MipsISelLowering.cpp revision c93822901aef17aaf8bb1303f27b47025fd1d582
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#define DEBUG_TYPE "mips-lower"
15#include "MipsISelLowering.h"
16#include "InstPrinter/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37
38using namespace llvm;
39
40STATISTIC(NumTailCalls, "Number of tail calls");
41
42static cl::opt<bool>
43LargeGOT("mxgot", cl::Hidden,
44         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
45
46static cl::opt<bool>
47NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
48               cl::desc("MIPS: Don't trap on integer division by zero."),
49               cl::init(false));
50
51static const uint16_t O32IntRegs[4] = {
52  Mips::A0, Mips::A1, Mips::A2, Mips::A3
53};
54
55static const uint16_t Mips64IntRegs[8] = {
56  Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
57  Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
58};
59
60static const uint16_t Mips64DPRegs[8] = {
61  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
62  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
63};
64
65// If I is a shifted mask, set the size (Size) and the first bit of the
66// mask (Pos), and return true.
67// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
68static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
69  if (!isShiftedMask_64(I))
70     return false;
71
72  Size = CountPopulation_64(I);
73  Pos = countTrailingZeros(I);
74  return true;
75}
76
77SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
78  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
79  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
80}
81
82static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
83  EVT Ty = Op.getValueType();
84
85  if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
86    return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(Op), Ty, 0,
87                                      Flag);
88  if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
89    return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
90  if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
91    return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
92  if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
93    return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
94  if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
95    return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
96                                     N->getOffset(), Flag);
97
98  llvm_unreachable("Unexpected node type.");
99  return SDValue();
100}
101
102static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
103  SDLoc DL(Op);
104  EVT Ty = Op.getValueType();
105  SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
106  SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
107  return DAG.getNode(ISD::ADD, DL, Ty,
108                     DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
109                     DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
110}
111
112SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
113                                         bool HasMips64) const {
114  SDLoc DL(Op);
115  EVT Ty = Op.getValueType();
116  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
117  SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
118                            getTargetNode(Op, DAG, GOTFlag));
119  SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
120                             MachinePointerInfo::getGOT(), false, false, false,
121                             0);
122  unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
123  SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
124  return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
125}
126
127SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
128                                          unsigned Flag) const {
129  SDLoc DL(Op);
130  EVT Ty = Op.getValueType();
131  SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
132                            getTargetNode(Op, DAG, Flag));
133  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
134                     MachinePointerInfo::getGOT(), false, false, false, 0);
135}
136
137SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
138                                                  unsigned HiFlag,
139                                                  unsigned LoFlag) const {
140  SDLoc DL(Op);
141  EVT Ty = Op.getValueType();
142  SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
143  Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
144  SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
145                                getTargetNode(Op, DAG, LoFlag));
146  return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
147                     MachinePointerInfo::getGOT(), false, false, false, 0);
148}
149
150const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
151  switch (Opcode) {
152  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
153  case MipsISD::TailCall:          return "MipsISD::TailCall";
154  case MipsISD::Hi:                return "MipsISD::Hi";
155  case MipsISD::Lo:                return "MipsISD::Lo";
156  case MipsISD::GPRel:             return "MipsISD::GPRel";
157  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
158  case MipsISD::Ret:               return "MipsISD::Ret";
159  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
160  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
161  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
162  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
163  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
164  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
165  case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
166  case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
167  case MipsISD::Mult:              return "MipsISD::Mult";
168  case MipsISD::Multu:             return "MipsISD::Multu";
169  case MipsISD::MAdd:              return "MipsISD::MAdd";
170  case MipsISD::MAddu:             return "MipsISD::MAddu";
171  case MipsISD::MSub:              return "MipsISD::MSub";
172  case MipsISD::MSubu:             return "MipsISD::MSubu";
173  case MipsISD::DivRem:            return "MipsISD::DivRem";
174  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
175  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
176  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
177  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
178  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
179  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
180  case MipsISD::Sync:              return "MipsISD::Sync";
181  case MipsISD::Ext:               return "MipsISD::Ext";
182  case MipsISD::Ins:               return "MipsISD::Ins";
183  case MipsISD::LWL:               return "MipsISD::LWL";
184  case MipsISD::LWR:               return "MipsISD::LWR";
185  case MipsISD::SWL:               return "MipsISD::SWL";
186  case MipsISD::SWR:               return "MipsISD::SWR";
187  case MipsISD::LDL:               return "MipsISD::LDL";
188  case MipsISD::LDR:               return "MipsISD::LDR";
189  case MipsISD::SDL:               return "MipsISD::SDL";
190  case MipsISD::SDR:               return "MipsISD::SDR";
191  case MipsISD::EXTP:              return "MipsISD::EXTP";
192  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
193  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
194  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
195  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
196  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
197  case MipsISD::SHILO:             return "MipsISD::SHILO";
198  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
199  case MipsISD::MULT:              return "MipsISD::MULT";
200  case MipsISD::MULTU:             return "MipsISD::MULTU";
201  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
202  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
203  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
204  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
205  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
206  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
207  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
208  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
209  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
210  default:                         return NULL;
211  }
212}
213
214MipsTargetLowering::
215MipsTargetLowering(MipsTargetMachine &TM)
216  : TargetLowering(TM, new MipsTargetObjectFile()),
217    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
218    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
219    IsO32(Subtarget->isABI_O32()) {
220  // Mips does not have i1 type, so use i32 for
221  // setcc operations results (slt, sgt, ...).
222  setBooleanContents(ZeroOrOneBooleanContent);
223  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
224
225  // Load extented operations for i1 types must be promoted
226  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
227  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
228  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
229
230  // MIPS doesn't have extending float->double load/store
231  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
232  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
233
234  // Used by legalize types to correctly generate the setcc result.
235  // Without this, every float setcc comes with a AND/OR with the result,
236  // we don't want this, since the fpcmp result goes to a flag register,
237  // which is used implicitly by brcond and select operations.
238  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
239
240  // Mips Custom Operations
241  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
242  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
243  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
244  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
245  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
246  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
247  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
248  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
249  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
250  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
251  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
252  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
253  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
254  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
255  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
256  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
257  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
258  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
259
260  if (!TM.Options.NoNaNsFPMath) {
261    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
262    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
263  }
264
265  if (HasMips64) {
266    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
267    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
268    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
269    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
270    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
271    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
272    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
273    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
274    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
275  }
276
277  if (!HasMips64) {
278    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
279    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
280    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
281  }
282
283  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
284  if (HasMips64)
285    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
286
287  setOperationAction(ISD::SDIV, MVT::i32, Expand);
288  setOperationAction(ISD::SREM, MVT::i32, Expand);
289  setOperationAction(ISD::UDIV, MVT::i32, Expand);
290  setOperationAction(ISD::UREM, MVT::i32, Expand);
291  setOperationAction(ISD::SDIV, MVT::i64, Expand);
292  setOperationAction(ISD::SREM, MVT::i64, Expand);
293  setOperationAction(ISD::UDIV, MVT::i64, Expand);
294  setOperationAction(ISD::UREM, MVT::i64, Expand);
295
296  // Operations not directly supported by Mips.
297  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
298  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
299  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
300  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
301  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
302  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
303  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
304  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
305  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
306  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
307  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
308  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
309  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
310  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
311  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
312  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
313  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
314  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
315  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
316  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
317  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
318  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
319
320  if (!Subtarget->hasMips32r2())
321    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
322
323  if (!Subtarget->hasMips64r2())
324    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
325
326  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
327  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
328  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
329  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
330  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
331  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
332  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
333  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
334  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
335  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
336  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
337  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
338  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
339  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
340  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
341  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
342  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
343
344  if (!TM.Options.NoNaNsFPMath) {
345    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
346    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
347  }
348
349  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
350  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
351  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
352  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
353
354  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
355
356  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
357  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
358  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
359
360  // Use the default for now
361  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
362  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
363
364  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
365  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
366  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
367  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
368
369  setInsertFencesForAtomic(true);
370
371  if (!Subtarget->hasSEInReg()) {
372    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
373    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
374  }
375
376  if (!Subtarget->hasBitCount()) {
377    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
378    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
379  }
380
381  if (!Subtarget->hasSwap()) {
382    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
383    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
384  }
385
386  if (HasMips64) {
387    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
388    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
389    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
390    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
391  }
392
393  setTargetDAGCombine(ISD::SDIVREM);
394  setTargetDAGCombine(ISD::UDIVREM);
395  setTargetDAGCombine(ISD::SELECT);
396  setTargetDAGCombine(ISD::AND);
397  setTargetDAGCombine(ISD::OR);
398  setTargetDAGCombine(ISD::ADD);
399
400  setMinFunctionAlignment(HasMips64 ? 3 : 2);
401
402  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
403
404  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
405  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
406
407  MaxStoresPerMemcpy = 16;
408}
409
410const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
411  if (TM.getSubtargetImpl()->inMips16Mode())
412    return llvm::createMips16TargetLowering(TM);
413
414  return llvm::createMipsSETargetLowering(TM);
415}
416
417EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
418  if (!VT.isVector())
419    return MVT::i32;
420  return VT.changeVectorElementTypeToInteger();
421}
422
423static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
424                                    TargetLowering::DAGCombinerInfo &DCI,
425                                    const MipsSubtarget *Subtarget) {
426  if (DCI.isBeforeLegalizeOps())
427    return SDValue();
428
429  EVT Ty = N->getValueType(0);
430  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
431  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
432  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
433                                                  MipsISD::DivRemU16;
434  SDLoc DL(N);
435
436  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
437                               N->getOperand(0), N->getOperand(1));
438  SDValue InChain = DAG.getEntryNode();
439  SDValue InGlue = DivRem;
440
441  // insert MFLO
442  if (N->hasAnyUseOfValue(0)) {
443    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
444                                            InGlue);
445    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
446    InChain = CopyFromLo.getValue(1);
447    InGlue = CopyFromLo.getValue(2);
448  }
449
450  // insert MFHI
451  if (N->hasAnyUseOfValue(1)) {
452    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
453                                            HI, Ty, InGlue);
454    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
455  }
456
457  return SDValue();
458}
459
460static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
461  switch (CC) {
462  default: llvm_unreachable("Unknown fp condition code!");
463  case ISD::SETEQ:
464  case ISD::SETOEQ: return Mips::FCOND_OEQ;
465  case ISD::SETUNE: return Mips::FCOND_UNE;
466  case ISD::SETLT:
467  case ISD::SETOLT: return Mips::FCOND_OLT;
468  case ISD::SETGT:
469  case ISD::SETOGT: return Mips::FCOND_OGT;
470  case ISD::SETLE:
471  case ISD::SETOLE: return Mips::FCOND_OLE;
472  case ISD::SETGE:
473  case ISD::SETOGE: return Mips::FCOND_OGE;
474  case ISD::SETULT: return Mips::FCOND_ULT;
475  case ISD::SETULE: return Mips::FCOND_ULE;
476  case ISD::SETUGT: return Mips::FCOND_UGT;
477  case ISD::SETUGE: return Mips::FCOND_UGE;
478  case ISD::SETUO:  return Mips::FCOND_UN;
479  case ISD::SETO:   return Mips::FCOND_OR;
480  case ISD::SETNE:
481  case ISD::SETONE: return Mips::FCOND_ONE;
482  case ISD::SETUEQ: return Mips::FCOND_UEQ;
483  }
484}
485
486
487/// This function returns true if the floating point conditional branches and
488/// conditional moves which use condition code CC should be inverted.
