walk the register/memloc assignments, inserting copies/loads.
3432  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3433    SDValue Arg = OutVals[i];
3434    CCValAssign &VA = ArgLocs[i];
3435    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3436    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3437
3438    // ByVal Arg.
3439    if (Flags.isByVal()) {
3440      assert(Flags.getByValSize() &&
3441             "ByVal args of size 0 should have been ignored by front-end.");
3442      assert(ByValArg != MipsCCInfo.byval_end());
3443      assert(!isTailCall &&
3444             "Do not tail-call optimize if there is a byval argument.");
3445      passByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3446                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
3447      ++ByValArg;
3448      continue;
3449    }
3450
3451    // Promote the value if needed.
3452    switch (VA.getLocInfo()) {
3453    default: llvm_unreachable("Unknown loc info!");
3454    case CCValAssign::Full:
3455      if (VA.isRegLoc()) {
3456        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3457            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
3458            (ValVT == MVT::i64 && LocVT == MVT::f64))
3459          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
3460        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3461          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3462                                   Arg, DAG.getConstant(0, MVT::i32));
3463          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3464                                   Arg, DAG.getConstant(1, MVT::i32));
3465          if (!Subtarget->isLittle())
3466            std::swap(Lo, Hi);
3467          unsigned LocRegLo = VA.getLocReg();
3468          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3469          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3470          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3471          continue;
3472        }
3473      }
3474      break;
3475    case CCValAssign::SExt:
3476      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
3477      break;
3478    case CCValAssign::ZExt:
3479      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
3480      break;
3481    case CCValAssign::AExt:
3482      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
3483      break;
3484    }
3485
3486    // Arguments that can be passed on register must be kept at
3487    // RegsToPass vector
3488    if (VA.isRegLoc()) {
3489      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3490      continue;
3491    }
3492
3493    // Register can't get to this point...
3494    assert(VA.isMemLoc());
3495
3496    // emit ISD::STORE whichs stores the
3497    // parameter value to a stack Location
3498    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3499                                         Chain, Arg, dl, isTailCall, DAG));
3500  }
3501
3502  // Transform all store nodes into one single node because all store
3503  // nodes are independent of each other.
3504  if (!MemOpChains.empty())
3505    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3506                        &MemOpChains[0], MemOpChains.size());
3507
3508  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3509  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3510  // node so that legalize doesn't hack it.
3511  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
3512  bool GlobalOrExternal = false, InternalLinkage = false;
3513  SDValue CalleeLo;
3514
3515  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3516    if (IsPICCall) {
3517      InternalLinkage = G->getGlobal()->hasInternalLinkage();
3518
3519      if (InternalLinkage)
3520        Callee = getAddrLocal(Callee, DAG, HasMips64);
3521      else if (LargeGOT)
3522        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
3523                                       MipsII::MO_CALL_LO16);
3524      else
3525        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
3526    } else
3527      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
3528                                          MipsII::MO_NO_FLAG);
3529    GlobalOrExternal = true;
3530  }
3531  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3532    if (!IsN64 && !IsPIC) // !N64 && static
3533      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
3534                                            MipsII::MO_NO_FLAG);
3535    else if (LargeGOT)
3536      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
3537                                     MipsII::MO_CALL_LO16);
3538    else // N64 || PIC
3539      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
3540
3541    GlobalOrExternal = true;
3542  }
3543
3544  SDValue JumpTarget = Callee;
3545
3546  // T9 should contain the address of the callee function if
3547  // -reloction-model=pic or it is an indirect call.
3548  if (IsPICCall || !GlobalOrExternal) {
3549    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
3550    unsigned V0Reg = Mips::V0;
3551    if (needMips16Helper) {
3552      RegsToPass.push_front(std::make_pair(V0Reg, Callee));
3553      JumpTarget = DAG.getExternalSymbol(
3554        mips16HelperFunction, getPointerTy());
3555      JumpTarget = getAddrGlobal(JumpTarget, DAG, MipsII::MO_GOT);
3556    }
3557    else {
3558      RegsToPass.push_front(std::make_pair(T9Reg, Callee));
3559
3560      if (!Subtarget->inMips16Mode())
3561        JumpTarget = SDValue();
3562    }
3563  }
3564
3565  // Insert node "GP copy globalreg" before call to function.
3566  //
3567  // R_MIPS_CALL* operators (emitted when non-internal functions are called
3568  // in PIC mode) allow symbols to be resolved via lazy binding.
3569  // The lazy binding stub requires GP to point to the GOT.
3570  if (IsPICCall && !InternalLinkage) {
3571    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
3572    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
3573    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
3574  }
3575
3576  // Build a sequence of copy-to-reg nodes chained together with token
3577  // chain and flag operands which copy the outgoing args into registers.
