MipsISelLowering.cpp revision bc49cf73079c1223fba5046047517fc3c00d5284
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include <set>
16#include "MipsISelLowering.h"
17#include "InstPrinter/MipsInstPrinter.h"
18#include "MCTargetDesc/MipsBaseInfo.h"
19#include "MipsMachineFunction.h"
20#include "MipsSubtarget.h"
21#include "MipsTargetMachine.h"
22#include "MipsTargetObjectFile.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/CallingConvLower.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/SelectionDAGISel.h"
30#include "llvm/CodeGen/ValueTypes.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumTailCalls, "Number of tail calls");
44
45static cl::opt<bool>
46EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
47                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
48
49static cl::opt<bool>
50LargeGOT("mxgot", cl::Hidden,
51         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
52
53static cl::opt<bool>
54Mips16HardFloat("mips16-hard-float", cl::NotHidden,
55                cl::desc("MIPS: mips16 hard float enable."),
56                cl::init(false));
57
58
59
60static const uint16_t O32IntRegs[4] = {
61  Mips::A0, Mips::A1, Mips::A2, Mips::A3
62};
63
64static const uint16_t Mips64IntRegs[8] = {
65  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
66  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
67};
68
69static const uint16_t Mips64DPRegs[8] = {
70  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
71  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
72};
73
74// If I is a shifted mask, set the size (Size) and the first bit of the
75// mask (Pos), and return true.
76// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
77static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
78  if (!isShiftedMask_64(I))
79     return false;
80
81  Size = CountPopulation_64(I);
82  Pos = CountTrailingZeros_64(I);
83  return true;
84}
85
86static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
87  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
88  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
89}
90
91static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
92  EVT Ty = Op.getValueType();
93
94  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
95    return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
96                                      Flag);
97  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
98    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
99  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
100    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
101  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
102    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
103  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
104    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
105                                     N->getOffset(), Flag);
106
107  llvm_unreachable("Unexpected node type.");
108  return SDValue();
109}
110
111static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
112  DebugLoc DL = Op.getDebugLoc();
113  EVT Ty = Op.getValueType();
114  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
115  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
116  return DAG.getNode(ISD::ADD, DL, Ty,
117                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
118                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
119}
120
121static SDValue getAddrLocal(SDValue Op, SelectionDAG &DAG, bool HasMips64) {
122  DebugLoc DL = Op.getDebugLoc();
123  EVT Ty = Op.getValueType();
124  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
125  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
126                            getTargetNode(Op, DAG, GOTFlag));
127  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
128                             MachinePointerInfo::getGOT(), false, false, false,
129                             0);
130  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
131  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
132  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
133}
134
135static SDValue getAddrGlobal(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
136  DebugLoc DL = Op.getDebugLoc();
137  EVT Ty = Op.getValueType();
138  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
139                            getTargetNode(Op, DAG, Flag));
140  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
141                     MachinePointerInfo::getGOT(), false, false, false, 0);
142}
143
144static SDValue getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
145                                     unsigned HiFlag, unsigned LoFlag) {
146  DebugLoc DL = Op.getDebugLoc();
147  EVT Ty = Op.getValueType();
148  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
149  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, GetGlobalReg(DAG, Ty));
150  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
151                                getTargetNode(Op, DAG, LoFlag));
152  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
153                     MachinePointerInfo::getGOT(), false, false, false, 0);
154}
155
156const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
157  switch (Opcode) {
158  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
159  case MipsISD::TailCall:          return "MipsISD::TailCall";
160  case MipsISD::Hi:                return "MipsISD::Hi";
161  case MipsISD::Lo:                return "MipsISD::Lo";
162  case MipsISD::GPRel:             return "MipsISD::GPRel";
163  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
164  case MipsISD::Ret:               return "MipsISD::Ret";
165  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
166  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
167  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
168  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
169  case MipsISD::FPRound:           return "MipsISD::FPRound";
170  case MipsISD::MAdd:              return "MipsISD::MAdd";
171  case MipsISD::MAddu:             return "MipsISD::MAddu";
172  case MipsISD::MSub:              return "MipsISD::MSub";
173  case MipsISD::MSubu:             return "MipsISD::MSubu";
174  case MipsISD::DivRem:            return "MipsISD::DivRem";
175  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
176  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
177  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
178  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
179  case MipsISD::Sync:              return "MipsISD::Sync";
180  case MipsISD::Ext:               return "MipsISD::Ext";
181  case MipsISD::Ins:               return "MipsISD::Ins";
182  case MipsISD::LWL:               return "MipsISD::LWL";
183  case MipsISD::LWR:               return "MipsISD::LWR";
184  case MipsISD::SWL:               return "MipsISD::SWL";
185  case MipsISD::SWR:               return "MipsISD::SWR";
186  case MipsISD::LDL:               return "MipsISD::LDL";
187  case MipsISD::LDR:               return "MipsISD::LDR";
188  case MipsISD::SDL:               return "MipsISD::SDL";
189  case MipsISD::SDR:               return "MipsISD::SDR";
190  case MipsISD::EXTP:              return "MipsISD::EXTP";
191  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
192  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
193  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
194  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
195  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
196  case MipsISD::SHILO:             return "MipsISD::SHILO";
197  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
198  case MipsISD::MULT:              return "MipsISD::MULT";
199  case MipsISD::MULTU:             return "MipsISD::MULTU";
200  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSPDSP";
201  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
202  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
203  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
204  default:                         return NULL;
205  }
206}
207
208namespace {
209  struct ltstr {
210    bool operator()(const char *s1, const char *s2) const
211    {
212      return strcmp(s1, s2) < 0;
213    }
214  };
215
216  std::set<const char*, ltstr> noHelperNeeded;
217
218  const char* addToNoHelperNeeded(const char* s) {
219    noHelperNeeded.insert(s);
220    return s;
221  }
222
223}
224
225void MipsTargetLowering::SetMips16LibcallName
226  (RTLIB::Libcall l, const char *Name) {
227  setLibcallName(l, Name);
228  noHelperNeeded.insert(Name);
229}
230
231void MipsTargetLowering::setMips16HardFloatLibCalls() {
232  SetMips16LibcallName(RTLIB::ADD_F32, "__mips16_addsf3");
233  SetMips16LibcallName(RTLIB::ADD_F64, "__mips16_adddf3");
234  SetMips16LibcallName(RTLIB::SUB_F32, "__mips16_subsf3");
235  SetMips16LibcallName(RTLIB::SUB_F64, "__mips16_subdf3");
236  SetMips16LibcallName(RTLIB::MUL_F32, "__mips16_mulsf3");
237  SetMips16LibcallName(RTLIB::MUL_F64, "__mips16_muldf3");
238  SetMips16LibcallName(RTLIB::DIV_F32, "__mips16_divsf3");
239  SetMips16LibcallName(RTLIB::DIV_F64, "__mips16_divdf3");
240  SetMips16LibcallName(RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2");
241  SetMips16LibcallName(RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2");
242  SetMips16LibcallName(RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi");
243  SetMips16LibcallName(RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi");
244  SetMips16LibcallName(RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf");
245  SetMips16LibcallName(RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf");
246  SetMips16LibcallName(RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf");
247  SetMips16LibcallName(RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf");
248  SetMips16LibcallName(RTLIB::OEQ_F32, "__mips16_eqsf2");
249  SetMips16LibcallName(RTLIB::OEQ_F64, "__mips16_eqdf2");
250  SetMips16LibcallName(RTLIB::UNE_F32, "__mips16_nesf2");
251  SetMips16LibcallName(RTLIB::UNE_F64, "__mips16_nedf2");
252  SetMips16LibcallName(RTLIB::OGE_F32, "__mips16_gesf2");
253  SetMips16LibcallName(RTLIB::OGE_F64, "__mips16_gedf2");
254  SetMips16LibcallName(RTLIB::OLT_F32, "__mips16_ltsf2");
255  SetMips16LibcallName(RTLIB::OLT_F64, "__mips16_ltdf2");
256  SetMips16LibcallName(RTLIB::OLE_F32, "__mips16_lesf2");
257  SetMips16LibcallName(RTLIB::OLE_F64, "__mips16_ledf2");
258  SetMips16LibcallName(RTLIB::OGT_F32, "__mips16_gtsf2");
259  SetMips16LibcallName(RTLIB::OGT_F64, "__mips16_gtdf2");
260  SetMips16LibcallName(RTLIB::UO_F32, "__mips16_unordsf2");
261  SetMips16LibcallName(RTLIB::UO_F64, "__mips16_unorddf2");
262  SetMips16LibcallName(RTLIB::O_F32, "__mips16_unordsf2");
263  SetMips16LibcallName(RTLIB::O_F64, "__mips16_unorddf2");
264}
265
266MipsTargetLowering::
267MipsTargetLowering(MipsTargetMachine &TM)
268  : TargetLowering(TM, new MipsTargetObjectFile()),
269    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
270    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
271    IsO32(Subtarget->isABI_O32()) {
272
273  // Mips does not have i1 type, so use i32 for
274  // setcc operations results (slt, sgt, ...).
275  setBooleanContents(ZeroOrOneBooleanContent);
276  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
277
278  // Set up the register classes
279  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
280
281  if (HasMips64)
282    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
283
284  if (Subtarget->inMips16Mode()) {
285    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
286    if (Mips16HardFloat)
287      setMips16HardFloatLibCalls();
288  }
289
290  if (Subtarget->hasDSP()) {
291    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
292
293    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
294      addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass);
295
296      // Expand all builtin opcodes.
297      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
298        setOperationAction(Opc, VecTys[i], Expand);
299
300      setOperationAction(ISD::LOAD, VecTys[i], Legal);
301      setOperationAction(ISD::STORE, VecTys[i], Legal);
302      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
303    }
304  }
305
306  if (!TM.Options.UseSoftFloat) {
307    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
308
309    // When dealing with single precision only, use libcalls
310    if (!Subtarget->isSingleFloat()) {
311      if (HasMips64)
312        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
313      else
314        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
315    }
316  }
317
318  // Load extented operations for i1 types must be promoted
319  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
320  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
321  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
322
323  // MIPS doesn't have extending float->double load/store
324  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
325  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
326
327  // Used by legalize types to correctly generate the setcc result.
328  // Without this, every float setcc comes with a AND/OR with the result,
329  // we don't want this, since the fpcmp result goes to a flag register,
330  // which is used implicitly by brcond and select operations.
331  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
332
333  // Mips Custom Operations
334  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
335  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
336  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
337  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
338  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
339  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
340  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
341  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
342  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
343  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
344  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
345  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
346  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
347  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
348  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
349  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
350  if (Subtarget->inMips16Mode()) {
351    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
352    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
353  }
354  else {
355    setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
356    setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
357  }
358  if (!Subtarget->inMips16Mode()) {
359    setOperationAction(ISD::LOAD,               MVT::i32, Custom);
360    setOperationAction(ISD::STORE,              MVT::i32, Custom);
361  }
362
363  if (!TM.Options.NoNaNsFPMath) {
364    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
365    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
366  }
367
368  if (HasMips64) {
369    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
370    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
371    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
372    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
373    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
374    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
375    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
376    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
377  }
378
379  if (!HasMips64) {
380    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
381    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
382    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
383  }
384
385  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
386  if (HasMips64)
387    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
388
389  setOperationAction(ISD::SDIV, MVT::i32, Expand);
390  setOperationAction(ISD::SREM, MVT::i32, Expand);
391  setOperationAction(ISD::UDIV, MVT::i32, Expand);
392  setOperationAction(ISD::UREM, MVT::i32, Expand);
393  setOperationAction(ISD::SDIV, MVT::i64, Expand);
394  setOperationAction(ISD::SREM, MVT::i64, Expand);
395  setOperationAction(ISD::UDIV, MVT::i64, Expand);
396  setOperationAction(ISD::UREM, MVT::i64, Expand);
397
398  // Operations not directly supported by Mips.
399  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
400  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
401  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
402  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
403  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
404  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
405  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
406  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
407  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
408  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
409  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
410  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
411  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
412  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
413  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
414  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
415  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
416  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
417  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
418  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
419
420  if (!Subtarget->hasMips32r2())
421    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
422
423  if (!Subtarget->hasMips64r2())
424    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
425
426  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
427  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
428  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
429  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
430  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
431  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
432  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
433  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
434  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
435  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
436  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
437  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
438  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
439  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
440  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
441
442  if (!TM.Options.NoNaNsFPMath) {
443    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
444    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
445  }
446
447  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
448  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
449  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
450  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
451
452  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
453  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
454  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
455
456  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
457  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
458
459  // Use the default for now
460  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
461  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
462
463  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
464  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
465  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
466  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
467
468  if (Subtarget->inMips16Mode()) {
469    setOperationAction(ISD::ATOMIC_CMP_SWAP,       MVT::i32,    Expand);
470    setOperationAction(ISD::ATOMIC_SWAP,           MVT::i32,    Expand);
471    setOperationAction(ISD::ATOMIC_LOAD_ADD,       MVT::i32,    Expand);
472    setOperationAction(ISD::ATOMIC_LOAD_SUB,       MVT::i32,    Expand);
473    setOperationAction(ISD::ATOMIC_LOAD_AND,       MVT::i32,    Expand);
474    setOperationAction(ISD::ATOMIC_LOAD_OR,        MVT::i32,    Expand);
475    setOperationAction(ISD::ATOMIC_LOAD_XOR,       MVT::i32,    Expand);
476    setOperationAction(ISD::ATOMIC_LOAD_NAND,      MVT::i32,    Expand);
477    setOperationAction(ISD::ATOMIC_LOAD_MIN,       MVT::i32,    Expand);
478    setOperationAction(ISD::ATOMIC_LOAD_MAX,       MVT::i32,    Expand);
479    setOperationAction(ISD::ATOMIC_LOAD_UMIN,      MVT::i32,    Expand);
480    setOperationAction(ISD::ATOMIC_LOAD_UMAX,      MVT::i32,    Expand);
481  }
482
483  setInsertFencesForAtomic(true);
484
485  if (!Subtarget->hasSEInReg()) {
486    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
487    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
488  }
489
490  if (!Subtarget->hasBitCount()) {
491    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
492    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
493  }
494
495  if (!Subtarget->hasSwap()) {
496    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
497    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
498  }
499
500  if (HasMips64) {
501    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
502    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
503    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
504    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
505  }
506
507  setTargetDAGCombine(ISD::ADDE);
508  setTargetDAGCombine(ISD::SUBE);
509  setTargetDAGCombine(ISD::SDIVREM);
510  setTargetDAGCombine(ISD::UDIVREM);
511  setTargetDAGCombine(ISD::SELECT);
512  setTargetDAGCombine(ISD::AND);
513  setTargetDAGCombine(ISD::OR);
514  setTargetDAGCombine(ISD::ADD);
515
516  setMinFunctionAlignment(HasMips64 ? 3 : 2);
517
518  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
519  computeRegisterProperties();
520
521  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
522  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
523
524  maxStoresPerMemcpy = 16;
525}
526
527bool
528MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
529  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
530
531  if (Subtarget->inMips16Mode())
532    return false;
533
534  switch (SVT) {
535  case MVT::i64:
536  case MVT::i32:
537    if (Fast)
538      *Fast = true;
539    return true;
540  default:
541    return false;
542  }
543}
544
545EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
546  if (!VT.isVector())
547    return MVT::i32;
548  return VT.changeVectorElementTypeToInteger();
549}
550
551// SelectMadd -
552// Transforms a subgraph in CurDAG if the following pattern is found:
553//  (addc multLo, Lo0), (adde multHi, Hi0),
554// where,
555//  multHi/Lo: product of multiplication
556//  Lo0: initial value of Lo register
557//  Hi0: initial value of Hi register
558// Return true if pattern matching was successful.