489static bool invertFPCondCodeUser(Mips::CondCode CC) {
490  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
491    return false;
492
493  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
494         "Illegal Condition Code");
495
496  return true;
497}
498
499// Creates and returns an FPCmp node from a setcc node.
500// Returns Op if setcc is not a floating point comparison.
501static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
502  // must be a SETCC node
503  if (Op.getOpcode() != ISD::SETCC)
504    return Op;
505
506  SDValue LHS = Op.getOperand(0);
507
508  if (!LHS.getValueType().isFloatingPoint())
509    return Op;
510
511  SDValue RHS = Op.getOperand(1);
512  SDLoc DL(Op);
513
514  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
515  // node if necessary.
516  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
517
518  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
519                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
520}
521
522// Creates and returns a CMovFPT/F node.
523static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
524                            SDValue False, SDLoc DL) {
525  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
526  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
527
528  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
529                     True.getValueType(), True, False, Cond);
530}
531
532static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
533                                    TargetLowering::DAGCombinerInfo &DCI,
534                                    const MipsSubtarget *Subtarget) {
535  if (DCI.isBeforeLegalizeOps())
536    return SDValue();
537
538  SDValue SetCC = N->getOperand(0);
539
540  if ((SetCC.getOpcode() != ISD::SETCC) ||
541      !SetCC.getOperand(0).getValueType().isInteger())
542    return SDValue();
543
544  SDValue False = N->getOperand(2);
545  EVT FalseTy = False.getValueType();
546
547  if (!FalseTy.isInteger())
548    return SDValue();
549
550  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
551
552  if (!CN || CN->getZExtValue())
553    return SDValue();
554
555  const SDLoc DL(N);
556  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
557  SDValue True = N->getOperand(1);
558
559  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
560                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
561
562  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
563}
564
565static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
566                                 TargetLowering::DAGCombinerInfo &DCI,
567                                 const MipsSubtarget *Subtarget) {
568  // Pattern match EXT.
569  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
570  //  => ext $dst, $src, size, pos
571  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
572    return SDValue();
573
574  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
575  unsigned ShiftRightOpc = ShiftRight.getOpcode();
576
577  // Op's first operand must be a shift right.
578  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
579    return SDValue();
580
581  // The second operand of the shift must be an immediate.
582  ConstantSDNode *CN;
583  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
584    return SDValue();
585
586  uint64_t Pos = CN->getZExtValue();
587  uint64_t SMPos, SMSize;
588
589  // Op's second operand must be a shifted mask.
590  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
591      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
592    return SDValue();
593
594  // Return if the shifted mask does not start at bit 0 or the sum of its size
595  // and Pos exceeds the word's size.
596  EVT ValTy = N->getValueType(0);
597  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
598    return SDValue();
599
600  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
601                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
602                     DAG.getConstant(SMSize, MVT::i32));
603}
604
605static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
606                                TargetLowering::DAGCombinerInfo &DCI,
607                                const MipsSubtarget *Subtarget) {
608  // Pattern match INS.
609  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
610  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
611  //  => ins $dst, $src, size, pos, $src1
612  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
613    return SDValue();
614
615  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
616  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
617  ConstantSDNode *CN;
618
619  // See if Op's first operand matches (and $src1 , mask0).
620  if (And0.getOpcode() != ISD::AND)
621    return SDValue();
622
623  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
624      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
625    return SDValue();
626
627  // See if Op's second operand matches (and (shl $src, pos), mask1).
628  if (And1.getOpcode() != ISD::AND)
629    return SDValue();
630
631  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
632      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
633    return SDValue();
634
635  // The shift masks must have the same position and size.
636  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
637    return SDValue();
638
639  SDValue Shl = And1.getOperand(0);
640  if (Shl.getOpcode() != ISD::SHL)
641    return SDValue();
642
643  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
644    return SDValue();
645
646  unsigned Shamt = CN->getZExtValue();
647
648  // Return if the shift amount and the first bit position of mask are not the
649  // same.
650  EVT ValTy = N->getValueType(0);
651  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
652    return SDValue();
653
654  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
655                     DAG.getConstant(SMPos0, MVT::i32),
656                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
657}
658
659static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
660                                 TargetLowering::DAGCombinerInfo &DCI,
661                                 const MipsSubtarget *Subtarget) {
662  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
663
664  if (DCI.isBeforeLegalizeOps())
665    return SDValue();
666
667  SDValue Add = N->getOperand(1);
668
669  if (Add.getOpcode() != ISD::ADD)
670    return SDValue();
671
672  SDValue Lo = Add.getOperand(1);
673
674  if ((Lo.getOpcode() != MipsISD::Lo) ||
675      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
676    return SDValue();
677
678  EVT ValTy = N->getValueType(0);
679  SDLoc DL(N);
680
681  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
682                             Add.getOperand(0));
683  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
684}
685
686SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
687  const {
688  SelectionDAG &DAG = DCI.DAG;
689  unsigned Opc = N->getOpcode();
690
691  switch (Opc) {
692  default: break;
693  case ISD::SDIVREM:
694  case ISD::UDIVREM:
695    return performDivRemCombine(N, DAG, DCI, Subtarget);
696  case ISD::SELECT:
697    return performSELECTCombine(N, DAG, DCI, Subtarget);
698  case ISD::AND:
699    return performANDCombine(N, DAG, DCI, Subtarget);
700  case ISD::OR:
701    return performORCombine(N, DAG, DCI, Subtarget);
702  case ISD::ADD:
703    return performADDCombine(N, DAG, DCI, Subtarget);
704  }
705
706  return SDValue();
707}
708
709void
710MipsTargetLowering::LowerOperationWrapper(SDNode *N,
711                                          SmallVectorImpl<SDValue> &Results,
712                                          SelectionDAG &DAG) const {
713  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
714
715  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
716    Results.push_back(Res.getValue(I));
717}
718
719void
720MipsTargetLowering::ReplaceNodeResults(SDNode *N,
721                                       SmallVectorImpl<SDValue> &Results,
722                                       SelectionDAG &DAG) const {
723  return LowerOperationWrapper(N, Results, DAG);
724}
725
726SDValue MipsTargetLowering::
727LowerOperation(SDValue Op, SelectionDAG &DAG) const
728{
729  switch (Op.getOpcode())
730  {
731  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
732  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
733  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
734  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
735  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
736  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
737  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
738  case ISD::SELECT:             return lowerSELECT(Op, DAG);
739  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
740  case ISD::SETCC:              return lowerSETCC(Op, DAG);
741  case ISD::VASTART:            return lowerVASTART(Op, DAG);
742  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
743  case ISD::FABS:               return lowerFABS(Op, DAG);
744  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
745  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
746  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
747  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
748  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
749  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
750  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
751  case ISD::LOAD:               return lowerLOAD(Op, DAG);
752  case ISD::STORE:              return lowerSTORE(Op, DAG);
753  case ISD::ADD:                return lowerADD(Op, DAG);
754  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
755  }
756  return SDValue();
757}
758
759//===----------------------------------------------------------------------===//
760//  Lower helper functions
761//===----------------------------------------------------------------------===//
762
763// addLiveIn - This helper function adds the specified physical register to the
764// MachineFunction as a live in value.  It also creates a corresponding
765// virtual register for it.
766static unsigned
767addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
768{
769  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
770  MF.getRegInfo().addLiveIn(PReg, VReg);
771  return VReg;
772}
773
774static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
775                                          MachineBasicBlock &MBB,
776                                          const TargetInstrInfo &TII,
777                                          bool Is64Bit) {
778  if (NoZeroDivCheck)
779    return &MBB;
780
781  // Insert instruction "teq $divisor_reg, $zero, 7".
782  MachineBasicBlock::iterator I(MI);
783  MachineInstrBuilder MIB;
784  MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
785    .addOperand(MI->getOperand(2)).addReg(Mips::ZERO).addImm(7);
786
787  // Use the 32-bit sub-register if this is a 64-bit division.