3578  // The InFlag in necessary since all emitted instructions must be
3579  // stuck together.
3580  SDValue InFlag;
3581
3582  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3583    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3584                             RegsToPass[i].second, InFlag);
3585    InFlag = Chain.getValue(1);
3586  }
3587
3588  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
3589  //             = Chain, Callee, Reg#1, Reg#2, ...
3590  //
3591  // Returns a chain & a flag for retval copy to use.
3592  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3593  SmallVector<SDValue, 8> Ops(1, Chain);
3594
3595  if (JumpTarget.getNode())
3596    Ops.push_back(JumpTarget);
3597
3598  // Add argument registers to the end of the list so that they are
3599  // known live into the call.
3600  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3601    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3602                                  RegsToPass[i].second.getValueType()));
3603
3604  // Add a register mask operand representing the call-preserved registers.
3605  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3606  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3607  assert(Mask && "Missing call preserved mask for calling convention");
3608  Ops.push_back(DAG.getRegisterMask(Mask));
3609
3610  if (InFlag.getNode())
3611    Ops.push_back(InFlag);
3612
3613  if (isTailCall)
3614    return DAG.getNode(MipsISD::TailCall, dl, MVT::Other, &Ops[0], Ops.size());
3615
3616  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
3617  InFlag = Chain.getValue(1);
3618
3619  // Create the CALLSEQ_END node.
3620  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3621                             DAG.getIntPtrConstant(0, true), InFlag);
3622  InFlag = Chain.getValue(1);
3623
3624  // Handle result values, copying them out of physregs into vregs that we
3625  // return.
3626  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3627                         Ins, dl, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
3628}
3629
3630/// LowerCallResult - Lower the result values of a call into the
3631/// appropriate copies out of appropriate physical registers.
3632SDValue
3633MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3634                                    CallingConv::ID CallConv, bool isVarArg,
3635                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3636                                    DebugLoc dl, SelectionDAG &DAG,
3637                                    SmallVectorImpl<SDValue> &InVals,
3638                                    const SDNode *CallNode,
3639                                    const Type *RetTy) const {
3640  // Assign locations to each value returned by this call.
3641  SmallVector<CCValAssign, 16> RVLocs;
3642  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3643                 getTargetMachine(), RVLocs, *DAG.getContext());
3644  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
3645
3646  MipsCCInfo.analyzeCallResult(Ins, getTargetMachine().Options.UseSoftFloat,
3647                               CallNode, RetTy);
3648
3649  // Copy all of the result registers out of their specified physreg.
3650  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3651    SDValue Val = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
3652                                     RVLocs[i].getLocVT(), InFlag);
3653    Chain = Val.getValue(1);
3654    InFlag = Val.getValue(2);
3655
3656    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
3657      Val = DAG.getNode(ISD::BITCAST, dl, RVLocs[i].getValVT(), Val);
3658
3659    InVals.push_back(Val);
3660  }
3661
3662  return Chain;
3663}
3664
3665//===----------------------------------------------------------------------===//
3666//             Formal Arguments Calling Convention Implementation
3667//===----------------------------------------------------------------------===//
3668/// LowerFormalArguments - transform physical registers into virtual registers
3669/// and generate load operations for arguments places on the stack.
3670SDValue
3671MipsTargetLowering::LowerFormalArguments(SDValue Chain,
3672                                         CallingConv::ID CallConv,
3673                                         bool isVarArg,
3674                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3675                                         DebugLoc dl, SelectionDAG &DAG,
3676                                         SmallVectorImpl<SDValue> &InVals)
3677                                          const {
3678  MachineFunction &MF = DAG.getMachineFunction();
3679  MachineFrameInfo *MFI = MF.getFrameInfo();
3680  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3681
3682  MipsFI->setVarArgsFrameIndex(0);
3683
3684  // Used with vargs to acumulate store chains.
3685  std::vector<SDValue> OutChains;
3686
3687  // Assign locations to all of the incoming arguments.