559static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
560  // ADDENode's second operand must be a flag output of an ADDC node in order
561  // for the matching to be successful.
562  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
563
564  if (ADDCNode->getOpcode() != ISD::ADDC)
565    return false;
566
567  SDValue MultHi = ADDENode->getOperand(0);
568  SDValue MultLo = ADDCNode->getOperand(0);
569  SDNode *MultNode = MultHi.getNode();
570  unsigned MultOpc = MultHi.getOpcode();
571
572  // MultHi and MultLo must be generated by the same node,
573  if (MultLo.getNode() != MultNode)
574    return false;
575
576  // and it must be a multiplication.
577  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
578    return false;
579
580  // MultLo amd MultHi must be the first and second output of MultNode
581  // respectively.
582  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
583    return false;
584
585  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
586  // of the values of MultNode, in which case MultNode will be removed in later
587  // phases.
588  // If there exist users other than ADDENode or ADDCNode, this function returns
589  // here, which will result in MultNode being mapped to a single MULT
590  // instruction node rather than a pair of MULT and MADD instructions being
591  // produced.
592  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
593    return false;
594
595  SDValue Chain = CurDAG->getEntryNode();
596  DebugLoc dl = ADDENode->getDebugLoc();
597
598  // create MipsMAdd(u) node
599  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
600
601  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
602                                 MultNode->getOperand(0),// Factor 0
603                                 MultNode->getOperand(1),// Factor 1
604                                 ADDCNode->getOperand(1),// Lo0
605                                 ADDENode->getOperand(1));// Hi0
606
607  // create CopyFromReg nodes
608  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
609                                              MAdd);
610  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
611                                              Mips::HI, MVT::i32,
612                                              CopyFromLo.getValue(2));
613
614  // replace uses of adde and addc here
615  if (!SDValue(ADDCNode, 0).use_empty())
616    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
617
618  if (!SDValue(ADDENode, 0).use_empty())
619    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
620
621  return true;
622}
623
624// SelectMsub -
625// Transforms a subgraph in CurDAG if the following pattern is found:
626//  (addc Lo0, multLo), (sube Hi0, multHi),
627// where,
628//  multHi/Lo: product of multiplication
629//  Lo0: initial value of Lo register
630//  Hi0: initial value of Hi register
631// Return true if pattern matching was successful.
632static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
633  // SUBENode's second operand must be a flag output of an SUBC node in order
634  // for the matching to be successful.
635  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
636
637  if (SUBCNode->getOpcode() != ISD::SUBC)
638    return false;
639
640  SDValue MultHi = SUBENode->getOperand(1);
641  SDValue MultLo = SUBCNode->getOperand(1);
642  SDNode *MultNode = MultHi.getNode();
643  unsigned MultOpc = MultHi.getOpcode();
644
645  // MultHi and MultLo must be generated by the same node,
646  if (MultLo.getNode() != MultNode)
647    return false;
648
649  // and it must be a multiplication.
650  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
651    return false;
652
653  // MultLo amd MultHi must be the first and second output of MultNode
654  // respectively.
655  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
656    return false;
657
658  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
659  // of the values of MultNode, in which case MultNode will be removed in later
660  // phases.
661  // If there exist users other than SUBENode or SUBCNode, this function returns
662  // here, which will result in MultNode being mapped to a single MULT
663  // instruction node rather than a pair of MULT and MSUB instructions being
664  // produced.
665  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
666    return false;
667
668  SDValue Chain = CurDAG->getEntryNode();
669  DebugLoc dl = SUBENode->getDebugLoc();
670
671  // create MipsSub(u) node
672  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
673
674  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
675                                 MultNode->getOperand(0),// Factor 0
676                                 MultNode->getOperand(1),// Factor 1
677                                 SUBCNode->getOperand(0),// Lo0
678                                 SUBENode->getOperand(0));// Hi0
679
680  // create CopyFromReg nodes
681  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
682                                              MSub);
683  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
684                                              Mips::HI, MVT::i32,
685                                              CopyFromLo.getValue(2));
686
687  // replace uses of sube and subc here
688  if (!SDValue(SUBCNode, 0).use_empty())
689    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
690
691  if (!SDValue(SUBENode, 0).use_empty())
692    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
693
694  return true;
695}
696
697static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
698                                  TargetLowering::DAGCombinerInfo &DCI,
699                                  const MipsSubtarget *Subtarget) {
700  if (DCI.isBeforeLegalize())
701    return SDValue();
702
703  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
704      SelectMadd(N, &DAG))
705    return SDValue(N, 0);
706
707  return SDValue();
708}
709
710static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
711                                  TargetLowering::DAGCombinerInfo &DCI,
712                                  const MipsSubtarget *Subtarget) {
713  if (DCI.isBeforeLegalize())
714    return SDValue();
715
716  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
717      SelectMsub(N, &DAG))
718    return SDValue(N, 0);
719
720  return SDValue();
721}
722
723static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
724                                    TargetLowering::DAGCombinerInfo &DCI,
725                                    const MipsSubtarget *Subtarget) {
726  if (DCI.isBeforeLegalizeOps())
727    return SDValue();
728
729  EVT Ty = N->getValueType(0);
730  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
731  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
732  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
733                                                  MipsISD::DivRemU;
734  DebugLoc dl = N->getDebugLoc();
735
736  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
737                               N->getOperand(0), N->getOperand(1));
738  SDValue InChain = DAG.getEntryNode();
739  SDValue InGlue = DivRem;
740
741  // insert MFLO
742  if (N->hasAnyUseOfValue(0)) {
743    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
744                                            InGlue);
745    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
746    InChain = CopyFromLo.getValue(1);
747    InGlue = CopyFromLo.getValue(2);
748  }
749
750  // insert MFHI
751  if (N->hasAnyUseOfValue(1)) {
752    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
753                                            HI, Ty, InGlue);
754    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
755  }
756
757  return SDValue();
758}
759
760static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
761  switch (CC) {
762  default: llvm_unreachable("Unknown fp condition code!");
763  case ISD::SETEQ:
764  case ISD::SETOEQ: return Mips::FCOND_OEQ;
765  case ISD::SETUNE: return Mips::FCOND_UNE;
766  case ISD::SETLT:
767  case ISD::SETOLT: return Mips::FCOND_OLT;
768  case ISD::SETGT:
769  case ISD::SETOGT: return Mips::FCOND_OGT;
770  case ISD::SETLE:
771  case ISD::SETOLE: return Mips::FCOND_OLE;
772  case ISD::SETGE:
773  case ISD::SETOGE: return Mips::FCOND_OGE;
774  case ISD::SETULT: return Mips::FCOND_ULT;
775  case ISD::SETULE: return Mips::FCOND_ULE;
776  case ISD::SETUGT: return Mips::FCOND_UGT;
777  case ISD::SETUGE: return Mips::FCOND_UGE;
778  case ISD::SETUO:  return Mips::FCOND_UN;
779  case ISD::SETO:   return Mips::FCOND_OR;
780  case ISD::SETNE:
781  case ISD::SETONE: return Mips::FCOND_ONE;
782  case ISD::SETUEQ: return Mips::FCOND_UEQ;
783  }
784}
785
786
787// Returns true if condition code has to be inverted.
788static bool InvertFPCondCode(Mips::CondCode CC) {
789  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
790    return false;
791
792  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
793         "Illegal Condition Code");
794
795  return true;
796}
797
798// Creates and returns an FPCmp node from a setcc node.
799// Returns Op if setcc is not a floating point comparison.
800static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
801  // must be a SETCC node
802  if (Op.getOpcode() != ISD::SETCC)
803    return Op;
804
805  SDValue LHS = Op.getOperand(0);
806
807  if (!LHS.getValueType().isFloatingPoint())
808    return Op;
809
810  SDValue RHS = Op.getOperand(1);
811  DebugLoc dl = Op.getDebugLoc();
812
813  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
814  // node if necessary.
815  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
816
817  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
818                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
819}
820
821// Creates and returns a CMovFPT/F node.
822static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
823                            SDValue False, DebugLoc DL) {
824  bool invert = InvertFPCondCode((Mips::CondCode)
825                                 cast<ConstantSDNode>(Cond.getOperand(2))
826                                 ->getSExtValue());
827
828  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
829                     True.getValueType(), True, False, Cond);
830}
831
832static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
833                                    TargetLowering::DAGCombinerInfo &DCI,
834                                    const MipsSubtarget *Subtarget) {
835  if (DCI.isBeforeLegalizeOps())
836    return SDValue();
837
838  SDValue SetCC = N->getOperand(0);
839
840  if ((SetCC.getOpcode() != ISD::SETCC) ||
841      !SetCC.getOperand(0).getValueType().isInteger())
842    return SDValue();
843
844  SDValue False = N->getOperand(2);
845  EVT FalseTy = False.getValueType();
846
847  if (!FalseTy.isInteger())
848    return SDValue();
849
850  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
851
852  if (!CN || CN->getZExtValue())
853    return SDValue();
854
855  const DebugLoc DL = N->getDebugLoc();
856  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
857  SDValue True = N->getOperand(1);
858
859  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
860                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
861
862  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
863}
864
865static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
866                                 TargetLowering::DAGCombinerInfo &DCI,
867                                 const MipsSubtarget *Subtarget) {
868  // Pattern match EXT.
869  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
870  //  => ext $dst, $src, size, pos
871  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
872    return SDValue();
873
874  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
875  unsigned ShiftRightOpc = ShiftRight.getOpcode();
876
877  // Op's first operand must be a shift right.
878  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
879    return SDValue();
880
881  // The second operand of the shift must be an immediate.
882  ConstantSDNode *CN;
883  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
884    return SDValue();
885
886  uint64_t Pos = CN->getZExtValue();
887  uint64_t SMPos, SMSize;
888
889  // Op's second operand must be a shifted mask.
890  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
891      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
892    return SDValue();
893
894  // Return if the shifted mask does not start at bit 0 or the sum of its size
895  // and Pos exceeds the word's size.
896  EVT ValTy = N->getValueType(0);
897  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
898    return SDValue();
899
900  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
901                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
902                     DAG.getConstant(SMSize, MVT::i32));
903}
904
905static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
906                                TargetLowering::DAGCombinerInfo &DCI,
907                                const MipsSubtarget *Subtarget) {
908  // Pattern match INS.
909  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
910  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
911  //  => ins $dst, $src, size, pos, $src1
912  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
913    return SDValue();
914
915  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
916  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
917  ConstantSDNode *CN;
918
919  // See if Op's first operand matches (and $src1 , mask0).
920  if (And0.getOpcode() != ISD::AND)
921    return SDValue();
922
923  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
924      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
925    return SDValue();
926
927  // See if Op's second operand matches (and (shl $src, pos), mask1).
928  if (And1.getOpcode() != ISD::AND)
929    return SDValue();
930
931  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
932      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
933    return SDValue();
934
935  // The shift masks must have the same position and size.
936  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
937    return SDValue();
938
939  SDValue Shl = And1.getOperand(0);
940  if (Shl.getOpcode() != ISD::SHL)
941    return SDValue();
942
943  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
944    return SDValue();
945
946  unsigned Shamt = CN->getZExtValue();
947
948  // Return if the shift amount and the first bit position of mask are not the
949  // same.
950  EVT ValTy = N->getValueType(0);
951  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
952    return SDValue();
953
954  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
955                     DAG.getConstant(SMPos0, MVT::i32),
956                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
957}
958
959static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
960                                 TargetLowering::DAGCombinerInfo &DCI,
961                                 const MipsSubtarget *Subtarget) {
962  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
963
964  if (DCI.isBeforeLegalizeOps())
965    return SDValue();
966
967  SDValue Add = N->getOperand(1);
968
969  if (Add.getOpcode() != ISD::ADD)
970    return SDValue();
971
972  SDValue Lo = Add.getOperand(1);
973
974  if ((Lo.getOpcode() != MipsISD::Lo) ||
975      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
976    return SDValue();
977
978  EVT ValTy = N->getValueType(0);
979  DebugLoc DL = N->getDebugLoc();
980
981  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
982                             Add.getOperand(0));
983  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
984}
985
986SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
987  const {
988  SelectionDAG &DAG = DCI.DAG;
989  unsigned opc = N->getOpcode();
990
991  switch (opc) {
992  default: break;
993  case ISD::ADDE:
994    return PerformADDECombine(N, DAG, DCI, Subtarget);
995  case ISD::SUBE:
996    return PerformSUBECombine(N, DAG, DCI, Subtarget);
997  case ISD::SDIVREM:
998  case ISD::UDIVREM:
999    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
1000  case ISD::SELECT:
1001    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
1002  case ISD::AND:
1003    return PerformANDCombine(N, DAG, DCI, Subtarget);
1004  case ISD::OR:
1005    return PerformORCombine(N, DAG, DCI, Subtarget);
1006  case ISD::ADD:
1007    return PerformADDCombine(N, DAG, DCI, Subtarget);
1008  }
1009
1010  return SDValue();
1011}
1012
1013void
1014MipsTargetLowering::LowerOperationWrapper(SDNode *N,
1015                                          SmallVectorImpl<SDValue> &Results,
1016                                          SelectionDAG &DAG) const {
1017  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1018
1019  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1020    Results.push_back(Res.getValue(I));
1021}
1022
1023void
1024MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1025                                       SmallVectorImpl<SDValue> &Results,
1026                                       SelectionDAG &DAG) const {
1027  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1028
1029  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1030    Results.push_back(Res.getValue(I));
1031}
1032
1033SDValue MipsTargetLowering::
1034LowerOperation(SDValue Op, SelectionDAG &DAG) const
1035{
1036  switch (Op.getOpcode())
1037  {
1038    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
1039    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
1040    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
1041    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
1042    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
1043    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
1044    case ISD::SELECT:             return LowerSELECT(Op, DAG);
1045    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
1046    case ISD::SETCC:              return LowerSETCC(Op, DAG);
1047    case ISD::VASTART:            return LowerVASTART(Op, DAG);
1048    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
1049    case ISD::FABS:               return LowerFABS(Op, DAG);
1050    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
1051    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
1052    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
1053    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
1054    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
1055    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
1056    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
1057    case ISD::LOAD:               return LowerLOAD(Op, DAG);
1058    case ISD::STORE:              return LowerSTORE(Op, DAG);
1059    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1060    case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
1061    case ISD::ADD:                return LowerADD(Op, DAG);
1062  }
1063  return SDValue();
1064}
1065
1066//===----------------------------------------------------------------------===//
1067//  Lower helper functions
1068//===----------------------------------------------------------------------===//
1069
1070// AddLiveIn - This helper function adds the specified physical register to the
1071// MachineFunction as a live in value.  It also creates a corresponding
1072// virtual register for it.
1073static unsigned
1074AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1075{
1076  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1077  MF.getRegInfo().addLiveIn(PReg, VReg);
1078  return VReg;
1079}
1080
1081// Get fp branch code (not opcode) from condition code.
1082static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
1083  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
1084    return Mips::BRANCH_T;
1085
1086  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
1087         "Invalid CondCode.");
1088
1089  return Mips::BRANCH_F;
1090}
1091
1092/*
1093static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
1094                                        DebugLoc dl,
1095                                        const MipsSubtarget *Subtarget,
1096                                        const TargetInstrInfo *TII,
1097                                        bool isFPCmp, unsigned Opc) {
1098  // There is no need to expand CMov instructions if target has
1099  // conditional moves.