788  if (Is64Bit)
789    MIB->getOperand(0).setSubReg(Mips::sub_32);
790
791  return &MBB;
792}
793
794MachineBasicBlock *
795MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
796                                                MachineBasicBlock *BB) const {
797  switch (MI->getOpcode()) {
798  default:
799    llvm_unreachable("Unexpected instr type to insert");
800  case Mips::ATOMIC_LOAD_ADD_I8:
801  case Mips::ATOMIC_LOAD_ADD_I8_P8:
802    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
803  case Mips::ATOMIC_LOAD_ADD_I16:
804  case Mips::ATOMIC_LOAD_ADD_I16_P8:
805    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
806  case Mips::ATOMIC_LOAD_ADD_I32:
807  case Mips::ATOMIC_LOAD_ADD_I32_P8:
808    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
809  case Mips::ATOMIC_LOAD_ADD_I64:
810  case Mips::ATOMIC_LOAD_ADD_I64_P8:
811    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
812
813  case Mips::ATOMIC_LOAD_AND_I8:
814  case Mips::ATOMIC_LOAD_AND_I8_P8:
815    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
816  case Mips::ATOMIC_LOAD_AND_I16:
817  case Mips::ATOMIC_LOAD_AND_I16_P8:
818    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
819  case Mips::ATOMIC_LOAD_AND_I32:
820  case Mips::ATOMIC_LOAD_AND_I32_P8:
821    return emitAtomicBinary(MI, BB, 4, Mips::AND);
822  case Mips::ATOMIC_LOAD_AND_I64:
823  case Mips::ATOMIC_LOAD_AND_I64_P8:
824    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
825
826  case Mips::ATOMIC_LOAD_OR_I8:
827  case Mips::ATOMIC_LOAD_OR_I8_P8:
828    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
829  case Mips::ATOMIC_LOAD_OR_I16:
830  case Mips::ATOMIC_LOAD_OR_I16_P8:
831    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
832  case Mips::ATOMIC_LOAD_OR_I32:
833  case Mips::ATOMIC_LOAD_OR_I32_P8:
834    return emitAtomicBinary(MI, BB, 4, Mips::OR);
835  case Mips::ATOMIC_LOAD_OR_I64:
836  case Mips::ATOMIC_LOAD_OR_I64_P8:
837    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
838
839  case Mips::ATOMIC_LOAD_XOR_I8:
840  case Mips::ATOMIC_LOAD_XOR_I8_P8:
841    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
842  case Mips::ATOMIC_LOAD_XOR_I16:
843  case Mips::ATOMIC_LOAD_XOR_I16_P8:
844    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
845  case Mips::ATOMIC_LOAD_XOR_I32:
846  case Mips::ATOMIC_LOAD_XOR_I32_P8:
847    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
848  case Mips::ATOMIC_LOAD_XOR_I64:
849  case Mips::ATOMIC_LOAD_XOR_I64_P8:
850    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
851
852  case Mips::ATOMIC_LOAD_NAND_I8:
853  case Mips::ATOMIC_LOAD_NAND_I8_P8:
854    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
855  case Mips::ATOMIC_LOAD_NAND_I16:
856  case Mips::ATOMIC_LOAD_NAND_I16_P8:
857    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
858  case Mips::ATOMIC_LOAD_NAND_I32:
859  case Mips::ATOMIC_LOAD_NAND_I32_P8:
860    return emitAtomicBinary(MI, BB, 4, 0, true);
861  case Mips::ATOMIC_LOAD_NAND_I64:
862  case Mips::ATOMIC_LOAD_NAND_I64_P8:
863    return emitAtomicBinary(MI, BB, 8, 0, true);
864
865  case Mips::ATOMIC_LOAD_SUB_I8:
866  case Mips::ATOMIC_LOAD_SUB_I8_P8:
867    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
868  case Mips::ATOMIC_LOAD_SUB_I16:
869  case Mips::ATOMIC_LOAD_SUB_I16_P8:
870    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
871  case Mips::ATOMIC_LOAD_SUB_I32:
872  case Mips::ATOMIC_LOAD_SUB_I32_P8:
873    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
874  case Mips::ATOMIC_LOAD_SUB_I64:
875  case Mips::ATOMIC_LOAD_SUB_I64_P8:
876    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
877
878  case Mips::ATOMIC_SWAP_I8:
879  case Mips::ATOMIC_SWAP_I8_P8:
880    return emitAtomicBinaryPartword(MI, BB, 1, 0);
881  case Mips::ATOMIC_SWAP_I16:
882  case Mips::ATOMIC_SWAP_I16_P8:
883    return emitAtomicBinaryPartword(MI, BB, 2, 0);
884  case Mips::ATOMIC_SWAP_I32:
885  case Mips::ATOMIC_SWAP_I32_P8:
886    return emitAtomicBinary(MI, BB, 4, 0);
887  case Mips::ATOMIC_SWAP_I64:
888  case Mips::ATOMIC_SWAP_I64_P8:
889    return emitAtomicBinary(MI, BB, 8, 0);
890
891  case Mips::ATOMIC_CMP_SWAP_I8:
892  case Mips::ATOMIC_CMP_SWAP_I8_P8:
893    return emitAtomicCmpSwapPartword(MI, BB, 1);
894  case Mips::ATOMIC_CMP_SWAP_I16:
895  case Mips::ATOMIC_CMP_SWAP_I16_P8:
896    return emitAtomicCmpSwapPartword(MI, BB, 2);
897  case Mips::ATOMIC_CMP_SWAP_I32:
898  case Mips::ATOMIC_CMP_SWAP_I32_P8:
899    return emitAtomicCmpSwap(MI, BB, 4);
900  case Mips::ATOMIC_CMP_SWAP_I64:
901  case Mips::ATOMIC_CMP_SWAP_I64_P8:
902    return emitAtomicCmpSwap(MI, BB, 8);
903  case Mips::PseudoSDIV:
904  case Mips::PseudoUDIV:
905    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
906  case Mips::PseudoDSDIV:
907  case Mips::PseudoDUDIV:
908    return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
909  }
910}
911
912// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
913// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
914MachineBasicBlock *
915MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
916                                     unsigned Size, unsigned BinOpcode,
917                                     bool Nand) const {
918  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
919
920  MachineFunction *MF = BB->getParent();
921  MachineRegisterInfo &RegInfo = MF->getRegInfo();
922  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
923  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
924  DebugLoc DL = MI->getDebugLoc();
925  unsigned LL, SC, AND, NOR, ZERO, BEQ;
926
927  if (Size == 4) {
928    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
929    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
930    AND = Mips::AND;
931    NOR = Mips::NOR;
932    ZERO = Mips::ZERO;
933    BEQ = Mips::BEQ;
934  }
935  else {
936    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
937    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
938    AND = Mips::AND64;
939    NOR = Mips::NOR64;
940    ZERO = Mips::ZERO_64;
941    BEQ = Mips::BEQ64;
942  }
943
944  unsigned OldVal = MI->getOperand(0).getReg();
945  unsigned Ptr = MI->getOperand(1).getReg();
946  unsigned Incr = MI->getOperand(2).getReg();
947
948  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
949  unsigned AndRes = RegInfo.createVirtualRegister(RC);
950  unsigned Success = RegInfo.createVirtualRegister(RC);
951
952  // insert new blocks after the current block
953  const BasicBlock *LLVM_BB = BB->getBasicBlock();
954  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
955  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
956  MachineFunction::iterator It = BB;
957  ++It;
958  MF->insert(It, loopMBB);
959  MF->insert(It, exitMBB);
960
961  // Transfer the remainder of BB and its successor edges to exitMBB.
962  exitMBB->splice(exitMBB->begin(), BB,
963                  llvm::next(MachineBasicBlock::iterator(MI)),
964                  BB->end());
965  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
966
967  //  thisMBB:
968  //    ...
969  //    fallthrough --> loopMBB
970  BB->addSuccessor(loopMBB);
971  loopMBB->addSuccessor(loopMBB);
972  loopMBB->addSuccessor(exitMBB);
973
974  //  loopMBB:
975  //    ll oldval, 0(ptr)
976  //    <binop> storeval, oldval, incr
977  //    sc success, storeval, 0(ptr)
978  //    beq success, $0, loopMBB
979  BB = loopMBB;
980  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
981  if (Nand) {
982    //  and andres, oldval, incr
983    //  nor storeval, $0, andres
984    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
985    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
986  } else if (BinOpcode) {
987    //  <binop> storeval, oldval, incr
988    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
989  } else {
990    StoreVal = Incr;
991  }
992  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
993  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
994
995  MI->eraseFromParent();   // The instruction is gone now.
996
997  return exitMBB;
998}
999
1000MachineBasicBlock *
1001MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
1002                                             MachineBasicBlock *BB,
1003                                             unsigned Size, unsigned BinOpcode,
1004                                             bool Nand) const {
1005  assert((Size == 1 || Size == 2) &&
1006      "Unsupported size for EmitAtomicBinaryPartial.");
1007
1008  MachineFunction *MF = BB->getParent();
1009  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1010  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1011  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1012  DebugLoc DL = MI->getDebugLoc();
1013  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1014  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1015
1016  unsigned Dest = MI->getOperand(0).getReg();
1017  unsigned Ptr = MI->getOperand(1).getReg();
1018  unsigned Incr = MI->getOperand(2).getReg();
1019
1020  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1021  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1022  unsigned Mask = RegInfo.createVirtualRegister(RC);
1023  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1024  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1025  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1026  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1027  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1028  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1029  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1030  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1031  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1032  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1033  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1034  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1035  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1036  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1037  unsigned Success = RegInfo.createVirtualRegister(RC);
1038
1039  // insert new blocks after the current block
1040  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1041  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1042  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1043  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1044  MachineFunction::iterator It = BB;
1045  ++It;
1046  MF->insert(It, loopMBB);
1047  MF->insert(It, sinkMBB);
1048  MF->insert(It, exitMBB);
1049
1050  // Transfer the remainder of BB and its successor edges to exitMBB.