3688  SmallVector<CCValAssign, 16> ArgLocs;
3689  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3690                 getTargetMachine(), ArgLocs, *DAG.getContext());
3691  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
3692  Function::const_arg_iterator FuncArg =
3693    DAG.getMachineFunction().getFunction()->arg_begin();
3694  bool UseSoftFloat = getTargetMachine().Options.UseSoftFloat;
3695
3696  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
3697  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3698                           MipsCCInfo.hasByValArg());
3699
3700  unsigned CurArgIdx = 0;
3701  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3702
3703  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3704    CCValAssign &VA = ArgLocs[i];
3705    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
3706    CurArgIdx = Ins[i].OrigArgIndex;
3707    EVT ValVT = VA.getValVT();
3708    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3709    bool IsRegLoc = VA.isRegLoc();
3710
3711    if (Flags.isByVal()) {
3712      assert(Flags.getByValSize() &&
3713             "ByVal args of size 0 should have been ignored by front-end.");
3714      assert(ByValArg != MipsCCInfo.byval_end());
3715      copyByValRegs(Chain, dl, OutChains, DAG, Flags, InVals, &*FuncArg,
3716                    MipsCCInfo, *ByValArg);
3717      ++ByValArg;
3718      continue;
3719    }
3720
3721    // Arguments stored on registers
3722    if (IsRegLoc) {
3723      EVT RegVT = VA.getLocVT();
3724      unsigned ArgReg = VA.getLocReg();
3725      const TargetRegisterClass *RC;
3726
3727      if (RegVT == MVT::i32)
3728        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
3729                                        &Mips::CPURegsRegClass;
3730      else if (RegVT == MVT::i64)
3731        RC = &Mips::CPU64RegsRegClass;
3732      else if (RegVT == MVT::f32)
3733        RC = &Mips::FGR32RegClass;
3734      else if (RegVT == MVT::f64)
3735        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3736      else
3737        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3738
3739      // Transform the arguments stored on
3740      // physical registers into virtual ones
3741      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3742      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3743
3744      // If this is an 8 or 16-bit value, it has been passed promoted
3745      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3746      // truncate to the right size.
3747      if (VA.getLocInfo() != CCValAssign::Full) {
3748        unsigned Opcode = 0;
3749        if (VA.getLocInfo() == CCValAssign::SExt)
3750          Opcode = ISD::AssertSext;
3751        else if (VA.getLocInfo() == CCValAssign::ZExt)
3752          Opcode = ISD::AssertZext;
3753        if (Opcode)
3754          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3755                                 DAG.getValueType(ValVT));
3756        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3757      }
3758
3759      // Handle floating point arguments passed in integer registers and
3760      // long double arguments passed in floating point registers.
3761      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3762          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
3763          (RegVT == MVT::f64 && ValVT == MVT::i64))
3764        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3765      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3766        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3767                                  getNextIntArgReg(ArgReg), RC);
3768        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3769        if (!Subtarget->isLittle())
3770          std::swap(ArgValue, ArgValue2);
3771        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3772                               ArgValue, ArgValue2);
3773      }
3774
3775      InVals.push_back(ArgValue);
3776    } else { // VA.isRegLoc()
3777
3778      // sanity check
3779      assert(VA.isMemLoc());
3780
3781      // The stack pointer offset is relative to the caller stack frame.
3782      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3783                                      VA.getLocMemOffset(), true);
3784
3785      // Create load nodes to retrieve arguments from the stack
3786      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3787      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3788                                   MachinePointerInfo::getFixedStack(FI),
3789                                   false, false, false, 0));
3790    }
3791  }
3792
3793  // The mips ABIs for returning structs by value requires that we copy
3794  // the sret argument into $v0 for the return. Save the argument into
3795  // a virtual register so that we can access it from the return points.
3796  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3797    unsigned Reg = MipsFI->getSRetReturnReg();
3798    if (!Reg) {
3799      Reg = MF.getRegInfo().
3800        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
3801      MipsFI->setSRetReturnReg(Reg);
3802    }
3803    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3804    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3805  }
3806
3807  if (isVarArg)
3808    writeVarArgRegs(OutChains, MipsCCInfo, Chain, dl, DAG);
3809
3810  // All stores are grouped in one node to allow the matching between
3811  // the size of Ins and InVals. This only happens when on varg functions
3812  if (!OutChains.empty()) {
3813    OutChains.push_back(Chain);
3814    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3815                        &OutChains[0], OutChains.size());
3816  }
3817
3818  return Chain;
3819}
3820
3821//===----------------------------------------------------------------------===//
3822//               Return Value Calling Convention Implementation
3823//===----------------------------------------------------------------------===//
3824
3825bool
3826MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3827                                   MachineFunction &MF, bool isVarArg,
3828                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3829                                   LLVMContext &Context) const {
3830  SmallVector<CCValAssign, 16> RVLocs;
3831  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3832                 RVLocs, Context);
3833  return CCInfo.CheckReturn(Outs, RetCC_Mips);
3834}
3835
3836SDValue
3837MipsTargetLowering::LowerReturn(SDValue Chain,
3838                                CallingConv::ID CallConv, bool isVarArg,
3839                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3840                                const SmallVectorImpl<SDValue> &OutVals,
3841                                DebugLoc dl, SelectionDAG &DAG) const {
3842  // CCValAssign - represent the assignment of
3843  // the return value to a location
3844  SmallVector<CCValAssign, 16> RVLocs;
3845  MachineFunction &MF = DAG.getMachineFunction();
3846
3847  // CCState - Info about the registers and stack slot.