1100  if (Subtarget->hasCondMov())
1101    return BB;
1102
1103  // To "insert" a SELECT_CC instruction, we actually have to insert the
1104  // diamond control-flow pattern.  The incoming instruction knows the
1105  // destination vreg to set, the condition code register to branch on, the
1106  // true/false values to select between, and a branch opcode to use.
1107  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1108  MachineFunction::iterator It = BB;
1109  ++It;
1110
1111  //  thisMBB:
1112  //  ...
1113  //   TrueVal = ...
1114  //   setcc r1, r2, r3
1115  //   bNE   r1, r0, copy1MBB
1116  //   fallthrough --> copy0MBB
1117  MachineBasicBlock *thisMBB  = BB;
1118  MachineFunction *F = BB->getParent();
1119  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1120  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
1121  F->insert(It, copy0MBB);
1122  F->insert(It, sinkMBB);
1123
1124  // Transfer the remainder of BB and its successor edges to sinkMBB.
1125  sinkMBB->splice(sinkMBB->begin(), BB,
1126                  llvm::next(MachineBasicBlock::iterator(MI)),
1127                  BB->end());
1128  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1129
1130  // Next, add the true and fallthrough blocks as its successors.
1131  BB->addSuccessor(copy0MBB);
1132  BB->addSuccessor(sinkMBB);
1133
1134  // Emit the right instruction according to the type of the operands compared
1135  if (isFPCmp)
1136    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
1137  else
1138    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
1139      .addReg(Mips::ZERO).addMBB(sinkMBB);
1140
1141  //  copy0MBB:
1142  //   %FalseValue = ...
1143  //   # fallthrough to sinkMBB
1144  BB = copy0MBB;
1145
1146  // Update machine-CFG edges
1147  BB->addSuccessor(sinkMBB);
1148
1149  //  sinkMBB:
1150  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
1151  //  ...
1152  BB = sinkMBB;
1153
1154  if (isFPCmp)
1155    BuildMI(*BB, BB->begin(), dl,
1156            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1157      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
1158      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1159  else
1160    BuildMI(*BB, BB->begin(), dl,
1161            TII->get(Mips::PHI), MI->getOperand(0).getReg())
1162      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
1163      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
1164
1165  MI->eraseFromParent();   // The pseudo instruction is gone now.
1166  return BB;
1167}
1168*/
1169
1170MachineBasicBlock *
1171MipsTargetLowering::EmitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
1172  // $bb:
1173  //  bposge32_pseudo $vr0
1174  //  =>
1175  // $bb:
1176  //  bposge32 $tbb
1177  // $fbb:
1178  //  li $vr2, 0
1179  //  b $sink
1180  // $tbb:
1181  //  li $vr1, 1
1182  // $sink:
1183  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
1184
1185  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
1186  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1187  const TargetRegisterClass *RC = &Mips::CPURegsRegClass;
1188  DebugLoc DL = MI->getDebugLoc();
1189  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1190  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
1191  MachineFunction *F = BB->getParent();
1192  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
1193  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
1194  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
1195  F->insert(It, FBB);
1196  F->insert(It, TBB);
1197  F->insert(It, Sink);
1198
1199  // Transfer the remainder of BB and its successor edges to Sink.
1200  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
1201               BB->end());
1202  Sink->transferSuccessorsAndUpdatePHIs(BB);
1203
1204  // Add successors.
1205  BB->addSuccessor(FBB);
1206  BB->addSuccessor(TBB);
1207  FBB->addSuccessor(Sink);
1208  TBB->addSuccessor(Sink);
1209
1210  // Insert the real bposge32 instruction to $BB.
1211  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
1212
1213  // Fill $FBB.
1214  unsigned VR2 = RegInfo.createVirtualRegister(RC);
1215  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
1216    .addReg(Mips::ZERO).addImm(0);
1217  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
1218
1219  // Fill $TBB.
1220  unsigned VR1 = RegInfo.createVirtualRegister(RC);
1221  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
1222    .addReg(Mips::ZERO).addImm(1);
1223
1224  // Insert phi function to $Sink.
1225  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
1226          MI->getOperand(0).getReg())
1227    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
1228
1229  MI->eraseFromParent();   // The pseudo instruction is gone now.
1230  return Sink;
1231}
1232
1233MachineBasicBlock *
1234MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1235                                                MachineBasicBlock *BB) const {
1236  switch (MI->getOpcode()) {
1237  default: llvm_unreachable("Unexpected instr type to insert");
1238  case Mips::ATOMIC_LOAD_ADD_I8:
1239  case Mips::ATOMIC_LOAD_ADD_I8_P8:
1240    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
1241  case Mips::ATOMIC_LOAD_ADD_I16:
1242  case Mips::ATOMIC_LOAD_ADD_I16_P8:
1243    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
1244  case Mips::ATOMIC_LOAD_ADD_I32:
1245  case Mips::ATOMIC_LOAD_ADD_I32_P8:
1246    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
1247  case Mips::ATOMIC_LOAD_ADD_I64:
1248  case Mips::ATOMIC_LOAD_ADD_I64_P8:
1249    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
1250
1251  case Mips::ATOMIC_LOAD_AND_I8:
1252  case Mips::ATOMIC_LOAD_AND_I8_P8:
1253    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
1254  case Mips::ATOMIC_LOAD_AND_I16:
1255  case Mips::ATOMIC_LOAD_AND_I16_P8:
1256    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
1257  case Mips::ATOMIC_LOAD_AND_I32:
1258  case Mips::ATOMIC_LOAD_AND_I32_P8:
1259    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
1260  case Mips::ATOMIC_LOAD_AND_I64:
1261  case Mips::ATOMIC_LOAD_AND_I64_P8:
1262    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
1263
1264  case Mips::ATOMIC_LOAD_OR_I8:
1265  case Mips::ATOMIC_LOAD_OR_I8_P8:
1266    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
1267  case Mips::ATOMIC_LOAD_OR_I16:
1268  case Mips::ATOMIC_LOAD_OR_I16_P8:
1269    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
1270  case Mips::ATOMIC_LOAD_OR_I32:
1271  case Mips::ATOMIC_LOAD_OR_I32_P8:
1272    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
1273  case Mips::ATOMIC_LOAD_OR_I64:
1274  case Mips::ATOMIC_LOAD_OR_I64_P8:
1275    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
1276
1277  case Mips::ATOMIC_LOAD_XOR_I8:
1278  case Mips::ATOMIC_LOAD_XOR_I8_P8:
1279    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
1280  case Mips::ATOMIC_LOAD_XOR_I16:
1281  case Mips::ATOMIC_LOAD_XOR_I16_P8:
1282    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
1283  case Mips::ATOMIC_LOAD_XOR_I32:
1284  case Mips::ATOMIC_LOAD_XOR_I32_P8:
1285    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
1286  case Mips::ATOMIC_LOAD_XOR_I64:
1287  case Mips::ATOMIC_LOAD_XOR_I64_P8:
1288    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
1289
1290  case Mips::ATOMIC_LOAD_NAND_I8:
1291  case Mips::ATOMIC_LOAD_NAND_I8_P8:
1292    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
1293  case Mips::ATOMIC_LOAD_NAND_I16:
1294  case Mips::ATOMIC_LOAD_NAND_I16_P8:
1295    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
1296  case Mips::ATOMIC_LOAD_NAND_I32:
1297  case Mips::ATOMIC_LOAD_NAND_I32_P8:
1298    return EmitAtomicBinary(MI, BB, 4, 0, true);
1299  case Mips::ATOMIC_LOAD_NAND_I64:
1300  case Mips::ATOMIC_LOAD_NAND_I64_P8:
1301    return EmitAtomicBinary(MI, BB, 8, 0, true);
1302
1303  case Mips::ATOMIC_LOAD_SUB_I8:
1304  case Mips::ATOMIC_LOAD_SUB_I8_P8:
1305    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
1306  case Mips::ATOMIC_LOAD_SUB_I16:
1307  case Mips::ATOMIC_LOAD_SUB_I16_P8:
1308    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1309  case Mips::ATOMIC_LOAD_SUB_I32:
1310  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1311    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1312  case Mips::ATOMIC_LOAD_SUB_I64:
1313  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1314    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1315
1316  case Mips::ATOMIC_SWAP_I8:
1317  case Mips::ATOMIC_SWAP_I8_P8:
1318    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1319  case Mips::ATOMIC_SWAP_I16:
1320  case Mips::ATOMIC_SWAP_I16_P8:
1321    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1322  case Mips::ATOMIC_SWAP_I32:
1323  case Mips::ATOMIC_SWAP_I32_P8:
1324    return EmitAtomicBinary(MI, BB, 4, 0);
1325  case Mips::ATOMIC_SWAP_I64:
1326  case Mips::ATOMIC_SWAP_I64_P8:
1327    return EmitAtomicBinary(MI, BB, 8, 0);
1328
1329  case Mips::ATOMIC_CMP_SWAP_I8:
1330  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1331    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1332  case Mips::ATOMIC_CMP_SWAP_I16:
1333  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1334    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1335  case Mips::ATOMIC_CMP_SWAP_I32:
1336  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1337    return EmitAtomicCmpSwap(MI, BB, 4);
1338  case Mips::ATOMIC_CMP_SWAP_I64:
1339  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1340    return EmitAtomicCmpSwap(MI, BB, 8);
1341  case Mips::BPOSGE32_PSEUDO:
1342    return EmitBPOSGE32(MI, BB);
1343  }
1344}
1345
1346// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1347// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1348MachineBasicBlock *
1349MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1350                                     unsigned Size, unsigned BinOpcode,
1351                                     bool Nand) const {
1352  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1353
1354  MachineFunction *MF = BB->getParent();
1355  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1356  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1357  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1358  DebugLoc dl = MI->getDebugLoc();
1359  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1360
1361  if (Size == 4) {
1362    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1363    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1364    AND = Mips::AND;
1365    NOR = Mips::NOR;
1366    ZERO = Mips::ZERO;
1367    BEQ = Mips::BEQ;
1368  }
1369  else {
1370    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1371    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1372    AND = Mips::AND64;
1373    NOR = Mips::NOR64;
1374    ZERO = Mips::ZERO_64;
1375    BEQ = Mips::BEQ64;
1376  }
1377
1378  unsigned OldVal = MI->getOperand(0).getReg();
1379  unsigned Ptr = MI->getOperand(1).getReg();
1380  unsigned Incr = MI->getOperand(2).getReg();
1381
1382  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1383  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1384  unsigned Success = RegInfo.createVirtualRegister(RC);
1385
1386  // insert new blocks after the current block
1387  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1388  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1389  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1390  MachineFunction::iterator It = BB;
1391  ++It;
1392  MF->insert(It, loopMBB);
1393  MF->insert(It, exitMBB);
1394
1395  // Transfer the remainder of BB and its successor edges to exitMBB.
1396  exitMBB->splice(exitMBB->begin(), BB,
1397                  llvm::next(MachineBasicBlock::iterator(MI)),
1398                  BB->end());
1399  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1400
1401  //  thisMBB:
1402  //    ...
1403  //    fallthrough --> loopMBB
1404  BB->addSuccessor(loopMBB);
1405  loopMBB->addSuccessor(loopMBB);
1406  loopMBB->addSuccessor(exitMBB);
1407
1408  //  loopMBB:
1409  //    ll oldval, 0(ptr)
1410  //    <binop> storeval, oldval, incr
1411  //    sc success, storeval, 0(ptr)
1412  //    beq success, $0, loopMBB
1413  BB = loopMBB;
1414  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1415  if (Nand) {
1416    //  and andres, oldval, incr
1417    //  nor storeval, $0, andres
1418    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1419    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1420  } else if (BinOpcode) {
1421    //  <binop> storeval, oldval, incr
1422    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1423  } else {
1424    StoreVal = Incr;
1425  }
1426  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1427  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1428
1429  MI->eraseFromParent();   // The instruction is gone now.
1430
1431  return exitMBB;
1432}
1433
1434MachineBasicBlock *
1435MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1436                                             MachineBasicBlock *BB,
1437                                             unsigned Size, unsigned BinOpcode,
1438                                             bool Nand) const {
1439  assert((Size == 1 || Size == 2) &&
1440      "Unsupported size for EmitAtomicBinaryPartial.");
1441
1442  MachineFunction *MF = BB->getParent();
1443  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1444  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1445  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1446  DebugLoc dl = MI->getDebugLoc();
1447  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1448  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1449
1450  unsigned Dest = MI->getOperand(0).getReg();
1451  unsigned Ptr = MI->getOperand(1).getReg();
1452  unsigned Incr = MI->getOperand(2).getReg();
1453
1454  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1455  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1456  unsigned Mask = RegInfo.createVirtualRegister(RC);
1457  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1458  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1459  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1460  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1461  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1462  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1463  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1464  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1465  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1466  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1467  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1468  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1469  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1470  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1471  unsigned Success = RegInfo.createVirtualRegister(RC);
1472
1473  // insert new blocks after the current block
1474  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1475  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1476  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1477  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1478  MachineFunction::iterator It = BB;
1479  ++It;
1480  MF->insert(It, loopMBB);
1481  MF->insert(It, sinkMBB);
1482  MF->insert(It, exitMBB);
1483
1484  // Transfer the remainder of BB and its successor edges to exitMBB.
1485  exitMBB->splice(exitMBB->begin(), BB,
1486                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1487  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1488
1489  BB->addSuccessor(loopMBB);
1490  loopMBB->addSuccessor(loopMBB);
1491  loopMBB->addSuccessor(sinkMBB);
1492  sinkMBB->addSuccessor(exitMBB);
1493
1494  //  thisMBB:
1495  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1496  //    and     alignedaddr,ptr,masklsb2
1497  //    andi    ptrlsb2,ptr,3
1498  //    sll     shiftamt,ptrlsb2,3
1499  //    ori     maskupper,$0,255               # 0xff
1500  //    sll     mask,maskupper,shiftamt
1501  //    nor     mask2,$0,mask
1502  //    sll     incr2,incr,shiftamt
1503
1504  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1505  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1506    .addReg(Mips::ZERO).addImm(-4);
1507  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1508    .addReg(Ptr).addReg(MaskLSB2);
1509  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1510  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1511  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1512    .addReg(Mips::ZERO).addImm(MaskImm);
1513  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1514    .addReg(ShiftAmt).addReg(MaskUpper);
1515  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1516  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1517
1518  // atomic.load.binop
1519  // loopMBB:
1520  //   ll      oldval,0(alignedaddr)
1521  //   binop   binopres,oldval,incr2
1522  //   and     newval,binopres,mask
1523  //   and     maskedoldval0,oldval,mask2
1524  //   or      storeval,maskedoldval0,newval
1525  //   sc      success,storeval,0(alignedaddr)
1526  //   beq     success,$0,loopMBB
1527
1528  // atomic.swap
1529  // loopMBB:
1530  //   ll      oldval,0(alignedaddr)
1531  //   and     newval,incr2,mask
1532  //   and     maskedoldval0,oldval,mask2
1533  //   or      storeval,maskedoldval0,newval
1534  //   sc      success,storeval,0(alignedaddr)
1535  //   beq     success,$0,loopMBB
1536
1537  BB = loopMBB;
1538  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1539  if (Nand) {
1540    //  and andres, oldval, incr2
1541    //  nor binopres, $0, andres
1542    //  and newval, binopres, mask
1543    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1544    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1545      .addReg(Mips::ZERO).addReg(AndRes);
1546    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1547  } else if (BinOpcode) {
1548    //  <binop> binopres, oldval, incr2
1549    //  and newval, binopres, mask
1550    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1551    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1552  } else {// atomic.swap
1553    //  and newval, incr2, mask
1554    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1555  }
1556
1557  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1558    .addReg(OldVal).addReg(Mask2);
1559  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1560    .addReg(MaskedOldVal0).addReg(NewVal);
1561  BuildMI(BB, dl, TII->get(SC), Success)
1562    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1563  BuildMI(BB, dl, TII->get(Mips::BEQ))
1564    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1565
1566  //  sinkMBB:
1567  //    and     maskedoldval1,oldval,mask
1568  //    srl     srlres,maskedoldval1,shiftamt
1569  //    sll     sllres,srlres,24
1570  //    sra     dest,sllres,24
1571  BB = sinkMBB;
1572  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1573
1574  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1575    .addReg(OldVal).addReg(Mask);
1576  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1577      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1578  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1579      .addReg(SrlRes).addImm(ShiftImm);
1580  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1581      .addReg(SllRes).addImm(ShiftImm);