1051  exitMBB->splice(exitMBB->begin(), BB,
1052                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1053  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1054
1055  BB->addSuccessor(loopMBB);
1056  loopMBB->addSuccessor(loopMBB);
1057  loopMBB->addSuccessor(sinkMBB);
1058  sinkMBB->addSuccessor(exitMBB);
1059
1060  //  thisMBB:
1061  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1062  //    and     alignedaddr,ptr,masklsb2
1063  //    andi    ptrlsb2,ptr,3
1064  //    sll     shiftamt,ptrlsb2,3
1065  //    ori     maskupper,$0,255               # 0xff
1066  //    sll     mask,maskupper,shiftamt
1067  //    nor     mask2,$0,mask
1068  //    sll     incr2,incr,shiftamt
1069
1070  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1071  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1072    .addReg(Mips::ZERO).addImm(-4);
1073  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1074    .addReg(Ptr).addReg(MaskLSB2);
1075  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1076  if (Subtarget->isLittle()) {
1077    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1078  } else {
1079    unsigned Off = RegInfo.createVirtualRegister(RC);
1080    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1081      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1082    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1083  }
1084  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1085    .addReg(Mips::ZERO).addImm(MaskImm);
1086  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1087    .addReg(MaskUpper).addReg(ShiftAmt);
1088  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1089  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1090
1091  // atomic.load.binop
1092  // loopMBB:
1093  //   ll      oldval,0(alignedaddr)
1094  //   binop   binopres,oldval,incr2
1095  //   and     newval,binopres,mask
1096  //   and     maskedoldval0,oldval,mask2
1097  //   or      storeval,maskedoldval0,newval
1098  //   sc      success,storeval,0(alignedaddr)
1099  //   beq     success,$0,loopMBB
1100
1101  // atomic.swap
1102  // loopMBB:
1103  //   ll      oldval,0(alignedaddr)
1104  //   and     newval,incr2,mask
1105  //   and     maskedoldval0,oldval,mask2
1106  //   or      storeval,maskedoldval0,newval
1107  //   sc      success,storeval,0(alignedaddr)
1108  //   beq     success,$0,loopMBB
1109
1110  BB = loopMBB;
1111  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1112  if (Nand) {
1113    //  and andres, oldval, incr2
1114    //  nor binopres, $0, andres
1115    //  and newval, binopres, mask
1116    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1117    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1118      .addReg(Mips::ZERO).addReg(AndRes);
1119    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1120  } else if (BinOpcode) {
1121    //  <binop> binopres, oldval, incr2
1122    //  and newval, binopres, mask
1123    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1124    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1125  } else {// atomic.swap
1126    //  and newval, incr2, mask
1127    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1128  }
1129
1130  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1131    .addReg(OldVal).addReg(Mask2);
1132  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1133    .addReg(MaskedOldVal0).addReg(NewVal);
1134  BuildMI(BB, DL, TII->get(SC), Success)
1135    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1136  BuildMI(BB, DL, TII->get(Mips::BEQ))
1137    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1138
1139  //  sinkMBB:
1140  //    and     maskedoldval1,oldval,mask
1141  //    srl     srlres,maskedoldval1,shiftamt
1142  //    sll     sllres,srlres,24
1143  //    sra     dest,sllres,24
1144  BB = sinkMBB;
1145  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1146
1147  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1148    .addReg(OldVal).addReg(Mask);
1149  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1150      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1151  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1152      .addReg(SrlRes).addImm(ShiftImm);
1153  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1154      .addReg(SllRes).addImm(ShiftImm);
1155
1156  MI->eraseFromParent();   // The instruction is gone now.
1157
1158  return exitMBB;
1159}
1160
1161MachineBasicBlock *
1162MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1163                                      MachineBasicBlock *BB,
1164                                      unsigned Size) const {
1165  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1166
1167  MachineFunction *MF = BB->getParent();
1168  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1169  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1170  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1171  DebugLoc DL = MI->getDebugLoc();
1172  unsigned LL, SC, ZERO, BNE, BEQ;
1173
1174  if (Size == 4) {
1175    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1176    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1177    ZERO = Mips::ZERO;
1178    BNE = Mips::BNE;
1179    BEQ = Mips::BEQ;
1180  }
1181  else {
1182    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1183    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1184    ZERO = Mips::ZERO_64;
1185    BNE = Mips::BNE64;
1186    BEQ = Mips::BEQ64;
1187  }
1188
1189  unsigned Dest    = MI->getOperand(0).getReg();
1190  unsigned Ptr     = MI->getOperand(1).getReg();
1191  unsigned OldVal  = MI->getOperand(2).getReg();
1192  unsigned NewVal  = MI->getOperand(3).getReg();
1193
1194  unsigned Success = RegInfo.createVirtualRegister(RC);
1195
1196  // insert new blocks after the current block
1197  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1198  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1199  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1200  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1201  MachineFunction::iterator It = BB;
1202  ++It;
1203  MF->insert(It, loop1MBB);
1204  MF->insert(It, loop2MBB);
1205  MF->insert(It, exitMBB);
1206
1207  // Transfer the remainder of BB and its successor edges to exitMBB.
1208  exitMBB->splice(exitMBB->begin(), BB,
1209                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1210  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1211
1212  //  thisMBB:
1213  //    ...
1214  //    fallthrough --> loop1MBB
1215  BB->addSuccessor(loop1MBB);
1216  loop1MBB->addSuccessor(exitMBB);
1217  loop1MBB->addSuccessor(loop2MBB);
1218  loop2MBB->addSuccessor(loop1MBB);
1219  loop2MBB->addSuccessor(exitMBB);
1220
1221  // loop1MBB:
1222  //   ll dest, 0(ptr)
1223  //   bne dest, oldval, exitMBB
1224  BB = loop1MBB;
1225  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1226  BuildMI(BB, DL, TII->get(BNE))
1227    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1228
1229  // loop2MBB:
1230  //   sc success, newval, 0(ptr)
1231  //   beq success, $0, loop1MBB
1232  BB = loop2MBB;
1233  BuildMI(BB, DL, TII->get(SC), Success)
1234    .addReg(NewVal).addReg(Ptr).addImm(0);
1235  BuildMI(BB, DL, TII->get(BEQ))
1236    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1237
1238  MI->eraseFromParent();   // The instruction is gone now.
1239
1240  return exitMBB;
1241}
1242
1243MachineBasicBlock *
1244MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1245                                              MachineBasicBlock *BB,
1246                                              unsigned Size) const {
1247  assert((Size == 1 || Size == 2) &&
1248      "Unsupported size for EmitAtomicCmpSwapPartial.");
1249
1250  MachineFunction *MF = BB->getParent();
1251  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1252  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1253  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1254  DebugLoc DL = MI->getDebugLoc();
1255  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1256  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1257
1258  unsigned Dest    = MI->getOperand(0).getReg();
1259  unsigned Ptr     = MI->getOperand(1).getReg();
1260  unsigned CmpVal  = MI->getOperand(2).getReg();
1261  unsigned NewVal  = MI->getOperand(3).getReg();
1262
1263  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1264  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1265  unsigned Mask = RegInfo.createVirtualRegister(RC);
1266  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1267  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1268  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1269  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1270  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1271  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1272  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1273  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1274  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1275  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1276  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1277  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1278  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1279  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1280  unsigned Success = RegInfo.createVirtualRegister(RC);
1281
1282  // insert new blocks after the current block
1283  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1284  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1285  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1286  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1287  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1288  MachineFunction::iterator It = BB;
1289  ++It;
1290  MF->insert(It, loop1MBB);
1291  MF->insert(It, loop2MBB);
1292  MF->insert(It, sinkMBB);
1293  MF->insert(It, exitMBB);
1294
1295  // Transfer the remainder of BB and its successor edges to exitMBB.
1296  exitMBB->splice(exitMBB->begin(), BB,
1297                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1298  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1299
1300  BB->addSuccessor(loop1MBB);
1301  loop1MBB->addSuccessor(sinkMBB);
1302  loop1MBB->addSuccessor(loop2MBB);
1303  loop2MBB->addSuccessor(loop1MBB);
1304  loop2MBB->addSuccessor(sinkMBB);
1305  sinkMBB->addSuccessor(exitMBB);
1306
1307  // FIXME: computation of newval2 can be moved to loop2MBB.
1308  //  thisMBB:
1309  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1310  //    and     alignedaddr,ptr,masklsb2
1311  //    andi    ptrlsb2,ptr,3
1312  //    sll     shiftamt,ptrlsb2,3
1313  //    ori     maskupper,$0,255               # 0xff
1314  //    sll     mask,maskupper,shiftamt
1315  //    nor     mask2,$0,mask
1316  //    andi    maskedcmpval,cmpval,255
1317  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1318  //    andi    maskednewval,newval,255
1319  //    sll     shiftednewval,maskednewval,shiftamt
1320  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1321  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1322    .addReg(Mips::ZERO).addImm(-4);
1323  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1324    .addReg(Ptr).addReg(MaskLSB2);
1325  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1326  if (Subtarget->isLittle()) {
1327    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1328  } else {
1329    unsigned Off = RegInfo.createVirtualRegister(RC);
1330    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1331      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1332    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1333  }
1334  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1335    .addReg(Mips::ZERO).addImm(MaskImm);
1336  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1337    .addReg(MaskUpper).addReg(ShiftAmt);
1338  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1339  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1340    .addReg(CmpVal).addImm(MaskImm);
1341  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1342    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1343  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1344    .addReg(NewVal).addImm(MaskImm);
1345  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1346    .addReg(MaskedNewVal).addReg(ShiftAmt);
1347
1348  //  loop1MBB:
1349  //    ll      oldval,0(alginedaddr)
1350  //    and     maskedoldval0,oldval,mask
1351  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1352  BB = loop1MBB;
1353  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1354  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1355    .addReg(OldVal).addReg(Mask);
1356  BuildMI(BB, DL, TII->get(Mips::BNE))
1357    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1358
1359  //  loop2MBB:
1360  //    and     maskedoldval1,oldval,mask2
1361  //    or      storeval,maskedoldval1,shiftednewval
1362  //    sc      success,storeval,0(alignedaddr)
1363  //    beq     success,$0,loop1MBB
1364  BB = loop2MBB;
1365  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1366    .addReg(OldVal).addReg(Mask2);
1367  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1368    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1369  BuildMI(BB, DL, TII->get(SC), Success)
1370      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1371  BuildMI(BB, DL, TII->get(Mips::BEQ))
1372      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1373
1374  //  sinkMBB:
1375  //    srl     srlres,maskedoldval0,shiftamt
1376  //    sll     sllres,srlres,24
1377  //    sra     dest,sllres,24
1378  BB = sinkMBB;
1379  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1380
1381  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1382      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1383  BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1384      .addReg(SrlRes).addImm(ShiftImm);