3848  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs,
3849                 *DAG.getContext());
3850  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
3851
3852  // Analize return values.
3853  MipsCCInfo.analyzeReturn(Outs, getTargetMachine().Options.UseSoftFloat,
3854                           MF.getFunction()->getReturnType());
3855
3856  SDValue Flag;
3857  SmallVector<SDValue, 4> RetOps(1, Chain);
3858
3859  // Copy the result values into the output registers.
3860  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3861    SDValue Val = OutVals[i];
3862    CCValAssign &VA = RVLocs[i];
3863    assert(VA.isRegLoc() && "Can only return in registers!");
3864
3865    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
3866      Val = DAG.getNode(ISD::BITCAST, dl, RVLocs[i].getLocVT(), Val);
3867
3868    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Val, Flag);
3869
3870    // Guarantee that all emitted copies are stuck together with flags.
3871    Flag = Chain.getValue(1);
3872    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3873  }
3874
3875  // The mips ABIs for returning structs by value requires that we copy
3876  // the sret argument into $v0 for the return. We saved the argument into
3877  // a virtual register in the entry block, so now we copy the value out
3878  // and into $v0.
3879  if (MF.getFunction()->hasStructRetAttr()) {
3880    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3881    unsigned Reg = MipsFI->getSRetReturnReg();
3882
3883    if (!Reg)
3884      llvm_unreachable("sret virtual register not created in the entry block");
3885    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3886    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
3887
3888    Chain = DAG.getCopyToReg(Chain, dl, V0, Val, Flag);
3889    Flag = Chain.getValue(1);
3890    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
3891  }
3892
3893  RetOps[0] = Chain;  // Update chain.
3894
3895  // Add the flag if we have it.
3896  if (Flag.getNode())
3897    RetOps.push_back(Flag);
3898
3899  // Return on Mips is always a "jr $ra"
3900  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, &RetOps[0], RetOps.size());
3901}
3902
3903//===----------------------------------------------------------------------===//
3904//                           Mips Inline Assembly Support
3905//===----------------------------------------------------------------------===//
3906
3907/// getConstraintType - Given a constraint letter, return the type of
3908/// constraint it is for this target.
3909MipsTargetLowering::ConstraintType MipsTargetLowering::
3910getConstraintType(const std::string &Constraint) const
3911{
3912  // Mips specific constrainy
3913  // GCC config/mips/constraints.md
3914  //
3915  // 'd' : An address register. Equivalent to r
3916  //       unless generating MIPS16 code.
3917  // 'y' : Equivalent to r; retained for
3918  //       backwards compatibility.
3919  // 'c' : A register suitable for use in an indirect
3920  //       jump. This will always be $25 for -mabicalls.
3921  // 'l' : The lo register. 1 word storage.
3922  // 'x' : The hilo register pair. Double word storage.
3923  if (Constraint.size() == 1) {
3924    switch (Constraint[0]) {
3925      default : break;
3926      case 'd':
3927      case 'y':
3928      case 'f':
3929      case 'c':
3930      case 'l':
3931      case 'x':
3932        return C_RegisterClass;
3933      case 'R':
3934        return C_Memory;
3935    }
3936  }
3937  return TargetLowering::getConstraintType(Constraint);
3938}
3939
3940/// Examine constraint type and operand type and determine a weight value.
3941/// This object must already have been set up with the operand type
3942/// and the current alternative constraint selected.
3943TargetLowering::ConstraintWeight
3944MipsTargetLowering::getSingleConstraintMatchWeight(
3945    AsmOperandInfo &info, const char *constraint) const {
3946  ConstraintWeight weight = CW_Invalid;
3947  Value *CallOperandVal = info.CallOperandVal;
3948    // If we don't have a value, we can't do a match,
3949    // but allow it at the lowest weight.
3950  if (CallOperandVal == NULL)
3951    return CW_Default;
3952  Type *type = CallOperandVal->getType();
3953  // Look at the constraint type.