1582
1583  MI->eraseFromParent();   // The instruction is gone now.
1584
1585  return exitMBB;
1586}
1587
1588MachineBasicBlock *
1589MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1590                                      MachineBasicBlock *BB,
1591                                      unsigned Size) const {
1592  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1593
1594  MachineFunction *MF = BB->getParent();
1595  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1596  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1597  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1598  DebugLoc dl = MI->getDebugLoc();
1599  unsigned LL, SC, ZERO, BNE, BEQ;
1600
1601  if (Size == 4) {
1602    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1603    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1604    ZERO = Mips::ZERO;
1605    BNE = Mips::BNE;
1606    BEQ = Mips::BEQ;
1607  }
1608  else {
1609    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1610    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1611    ZERO = Mips::ZERO_64;
1612    BNE = Mips::BNE64;
1613    BEQ = Mips::BEQ64;
1614  }
1615
1616  unsigned Dest    = MI->getOperand(0).getReg();
1617  unsigned Ptr     = MI->getOperand(1).getReg();
1618  unsigned OldVal  = MI->getOperand(2).getReg();
1619  unsigned NewVal  = MI->getOperand(3).getReg();
1620
1621  unsigned Success = RegInfo.createVirtualRegister(RC);
1622
1623  // insert new blocks after the current block
1624  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1625  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1626  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1627  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1628  MachineFunction::iterator It = BB;
1629  ++It;
1630  MF->insert(It, loop1MBB);
1631  MF->insert(It, loop2MBB);
1632  MF->insert(It, exitMBB);
1633
1634  // Transfer the remainder of BB and its successor edges to exitMBB.
1635  exitMBB->splice(exitMBB->begin(), BB,
1636                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1637  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1638
1639  //  thisMBB:
1640  //    ...
1641  //    fallthrough --> loop1MBB
1642  BB->addSuccessor(loop1MBB);
1643  loop1MBB->addSuccessor(exitMBB);
1644  loop1MBB->addSuccessor(loop2MBB);
1645  loop2MBB->addSuccessor(loop1MBB);
1646  loop2MBB->addSuccessor(exitMBB);
1647
1648  // loop1MBB:
1649  //   ll dest, 0(ptr)
1650  //   bne dest, oldval, exitMBB
1651  BB = loop1MBB;
1652  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1653  BuildMI(BB, dl, TII->get(BNE))
1654    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1655
1656  // loop2MBB:
1657  //   sc success, newval, 0(ptr)
1658  //   beq success, $0, loop1MBB
1659  BB = loop2MBB;
1660  BuildMI(BB, dl, TII->get(SC), Success)
1661    .addReg(NewVal).addReg(Ptr).addImm(0);
1662  BuildMI(BB, dl, TII->get(BEQ))
1663    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1664
1665  MI->eraseFromParent();   // The instruction is gone now.
1666
1667  return exitMBB;
1668}
1669
1670MachineBasicBlock *
1671MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1672                                              MachineBasicBlock *BB,
1673                                              unsigned Size) const {
1674  assert((Size == 1 || Size == 2) &&
1675      "Unsupported size for EmitAtomicCmpSwapPartial.");
1676
1677  MachineFunction *MF = BB->getParent();
1678  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1679  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1680  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1681  DebugLoc dl = MI->getDebugLoc();
1682  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1683  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1684
1685  unsigned Dest    = MI->getOperand(0).getReg();
1686  unsigned Ptr     = MI->getOperand(1).getReg();
1687  unsigned CmpVal  = MI->getOperand(2).getReg();
1688  unsigned NewVal  = MI->getOperand(3).getReg();
1689
1690  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1691  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1692  unsigned Mask = RegInfo.createVirtualRegister(RC);
1693  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1694  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1695  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1696  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1697  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1698  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1699  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1700  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1701  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1702  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1703  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1704  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1705  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1706  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1707  unsigned Success = RegInfo.createVirtualRegister(RC);
1708
1709  // insert new blocks after the current block
1710  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1711  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1712  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1713  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1714  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1715  MachineFunction::iterator It = BB;
1716  ++It;
1717  MF->insert(It, loop1MBB);
1718  MF->insert(It, loop2MBB);
1719  MF->insert(It, sinkMBB);
1720  MF->insert(It, exitMBB);
1721
1722  // Transfer the remainder of BB and its successor edges to exitMBB.
1723  exitMBB->splice(exitMBB->begin(), BB,
1724                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1725  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1726
1727  BB->addSuccessor(loop1MBB);
1728  loop1MBB->addSuccessor(sinkMBB);
1729  loop1MBB->addSuccessor(loop2MBB);
1730  loop2MBB->addSuccessor(loop1MBB);
1731  loop2MBB->addSuccessor(sinkMBB);
1732  sinkMBB->addSuccessor(exitMBB);
1733
1734  // FIXME: computation of newval2 can be moved to loop2MBB.
1735  //  thisMBB:
1736  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1737  //    and     alignedaddr,ptr,masklsb2
1738  //    andi    ptrlsb2,ptr,3
1739  //    sll     shiftamt,ptrlsb2,3
1740  //    ori     maskupper,$0,255               # 0xff
1741  //    sll     mask,maskupper,shiftamt
1742  //    nor     mask2,$0,mask
1743  //    andi    maskedcmpval,cmpval,255
1744  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1745  //    andi    maskednewval,newval,255
1746  //    sll     shiftednewval,maskednewval,shiftamt
1747  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1748  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1749    .addReg(Mips::ZERO).addImm(-4);
1750  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1751    .addReg(Ptr).addReg(MaskLSB2);
1752  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1753  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1754  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1755    .addReg(Mips::ZERO).addImm(MaskImm);
1756  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1757    .addReg(ShiftAmt).addReg(MaskUpper);
1758  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1759  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1760    .addReg(CmpVal).addImm(MaskImm);
1761  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1762    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1763  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1764    .addReg(NewVal).addImm(MaskImm);
1765  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1766    .addReg(ShiftAmt).addReg(MaskedNewVal);
1767
1768  //  loop1MBB:
1769  //    ll      oldval,0(alginedaddr)
1770  //    and     maskedoldval0,oldval,mask
1771  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1772  BB = loop1MBB;
1773  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1774  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1775    .addReg(OldVal).addReg(Mask);
1776  BuildMI(BB, dl, TII->get(Mips::BNE))
1777    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1778
1779  //  loop2MBB:
1780  //    and     maskedoldval1,oldval,mask2
1781  //    or      storeval,maskedoldval1,shiftednewval
1782  //    sc      success,storeval,0(alignedaddr)
1783  //    beq     success,$0,loop1MBB
1784  BB = loop2MBB;
1785  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1786    .addReg(OldVal).addReg(Mask2);
1787  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1788    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1789  BuildMI(BB, dl, TII->get(SC), Success)
1790      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1791  BuildMI(BB, dl, TII->get(Mips::BEQ))
1792      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1793
1794  //  sinkMBB:
1795  //    srl     srlres,maskedoldval0,shiftamt
1796  //    sll     sllres,srlres,24
1797  //    sra     dest,sllres,24
1798  BB = sinkMBB;
1799  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1800
1801  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1802      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1803  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1804      .addReg(SrlRes).addImm(ShiftImm);
1805  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1806      .addReg(SllRes).addImm(ShiftImm);
1807
1808  MI->eraseFromParent();   // The instruction is gone now.
1809
1810  return exitMBB;
1811}
1812
1813//===----------------------------------------------------------------------===//
1814//  Misc Lower Operation implementation
1815//===----------------------------------------------------------------------===//
1816SDValue MipsTargetLowering::
1817LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1818{
1819  // The first operand is the chain, the second is the condition, the third is
1820  // the block to branch to if the condition is true.
1821  SDValue Chain = Op.getOperand(0);
1822  SDValue Dest = Op.getOperand(2);
1823  DebugLoc dl = Op.getDebugLoc();
1824
1825  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1826
1827  // Return if flag is not set by a floating point comparison.
1828  if (CondRes.getOpcode() != MipsISD::FPCmp)
1829    return Op;
1830
1831  SDValue CCNode  = CondRes.getOperand(2);
1832  Mips::CondCode CC =
1833    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1834  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1835
1836  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1837                     Dest, CondRes);
1838}
1839
1840SDValue MipsTargetLowering::
1841LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1842{
1843  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1844
1845  // Return if flag is not set by a floating point comparison.
1846  if (Cond.getOpcode() != MipsISD::FPCmp)
1847    return Op;
1848
1849  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1850                      Op.getDebugLoc());
1851}
1852
1853SDValue MipsTargetLowering::
1854LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1855{
1856  DebugLoc DL = Op.getDebugLoc();
1857  EVT Ty = Op.getOperand(0).getValueType();
1858  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1859                             Op.getOperand(0), Op.getOperand(1),
1860                             Op.getOperand(4));
1861
1862  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1863                     Op.getOperand(3));
1864}
1865
1866SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1867  SDValue Cond = CreateFPCmp(DAG, Op);
1868
1869  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1870         "Floating point operand expected.");
1871
1872  SDValue True  = DAG.getConstant(1, MVT::i32);
1873  SDValue False = DAG.getConstant(0, MVT::i32);
1874
1875  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1876}
1877
1878SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1879                                               SelectionDAG &DAG) const {
1880  // FIXME there isn't actually debug info here
1881  DebugLoc dl = Op.getDebugLoc();
1882  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1883
1884  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1885    const MipsTargetObjectFile &TLOF =
1886      (const MipsTargetObjectFile&)getObjFileLowering();
1887
1888    // %gp_rel relocation
1889    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1890      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1891                                              MipsII::MO_GPREL);
1892      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl,
1893                                      DAG.getVTList(MVT::i32), &GA, 1);
1894      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1895      return DAG.getNode(ISD::ADD, dl, MVT::i32, GPReg, GPRelNode);
1896    }
1897
1898    // %hi/%lo relocation
1899    return getAddrNonPIC(Op, DAG);
1900  }
1901
1902  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1903    return getAddrLocal(Op, DAG, HasMips64);
1904
1905  if (LargeGOT)
1906    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1907                                 MipsII::MO_GOT_LO16);
1908
1909  return getAddrGlobal(Op, DAG,
1910                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1911}
1912
1913SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1914                                              SelectionDAG &DAG) const {
1915  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1916    return getAddrNonPIC(Op, DAG);
1917
1918  return getAddrLocal(Op, DAG, HasMips64);
1919}
1920
1921SDValue MipsTargetLowering::
1922LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1923{
1924  // If the relocation model is PIC, use the General Dynamic TLS Model or
1925  // Local Dynamic TLS model, otherwise use the Initial Exec or
1926  // Local Exec TLS Model.
1927
1928  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1929  DebugLoc dl = GA->getDebugLoc();
1930  const GlobalValue *GV = GA->getGlobal();
1931  EVT PtrVT = getPointerTy();
1932
1933  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1934
1935  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1936    // General Dynamic and Local Dynamic TLS Model.
1937    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1938                                                      : MipsII::MO_TLSGD;
1939
1940    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1941    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1942                                   GetGlobalReg(DAG, PtrVT), TGA);
1943    unsigned PtrSize = PtrVT.getSizeInBits();
1944    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1945
1946    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1947
1948    ArgListTy Args;
1949    ArgListEntry Entry;
1950    Entry.Node = Argument;
1951    Entry.Ty = PtrTy;
1952    Args.push_back(Entry);
1953
1954    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1955                  false, false, false, false, 0, CallingConv::C,
1956                  /*isTailCall=*/false, /*doesNotRet=*/false,
1957                  /*isReturnValueUsed=*/true,
1958                  TlsGetAddr, Args, DAG, dl);
1959    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1960
1961    SDValue Ret = CallResult.first;
1962
1963    if (model != TLSModel::LocalDynamic)
1964      return Ret;
1965
1966    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1967                                               MipsII::MO_DTPREL_HI);
1968    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1969    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1970                                               MipsII::MO_DTPREL_LO);
1971    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1972    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1973    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1974  }
1975
1976  SDValue Offset;
1977  if (model == TLSModel::InitialExec) {
1978    // Initial Exec TLS Model
1979    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1980                                             MipsII::MO_GOTTPREL);
1981    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1982                      TGA);
1983    Offset = DAG.getLoad(PtrVT, dl,
1984                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1985                         false, false, false, 0);
1986  } else {
1987    // Local Exec TLS Model
1988    assert(model == TLSModel::LocalExec);
1989    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1990                                               MipsII::MO_TPREL_HI);
1991    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1992                                               MipsII::MO_TPREL_LO);
1993    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1994    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1995    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1996  }
1997
1998  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1999  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2000}
2001
2002SDValue MipsTargetLowering::
2003LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2004{
2005  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2006    return getAddrNonPIC(Op, DAG);
2007
2008  return getAddrLocal(Op, DAG, HasMips64);
2009}
2010
2011SDValue MipsTargetLowering::
2012LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2013{
2014  // gp_rel relocation
2015  // FIXME: we should reference the constant pool using small data sections,
2016  // but the asm printer currently doesn't support this feature without
2017  // hacking it. This feature should come soon so we can uncomment the
2018  // stuff below.
2019  //if (IsInSmallSection(C->getType())) {
2020  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
2021  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
2022  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
2023
2024  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
2025    return getAddrNonPIC(Op, DAG);
2026
2027  return getAddrLocal(Op, DAG, HasMips64);
2028}
2029
2030SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2031  MachineFunction &MF = DAG.getMachineFunction();
2032  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2033
2034  DebugLoc dl = Op.getDebugLoc();
2035  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2036                                 getPointerTy());
2037
2038  // vastart just stores the address of the VarArgsFrameIndex slot into the
2039  // memory location argument.
2040  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2041  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
2042                      MachinePointerInfo(SV), false, false, 0);
2043}
2044
2045static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2046  EVT TyX = Op.getOperand(0).getValueType();
2047  EVT TyY = Op.getOperand(1).getValueType();
2048  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2049  SDValue Const31 = DAG.getConstant(31, MVT::i32);
2050  DebugLoc DL = Op.getDebugLoc();
2051  SDValue Res;
2052
2053  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2054  // to i32.
2055  SDValue X = (TyX == MVT::f32) ?
2056    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2057    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2058                Const1);
2059  SDValue Y = (TyY == MVT::f32) ?
2060    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2061    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2062                Const1);
2063
2064  if (HasR2) {
2065    // ext  E, Y, 31, 1  ; extract bit31 of Y
2066    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
2067    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2068    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2069  } else {
2070    // sll SllX, X, 1
2071    // srl SrlX, SllX, 1
2072    // srl SrlY, Y, 31
2073    // sll SllY, SrlX, 31
2074    // or  Or, SrlX, SllY
2075    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2076    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2077    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2078    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2079    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2080  }
2081
2082  if (TyX == MVT::f32)
2083    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2084
2085  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2086                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2087  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2088}
2089
2090static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2091  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2092  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2093  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2094  SDValue Const1 = DAG.getConstant(1, MVT::i32);
2095  DebugLoc DL = Op.getDebugLoc();
2096
2097  // Bitcast to integer nodes.