1385  BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1386      .addReg(SllRes).addImm(ShiftImm);
1387
1388  MI->eraseFromParent();   // The instruction is gone now.
1389
1390  return exitMBB;
1391}
1392
1393//===----------------------------------------------------------------------===//
1394//  Misc Lower Operation implementation
1395//===----------------------------------------------------------------------===//
1396SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1397  SDValue Chain = Op.getOperand(0);
1398  SDValue Table = Op.getOperand(1);
1399  SDValue Index = Op.getOperand(2);
1400  SDLoc DL(Op);
1401  EVT PTy = getPointerTy();
1402  unsigned EntrySize =
1403    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1404
1405  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1406                      DAG.getConstant(EntrySize, PTy));
1407  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1408
1409  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1410  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1411                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1412                        0);
1413  Chain = Addr.getValue(1);
1414
1415  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1416    // For PIC, the sequence is:
1417    // BRIND(load(Jumptable + index) + RelocBase)
1418    // RelocBase can be JumpTable, GOT or some sort of global base.
1419    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1420                       getPICJumpTableRelocBase(Table, DAG));
1421  }
1422
1423  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1424}
1425
1426SDValue MipsTargetLowering::
1427lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1428{
1429  // The first operand is the chain, the second is the condition, the third is
1430  // the block to branch to if the condition is true.
1431  SDValue Chain = Op.getOperand(0);
1432  SDValue Dest = Op.getOperand(2);
1433  SDLoc DL(Op);
1434
1435  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1436
1437  // Return if flag is not set by a floating point comparison.
1438  if (CondRes.getOpcode() != MipsISD::FPCmp)
1439    return Op;
1440
1441  SDValue CCNode  = CondRes.getOperand(2);
1442  Mips::CondCode CC =
1443    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1444  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1445  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1446  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1447                     Dest, CondRes);
1448}
1449
1450SDValue MipsTargetLowering::
1451lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1452{
1453  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1454
1455  // Return if flag is not set by a floating point comparison.
1456  if (Cond.getOpcode() != MipsISD::FPCmp)
1457    return Op;
1458
1459  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1460                      SDLoc(Op));
1461}
1462
1463SDValue MipsTargetLowering::
1464lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1465{
1466  SDLoc DL(Op);
1467  EVT Ty = Op.getOperand(0).getValueType();
1468  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1469                             getSetCCResultType(*DAG.getContext(), Ty),
1470                             Op.getOperand(0), Op.getOperand(1),
1471                             Op.getOperand(4));
1472
1473  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1474                     Op.getOperand(3));
1475}
1476
1477SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1478  SDValue Cond = createFPCmp(DAG, Op);
1479
1480  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1481         "Floating point operand expected.");
1482
1483  SDValue True  = DAG.getConstant(1, MVT::i32);
1484  SDValue False = DAG.getConstant(0, MVT::i32);
1485
1486  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1487}
1488
1489SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1490                                               SelectionDAG &DAG) const {
1491  // FIXME there isn't actually debug info here
1492  SDLoc DL(Op);
1493  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1494
1495  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1496    const MipsTargetObjectFile &TLOF =
1497      (const MipsTargetObjectFile&)getObjFileLowering();
1498
1499    // %gp_rel relocation
1500    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1501      SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1502                                              MipsII::MO_GPREL);
1503      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1504                                      DAG.getVTList(MVT::i32), &GA, 1);
1505      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1506      return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1507    }
1508
1509    // %hi/%lo relocation
1510    return getAddrNonPIC(Op, DAG);
1511  }
1512
1513  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1514    return getAddrLocal(Op, DAG, HasMips64);
1515
1516  if (LargeGOT)
1517    return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1518                                 MipsII::MO_GOT_LO16);
1519
1520  return getAddrGlobal(Op, DAG,
1521                       HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1522}
1523
1524SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1525                                              SelectionDAG &DAG) const {
1526  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1527    return getAddrNonPIC(Op, DAG);
1528
1529  return getAddrLocal(Op, DAG, HasMips64);
1530}
1531
1532SDValue MipsTargetLowering::
1533lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1534{
1535  // If the relocation model is PIC, use the General Dynamic TLS Model or
1536  // Local Dynamic TLS model, otherwise use the Initial Exec or
1537  // Local Exec TLS Model.
1538
1539  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1540  SDLoc DL(GA);
1541  const GlobalValue *GV = GA->getGlobal();
1542  EVT PtrVT = getPointerTy();
1543
1544  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1545
1546  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1547    // General Dynamic and Local Dynamic TLS Model.
1548    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1549                                                      : MipsII::MO_TLSGD;
1550
1551    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1552    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1553                                   getGlobalReg(DAG, PtrVT), TGA);
1554    unsigned PtrSize = PtrVT.getSizeInBits();
1555    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1556
1557    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1558
1559    ArgListTy Args;
1560    ArgListEntry Entry;
1561    Entry.Node = Argument;
1562    Entry.Ty = PtrTy;
1563    Args.push_back(Entry);
1564
1565    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1566                  false, false, false, false, 0, CallingConv::C,
1567                  /*IsTailCall=*/false, /*doesNotRet=*/false,
1568                  /*isReturnValueUsed=*/true,
1569                  TlsGetAddr, Args, DAG, DL);
1570    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1571
1572    SDValue Ret = CallResult.first;
1573
1574    if (model != TLSModel::LocalDynamic)
1575      return Ret;
1576
1577    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1578                                               MipsII::MO_DTPREL_HI);
1579    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1580    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1581                                               MipsII::MO_DTPREL_LO);
1582    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1583    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1584    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1585  }
1586
1587  SDValue Offset;
1588  if (model == TLSModel::InitialExec) {
1589    // Initial Exec TLS Model
1590    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1591                                             MipsII::MO_GOTTPREL);
1592    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1593                      TGA);
1594    Offset = DAG.getLoad(PtrVT, DL,
1595                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1596                         false, false, false, 0);
1597  } else {
1598    // Local Exec TLS Model
1599    assert(model == TLSModel::LocalExec);
1600    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1601                                               MipsII::MO_TPREL_HI);
1602    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1603                                               MipsII::MO_TPREL_LO);
1604    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1605    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1606    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1607  }
1608
1609  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1610  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1611}
1612
1613SDValue MipsTargetLowering::
1614lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1615{
1616  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1617    return getAddrNonPIC(Op, DAG);
1618
1619  return getAddrLocal(Op, DAG, HasMips64);
1620}
1621
1622SDValue MipsTargetLowering::
1623lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1624{
1625  // gp_rel relocation
1626  // FIXME: we should reference the constant pool using small data sections,
1627  // but the asm printer currently doesn't support this feature without
1628  // hacking it. This feature should come soon so we can uncomment the
1629  // stuff below.
1630  //if (IsInSmallSection(C->getType())) {
1631  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1632  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1633  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1634
1635  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1636    return getAddrNonPIC(Op, DAG);
1637
1638  return getAddrLocal(Op, DAG, HasMips64);
1639}
1640
1641SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1642  MachineFunction &MF = DAG.getMachineFunction();
1643  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1644
1645  SDLoc DL(Op);
1646  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1647                                 getPointerTy());
1648
1649  // vastart just stores the address of the VarArgsFrameIndex slot into the
1650  // memory location argument.
1651  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1652  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1653                      MachinePointerInfo(SV), false, false, 0);
1654}
1655
1656static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1657  EVT TyX = Op.getOperand(0).getValueType();
1658  EVT TyY = Op.getOperand(1).getValueType();
1659  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1660  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1661  SDLoc DL(Op);
1662  SDValue Res;
1663
1664  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1665  // to i32.
1666  SDValue X = (TyX == MVT::f32) ?
1667    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1668    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1669                Const1);
1670  SDValue Y = (TyY == MVT::f32) ?
1671    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1672    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1673                Const1);
1674
1675  if (HasR2) {
1676    // ext  E, Y, 31, 1  ; extract bit31 of Y
1677    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1678    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1679    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1680  } else {
1681    // sll SllX, X, 1
1682    // srl SrlX, SllX, 1
1683    // srl SrlY, Y, 31
1684    // sll SllY, SrlX, 31
1685    // or  Or, SrlX, SllY
1686    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1687    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1688    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1689    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1690    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1691  }
1692
1693  if (TyX == MVT::f32)
1694    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1695
1696  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1697                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1698  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1699}
1700
1701static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1702  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1703  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1704  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1705  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1706  SDLoc DL(Op);
1707
1708  // Bitcast to integer nodes.
1709  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1710  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1711
1712  if (HasR2) {
1713    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1714    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1715    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1716                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1717
1718    if (WidthX > WidthY)
1719      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1720    else if (WidthY > WidthX)
1721      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1722
1723    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1724                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1725    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1726  }
1727
1728  // (d)sll SllX, X, 1
1729  // (d)srl SrlX, SllX, 1
1730  // (d)srl SrlY, Y, width(Y)-1
1731  // (d)sll SllY, SrlX, width(Y)-1
1732  // or     Or, SrlX, SllY
1733  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1734  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1735  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1736                             DAG.getConstant(WidthY - 1, MVT::i32));
1737
1738  if (WidthX > WidthY)
1739    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1740  else if (WidthY > WidthX)
1741    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1742
1743  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1744                             DAG.getConstant(WidthX - 1, MVT::i32));
1745  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1746  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1747}
1748
1749SDValue
1750MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1751  if (Subtarget->hasMips64())
1752    return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1753
1754  return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1755}
1756
1757static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1758  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1759  SDLoc DL(Op);
1760
1761  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1762  // to i32.