3954  switch (*constraint) {
3955  default:
3956    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3957    break;
3958  case 'd':
3959  case 'y':
3960    if (type->isIntegerTy())
3961      weight = CW_Register;
3962    break;
3963  case 'f':
3964    if (type->isFloatTy())
3965      weight = CW_Register;
3966    break;
3967  case 'c': // $25 for indirect jumps
3968  case 'l': // lo register
3969  case 'x': // hilo register pair
3970      if (type->isIntegerTy())
3971      weight = CW_SpecificReg;
3972      break;
3973  case 'I': // signed 16 bit immediate
3974  case 'J': // integer zero
3975  case 'K': // unsigned 16 bit immediate
3976  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3977  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3978  case 'O': // signed 15 bit immediate (+- 16383)
3979  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3980    if (isa<ConstantInt>(CallOperandVal))
3981      weight = CW_Constant;
3982    break;
3983  case 'R':
3984    weight = CW_Memory;
3985    break;
3986  }
3987  return weight;
3988}
3989
3990/// Given a register class constraint, like 'r', if this corresponds directly
3991/// to an LLVM register class, return a register of 0 and the register class
3992/// pointer.
3993std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3994getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3995{
3996  if (Constraint.size() == 1) {
3997    switch (Constraint[0]) {
3998    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3999    case 'y': // Same as 'r'. Exists for compatibility.
4000    case 'r':
4001      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
4002        if (Subtarget->inMips16Mode())
4003          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
4004        return std::make_pair(0U, &Mips::CPURegsRegClass);
4005      }
4006      if (VT == MVT::i64 && !HasMips64)
4007        return std::make_pair(0U, &Mips::CPURegsRegClass);
4008      if (VT == MVT::i64 && HasMips64)
4009        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
4010      // This will generate an error message
4011      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
4012    case 'f':
4013      if (VT == MVT::f32)
4014        return std::make_pair(0U, &Mips::FGR32RegClass);
4015      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
4016        if (Subtarget->isFP64bit())
4017          return std::make_pair(0U, &Mips::FGR64RegClass);
4018        return std::make_pair(0U, &Mips::AFGR64RegClass);
4019      }
4020      break;
4021    case 'c': // register suitable for indirect jump
4022      if (VT == MVT::i32)
4023        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
4024      assert(VT == MVT::i64 && "Unexpected type.");
4025      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
4026    case 'l': // register suitable for indirect jump
4027      if (VT == MVT::i32)
4028        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
4029      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
4030    case 'x': // register suitable for indirect jump
4031      // Fixme: Not triggering the use of both hi and low
4032      // This will generate an error message
4033      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
4034    }
4035  }
4036  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4037}
4038
4039/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4040/// vector.  If it is invalid, don't add anything to Ops.
4041void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4042                                                     std::string &Constraint,
4043                                                     std::vector<SDValue>&Ops,
4044                                                     SelectionDAG &DAG) const {
4045  SDValue Result(0, 0);
4046
4047  // Only support length 1 constraints for now.
4048  if (Constraint.length() > 1) return;
4049
4050  char ConstraintLetter = Constraint[0];
4051  switch (ConstraintLetter) {
4052  default: break; // This will fall through to the generic implementation
4053  case 'I': // Signed 16 bit constant
4054    // If this fails, the parent routine will give an error
4055    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4056      EVT Type = Op.getValueType();
4057      int64_t Val = C->getSExtValue();
4058      if (isInt<16>(Val)) {
4059        Result = DAG.getTargetConstant(Val, Type);
4060        break;
4061      }
4062    }
4063    return;
4064  case 'J': // integer zero
4065    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4066      EVT Type = Op.getValueType();
4067      int64_t Val = C->getZExtValue();
4068      if (Val == 0) {
4069        Result = DAG.getTargetConstant(0, Type);
4070        break;
4071      }
4072    }
4073    return;
4074  case 'K': // unsigned 16 bit immediate
4075    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4076      EVT Type = Op.getValueType();
4077      uint64_t Val = (uint64_t)C->getZExtValue();
4078      if (isUInt<16>(Val)) {
4079        Result = DAG.getTargetConstant(Val, Type);
4080        break;
4081      }
4082    }
4083    return;
4084  case 'L': // signed 32 bit immediate where lower 16 bits are 0
4085    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4086      EVT Type = Op.getValueType();
4087      int64_t Val = C->getSExtValue();
4088      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
4089        Result = DAG.getTargetConstant(Val, Type);
4090        break;
4091      }
4092    }
4093    return;
4094  case 'N': // immediate in the range of -65535 to -1 (inclusive)
4095    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4096      EVT Type = Op.getValueType();
4097      int64_t Val = C->getSExtValue();
4098      if ((Val >= -65535) && (Val <= -1)) {
4099        Result = DAG.getTargetConstant(Val, Type);
4100        break;
4101      }
4102    }
4103    return;
4104  case 'O': // signed 15 bit immediate
4105    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4106      EVT Type = Op.getValueType();
4107      int64_t Val = C->getSExtValue();
4108      if ((isInt<15>(Val))) {
4109        Result = DAG.getTargetConstant(Val, Type);
4110        break;
4111      }
4112    }
4113    return;
4114  case 'P': // immediate in the range of 1 to 65535 (inclusive)
4115    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4116      EVT Type = Op.getValueType();
4117      int64_t Val = C->getSExtValue();
4118      if ((Val <= 65535) && (Val >= 1)) {
4119        Result = DAG.getTargetConstant(Val, Type);
4120        break;
4121      }
4122    }
4123    return;
4124  }
4125
4126  if (Result.getNode()) {
4127    Ops.push_back(Result);
4128    return;
4129  }
4130
4131  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4132}
4133
4134bool
4135MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
4136  // No global is ever allowed as a base.