2098  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2099  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2100
2101  if (HasR2) {
2102    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2103    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2104    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2105                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
2106
2107    if (WidthX > WidthY)
2108      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2109    else if (WidthY > WidthX)
2110      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2111
2112    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2113                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
2114    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2115  }
2116
2117  // (d)sll SllX, X, 1
2118  // (d)srl SrlX, SllX, 1
2119  // (d)srl SrlY, Y, width(Y)-1
2120  // (d)sll SllY, SrlX, width(Y)-1
2121  // or     Or, SrlX, SllY
2122  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2123  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2124  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2125                             DAG.getConstant(WidthY - 1, MVT::i32));
2126
2127  if (WidthX > WidthY)
2128    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2129  else if (WidthY > WidthX)
2130    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2131
2132  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2133                             DAG.getConstant(WidthX - 1, MVT::i32));
2134  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2135  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2136}
2137
2138SDValue
2139MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2140  if (Subtarget->hasMips64())
2141    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
2142
2143  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
2144}
2145
2146static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2147  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2148  DebugLoc DL = Op.getDebugLoc();
2149
2150  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2151  // to i32.
2152  SDValue X = (Op.getValueType() == MVT::f32) ?
2153    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2154    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2155                Const1);
2156
2157  // Clear MSB.
2158  if (HasR2)
2159    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2160                      DAG.getRegister(Mips::ZERO, MVT::i32),
2161                      DAG.getConstant(31, MVT::i32), Const1, X);
2162  else {
2163    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2164    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2165  }
2166
2167  if (Op.getValueType() == MVT::f32)
2168    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2169
2170  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2171                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
2172  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2173}
2174
2175static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
2176  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
2177  DebugLoc DL = Op.getDebugLoc();
2178
2179  // Bitcast to integer node.
2180  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2181
2182  // Clear MSB.
2183  if (HasR2)
2184    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2185                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
2186                      DAG.getConstant(63, MVT::i32), Const1, X);
2187  else {
2188    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2189    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2190  }
2191
2192  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2193}
2194
2195SDValue
2196MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
2197  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
2198    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
2199
2200  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
2201}
2202
2203SDValue MipsTargetLowering::
2204LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2205  // check the depth
2206  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2207         "Frame address can only be determined for current frame.");
2208
2209  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2210  MFI->setFrameAddressIsTaken(true);
2211  EVT VT = Op.getValueType();
2212  DebugLoc dl = Op.getDebugLoc();
2213  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2214                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
2215  return FrameAddr;
2216}
2217
2218SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
2219                                            SelectionDAG &DAG) const {
2220  // check the depth
2221  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
2222         "Return address can be determined only for current frame.");
2223
2224  MachineFunction &MF = DAG.getMachineFunction();
2225  MachineFrameInfo *MFI = MF.getFrameInfo();
2226  MVT VT = Op.getSimpleValueType();
2227  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
2228  MFI->setReturnAddressIsTaken(true);
2229
2230  // Return RA, which contains the return address. Mark it an implicit live-in.
2231  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2232  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2233}
2234
2235// TODO: set SType according to the desired memory barrier behavior.
2236SDValue
2237MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2238  unsigned SType = 0;
2239  DebugLoc dl = Op.getDebugLoc();
2240  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2241                     DAG.getConstant(SType, MVT::i32));
2242}
2243
2244SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2245                                              SelectionDAG &DAG) const {
2246  // FIXME: Need pseudo-fence for 'singlethread' fences
2247  // FIXME: Set SType for weaker fences where supported/appropriate.
2248  unsigned SType = 0;
2249  DebugLoc dl = Op.getDebugLoc();
2250  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2251                     DAG.getConstant(SType, MVT::i32));
2252}
2253
2254SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2255                                                SelectionDAG &DAG) const {
2256  DebugLoc DL = Op.getDebugLoc();
2257  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2258  SDValue Shamt = Op.getOperand(2);
2259
2260  // if shamt < 32:
2261  //  lo = (shl lo, shamt)
2262  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2263  // else:
2264  //  lo = 0
2265  //  hi = (shl lo, shamt[4:0])
2266  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2267                            DAG.getConstant(-1, MVT::i32));
2268  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2269                                      DAG.getConstant(1, MVT::i32));
2270  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2271                                     Not);
2272  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2273  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2274  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2275  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2276                             DAG.getConstant(0x20, MVT::i32));
2277  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2278                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2279  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2280
2281  SDValue Ops[2] = {Lo, Hi};
2282  return DAG.getMergeValues(Ops, 2, DL);
2283}
2284
2285SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2286                                                 bool IsSRA) const {
2287  DebugLoc DL = Op.getDebugLoc();
2288  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2289  SDValue Shamt = Op.getOperand(2);
2290
2291  // if shamt < 32:
2292  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2293  //  if isSRA:
2294  //    hi = (sra hi, shamt)
2295  //  else:
2296  //    hi = (srl hi, shamt)
2297  // else:
2298  //  if isSRA:
2299  //   lo = (sra hi, shamt[4:0])
2300  //   hi = (sra hi, 31)
2301  //  else:
2302  //   lo = (srl hi, shamt[4:0])
2303  //   hi = 0
2304  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2305                            DAG.getConstant(-1, MVT::i32));
2306  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2307                                     DAG.getConstant(1, MVT::i32));
2308  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2309  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2310  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2311  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2312                                     Hi, Shamt);
2313  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2314                             DAG.getConstant(0x20, MVT::i32));
2315  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2316                                DAG.getConstant(31, MVT::i32));
2317  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2318  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2319                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2320                   ShiftRightHi);
2321
2322  SDValue Ops[2] = {Lo, Hi};
2323  return DAG.getMergeValues(Ops, 2, DL);
2324}
2325
2326static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2327                            SDValue Chain, SDValue Src, unsigned Offset) {
2328  SDValue Ptr = LD->getBasePtr();
2329  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2330  EVT BasePtrVT = Ptr.getValueType();
2331  DebugLoc DL = LD->getDebugLoc();
2332  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2333
2334  if (Offset)
2335    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2336                      DAG.getConstant(Offset, BasePtrVT));
2337
2338  SDValue Ops[] = { Chain, Ptr, Src };
2339  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2340                                 LD->getMemOperand());
2341}
2342
2343// Expand an unaligned 32 or 64-bit integer load node.
2344SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2345  LoadSDNode *LD = cast<LoadSDNode>(Op);
2346  EVT MemVT = LD->getMemoryVT();
2347
2348  // Return if load is aligned or if MemVT is neither i32 nor i64.
2349  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2350      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2351    return SDValue();
2352
2353  bool IsLittle = Subtarget->isLittle();
2354  EVT VT = Op.getValueType();
2355  ISD::LoadExtType ExtType = LD->getExtensionType();
2356  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2357
2358  assert((VT == MVT::i32) || (VT == MVT::i64));
2359
2360  // Expand
2361  //  (set dst, (i64 (load baseptr)))
2362  // to
2363  //  (set tmp, (ldl (add baseptr, 7), undef))
2364  //  (set dst, (ldr baseptr, tmp))
2365  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2366    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2367                               IsLittle ? 7 : 0);
2368    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2369                        IsLittle ? 0 : 7);
2370  }
2371
2372  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2373                             IsLittle ? 3 : 0);
2374  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2375                             IsLittle ? 0 : 3);
2376
2377  // Expand
2378  //  (set dst, (i32 (load baseptr))) or
2379  //  (set dst, (i64 (sextload baseptr))) or
2380  //  (set dst, (i64 (extload baseptr)))
2381  // to
2382  //  (set tmp, (lwl (add baseptr, 3), undef))
2383  //  (set dst, (lwr baseptr, tmp))
2384  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2385      (ExtType == ISD::EXTLOAD))
2386    return LWR;
2387
2388  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2389
2390  // Expand
2391  //  (set dst, (i64 (zextload baseptr)))
2392  // to
2393  //  (set tmp0, (lwl (add baseptr, 3), undef))
2394  //  (set tmp1, (lwr baseptr, tmp0))
2395  //  (set tmp2, (shl tmp1, 32))
2396  //  (set dst, (srl tmp2, 32))
2397  DebugLoc DL = LD->getDebugLoc();
2398  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2399  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2400  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2401  SDValue Ops[] = { SRL, LWR.getValue(1) };
2402  return DAG.getMergeValues(Ops, 2, DL);
2403}
2404
2405static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2406                             SDValue Chain, unsigned Offset) {
2407  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2408  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2409  DebugLoc DL = SD->getDebugLoc();
2410  SDVTList VTList = DAG.getVTList(MVT::Other);
2411
2412  if (Offset)
2413    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2414                      DAG.getConstant(Offset, BasePtrVT));
2415
2416  SDValue Ops[] = { Chain, Value, Ptr };
2417  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2418                                 SD->getMemOperand());
2419}
2420
2421// Expand an unaligned 32 or 64-bit integer store node.
2422SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2423  StoreSDNode *SD = cast<StoreSDNode>(Op);
2424  EVT MemVT = SD->getMemoryVT();
2425
2426  // Return if store is aligned or if MemVT is neither i32 nor i64.
2427  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2428      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2429    return SDValue();
2430
2431  bool IsLittle = Subtarget->isLittle();
2432  SDValue Value = SD->getValue(), Chain = SD->getChain();
2433  EVT VT = Value.getValueType();
2434
2435  // Expand
2436  //  (store val, baseptr) or
2437  //  (truncstore val, baseptr)
2438  // to
2439  //  (swl val, (add baseptr, 3))
2440  //  (swr val, baseptr)
2441  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2442    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2443                                IsLittle ? 3 : 0);
2444    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2445  }
2446
2447  assert(VT == MVT::i64);
2448
2449  // Expand
2450  //  (store val, baseptr)
2451  // to
2452  //  (sdl val, (add baseptr, 7))
2453  //  (sdr val, baseptr)
2454  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2455  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2456}
2457
2458// This function expands mips intrinsic nodes which have 64-bit input operands
2459// or output values.
2460//
2461// out64 = intrinsic-node in64
2462// =>
2463// lo = copy (extract-element (in64, 0))
2464// hi = copy (extract-element (in64, 1))
2465// mips-specific-node
2466// v0 = copy lo
2467// v1 = copy hi
2468// out64 = merge-values (v0, v1)
2469//
2470static SDValue LowerDSPIntr(SDValue Op, SelectionDAG &DAG,
2471                            unsigned Opc, bool HasI64In, bool HasI64Out) {
2472  DebugLoc DL = Op.getDebugLoc();
2473  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
2474  SDValue Chain = HasChainIn ? Op->getOperand(0) : DAG.getEntryNode();
2475  SmallVector<SDValue, 3> Ops;
2476
2477  if (HasI64In) {
2478    SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2479                               Op->getOperand(1 + HasChainIn),
2480                               DAG.getConstant(0, MVT::i32));
2481    SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2482                               Op->getOperand(1 + HasChainIn),
2483                               DAG.getConstant(1, MVT::i32));
2484
2485    Chain = DAG.getCopyToReg(Chain, DL, Mips::LO, InLo, SDValue());
2486    Chain = DAG.getCopyToReg(Chain, DL, Mips::HI, InHi, Chain.getValue(1));
2487
2488    Ops.push_back(Chain);
2489    Ops.append(Op->op_begin() + HasChainIn + 2, Op->op_end());
2490    Ops.push_back(Chain.getValue(1));
2491  } else {
2492    Ops.push_back(Chain);
2493    Ops.append(Op->op_begin() + HasChainIn + 1, Op->op_end());
2494  }
2495
2496  if (!HasI64Out)
2497    return DAG.getNode(Opc, DL, Op->value_begin(), Op->getNumValues(),
2498                       Ops.begin(), Ops.size());
2499
2500  SDValue Intr = DAG.getNode(Opc, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2501                             Ops.begin(), Ops.size());
2502  SDValue OutLo = DAG.getCopyFromReg(Intr.getValue(0), DL, Mips::LO, MVT::i32,
2503                                     Intr.getValue(1));
2504  SDValue OutHi = DAG.getCopyFromReg(OutLo.getValue(1), DL, Mips::HI, MVT::i32,
2505                                     OutLo.getValue(2));
2506  SDValue Out = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, OutLo, OutHi);
2507
2508  if (!HasChainIn)
2509    return Out;
2510
2511  SDValue Vals[] = { Out, OutHi.getValue(1) };
2512  return DAG.getMergeValues(Vals, 2, DL);
2513}
2514
2515SDValue MipsTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2516                                                    SelectionDAG &DAG) const {
2517  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
2518  default:
2519    return SDValue();
2520  case Intrinsic::mips_shilo:
2521    return LowerDSPIntr(Op, DAG, MipsISD::SHILO, true, true);
2522  case Intrinsic::mips_dpau_h_qbl:
2523    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL, true, true);
2524  case Intrinsic::mips_dpau_h_qbr:
2525    return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR, true, true);
2526  case Intrinsic::mips_dpsu_h_qbl:
2527    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL, true, true);
2528  case Intrinsic::mips_dpsu_h_qbr:
2529    return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR, true, true);
2530  case Intrinsic::mips_dpa_w_ph:
2531    return LowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH, true, true);
2532  case Intrinsic::mips_dps_w_ph:
2533    return LowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH, true, true);
2534  case Intrinsic::mips_dpax_w_ph:
2535    return LowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH, true, true);
2536  case Intrinsic::mips_dpsx_w_ph:
2537    return LowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH, true, true);
2538  case Intrinsic::mips_mulsa_w_ph:
2539    return LowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH, true, true);
2540  case Intrinsic::mips_mult:
2541    return LowerDSPIntr(Op, DAG, MipsISD::MULT, false, true);
2542  case Intrinsic::mips_multu:
2543    return LowerDSPIntr(Op, DAG, MipsISD::MULTU, false, true);
2544  case Intrinsic::mips_madd:
2545    return LowerDSPIntr(Op, DAG, MipsISD::MADD_DSP, true, true);
2546  case Intrinsic::mips_maddu:
2547    return LowerDSPIntr(Op, DAG, MipsISD::MADDU_DSP, true, true);
2548  case Intrinsic::mips_msub:
2549    return LowerDSPIntr(Op, DAG, MipsISD::MSUB_DSP, true, true);
2550  case Intrinsic::mips_msubu:
2551    return LowerDSPIntr(Op, DAG, MipsISD::MSUBU_DSP, true, true);
2552  }
2553}
2554
2555SDValue MipsTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2556                                                   SelectionDAG &DAG) const {
2557  switch (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue()) {
2558  default:
2559    return SDValue();
2560  case Intrinsic::mips_extp:
2561    return LowerDSPIntr(Op, DAG, MipsISD::EXTP, true, false);
2562  case Intrinsic::mips_extpdp:
2563    return LowerDSPIntr(Op, DAG, MipsISD::EXTPDP, true, false);
2564  case Intrinsic::mips_extr_w:
2565    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_W, true, false);
2566  case Intrinsic::mips_extr_r_w:
2567    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W, true, false);
2568  case Intrinsic::mips_extr_rs_w:
2569    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W, true, false);
2570  case Intrinsic::mips_extr_s_h:
2571    return LowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H, true, false);
2572  case Intrinsic::mips_mthlip:
2573    return LowerDSPIntr(Op, DAG, MipsISD::MTHLIP, true, true);
2574  case Intrinsic::mips_mulsaq_s_w_ph:
2575    return LowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH, true, true);
2576  case Intrinsic::mips_maq_s_w_phl:
2577    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL, true, true);
2578  case Intrinsic::mips_maq_s_w_phr:
2579    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR, true, true);
2580  case Intrinsic::mips_maq_sa_w_phl:
2581    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL, true, true);
2582  case Intrinsic::mips_maq_sa_w_phr:
2583    return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR, true, true);
2584  case Intrinsic::mips_dpaq_s_w_ph:
2585    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH, true, true);
2586  case Intrinsic::mips_dpsq_s_w_ph:
2587    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH, true, true);
2588  case Intrinsic::mips_dpaq_sa_l_w:
2589    return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W, true, true);
2590  case Intrinsic::mips_dpsq_sa_l_w:
2591    return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W, true, true);
2592  case Intrinsic::mips_dpaqx_s_w_ph:
2593    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH, true, true);
2594  case Intrinsic::mips_dpaqx_sa_w_ph:
2595    return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH, true, true);
2596  case Intrinsic::mips_dpsqx_s_w_ph:
2597    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH, true, true);
2598  case Intrinsic::mips_dpsqx_sa_w_ph:
2599    return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH, true, true);
2600  }
2601}
2602
2603SDValue MipsTargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
2604  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2605      || cast<ConstantSDNode>
2606        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2607      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2608    return SDValue();
2609
2610  // The pattern
2611  //   (add (frameaddr 0), (frame_to_args_offset))
2612  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2613  //   (add FrameObject, 0)
2614  // where FrameObject is a fixed StackObject with offset 0 which points to
2615  // the old stack pointer.