1763  SDValue X = (Op.getValueType() == MVT::f32) ?
1764    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1765    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1766                Const1);
1767
1768  // Clear MSB.
1769  if (HasR2)
1770    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1771                      DAG.getRegister(Mips::ZERO, MVT::i32),
1772                      DAG.getConstant(31, MVT::i32), Const1, X);
1773  else {
1774    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1775    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1776  }
1777
1778  if (Op.getValueType() == MVT::f32)
1779    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1780
1781  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1782                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1783  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1784}
1785
1786static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1787  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1788  SDLoc DL(Op);
1789
1790  // Bitcast to integer node.
1791  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1792
1793  // Clear MSB.
1794  if (HasR2)
1795    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1796                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1797                      DAG.getConstant(63, MVT::i32), Const1, X);
1798  else {
1799    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1800    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1801  }
1802
1803  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1804}
1805
1806SDValue
1807MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1808  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1809    return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1810
1811  return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1812}
1813
1814SDValue MipsTargetLowering::
1815lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1816  // check the depth
1817  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1818         "Frame address can only be determined for current frame.");
1819
1820  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1821  MFI->setFrameAddressIsTaken(true);
1822  EVT VT = Op.getValueType();
1823  SDLoc DL(Op);
1824  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1825                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1826  return FrameAddr;
1827}
1828
1829SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1830                                            SelectionDAG &DAG) const {
1831  // check the depth
1832  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1833         "Return address can be determined only for current frame.");
1834
1835  MachineFunction &MF = DAG.getMachineFunction();
1836  MachineFrameInfo *MFI = MF.getFrameInfo();
1837  MVT VT = Op.getSimpleValueType();
1838  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1839  MFI->setReturnAddressIsTaken(true);
1840
1841  // Return RA, which contains the return address. Mark it an implicit live-in.
1842  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1843  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1844}
1845
1846// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1847// generated from __builtin_eh_return (offset, handler)
1848// The effect of this is to adjust the stack pointer by "offset"
1849// and then branch to "handler".
1850SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1851                                                                     const {
1852  MachineFunction &MF = DAG.getMachineFunction();
1853  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1854
1855  MipsFI->setCallsEhReturn();
1856  SDValue Chain     = Op.getOperand(0);
1857  SDValue Offset    = Op.getOperand(1);
1858  SDValue Handler   = Op.getOperand(2);
1859  SDLoc DL(Op);
1860  EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1861
1862  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1863  // EH_RETURN nodes, so that instructions are emitted back-to-back.
1864  unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1865  unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1866  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1867  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1868  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1869                     DAG.getRegister(OffsetReg, Ty),
1870                     DAG.getRegister(AddrReg, getPointerTy()),
1871                     Chain.getValue(1));
1872}
1873
1874SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1875                                              SelectionDAG &DAG) const {
1876  // FIXME: Need pseudo-fence for 'singlethread' fences
1877  // FIXME: Set SType for weaker fences where supported/appropriate.
1878  unsigned SType = 0;
1879  SDLoc DL(Op);
1880  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1881                     DAG.getConstant(SType, MVT::i32));
1882}
1883
1884SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1885                                                SelectionDAG &DAG) const {
1886  SDLoc DL(Op);
1887  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1888  SDValue Shamt = Op.getOperand(2);
1889
1890  // if shamt < 32:
1891  //  lo = (shl lo, shamt)
1892  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1893  // else:
1894  //  lo = 0
1895  //  hi = (shl lo, shamt[4:0])
1896  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1897                            DAG.getConstant(-1, MVT::i32));
1898  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1899                                      DAG.getConstant(1, MVT::i32));
1900  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1901                                     Not);
1902  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1903  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1904  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1905  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1906                             DAG.getConstant(0x20, MVT::i32));
1907  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1908                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1909  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1910
1911  SDValue Ops[2] = {Lo, Hi};
1912  return DAG.getMergeValues(Ops, 2, DL);
1913}
1914
1915SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1916                                                 bool IsSRA) const {
1917  SDLoc DL(Op);
1918  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1919  SDValue Shamt = Op.getOperand(2);
1920
1921  // if shamt < 32:
1922  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1923  //  if isSRA:
1924  //    hi = (sra hi, shamt)
1925  //  else:
1926  //    hi = (srl hi, shamt)
1927  // else:
1928  //  if isSRA:
1929  //   lo = (sra hi, shamt[4:0])
1930  //   hi = (sra hi, 31)
1931  //  else:
1932  //   lo = (srl hi, shamt[4:0])
1933  //   hi = 0
1934  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1935                            DAG.getConstant(-1, MVT::i32));
1936  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1937                                     DAG.getConstant(1, MVT::i32));
1938  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1939  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1940  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1941  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1942                                     Hi, Shamt);
1943  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1944                             DAG.getConstant(0x20, MVT::i32));
1945  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1946                                DAG.getConstant(31, MVT::i32));
1947  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1948  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1949                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1950                   ShiftRightHi);
1951
1952  SDValue Ops[2] = {Lo, Hi};
1953  return DAG.getMergeValues(Ops, 2, DL);
1954}
1955
1956static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1957                            SDValue Chain, SDValue Src, unsigned Offset) {
1958  SDValue Ptr = LD->getBasePtr();
1959  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1960  EVT BasePtrVT = Ptr.getValueType();
1961  SDLoc DL(LD);
1962  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1963
1964  if (Offset)
1965    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1966                      DAG.getConstant(Offset, BasePtrVT));
1967
1968  SDValue Ops[] = { Chain, Ptr, Src };
1969  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1970                                 LD->getMemOperand());
1971}
1972
1973// Expand an unaligned 32 or 64-bit integer load node.
1974SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1975  LoadSDNode *LD = cast<LoadSDNode>(Op);
1976  EVT MemVT = LD->getMemoryVT();
1977
1978  // Return if load is aligned or if MemVT is neither i32 nor i64.
1979  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1980      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1981    return SDValue();
1982
1983  bool IsLittle = Subtarget->isLittle();
1984  EVT VT = Op.getValueType();
1985  ISD::LoadExtType ExtType = LD->getExtensionType();
1986  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1987
1988  assert((VT == MVT::i32) || (VT == MVT::i64));
1989
1990  // Expand
1991  //  (set dst, (i64 (load baseptr)))
1992  // to
1993  //  (set tmp, (ldl (add baseptr, 7), undef))
1994  //  (set dst, (ldr baseptr, tmp))
1995  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1996    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1997                               IsLittle ? 7 : 0);
1998    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1999                        IsLittle ? 0 : 7);
2000  }
2001
2002  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2003                             IsLittle ? 3 : 0);
2004  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2005                             IsLittle ? 0 : 3);
2006
2007  // Expand
2008  //  (set dst, (i32 (load baseptr))) or
2009  //  (set dst, (i64 (sextload baseptr))) or
2010  //  (set dst, (i64 (extload baseptr)))
2011  // to
2012  //  (set tmp, (lwl (add baseptr, 3), undef))
2013  //  (set dst, (lwr baseptr, tmp))
2014  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2015      (ExtType == ISD::EXTLOAD))
2016    return LWR;
2017
2018  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2019
2020  // Expand
2021  //  (set dst, (i64 (zextload baseptr)))
2022  // to
2023  //  (set tmp0, (lwl (add baseptr, 3), undef))
2024  //  (set tmp1, (lwr baseptr, tmp0))
2025  //  (set tmp2, (shl tmp1, 32))
2026  //  (set dst, (srl tmp2, 32))
2027  SDLoc DL(LD);
2028  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2029  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2030  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2031  SDValue Ops[] = { SRL, LWR.getValue(1) };
2032  return DAG.getMergeValues(Ops, 2, DL);
2033}
2034
2035static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2036                             SDValue Chain, unsigned Offset) {
2037  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2038  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2039  SDLoc DL(SD);
2040  SDVTList VTList = DAG.getVTList(MVT::Other);
2041
2042  if (Offset)
2043    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2044                      DAG.getConstant(Offset, BasePtrVT));
2045
2046  SDValue Ops[] = { Chain, Value, Ptr };
2047  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2048                                 SD->getMemOperand());
2049}
2050
2051// Expand an unaligned 32 or 64-bit integer store node.
2052static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2053                                      bool IsLittle) {
2054  SDValue Value = SD->getValue(), Chain = SD->getChain();
2055  EVT VT = Value.getValueType();
2056
2057  // Expand
2058  //  (store val, baseptr) or
2059  //  (truncstore val, baseptr)
2060  // to
2061  //  (swl val, (add baseptr, 3))
2062  //  (swr val, baseptr)
2063  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2064    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2065                                IsLittle ? 3 : 0);
2066    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2067  }
2068
2069  assert(VT == MVT::i64);
2070
2071  // Expand
2072  //  (store val, baseptr)
2073  // to
2074  //  (sdl val, (add baseptr, 7))
2075  //  (sdr val, baseptr)
2076  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2077  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2078}
2079
2080// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2081static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2082  SDValue Val = SD->getValue();
2083
2084  if (Val.getOpcode() != ISD::FP_TO_SINT)
2085    return SDValue();
2086
2087  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2088  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2089                           Val.getOperand(0));
2090
2091  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2092                      SD->getPointerInfo(), SD->isVolatile(),
2093                      SD->isNonTemporal(), SD->getAlignment());
2094}
2095
2096SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2097  StoreSDNode *SD = cast<StoreSDNode>(Op);
2098  EVT MemVT = SD->getMemoryVT();
2099
2100  // Lower unaligned integer stores.
2101  if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2102      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2103    return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2104
2105  return lowerFP_TO_SINT_STORE(SD, DAG);
2106}
2107
2108SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2109  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2110      || cast<ConstantSDNode>
2111        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2112      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2113    return SDValue();
2114
2115  // The pattern
2116  //   (add (frameaddr 0), (frame_to_args_offset))
2117  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2118  //   (add FrameObject, 0)
2119  // where FrameObject is a fixed StackObject with offset 0 which points to
2120  // the old stack pointer.