4137  if (AM.BaseGV)
4138    return false;
4139
4140  switch (AM.Scale) {
4141  case 0: // "r+i" or just "i", depending on HasBaseReg.
4142    break;
4143  case 1:
4144    if (!AM.HasBaseReg) // allow "r+i".
4145      break;
4146    return false; // disallow "r+r" or "r+r+i".
4147  default:
4148    return false;
4149  }
4150
4151  return true;
4152}
4153
4154bool
4155MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4156  // The Mips target isn't yet aware of offsets.
4157  return false;
4158}
4159
4160EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
4161                                            unsigned SrcAlign,
4162                                            bool IsMemset, bool ZeroMemset,
4163                                            bool MemcpyStrSrc,
4164                                            MachineFunction &MF) const {
4165  if (Subtarget->hasMips64())
4166    return MVT::i64;
4167
4168  return MVT::i32;
4169}
4170
4171bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4172  if (VT != MVT::f32 && VT != MVT::f64)
4173    return false;
4174  if (Imm.isNegZero())
4175    return false;
4176  return Imm.isZero();
4177}
4178
4179unsigned MipsTargetLowering::getJumpTableEncoding() const {
4180  if (IsN64)
4181    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
4182
4183  return TargetLowering::getJumpTableEncoding();
4184}
4185
4186/// This function returns true if CallSym is a long double emulation routine.
4187static bool isF128SoftLibCall(const char *CallSym) {
4188  const char *const LibCalls[] =
4189    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
4190     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
4191     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
4192     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
4193     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
4194     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
4195     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
4196     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
4197     "truncl"};
4198
4199  const char * const *End = LibCalls + array_lengthof(LibCalls);
4200
4201  // Check that LibCalls is sorted alphabetically.
4202#ifndef NDEBUG
4203  ltstr Comp;
4204
4205  for (const char * const *I = LibCalls; I < End - 1; ++I)
4206    assert(Comp(*I, *(I + 1)));
4207#endif
4208
4209  return std::binary_search(LibCalls, End, CallSym, ltstr());
4210}
4211
4212/// This function returns true if Ty is fp128 or i128 which was originally a
4213/// fp128.
4214static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
4215  if (Ty->isFP128Ty())
4216    return true;
4217
4218  const ExternalSymbolSDNode *ES =
4219    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
4220
4221  // If the Ty is i128 and the function being called is a long double emulation
4222  // routine, then the original type is f128.
4223  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
4224}
4225
4226MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CC, bool IsO32_,
4227                                   CCState &Info)
4228  : CCInfo(Info), CallConv(CC), IsO32(IsO32_) {
4229  // Pre-allocate reserved argument area.
4230  CCInfo.AllocateStack(reservedArgArea(), 1);
4231}
4232
4233void MipsTargetLowering::MipsCC::
4234analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
4235                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
4236                    std::vector<ArgListEntry> &FuncArgs) {
4237  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
4238         "CallingConv::Fast shouldn't be used for vararg functions.");
4239
4240  unsigned NumOpnds = Args.size();
4241  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
4242
4243  for (unsigned I = 0; I != NumOpnds; ++I) {
4244    MVT ArgVT = Args[I].VT;
4245    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
4246    bool R;
4247
4248    if (ArgFlags.isByVal()) {
4249      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
4250      continue;
4251    }
4252
4253    if (IsVarArg && !Args[I].IsFixed)
4254      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
4255    else {
4256      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
4257                           IsSoftFloat);
4258      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
4259    }
4260
4261    if (R) {
4262#ifndef NDEBUG
4263      dbgs() << "Call operand #" << I << " has unhandled type "
4264             << EVT(ArgVT).getEVTString();
4265#endif
4266      llvm_unreachable(0);
4267    }
4268  }
4269}
4270
4271void MipsTargetLowering::MipsCC::
4272analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
4273                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
4274  unsigned NumArgs = Args.size();
4275  llvm::CCAssignFn *FixedFn = fixedArgFn();
4276  unsigned CurArgIdx = 0;
4277
4278  for (unsigned I = 0; I != NumArgs; ++I) {
4279    MVT ArgVT = Args[I].VT;
4280    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
4281    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
4282    CurArgIdx = Args[I].OrigArgIndex;
4283
4284    if (ArgFlags.isByVal()) {
4285      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
4286      continue;
4287    }
4288
4289    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
4290
4291    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
4292      continue;
4293
4294#ifndef NDEBUG
4295    dbgs() << "Formal Arg #" << I << " has unhandled type "
4296           << EVT(ArgVT).getEVTString();
4297#endif
4298    llvm_unreachable(0);
4299  }
4300}
4301