2616  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2617  EVT ValTy = Op->getValueType(0);
2618  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2619  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2620  return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
2621                     DAG.getConstant(0, ValTy));
2622}
2623
2624//===----------------------------------------------------------------------===//
2625//                      Calling Convention Implementation
2626//===----------------------------------------------------------------------===//
2627
2628//===----------------------------------------------------------------------===//
2629// TODO: Implement a generic logic using tblgen that can support this.
2630// Mips O32 ABI rules:
2631// ---
2632// i32 - Passed in A0, A1, A2, A3 and stack
2633// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2634//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2635// f64 - Only passed in two aliased f32 registers if no int reg has been used
2636//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2637//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2638//       go to stack.
2639//
2640//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2641//===----------------------------------------------------------------------===//
2642
2643static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2644                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2645                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2646
2647  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2648
2649  static const uint16_t IntRegs[] = {
2650      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2651  };
2652  static const uint16_t F32Regs[] = {
2653      Mips::F12, Mips::F14
2654  };
2655  static const uint16_t F64Regs[] = {
2656      Mips::D6, Mips::D7
2657  };
2658
2659  // Do not process byval args here.
2660  if (ArgFlags.isByVal())
2661    return true;
2662
2663  // Promote i8 and i16
2664  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2665    LocVT = MVT::i32;
2666    if (ArgFlags.isSExt())
2667      LocInfo = CCValAssign::SExt;
2668    else if (ArgFlags.isZExt())
2669      LocInfo = CCValAssign::ZExt;
2670    else
2671      LocInfo = CCValAssign::AExt;
2672  }
2673
2674  unsigned Reg;
2675
2676  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2677  // is true: function is vararg, argument is 3rd or higher, there is previous
2678  // argument which is not f32 or f64.
2679  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2680      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2681  unsigned OrigAlign = ArgFlags.getOrigAlign();
2682  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2683
2684  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2685    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2686    // If this is the first part of an i64 arg,
2687    // the allocated register must be either A0 or A2.
2688    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2689      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2690    LocVT = MVT::i32;
2691  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2692    // Allocate int register and shadow next int register. If first
2693    // available register is Mips::A1 or Mips::A3, shadow it too.
2694    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2695    if (Reg == Mips::A1 || Reg == Mips::A3)
2696      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2697    State.AllocateReg(IntRegs, IntRegsSize);
2698    LocVT = MVT::i32;
2699  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2700    // we are guaranteed to find an available float register
2701    if (ValVT == MVT::f32) {
2702      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2703      // Shadow int register
2704      State.AllocateReg(IntRegs, IntRegsSize);
2705    } else {
2706      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2707      // Shadow int registers
2708      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2709      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2710        State.AllocateReg(IntRegs, IntRegsSize);
2711      State.AllocateReg(IntRegs, IntRegsSize);
2712    }
2713  } else
2714    llvm_unreachable("Cannot handle this ValVT.");
2715
2716  if (!Reg) {
2717    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2718                                          OrigAlign);
2719    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2720  } else
2721    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2722
2723  return false;
2724}
2725
2726#include "MipsGenCallingConv.inc"
2727
2728//===----------------------------------------------------------------------===//
2729//                  Call Calling Convention Implementation
2730//===----------------------------------------------------------------------===//
2731
2732static const unsigned O32IntRegsSize = 4;
2733
2734// Return next O32 integer argument register.
2735static unsigned getNextIntArgReg(unsigned Reg) {
2736  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2737  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2738}
2739
2740/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2741/// for tail call optimization.
2742bool MipsTargetLowering::
2743IsEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
2744                                  unsigned NextStackOffset,
2745                                  const MipsFunctionInfo& FI) const {
2746  if (!EnableMipsTailCalls)
2747    return false;
2748
2749  // No tail call optimization for mips16.
2750  if (Subtarget->inMips16Mode())
2751    return false;
2752
2753  // Return false if either the callee or caller has a byval argument.
2754  if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
2755    return false;
2756
2757  // Return true if the callee's argument area is no larger than the
2758  // caller's.
2759  return NextStackOffset <= FI.getIncomingArgSize();
2760}
2761
2762SDValue
2763MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2764                                   SDValue Chain, SDValue Arg, DebugLoc DL,
2765                                   bool IsTailCall, SelectionDAG &DAG) const {
2766  if (!IsTailCall) {
2767    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2768                                 DAG.getIntPtrConstant(Offset));
2769    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2770                        false, 0);
2771  }
2772
2773  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2774  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2775  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2776  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2777                      /*isVolatile=*/ true, false, 0);
2778}
2779
2780//
2781// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
2782// cleaner way to do all of this but it will have to wait until the traditional
2783// gcc mechanism is completed.
2784//
2785// For Pic, in order for Mips16 code to call Mips32 code which according the abi
2786// have either arguments or returned values placed in floating point registers,
2787// we use a set of helper functions. (This includes functions which return type
2788//  complex which on Mips are returned in a pair of floating point registers).
2789//
2790// This is an encoding that we inherited from gcc.
2791// In Mips traditional O32, N32 ABI, floating point numbers are passed in
2792// floating point argument registers 1,2 only when the first and optionally
2793// the second arguments are float (sf) or double (df).
2794// For Mips16 we are only concerned with the situations where floating point
2795// arguments are being passed in floating point registers by the ABI, because
2796// Mips16 mode code cannot execute floating point instructions to load those
2797// values and hence helper functions are needed.
2798// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
2799// the helper function suffixs for these are:
2800//                        0,  1,    5,        9,         2,   6,        10
2801// this suffix can then be calculated as follows:
2802// for a given argument Arg:
2803//     Arg1x, Arg2x = 1 :  Arg is sf
2804//                    2 :  Arg is df
2805//                    0:   Arg is neither sf or df
2806// So this stub is the string for number Arg1x + Arg2x*4.
2807// However not all numbers between 0 and 10 are possible, we check anyway and
2808// assert if the impossible exists.
2809//
2810
2811unsigned int MipsTargetLowering::getMips16HelperFunctionStubNumber
2812  (ArgListTy &Args) const {
2813  unsigned int resultNum = 0;
2814  if (Args.size() >= 1) {
2815    Type *t = Args[0].Ty;
2816    if (t->isFloatTy()) {
2817      resultNum = 1;
2818    }
2819    else if (t->isDoubleTy()) {
2820      resultNum = 2;
2821    }
2822  }
2823  if (resultNum) {
2824    if (Args.size() >=2) {
2825      Type *t = Args[1].Ty;
2826      if (t->isFloatTy()) {
2827        resultNum += 4;
2828      }
2829      else if (t->isDoubleTy()) {
2830        resultNum += 8;
2831      }
2832    }
2833  }
2834  return resultNum;
2835}
2836
2837//
2838// prefixs are attached to stub numbers depending on the return type .
2839// return type: float  sf_
2840//              double df_
2841//              single complex sc_
2842//              double complext dc_
2843//              others  NO PREFIX
2844//
2845//
2846// The full name of a helper function is__mips16_call_stub +
2847//    return type dependent prefix + stub number
2848//
2849//
2850// This is something that probably should be in a different source file and
2851// perhaps done differently but my main purpose is to not waste runtime
2852// on something that we can enumerate in the source. Another possibility is
2853// to have a python script to generate these mapping tables. This will do
2854// for now. There are a whole series of helper function mapping arrays, one
2855// for each return type class as outlined above. There there are 11 possible
2856//  entries. Ones with 0 are ones which should never be selected
2857//
2858// All the arrays are similar except for ones which return neither
2859// sf, df, sc, dc, in which only care about ones which have sf or df as a
2860// first parameter.
2861//
2862#define P_ "__mips16_call_stub_"
2863#define MAX_STUB_NUMBER 10
2864#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
2865#define T P "0" , T1
2866#define P P_
2867static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
2868  {0, T1 };
2869#undef P
2870#define P P_ "sf_"
2871static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
2872  { T };
2873#undef P
2874#define P P_ "df_"
2875static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
2876  { T };
2877#undef P
2878#define P P_ "sc_"
2879static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
2880  { T };
2881#undef P
2882#define P P_ "dc_"
2883static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
2884  { T };
2885#undef P
2886#undef P_
2887
2888
2889const char* MipsTargetLowering::
2890  getMips16HelperFunction
2891    (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
2892  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
2893#ifndef NDEBUG
2894  const unsigned int maxStubNum = 10;
2895  assert(stubNum <= maxStubNum);
2896  const bool validStubNum[maxStubNum+1] =
2897    {true, true, true, false, false, true, true, false, false, true, true};
2898  assert(validStubNum[stubNum]);
2899#endif
2900  const char *result;
2901  if (RetTy->isFloatTy()) {
2902    result = sfMips16Helper[stubNum];
2903  }
2904  else if (RetTy ->isDoubleTy()) {
2905    result = dfMips16Helper[stubNum];
2906  }
2907  else if (RetTy->isStructTy()) {
2908    // check if it's complex
2909    if (RetTy->getNumContainedTypes() == 2) {
2910      if ((RetTy->getContainedType(0)->isFloatTy()) &&
2911          (RetTy->getContainedType(1)->isFloatTy())) {
2912        result = scMips16Helper[stubNum];
2913      }
2914      else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
2915               (RetTy->getContainedType(1)->isDoubleTy())) {
2916        result = dcMips16Helper[stubNum];
2917      }
2918      else {
2919        llvm_unreachable("Uncovered condition");
2920      }
2921    }
2922    else {
2923      llvm_unreachable("Uncovered condition");
2924    }
2925  }
2926  else {
2927    if (stubNum == 0) {
2928      needHelper = false;
2929      return "";
2930    }
2931    result = vMips16Helper[stubNum];
2932  }
2933  needHelper = true;
2934  return result;
2935}
2936
2937/// LowerCall - functions arguments are copied from virtual regs to
2938/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2939SDValue
2940MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2941                              SmallVectorImpl<SDValue> &InVals) const {
2942  SelectionDAG &DAG                     = CLI.DAG;
2943  DebugLoc &dl                          = CLI.DL;
2944  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2945  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2946  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2947  SDValue Chain                         = CLI.Chain;
2948  SDValue Callee                        = CLI.Callee;
2949  bool &isTailCall                      = CLI.IsTailCall;
2950  CallingConv::ID CallConv              = CLI.CallConv;
2951  bool isVarArg                         = CLI.IsVarArg;
2952
2953  const char* mips16HelperFunction = 0;
2954  bool needMips16Helper = false;
2955
2956  if (Subtarget->inMips16Mode() && getTargetMachine().Options.UseSoftFloat &&
2957      Mips16HardFloat) {
2958    //
2959    // currently we don't have symbols tagged with the mips16 or mips32
2960    // qualifier so we will assume that we don't know what kind it is.
2961    // and generate the helper
2962    //
2963    bool lookupHelper = true;
2964    if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2965      if (noHelperNeeded.find(S->getSymbol()) != noHelperNeeded.end()) {
2966        lookupHelper = false;
2967      }
2968    }
2969    if (lookupHelper) mips16HelperFunction =
2970      getMips16HelperFunction(CLI.RetTy, CLI.Args, needMips16Helper);
2971
2972  }
2973  MachineFunction &MF = DAG.getMachineFunction();
2974  MachineFrameInfo *MFI = MF.getFrameInfo();
2975  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2976  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2977
2978  // Analyze operands of the call, assigning locations to each operand.
2979  SmallVector<CCValAssign, 16> ArgLocs;
2980  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2981                 getTargetMachine(), ArgLocs, *DAG.getContext());
2982  MipsCC MipsCCInfo(CallConv, isVarArg, IsO32, CCInfo);
2983
2984  MipsCCInfo.analyzeCallOperands(Outs);
2985
2986  // Get a count of how many bytes are to be pushed on the stack.
2987  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2988
2989  // Check if it's really possible to do a tail call.
2990  if (isTailCall)
2991    isTailCall =
2992      IsEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2993                                        *MF.getInfo<MipsFunctionInfo>());
2994
2995  if (isTailCall)
2996    ++NumTailCalls;
2997
2998  // Chain is the output chain of the last Load/Store or CopyToReg node.
2999  // ByValChain is the output chain of the last Memcpy node created for copying
3000  // byval arguments to the stack.
3001  unsigned StackAlignment = TFL->getStackAlignment();
3002  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
3003  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
3004
3005  if (!isTailCall)
3006    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
3007
3008  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
3009                                        IsN64 ? Mips::SP_64 : Mips::SP,
3010                                        getPointerTy());
3011
3012  // With EABI is it possible to have 16 args on registers.
3013  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
3014  SmallVector<SDValue, 8> MemOpChains;
3015  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3016
3017  // Walk the register/memloc assignments, inserting copies/loads.
3018  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3019    SDValue Arg = OutVals[i];
3020    CCValAssign &VA = ArgLocs[i];
3021    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3022    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3023
3024    // ByVal Arg.
3025    if (Flags.isByVal()) {
3026      assert(Flags.getByValSize() &&
3027             "ByVal args of size 0 should have been ignored by front-end.");
3028      assert(ByValArg != MipsCCInfo.byval_end());
3029      assert(!isTailCall &&
3030             "Do not tail-call optimize if there is a byval argument.");
3031      passByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3032                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
3033      ++ByValArg;
3034      continue;
3035    }
3036
3037    // Promote the value if needed.
3038    switch (VA.getLocInfo()) {
3039    default: llvm_unreachable("Unknown loc info!");
3040    case CCValAssign::Full:
3041      if (VA.isRegLoc()) {
3042        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3043            (ValVT == MVT::f64 && LocVT == MVT::i64))
3044          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
3045        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3046          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3047                                   Arg, DAG.getConstant(0, MVT::i32));
3048          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
3049                                   Arg, DAG.getConstant(1, MVT::i32));
3050          if (!Subtarget->isLittle())
3051            std::swap(Lo, Hi);
3052          unsigned LocRegLo = VA.getLocReg();
3053          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3054          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3055          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3056          continue;
3057        }
3058      }
3059      break;
3060    case CCValAssign::SExt:
3061      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
3062      break;
3063    case CCValAssign::ZExt:
3064      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
3065      break;
3066    case CCValAssign::AExt:
3067      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
3068      break;
3069    }
3070
3071    // Arguments that can be passed on register must be kept at
3072    // RegsToPass vector
3073    if (VA.isRegLoc()) {
3074      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3075      continue;
3076    }
3077
3078    // Register can't get to this point...