2121  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2122  EVT ValTy = Op->getValueType(0);
2123  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2124  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2125  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2126                     DAG.getConstant(0, ValTy));
2127}
2128
2129SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2130                                            SelectionDAG &DAG) const {
2131  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2132  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2133                              Op.getOperand(0));
2134  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2135}
2136
2137//===----------------------------------------------------------------------===//
2138//                      Calling Convention Implementation
2139//===----------------------------------------------------------------------===//
2140
2141//===----------------------------------------------------------------------===//
2142// TODO: Implement a generic logic using tblgen that can support this.
2143// Mips O32 ABI rules:
2144// ---
2145// i32 - Passed in A0, A1, A2, A3 and stack
2146// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2147//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2148// f64 - Only passed in two aliased f32 registers if no int reg has been used
2149//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2150//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2151//       go to stack.
2152//
2153//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2154//===----------------------------------------------------------------------===//
2155
2156static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2157                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2158                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2159
2160  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2161
2162  static const uint16_t IntRegs[] = {
2163      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2164  };
2165  static const uint16_t F32Regs[] = {
2166      Mips::F12, Mips::F14
2167  };
2168  static const uint16_t F64Regs[] = {
2169      Mips::D6, Mips::D7
2170  };
2171
2172  // Do not process byval args here.
2173  if (ArgFlags.isByVal())
2174    return true;
2175
2176  // Promote i8 and i16
2177  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2178    LocVT = MVT::i32;
2179    if (ArgFlags.isSExt())
2180      LocInfo = CCValAssign::SExt;
2181    else if (ArgFlags.isZExt())
2182      LocInfo = CCValAssign::ZExt;
2183    else
2184      LocInfo = CCValAssign::AExt;
2185  }
2186
2187  unsigned Reg;
2188
2189  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2190  // is true: function is vararg, argument is 3rd or higher, there is previous
2191  // argument which is not f32 or f64.
2192  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2193      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2194  unsigned OrigAlign = ArgFlags.getOrigAlign();
2195  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2196
2197  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2198    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2199    // If this is the first part of an i64 arg,
2200    // the allocated register must be either A0 or A2.
2201    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2202      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2203    LocVT = MVT::i32;
2204  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2205    // Allocate int register and shadow next int register. If first
2206    // available register is Mips::A1 or Mips::A3, shadow it too.
2207    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2208    if (Reg == Mips::A1 || Reg == Mips::A3)
2209      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2210    State.AllocateReg(IntRegs, IntRegsSize);
2211    LocVT = MVT::i32;
2212  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2213    // we are guaranteed to find an available float register
2214    if (ValVT == MVT::f32) {
2215      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2216      // Shadow int register
2217      State.AllocateReg(IntRegs, IntRegsSize);
2218    } else {
2219      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2220      // Shadow int registers
2221      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2222      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2223        State.AllocateReg(IntRegs, IntRegsSize);
2224      State.AllocateReg(IntRegs, IntRegsSize);
2225    }
2226  } else
2227    llvm_unreachable("Cannot handle this ValVT.");
2228
2229  if (!Reg) {
2230    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2231                                          OrigAlign);
2232    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2233  } else
2234    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2235
2236  return false;
2237}
2238
2239#include "MipsGenCallingConv.inc"
2240
2241//===----------------------------------------------------------------------===//
2242//                  Call Calling Convention Implementation
2243//===----------------------------------------------------------------------===//
2244
2245static const unsigned O32IntRegsSize = 4;
2246
2247// Return next O32 integer argument register.
2248static unsigned getNextIntArgReg(unsigned Reg) {
2249  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2250  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2251}
2252
2253SDValue
2254MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2255                                   SDValue Chain, SDValue Arg, SDLoc DL,
2256                                   bool IsTailCall, SelectionDAG &DAG) const {
2257  if (!IsTailCall) {
2258    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2259                                 DAG.getIntPtrConstant(Offset));
2260    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2261                        false, 0);
2262  }
2263
2264  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2265  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2266  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2267  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2268                      /*isVolatile=*/ true, false, 0);
2269}
2270
2271void MipsTargetLowering::
2272getOpndList(SmallVectorImpl<SDValue> &Ops,
2273            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2274            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2275            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2276  // Insert node "GP copy globalreg" before call to function.
2277  //
2278  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2279  // in PIC mode) allow symbols to be resolved via lazy binding.
2280  // The lazy binding stub requires GP to point to the GOT.
2281  if (IsPICCall && !InternalLinkage) {
2282    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2283    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2284    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2285  }
2286
2287  // Build a sequence of copy-to-reg nodes chained together with token
2288  // chain and flag operands which copy the outgoing args into registers.
2289  // The InFlag in necessary since all emitted instructions must be
2290  // stuck together.
2291  SDValue InFlag;
2292
2293  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2294    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2295                                 RegsToPass[i].second, InFlag);
2296    InFlag = Chain.getValue(1);
2297  }
2298
2299  // Add argument registers to the end of the list so that they are
2300  // known live into the call.
2301  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2302    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2303                                      RegsToPass[i].second.getValueType()));
2304
2305  // Add a register mask operand representing the call-preserved registers.
2306  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2307  const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2308  assert(Mask && "Missing call preserved mask for calling convention");
2309  if (Subtarget->inMips16HardFloat()) {
2310    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2311      llvm::StringRef Sym = G->getGlobal()->getName();
2312      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2313      if (F->hasFnAttribute("__Mips16RetHelper")) {
2314        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2315      }
2316    }
2317  }
2318  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2319
2320  if (InFlag.getNode())
2321    Ops.push_back(InFlag);
2322}
2323
2324/// LowerCall - functions arguments are copied from virtual regs to
2325/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2326SDValue
2327MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2328                              SmallVectorImpl<SDValue> &InVals) const {
2329  SelectionDAG &DAG                     = CLI.DAG;
2330  SDLoc DL                              = CLI.DL;
2331  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2332  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2333  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2334  SDValue Chain                         = CLI.Chain;
2335  SDValue Callee                        = CLI.Callee;
2336  bool &IsTailCall                      = CLI.IsTailCall;
2337  CallingConv::ID CallConv              = CLI.CallConv;
2338  bool IsVarArg                         = CLI.IsVarArg;
2339
2340  MachineFunction &MF = DAG.getMachineFunction();
2341  MachineFrameInfo *MFI = MF.getFrameInfo();
2342  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2343  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2344
2345  // Analyze operands of the call, assigning locations to each operand.
2346  SmallVector<CCValAssign, 16> ArgLocs;
2347  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2348                 getTargetMachine(), ArgLocs, *DAG.getContext());
2349  MipsCC::SpecialCallingConvType SpecialCallingConv =
2350    getSpecialCallingConv(Callee);
2351  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo, SpecialCallingConv);
2352
2353  MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2354                                 getTargetMachine().Options.UseSoftFloat,
2355                                 Callee.getNode(), CLI.Args);
2356
2357  // Get a count of how many bytes are to be pushed on the stack.
2358  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2359
2360  // Check if it's really possible to do a tail call.
2361  if (IsTailCall)
2362    IsTailCall =
2363      isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2364                                        *MF.getInfo<MipsFunctionInfo>());
2365
2366  if (IsTailCall)
2367    ++NumTailCalls;
2368
2369  // Chain is the output chain of the last Load/Store or CopyToReg node.
2370  // ByValChain is the output chain of the last Memcpy node created for copying
2371  // byval arguments to the stack.
2372  unsigned StackAlignment = TFL->getStackAlignment();
2373  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2374  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2375
2376  if (!IsTailCall)
2377    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2378
2379  SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2380                                        IsN64 ? Mips::SP_64 : Mips::SP,
2381                                        getPointerTy());
2382
2383  // With EABI is it possible to have 16 args on registers.
2384  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2385  SmallVector<SDValue, 8> MemOpChains;
2386  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2387
2388  // Walk the register/memloc assignments, inserting copies/loads.
2389  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2390    SDValue Arg = OutVals[i];
2391    CCValAssign &VA = ArgLocs[i];
2392    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2393    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2394
2395    // ByVal Arg.
2396    if (Flags.isByVal()) {
2397      assert(Flags.getByValSize() &&
2398             "ByVal args of size 0 should have been ignored by front-end.");
2399      assert(ByValArg != MipsCCInfo.byval_end());
2400      assert(!IsTailCall &&
2401             "Do not tail-call optimize if there is a byval argument.");
2402      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2403                   MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2404      ++ByValArg;
2405      continue;
2406    }
2407
2408    // Promote the value if needed.
2409    switch (VA.getLocInfo()) {
2410    default: llvm_unreachable("Unknown loc info!");
2411    case CCValAssign::Full:
2412      if (VA.isRegLoc()) {
2413        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2414            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2415            (ValVT == MVT::i64 && LocVT == MVT::f64))
2416          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2417        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2418          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2419                                   Arg, DAG.getConstant(0, MVT::i32));
2420          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2421                                   Arg, DAG.getConstant(1, MVT::i32));
2422          if (!Subtarget->isLittle())
2423            std::swap(Lo, Hi);
2424          unsigned LocRegLo = VA.getLocReg();
2425          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2426          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2427          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2428          continue;
2429        }
2430      }
2431      break;
2432    case CCValAssign::SExt:
2433      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2434      break;
2435    case CCValAssign::ZExt:
2436      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2437      break;
2438    case CCValAssign::AExt:
2439      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2440      break;
2441    }
2442
2443    // Arguments that can be passed on register must be kept at
2444    // RegsToPass vector
2445    if (VA.isRegLoc()) {
2446      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2447      continue;
2448    }
2449
2450    // Register can't get to this point...