4302template<typename Ty>
4303void MipsTargetLowering::MipsCC::
4304analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
4305              const SDNode *CallNode, const Type *RetTy) const {
4306  CCAssignFn *Fn;
4307
4308  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
4309    Fn = RetCC_F128Soft;
4310  else
4311    Fn = RetCC_Mips;
4312
4313  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
4314    MVT VT = RetVals[I].VT;
4315    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
4316    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
4317
4318    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
4319#ifndef NDEBUG
4320      dbgs() << "Call result #" << I << " has unhandled type "
4321             << EVT(VT).getEVTString() << '\n';
4322#endif
4323      llvm_unreachable(0);
4324    }
4325  }
4326}
4327
4328void MipsTargetLowering::MipsCC::
4329analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
4330                  const SDNode *CallNode, const Type *RetTy) const {
4331  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
4332}
4333
4334void MipsTargetLowering::MipsCC::
4335analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
4336              const Type *RetTy) const {
4337  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
4338}
4339
4340void
4341MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
4342                                           MVT LocVT,
4343                                           CCValAssign::LocInfo LocInfo,
4344                                           ISD::ArgFlagsTy ArgFlags) {
4345  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
4346
4347  struct ByValArgInfo ByVal;
4348  unsigned RegSize = regSize();
4349  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
4350  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
4351                            RegSize * 2);
4352
4353  if (useRegsForByval())
4354    allocateRegs(ByVal, ByValSize, Align);
4355
4356  // Allocate space on caller's stack.
4357  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
4358                                       Align);
4359  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
4360                                    LocInfo));
4361  ByValArgs.push_back(ByVal);
4362}
4363
4364unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
4365  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
4366}
4367
4368unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
4369  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
4370}
4371
4372const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
4373  return IsO32 ? O32IntRegs : Mips64IntRegs;
4374}
4375
4376llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
4377  if (CallConv == CallingConv::Fast)
4378    return CC_Mips_FastCC;
4379
4380  return IsO32 ? CC_MipsO32 : CC_MipsN;
4381}
4382
4383llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
4384  return IsO32 ? CC_MipsO32 : CC_MipsN_VarArg;
4385}
4386
4387const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
4388  return IsO32 ? O32IntRegs : Mips64DPRegs;
4389}
4390
4391void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
4392                                              unsigned ByValSize,
4393                                              unsigned Align) {
4394  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
4395  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
4396  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
4397         "Byval argument's size and alignment should be a multiple of"
4398         "RegSize.");
4399
4400  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
4401
4402  // If Align > RegSize, the first arg register must be even.
4403  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
4404    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
4405    ++ByVal.FirstIdx;
4406  }
4407
4408  // Mark the registers allocated.
4409  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
4410       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
4411    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
4412}
4413
4414MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
4415                                         const SDNode *CallNode,
4416                                         bool IsSoftFloat) const {
4417  if (IsSoftFloat || IsO32)
4418    return VT;
4419
4420  // Check if the original type was fp128.
4421  if (originalTypeIsF128(OrigTy, CallNode)) {
4422    assert(VT == MVT::i64);
4423    return MVT::f64;
4424  }
4425
4426  return VT;
4427}
4428
4429void MipsTargetLowering::
4430copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
4431              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
4432              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
4433              const MipsCC &CC, const ByValArgInfo &ByVal) const {
4434  MachineFunction &MF = DAG.getMachineFunction();
4435  MachineFrameInfo *MFI = MF.getFrameInfo();
4436  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
4437  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
4438  int FrameObjOffset;
4439
4440  if (RegAreaSize)
4441    FrameObjOffset = (int)CC.reservedArgArea() -
4442      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
4443  else
4444    FrameObjOffset = ByVal.Address;
4445
4446  // Create frame object.
4447  EVT PtrTy = getPointerTy();
4448  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
4449  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4450  InVals.push_back(FIN);
4451
4452  if (!ByVal.NumRegs)
4453    return;
4454
4455  // Copy arg registers.