3079    assert(VA.isMemLoc());
3080
3081    // emit ISD::STORE whichs stores the
3082    // parameter value to a stack Location
3083    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3084                                         Chain, Arg, dl, isTailCall, DAG));
3085  }
3086
3087  // Transform all store nodes into one single node because all store
3088  // nodes are independent of each other.
3089  if (!MemOpChains.empty())
3090    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3091                        &MemOpChains[0], MemOpChains.size());
3092
3093  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3094  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3095  // node so that legalize doesn't hack it.
3096  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
3097  bool GlobalOrExternal = false, InternalLinkage = false;
3098  SDValue CalleeLo;
3099
3100  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3101    if (IsPICCall) {
3102      InternalLinkage = G->getGlobal()->hasInternalLinkage();
3103
3104      if (InternalLinkage)
3105        Callee = getAddrLocal(Callee, DAG, HasMips64);
3106      else if (LargeGOT)
3107        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
3108                                       MipsII::MO_CALL_LO16);
3109      else
3110        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
3111    } else
3112      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
3113                                          MipsII::MO_NO_FLAG);
3114    GlobalOrExternal = true;
3115  }
3116  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3117    if (!IsN64 && !IsPIC) // !N64 && static
3118      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
3119                                            MipsII::MO_NO_FLAG);
3120    else if (LargeGOT)
3121      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
3122                                     MipsII::MO_CALL_LO16);
3123    else if (HasMips64)
3124      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_DISP);
3125    else // O32 & PIC
3126      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
3127
3128    GlobalOrExternal = true;
3129  }
3130
3131  SDValue JumpTarget = Callee;
3132
3133  // T9 should contain the address of the callee function if
3134  // -reloction-model=pic or it is an indirect call.
3135  if (IsPICCall || !GlobalOrExternal) {
3136    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
3137    unsigned V0Reg = Mips::V0;
3138    if (needMips16Helper) {
3139      RegsToPass.push_front(std::make_pair(V0Reg, Callee));
3140      JumpTarget = DAG.getExternalSymbol(
3141        mips16HelperFunction, getPointerTy());
3142      JumpTarget = getAddrGlobal(JumpTarget, DAG, MipsII::MO_GOT);
3143    }
3144    else {
3145      RegsToPass.push_front(std::make_pair(T9Reg, Callee));
3146
3147      if (!Subtarget->inMips16Mode())
3148        JumpTarget = SDValue();
3149    }
3150  }
3151
3152  // Insert node "GP copy globalreg" before call to function.
3153  //
3154  // R_MIPS_CALL* operators (emitted when non-internal functions are called
3155  // in PIC mode) allow symbols to be resolved via lazy binding.
3156  // The lazy binding stub requires GP to point to the GOT.
3157  if (IsPICCall && !InternalLinkage) {
3158    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
3159    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
3160    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
3161  }
3162
3163  // Build a sequence of copy-to-reg nodes chained together with token
3164  // chain and flag operands which copy the outgoing args into registers.
3165  // The InFlag in necessary since all emitted instructions must be
3166  // stuck together.
3167  SDValue InFlag;
3168
3169  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3170    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3171                             RegsToPass[i].second, InFlag);
3172    InFlag = Chain.getValue(1);
3173  }
3174
3175  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
3176  //             = Chain, Callee, Reg#1, Reg#2, ...
3177  //
3178  // Returns a chain & a flag for retval copy to use.
3179  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3180  SmallVector<SDValue, 8> Ops(1, Chain);
3181
3182  if (JumpTarget.getNode())
3183    Ops.push_back(JumpTarget);
3184
3185  // Add argument registers to the end of the list so that they are
3186  // known live into the call.
3187  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3188    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3189                                  RegsToPass[i].second.getValueType()));
3190
3191  // Add a register mask operand representing the call-preserved registers.
3192  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3193  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3194  assert(Mask && "Missing call preserved mask for calling convention");
3195  Ops.push_back(DAG.getRegisterMask(Mask));
3196
3197  if (InFlag.getNode())
3198    Ops.push_back(InFlag);
3199
3200  if (isTailCall)
3201    return DAG.getNode(MipsISD::TailCall, dl, MVT::Other, &Ops[0], Ops.size());
3202
3203  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
3204  InFlag = Chain.getValue(1);
3205
3206  // Create the CALLSEQ_END node.
3207  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3208                             DAG.getIntPtrConstant(0, true), InFlag);
3209  InFlag = Chain.getValue(1);
3210
3211  // Handle result values, copying them out of physregs into vregs that we
3212  // return.
3213  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3214                         Ins, dl, DAG, InVals);
3215}
3216
3217/// LowerCallResult - Lower the result values of a call into the
3218/// appropriate copies out of appropriate physical registers.
3219SDValue
3220MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3221                                    CallingConv::ID CallConv, bool isVarArg,
3222                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3223                                    DebugLoc dl, SelectionDAG &DAG,
3224                                    SmallVectorImpl<SDValue> &InVals) const {
3225  // Assign locations to each value returned by this call.
3226  SmallVector<CCValAssign, 16> RVLocs;
3227  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3228                 getTargetMachine(), RVLocs, *DAG.getContext());
3229
3230  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
3231
3232  // Copy all of the result registers out of their specified physreg.
3233  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3234    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
3235                               RVLocs[i].getValVT(), InFlag).getValue(1);
3236    InFlag = Chain.getValue(2);
3237    InVals.push_back(Chain.getValue(0));
3238  }
3239
3240  return Chain;
3241}
3242
3243//===----------------------------------------------------------------------===//
3244//             Formal Arguments Calling Convention Implementation
3245//===----------------------------------------------------------------------===//
3246/// LowerFormalArguments - transform physical registers into virtual registers
3247/// and generate load operations for arguments places on the stack.
3248SDValue
3249MipsTargetLowering::LowerFormalArguments(SDValue Chain,
3250                                         CallingConv::ID CallConv,
3251                                         bool isVarArg,
3252                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3253                                         DebugLoc dl, SelectionDAG &DAG,
3254                                         SmallVectorImpl<SDValue> &InVals)
3255                                          const {
3256  MachineFunction &MF = DAG.getMachineFunction();
3257  MachineFrameInfo *MFI = MF.getFrameInfo();
3258  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3259
3260  MipsFI->setVarArgsFrameIndex(0);
3261
3262  // Used with vargs to acumulate store chains.
3263  std::vector<SDValue> OutChains;
3264
3265  // Assign locations to all of the incoming arguments.
3266  SmallVector<CCValAssign, 16> ArgLocs;
3267  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3268                 getTargetMachine(), ArgLocs, *DAG.getContext());
3269  MipsCC MipsCCInfo(CallConv, isVarArg, IsO32, CCInfo);
3270
3271  MipsCCInfo.analyzeFormalArguments(Ins);
3272  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3273                           MipsCCInfo.hasByValArg());
3274
3275  Function::const_arg_iterator FuncArg =
3276    DAG.getMachineFunction().getFunction()->arg_begin();
3277  unsigned CurArgIdx = 0;
3278  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
3279
3280  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3281    CCValAssign &VA = ArgLocs[i];
3282    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
3283    CurArgIdx = Ins[i].OrigArgIndex;
3284    EVT ValVT = VA.getValVT();
3285    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3286    bool IsRegLoc = VA.isRegLoc();
3287
3288    if (Flags.isByVal()) {
3289      assert(Flags.getByValSize() &&
3290             "ByVal args of size 0 should have been ignored by front-end.");
3291      assert(ByValArg != MipsCCInfo.byval_end());
3292      copyByValRegs(Chain, dl, OutChains, DAG, Flags, InVals, &*FuncArg,
3293                    MipsCCInfo, *ByValArg);
3294      ++ByValArg;
3295      continue;
3296    }
3297
3298    // Arguments stored on registers
3299    if (IsRegLoc) {
3300      EVT RegVT = VA.getLocVT();
3301      unsigned ArgReg = VA.getLocReg();
3302      const TargetRegisterClass *RC;
3303
3304      if (RegVT == MVT::i32)
3305        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
3306                                        &Mips::CPURegsRegClass;
3307      else if (RegVT == MVT::i64)
3308        RC = &Mips::CPU64RegsRegClass;
3309      else if (RegVT == MVT::f32)
3310        RC = &Mips::FGR32RegClass;
3311      else if (RegVT == MVT::f64)
3312        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3313      else
3314        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3315
3316      // Transform the arguments stored on
3317      // physical registers into virtual ones
3318      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3319      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3320
3321      // If this is an 8 or 16-bit value, it has been passed promoted
3322      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3323      // truncate to the right size.
3324      if (VA.getLocInfo() != CCValAssign::Full) {
3325        unsigned Opcode = 0;
3326        if (VA.getLocInfo() == CCValAssign::SExt)
3327          Opcode = ISD::AssertSext;
3328        else if (VA.getLocInfo() == CCValAssign::ZExt)
3329          Opcode = ISD::AssertZext;
3330        if (Opcode)
3331          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3332                                 DAG.getValueType(ValVT));
3333        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3334      }
3335
3336      // Handle floating point arguments passed in integer registers.
3337      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3338          (RegVT == MVT::i64 && ValVT == MVT::f64))
3339        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3340      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3341        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3342                                  getNextIntArgReg(ArgReg), RC);
3343        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3344        if (!Subtarget->isLittle())
3345          std::swap(ArgValue, ArgValue2);
3346        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3347                               ArgValue, ArgValue2);
3348      }
3349
3350      InVals.push_back(ArgValue);
3351    } else { // VA.isRegLoc()
3352
3353      // sanity check
3354      assert(VA.isMemLoc());
3355
3356      // The stack pointer offset is relative to the caller stack frame.
3357      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3358                                      VA.getLocMemOffset(), true);
3359
3360      // Create load nodes to retrieve arguments from the stack
3361      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3362      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3363                                   MachinePointerInfo::getFixedStack(FI),
3364                                   false, false, false, 0));
3365    }
3366  }
3367
3368  // The mips ABIs for returning structs by value requires that we copy
3369  // the sret argument into $v0 for the return. Save the argument into
3370  // a virtual register so that we can access it from the return points.
3371  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3372    unsigned Reg = MipsFI->getSRetReturnReg();
3373    if (!Reg) {
3374      Reg = MF.getRegInfo().
3375        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
3376      MipsFI->setSRetReturnReg(Reg);
3377    }
3378    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3379    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3380  }
3381
3382  if (isVarArg)
3383    writeVarArgRegs(OutChains, MipsCCInfo, Chain, dl, DAG);
3384
3385  // All stores are grouped in one node to allow the matching between
3386  // the size of Ins and InVals. This only happens when on varg functions
3387  if (!OutChains.empty()) {
3388    OutChains.push_back(Chain);
3389    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3390                        &OutChains[0], OutChains.size());
3391  }
3392
3393  return Chain;
3394}
3395
3396//===----------------------------------------------------------------------===//
3397//               Return Value Calling Convention Implementation
3398//===----------------------------------------------------------------------===//
3399
3400bool
3401MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3402                                   MachineFunction &MF, bool isVarArg,
3403                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3404                                   LLVMContext &Context) const {
3405  SmallVector<CCValAssign, 16> RVLocs;
3406  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3407                 RVLocs, Context);
3408  return CCInfo.CheckReturn(Outs, RetCC_Mips);
3409}
3410
3411SDValue
3412MipsTargetLowering::LowerReturn(SDValue Chain,
3413                                CallingConv::ID CallConv, bool isVarArg,
3414                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3415                                const SmallVectorImpl<SDValue> &OutVals,
3416                                DebugLoc dl, SelectionDAG &DAG) const {
3417
3418  // CCValAssign - represent the assignment of
3419  // the return value to a location
3420  SmallVector<CCValAssign, 16> RVLocs;
3421
3422  // CCState - Info about the registers and stack slot.
3423  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3424                 getTargetMachine(), RVLocs, *DAG.getContext());
3425
3426  // Analize return values.
3427  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3428
3429  // If this is the first return lowered for this function, add
3430  // the regs to the liveout set for the function.
3431  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3432    for (unsigned i = 0; i != RVLocs.size(); ++i)
3433      if (RVLocs[i].isRegLoc())
3434        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3435  }
3436
3437  SDValue Flag;
3438
3439  // Copy the result values into the output registers.
3440  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3441    CCValAssign &VA = RVLocs[i];
3442    assert(VA.isRegLoc() && "Can only return in registers!");
3443
3444    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3445
3446    // guarantee that all emitted copies are
3447    // stuck together, avoiding something bad
3448    Flag = Chain.getValue(1);
3449  }
3450
3451  // The mips ABIs for returning structs by value requires that we copy
3452  // the sret argument into $v0 for the return. We saved the argument into
3453  // a virtual register in the entry block, so now we copy the value out
3454  // and into $v0.
3455  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3456    MachineFunction &MF      = DAG.getMachineFunction();
3457    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3458    unsigned Reg = MipsFI->getSRetReturnReg();
3459
3460    if (!Reg)
3461      llvm_unreachable("sret virtual register not created in the entry block");
3462    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3463    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
3464
3465    Chain = DAG.getCopyToReg(Chain, dl, V0, Val, Flag);
3466    Flag = Chain.getValue(1);
3467    MF.getRegInfo().addLiveOut(V0);
3468  }
3469
3470  // Return on Mips is always a "jr $ra"
3471  if (Flag.getNode())
3472    return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain, Flag);
3473
3474  // Return Void
3475  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain);
3476}
3477
3478//===----------------------------------------------------------------------===//
3479//                           Mips Inline Assembly Support
3480//===----------------------------------------------------------------------===//
3481
3482/// getConstraintType - Given a constraint letter, return the type of
3483/// constraint it is for this target.
3484MipsTargetLowering::ConstraintType MipsTargetLowering::
3485getConstraintType(const std::string &Constraint) const
3486{
3487  // Mips specific constrainy
3488  // GCC config/mips/constraints.md
3489  //
3490  // 'd' : An address register. Equivalent to r
3491  //       unless generating MIPS16 code.
3492  // 'y' : Equivalent to r; retained for
3493  //       backwards compatibility.
3494  // 'c' : A register suitable for use in an indirect
3495  //       jump. This will always be $25 for -mabicalls.
3496  // 'l' : The lo register. 1 word storage.
3497  // 'x' : The hilo register pair. Double word storage.
3498  if (Constraint.size() == 1) {
3499    switch (Constraint[0]) {
3500      default : break;
3501      case 'd':
3502      case 'y':
3503      case 'f':
3504      case 'c':
3505      case 'l':
3506      case 'x':
3507        return C_RegisterClass;
3508    }
3509  }
3510  return TargetLowering::getConstraintType(Constraint);
3511}
3512
3513/// Examine constraint type and operand type and determine a weight value.
3514/// This object must already have been set up with the operand type
3515/// and the current alternative constraint selected.
3516TargetLowering::ConstraintWeight
3517MipsTargetLowering::getSingleConstraintMatchWeight(
3518    AsmOperandInfo &info, const char *constraint) const {
3519  ConstraintWeight weight = CW_Invalid;
3520  Value *CallOperandVal = info.CallOperandVal;
3521    // If we don't have a value, we can't do a match,
3522    // but allow it at the lowest weight.
3523  if (CallOperandVal == NULL)
3524    return CW_Default;
3525  Type *type = CallOperandVal->getType();
3526  // Look at the constraint type.