4456  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
4457  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4458
4459  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
4460    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
4461    unsigned VReg = AddLiveIn(MF, ArgReg, RC);
4462    unsigned Offset = I * CC.regSize();
4463    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
4464                                   DAG.getConstant(Offset, PtrTy));
4465    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
4466                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
4467                                 false, false, 0);
4468    OutChains.push_back(Store);
4469  }
4470}
4471
4472// Copy byVal arg to registers and stack.
4473void MipsTargetLowering::
4474passByValArg(SDValue Chain, DebugLoc DL,
4475             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
4476             SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
4477             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
4478             const MipsCC &CC, const ByValArgInfo &ByVal,
4479             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
4480  unsigned ByValSize = Flags.getByValSize();
4481  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
4482  unsigned RegSize = CC.regSize();
4483  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
4484  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
4485
4486  if (ByVal.NumRegs) {
4487    const uint16_t *ArgRegs = CC.intArgRegs();
4488    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
4489    unsigned I = 0;
4490
4491    // Copy words to registers.
4492    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
4493      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4494                                    DAG.getConstant(Offset, PtrTy));
4495      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
4496                                    MachinePointerInfo(), false, false, false,
4497                                    Alignment);
4498      MemOpChains.push_back(LoadVal.getValue(1));
4499      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
4500      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
4501    }
4502
4503    // Return if the struct has been fully copied.
4504    if (ByValSize == Offset)
4505      return;
4506
4507    // Copy the remainder of the byval argument with sub-word loads and shifts.
4508    if (LeftoverBytes) {
4509      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
4510             "Size of the remainder should be smaller than RegSize.");
4511      SDValue Val;
4512
4513      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
4514           Offset < ByValSize; LoadSize /= 2) {
4515        unsigned RemSize = ByValSize - Offset;
4516
4517        if (RemSize < LoadSize)
4518          continue;
4519
4520        // Load subword.
4521        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4522                                      DAG.getConstant(Offset, PtrTy));
4523        SDValue LoadVal =
4524          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
4525                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
4526                         false, false, Alignment);
4527        MemOpChains.push_back(LoadVal.getValue(1));
4528
4529        // Shift the loaded value.
4530        unsigned Shamt;
4531
4532        if (isLittle)
4533          Shamt = TotalSizeLoaded;
4534        else
4535          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
4536
4537        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4538                                    DAG.getConstant(Shamt, MVT::i32));
4539
4540        if (Val.getNode())
4541          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4542        else
4543          Val = Shift;
4544
4545        Offset += LoadSize;
4546        TotalSizeLoaded += LoadSize;
4547        Alignment = std::min(Alignment, LoadSize);
4548      }
4549
4550      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
4551      RegsToPass.push_back(std::make_pair(ArgReg, Val));
4552      return;
4553    }
4554  }
4555
4556  // Copy remainder of byval arg to it with memcpy.
4557  unsigned MemCpySize = ByValSize - Offset;
4558  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4559                            DAG.getConstant(Offset, PtrTy));
4560  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4561                            DAG.getIntPtrConstant(ByVal.Address));
4562  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
4563                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
4564                        /*isVolatile=*/false, /*AlwaysInline=*/false,
4565                        MachinePointerInfo(0), MachinePointerInfo(0));
4566  MemOpChains.push_back(Chain);
4567}
4568
4569void
4570MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4571                                    const MipsCC &CC, SDValue Chain,
4572                                    DebugLoc DL, SelectionDAG &DAG) const {
4573  unsigned NumRegs = CC.numIntArgRegs();
4574  const uint16_t *ArgRegs = CC.intArgRegs();
4575  const CCState &CCInfo = CC.getCCInfo();
4576  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
4577  unsigned RegSize = CC.regSize();
4578  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
4579  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4580  MachineFunction &MF = DAG.getMachineFunction();
4581  MachineFrameInfo *MFI = MF.getFrameInfo();
4582  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4583
4584  // Offset of the first variable argument from stack pointer.
4585  int VaArgOffset;
4586
4587  if (NumRegs == Idx)
4588    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
4589  else
4590    VaArgOffset =
4591      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
4592
4593  // Record the frame index of the first variable argument
4594  // which is a value necessary to VASTART.
4595  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
4596  MipsFI->setVarArgsFrameIndex(FI);
4597
4598  // Copy the integer registers that have not been used for argument passing
4599  // to the argument register save area. For O32, the save area is allocated
4600  // in the caller's stack frame, while for N32/64, it is allocated in the
4601  // callee's stack frame.
4602  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
4603    unsigned Reg = AddLiveIn(MF, ArgRegs[I], RC);
4604    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4605    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
4606    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
4607    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
4608                                 MachinePointerInfo(), false, false, 0);
4609    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
4610    OutChains.push_back(Store);
4611  }
4612}
4613