3527  switch (*constraint) {
3528  default:
3529    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3530    break;
3531  case 'd':
3532  case 'y':
3533    if (type->isIntegerTy())
3534      weight = CW_Register;
3535    break;
3536  case 'f':
3537    if (type->isFloatTy())
3538      weight = CW_Register;
3539    break;
3540  case 'c': // $25 for indirect jumps
3541  case 'l': // lo register
3542  case 'x': // hilo register pair
3543      if (type->isIntegerTy())
3544      weight = CW_SpecificReg;
3545      break;
3546  case 'I': // signed 16 bit immediate
3547  case 'J': // integer zero
3548  case 'K': // unsigned 16 bit immediate
3549  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3550  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3551  case 'O': // signed 15 bit immediate (+- 16383)
3552  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3553    if (isa<ConstantInt>(CallOperandVal))
3554      weight = CW_Constant;
3555    break;
3556  }
3557  return weight;
3558}
3559
3560/// Given a register class constraint, like 'r', if this corresponds directly
3561/// to an LLVM register class, return a register of 0 and the register class
3562/// pointer.
3563std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3564getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3565{
3566  if (Constraint.size() == 1) {
3567    switch (Constraint[0]) {
3568    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3569    case 'y': // Same as 'r'. Exists for compatibility.
3570    case 'r':
3571      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3572        if (Subtarget->inMips16Mode())
3573          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3574        return std::make_pair(0U, &Mips::CPURegsRegClass);
3575      }
3576      if (VT == MVT::i64 && !HasMips64)
3577        return std::make_pair(0U, &Mips::CPURegsRegClass);
3578      if (VT == MVT::i64 && HasMips64)
3579        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3580      // This will generate an error message
3581      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3582    case 'f':
3583      if (VT == MVT::f32)
3584        return std::make_pair(0U, &Mips::FGR32RegClass);
3585      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3586        if (Subtarget->isFP64bit())
3587          return std::make_pair(0U, &Mips::FGR64RegClass);
3588        return std::make_pair(0U, &Mips::AFGR64RegClass);
3589      }
3590      break;
3591    case 'c': // register suitable for indirect jump
3592      if (VT == MVT::i32)
3593        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3594      assert(VT == MVT::i64 && "Unexpected type.");
3595      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3596    case 'l': // register suitable for indirect jump
3597      if (VT == MVT::i32)
3598        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3599      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3600    case 'x': // register suitable for indirect jump
3601      // Fixme: Not triggering the use of both hi and low
3602      // This will generate an error message
3603      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3604    }
3605  }
3606  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3607}
3608
3609/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3610/// vector.  If it is invalid, don't add anything to Ops.
3611void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3612                                                     std::string &Constraint,
3613                                                     std::vector<SDValue>&Ops,
3614                                                     SelectionDAG &DAG) const {
3615  SDValue Result(0, 0);
3616
3617  // Only support length 1 constraints for now.
3618  if (Constraint.length() > 1) return;
3619
3620  char ConstraintLetter = Constraint[0];
3621  switch (ConstraintLetter) {
3622  default: break; // This will fall through to the generic implementation
3623  case 'I': // Signed 16 bit constant
3624    // If this fails, the parent routine will give an error
3625    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3626      EVT Type = Op.getValueType();
3627      int64_t Val = C->getSExtValue();
3628      if (isInt<16>(Val)) {
3629        Result = DAG.getTargetConstant(Val, Type);
3630        break;
3631      }
3632    }
3633    return;
3634  case 'J': // integer zero
3635    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3636      EVT Type = Op.getValueType();
3637      int64_t Val = C->getZExtValue();
3638      if (Val == 0) {
3639        Result = DAG.getTargetConstant(0, Type);
3640        break;
3641      }
3642    }
3643    return;
3644  case 'K': // unsigned 16 bit immediate
3645    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3646      EVT Type = Op.getValueType();
3647      uint64_t Val = (uint64_t)C->getZExtValue();
3648      if (isUInt<16>(Val)) {
3649        Result = DAG.getTargetConstant(Val, Type);
3650        break;
3651      }
3652    }
3653    return;
3654  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3655    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3656      EVT Type = Op.getValueType();
3657      int64_t Val = C->getSExtValue();
3658      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3659        Result = DAG.getTargetConstant(Val, Type);
3660        break;
3661      }
3662    }
3663    return;
3664  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3665    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3666      EVT Type = Op.getValueType();
3667      int64_t Val = C->getSExtValue();
3668      if ((Val >= -65535) && (Val <= -1)) {
3669        Result = DAG.getTargetConstant(Val, Type);
3670        break;
3671      }
3672    }
3673    return;
3674  case 'O': // signed 15 bit immediate
3675    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3676      EVT Type = Op.getValueType();
3677      int64_t Val = C->getSExtValue();
3678      if ((isInt<15>(Val))) {
3679        Result = DAG.getTargetConstant(Val, Type);
3680        break;
3681      }
3682    }
3683    return;
3684  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3685    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3686      EVT Type = Op.getValueType();
3687      int64_t Val = C->getSExtValue();
3688      if ((Val <= 65535) && (Val >= 1)) {
3689        Result = DAG.getTargetConstant(Val, Type);
3690        break;
3691      }
3692    }
3693    return;
3694  }
3695
3696  if (Result.getNode()) {
3697    Ops.push_back(Result);
3698    return;
3699  }
3700
3701  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3702}
3703
3704bool
3705MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3706  // No global is ever allowed as a base.
3707  if (AM.BaseGV)
3708    return false;
3709
3710  switch (AM.Scale) {
3711  case 0: // "r+i" or just "i", depending on HasBaseReg.
3712    break;
3713  case 1:
3714    if (!AM.HasBaseReg) // allow "r+i".
3715      break;
3716    return false; // disallow "r+r" or "r+r+i".
3717  default:
3718    return false;
3719  }
3720
3721  return true;
3722}
3723
3724bool
3725MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3726  // The Mips target isn't yet aware of offsets.
3727  return false;
3728}
3729
3730EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3731                                            unsigned SrcAlign,
3732                                            bool IsMemset, bool ZeroMemset,
3733                                            bool MemcpyStrSrc,
3734                                            MachineFunction &MF) const {
3735  if (Subtarget->hasMips64())
3736    return MVT::i64;
3737
3738  return MVT::i32;
3739}
3740
3741bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3742  if (VT != MVT::f32 && VT != MVT::f64)
3743    return false;
3744  if (Imm.isNegZero())
3745    return false;
3746  return Imm.isZero();
3747}
3748
3749unsigned MipsTargetLowering::getJumpTableEncoding() const {
3750  if (IsN64)
3751    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3752
3753  return TargetLowering::getJumpTableEncoding();
3754}
3755
3756MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CallConv, bool IsVarArg,
3757                                   bool IsO32, CCState &Info) : CCInfo(Info) {
3758  UseRegsForByval = true;
3759
3760  if (IsO32) {
3761    RegSize = 4;
3762    NumIntArgRegs = array_lengthof(O32IntRegs);
3763    ReservedArgArea = 16;
3764    IntArgRegs = ShadowRegs = O32IntRegs;
3765    FixedFn = VarFn = CC_MipsO32;
3766  } else {
3767    RegSize = 8;
3768    NumIntArgRegs = array_lengthof(Mips64IntRegs);
3769    ReservedArgArea = 0;
3770    IntArgRegs = Mips64IntRegs;
3771    ShadowRegs = Mips64DPRegs;
3772    FixedFn = CC_MipsN;
3773    VarFn = CC_MipsN_VarArg;
3774  }
3775
3776  if (CallConv == CallingConv::Fast) {
3777    assert(!IsVarArg);
3778    UseRegsForByval = false;
3779    ReservedArgArea = 0;
3780    FixedFn = VarFn = CC_Mips_FastCC;
3781  }
3782
3783  // Pre-allocate reserved argument area.
3784  CCInfo.AllocateStack(ReservedArgArea, 1);
3785}
3786
3787void MipsTargetLowering::MipsCC::
3788analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args) {
3789  unsigned NumOpnds = Args.size();
3790
3791  for (unsigned I = 0; I != NumOpnds; ++I) {
3792    MVT ArgVT = Args[I].VT;
3793    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3794    bool R;
3795
3796    if (ArgFlags.isByVal()) {
3797      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3798      continue;
3799    }
3800
3801    if (Args[I].IsFixed)
3802      R = FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3803    else
3804      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3805
3806    if (R) {
3807#ifndef NDEBUG
3808      dbgs() << "Call operand #" << I << " has unhandled type "
3809             << EVT(ArgVT).getEVTString();
3810#endif
3811      llvm_unreachable(0);
3812    }
3813  }
3814}
3815
3816void MipsTargetLowering::MipsCC::
3817analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args) {
3818  unsigned NumArgs = Args.size();
3819
3820  for (unsigned I = 0; I != NumArgs; ++I) {
3821    MVT ArgVT = Args[I].VT;
3822    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3823
3824    if (ArgFlags.isByVal()) {
3825      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3826      continue;
3827    }
3828
3829    if (!FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
3830      continue;
3831
3832#ifndef NDEBUG
3833    dbgs() << "Formal Arg #" << I << " has unhandled type "
3834           << EVT(ArgVT).getEVTString();
3835#endif
3836    llvm_unreachable(0);
3837  }
3838}
3839
3840void
3841MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3842                                           MVT LocVT,
3843                                           CCValAssign::LocInfo LocInfo,
3844                                           ISD::ArgFlagsTy ArgFlags) {
3845  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3846
3847  struct ByValArgInfo ByVal;
3848  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3849  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3850                            RegSize * 2);
3851
3852  if (UseRegsForByval)
3853    allocateRegs(ByVal, ByValSize, Align);
3854
3855  // Allocate space on caller's stack.
3856  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3857                                       Align);
3858  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3859                                    LocInfo));
3860  ByValArgs.push_back(ByVal);
3861}
3862
3863void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3864                                              unsigned ByValSize,
3865                                              unsigned Align) {
3866  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3867         "Byval argument's size and alignment should be a multiple of"
3868         "RegSize.");
3869
3870  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3871
3872  // If Align > RegSize, the first arg register must be even.
3873  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3874    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3875    ++ByVal.FirstIdx;
3876  }
3877
3878  // Mark the registers allocated.
3879  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3880       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3881    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3882}
3883
3884void MipsTargetLowering::
3885copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
3886              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3887              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3888              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3889  MachineFunction &MF = DAG.getMachineFunction();
3890  MachineFrameInfo *MFI = MF.getFrameInfo();
3891  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3892  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3893  int FrameObjOffset;
3894
3895  if (RegAreaSize)
3896    FrameObjOffset = (int)CC.reservedArgArea() -
3897      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3898  else
3899    FrameObjOffset = ByVal.Address;
3900
3901  // Create frame object.
3902  EVT PtrTy = getPointerTy();
3903  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3904  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3905  InVals.push_back(FIN);
3906
3907  if (!ByVal.NumRegs)
3908    return;
3909
3910  // Copy arg registers.
3911  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3912  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3913
3914  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3915    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3916    unsigned VReg = AddLiveIn(MF, ArgReg, RC);
3917    unsigned Offset = I * CC.regSize();
3918    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3919                                   DAG.getConstant(Offset, PtrTy));
3920    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3921                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3922                                 false, false, 0);
3923    OutChains.push_back(Store);
3924  }
3925}
3926
3927// Copy byVal arg to registers and stack.
3928void MipsTargetLowering::
3929passByValArg(SDValue Chain, DebugLoc DL,
3930             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3931             SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
3932             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3933             const MipsCC &CC, const ByValArgInfo &ByVal,
3934             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3935  unsigned ByValSize = Flags.getByValSize();
3936  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3937  unsigned RegSize = CC.regSize();
3938  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3939  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3940
3941  if (ByVal.NumRegs) {
3942    const uint16_t *ArgRegs = CC.intArgRegs();
3943    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3944    unsigned I = 0;
3945
3946    // Copy words to registers.
3947    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3948      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3949                                    DAG.getConstant(Offset, PtrTy));
3950      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3951                                    MachinePointerInfo(), false, false, false,
3952                                    Alignment);
3953      MemOpChains.push_back(LoadVal.getValue(1));
3954      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3955      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3956    }
3957
3958    // Return if the struct has been fully copied.
3959    if (ByValSize == Offset)
3960      return;
3961
3962    // Copy the remainder of the byval argument with sub-word loads and shifts.
3963    if (LeftoverBytes) {
3964      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3965             "Size of the remainder should be smaller than RegSize.");
3966      SDValue Val;
3967
3968      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3969           Offset < ByValSize; LoadSize /= 2) {
3970        unsigned RemSize = ByValSize - Offset;
3971
3972        if (RemSize < LoadSize)
3973          continue;
3974
3975        // Load subword.
3976        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3977                                      DAG.getConstant(Offset, PtrTy));
3978        SDValue LoadVal =
3979          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3980                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3981                         false, false, Alignment);
3982        MemOpChains.push_back(LoadVal.getValue(1));
3983
3984        // Shift the loaded value.
3985        unsigned Shamt;
3986
3987        if (isLittle)
3988          Shamt = TotalSizeLoaded;
3989        else
3990          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3991
3992        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3993                                    DAG.getConstant(Shamt, MVT::i32));
3994
3995        if (Val.getNode())
3996          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3997        else
3998          Val = Shift;
3999
4000        Offset += LoadSize;
4001        TotalSizeLoaded += LoadSize;
4002        Alignment = std::min(Alignment, LoadSize);
4003      }
4004
4005      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
4006      RegsToPass.push_back(std::make_pair(ArgReg, Val));
4007      return;
4008    }
4009  }
4010
4011  // Copy remainder of byval arg to it with memcpy.
4012  unsigned MemCpySize = ByValSize - Offset;
4013  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4014                            DAG.getConstant(Offset, PtrTy));
4015  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4016                            DAG.getIntPtrConstant(ByVal.Address));
4017  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
4018                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
4019                        /*isVolatile=*/false, /*AlwaysInline=*/false,
4020                        MachinePointerInfo(0), MachinePointerInfo(0));
4021  MemOpChains.push_back(Chain);
4022}
4023
4024void
4025MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4026                                    const MipsCC &CC, SDValue Chain,
4027                                    DebugLoc DL, SelectionDAG &DAG) const {
4028  unsigned NumRegs = CC.numIntArgRegs();
4029  const uint16_t *ArgRegs = CC.intArgRegs();
4030  const CCState &CCInfo = CC.getCCInfo();
4031  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
4032  unsigned RegSize = CC.regSize();
4033  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
4034  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4035  MachineFunction &MF = DAG.getMachineFunction();
4036  MachineFrameInfo *MFI = MF.getFrameInfo();
4037  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4038
4039  // Offset of the first variable argument from stack pointer.
4040  int VaArgOffset;
4041
4042  if (NumRegs == Idx)
4043    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
4044  else
4045    VaArgOffset =
4046      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
4047
4048  // Record the frame index of the first variable argument
4049  // which is a value necessary to VASTART.
4050  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
4051  MipsFI->setVarArgsFrameIndex(FI);
4052
4053  // Copy the integer registers that have not been used for argument passing
4054  // to the argument register save area. For O32, the save area is allocated
4055  // in the caller's stack frame, while for N32/64, it is allocated in the
4056  // callee's stack frame.
4057  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
4058    unsigned Reg = AddLiveIn(MF, ArgRegs[I], RC);
4059    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4060    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
4061    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
4062    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
4063                                 MachinePointerInfo(), false, false, 0);
4064    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
4065    OutChains.push_back(Store);
4066  }
4067}
4068