2451    assert(VA.isMemLoc());
2452
2453    // emit ISD::STORE whichs stores the
2454    // parameter value to a stack Location
2455    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2456                                         Chain, Arg, DL, IsTailCall, DAG));
2457  }
2458
2459  // Transform all store nodes into one single node because all store
2460  // nodes are independent of each other.
2461  if (!MemOpChains.empty())
2462    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2463                        &MemOpChains[0], MemOpChains.size());
2464
2465  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2466  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2467  // node so that legalize doesn't hack it.
2468  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2469  bool GlobalOrExternal = false, InternalLinkage = false;
2470  SDValue CalleeLo;
2471
2472  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2473    if (IsPICCall) {
2474      InternalLinkage = G->getGlobal()->hasInternalLinkage();
2475
2476      if (InternalLinkage)
2477        Callee = getAddrLocal(Callee, DAG, HasMips64);
2478      else if (LargeGOT)
2479        Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2480                                       MipsII::MO_CALL_LO16);
2481      else
2482        Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2483    } else
2484      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2485                                          MipsII::MO_NO_FLAG);
2486    GlobalOrExternal = true;
2487  }
2488  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2489    if (!IsN64 && !IsPIC) // !N64 && static
2490      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2491                                            MipsII::MO_NO_FLAG);
2492    else if (LargeGOT)
2493      Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2494                                     MipsII::MO_CALL_LO16);
2495    else // N64 || PIC
2496      Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2497
2498    GlobalOrExternal = true;
2499  }
2500
2501  SmallVector<SDValue, 8> Ops(1, Chain);
2502  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2503
2504  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2505              CLI, Callee, Chain);
2506
2507  if (IsTailCall)
2508    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2509
2510  Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2511  SDValue InFlag = Chain.getValue(1);
2512
2513  // Create the CALLSEQ_END node.
2514  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2515                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2516  InFlag = Chain.getValue(1);
2517
2518  // Handle result values, copying them out of physregs into vregs that we
2519  // return.
2520  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2521                         Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2522}
2523
2524/// LowerCallResult - Lower the result values of a call into the
2525/// appropriate copies out of appropriate physical registers.
2526SDValue
2527MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2528                                    CallingConv::ID CallConv, bool IsVarArg,
2529                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2530                                    SDLoc DL, SelectionDAG &DAG,
2531                                    SmallVectorImpl<SDValue> &InVals,
2532                                    const SDNode *CallNode,
2533                                    const Type *RetTy) const {
2534  // Assign locations to each value returned by this call.
2535  SmallVector<CCValAssign, 16> RVLocs;
2536  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2537                 getTargetMachine(), RVLocs, *DAG.getContext());
2538  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2539
2540  MipsCCInfo.analyzeCallResult(Ins, getTargetMachine().Options.UseSoftFloat,
2541                               CallNode, RetTy);
2542
2543  // Copy all of the result registers out of their specified physreg.
2544  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2545    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2546                                     RVLocs[i].getLocVT(), InFlag);
2547    Chain = Val.getValue(1);
2548    InFlag = Val.getValue(2);
2549
2550    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2551      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2552
2553    InVals.push_back(Val);
2554  }
2555
2556  return Chain;
2557}
2558
2559//===----------------------------------------------------------------------===//
2560//             Formal Arguments Calling Convention Implementation
2561//===----------------------------------------------------------------------===//
2562/// LowerFormalArguments - transform physical registers into virtual registers
2563/// and generate load operations for arguments places on the stack.
2564SDValue
2565MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2566                                         CallingConv::ID CallConv,
2567                                         bool IsVarArg,
2568                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2569                                         SDLoc DL, SelectionDAG &DAG,
2570                                         SmallVectorImpl<SDValue> &InVals)
2571                                          const {
2572  MachineFunction &MF = DAG.getMachineFunction();
2573  MachineFrameInfo *MFI = MF.getFrameInfo();
2574  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2575
2576  MipsFI->setVarArgsFrameIndex(0);
2577
2578  // Used with vargs to acumulate store chains.
2579  std::vector<SDValue> OutChains;
2580
2581  // Assign locations to all of the incoming arguments.
2582  SmallVector<CCValAssign, 16> ArgLocs;
2583  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2584                 getTargetMachine(), ArgLocs, *DAG.getContext());
2585  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2586  Function::const_arg_iterator FuncArg =
2587    DAG.getMachineFunction().getFunction()->arg_begin();
2588  bool UseSoftFloat = getTargetMachine().Options.UseSoftFloat;
2589
2590  MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2591  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2592                           MipsCCInfo.hasByValArg());
2593
2594  unsigned CurArgIdx = 0;
2595  MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2596
2597  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2598    CCValAssign &VA = ArgLocs[i];
2599    std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2600    CurArgIdx = Ins[i].OrigArgIndex;
2601    EVT ValVT = VA.getValVT();
2602    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2603    bool IsRegLoc = VA.isRegLoc();
2604
2605    if (Flags.isByVal()) {
2606      assert(Flags.getByValSize() &&
2607             "ByVal args of size 0 should have been ignored by front-end.");
2608      assert(ByValArg != MipsCCInfo.byval_end());
2609      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2610                    MipsCCInfo, *ByValArg);
2611      ++ByValArg;
2612      continue;
2613    }
2614
2615    // Arguments stored on registers
2616    if (IsRegLoc) {
2617      EVT RegVT = VA.getLocVT();
2618      unsigned ArgReg = VA.getLocReg();
2619      const TargetRegisterClass *RC;
2620
2621      if (RegVT == MVT::i32)
2622        RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2623                                        &Mips::CPURegsRegClass;
2624      else if (RegVT == MVT::i64)
2625        RC = &Mips::CPU64RegsRegClass;
2626      else if (RegVT == MVT::f32)
2627        RC = &Mips::FGR32RegClass;
2628      else if (RegVT == MVT::f64)
2629        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
2630      else
2631        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2632
2633      // Transform the arguments stored on
2634      // physical registers into virtual ones
2635      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2636      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2637
2638      // If this is an 8 or 16-bit value, it has been passed promoted
2639      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2640      // truncate to the right size.
2641      if (VA.getLocInfo() != CCValAssign::Full) {
2642        unsigned Opcode = 0;
2643        if (VA.getLocInfo() == CCValAssign::SExt)
2644          Opcode = ISD::AssertSext;
2645        else if (VA.getLocInfo() == CCValAssign::ZExt)
2646          Opcode = ISD::AssertZext;
2647        if (Opcode)
2648          ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2649                                 DAG.getValueType(ValVT));
2650        ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2651      }
2652
2653      // Handle floating point arguments passed in integer registers and
2654      // long double arguments passed in floating point registers.
2655      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2656          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2657          (RegVT == MVT::f64 && ValVT == MVT::i64))
2658        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2659      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2660        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2661                                  getNextIntArgReg(ArgReg), RC);
2662        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2663        if (!Subtarget->isLittle())
2664          std::swap(ArgValue, ArgValue2);
2665        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2666                               ArgValue, ArgValue2);
2667      }
2668
2669      InVals.push_back(ArgValue);
2670    } else { // VA.isRegLoc()
2671
2672      // sanity check
2673      assert(VA.isMemLoc());
2674
2675      // The stack pointer offset is relative to the caller stack frame.
2676      int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2677                                      VA.getLocMemOffset(), true);
2678
2679      // Create load nodes to retrieve arguments from the stack
2680      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2681      InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2682                                   MachinePointerInfo::getFixedStack(FI),
2683                                   false, false, false, 0));
2684    }
2685  }
2686
2687  // The mips ABIs for returning structs by value requires that we copy
2688  // the sret argument into $v0 for the return. Save the argument into
2689  // a virtual register so that we can access it from the return points.
2690  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2691    unsigned Reg = MipsFI->getSRetReturnReg();
2692    if (!Reg) {
2693      Reg = MF.getRegInfo().
2694        createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2695      MipsFI->setSRetReturnReg(Reg);
2696    }
2697    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2698    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2699  }
2700
2701  if (IsVarArg)
2702    writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2703
2704  // All stores are grouped in one node to allow the matching between
2705  // the size of Ins and InVals. This only happens when on varg functions
2706  if (!OutChains.empty()) {
2707    OutChains.push_back(Chain);
2708    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2709                        &OutChains[0], OutChains.size());
2710  }
2711
2712  return Chain;
2713}
2714
2715//===----------------------------------------------------------------------===//
2716//               Return Value Calling Convention Implementation
2717//===----------------------------------------------------------------------===//
2718
2719bool
2720MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2721                                   MachineFunction &MF, bool IsVarArg,
2722                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2723                                   LLVMContext &Context) const {
2724  SmallVector<CCValAssign, 16> RVLocs;
2725  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2726                 RVLocs, Context);
2727  return CCInfo.CheckReturn(Outs, RetCC_Mips);
2728}
2729
2730SDValue
2731MipsTargetLowering::LowerReturn(SDValue Chain,
2732                                CallingConv::ID CallConv, bool IsVarArg,
2733                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2734                                const SmallVectorImpl<SDValue> &OutVals,
2735                                SDLoc DL, SelectionDAG &DAG) const {
2736  // CCValAssign - represent the assignment of
2737  // the return value to a location
2738  SmallVector<CCValAssign, 16> RVLocs;
2739  MachineFunction &MF = DAG.getMachineFunction();
2740
2741  // CCState - Info about the registers and stack slot.
2742  CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2743                 *DAG.getContext());
2744  MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2745
2746  // Analyze return values.
2747  MipsCCInfo.analyzeReturn(Outs, getTargetMachine().Options.UseSoftFloat,
2748                           MF.getFunction()->getReturnType());
2749
2750  SDValue Flag;
2751  SmallVector<SDValue, 4> RetOps(1, Chain);
2752
2753  // Copy the result values into the output registers.
2754  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2755    SDValue Val = OutVals[i];
2756    CCValAssign &VA = RVLocs[i];
2757    assert(VA.isRegLoc() && "Can only return in registers!");
2758
2759    if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2760      Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2761
2762    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2763
2764    // Guarantee that all emitted copies are stuck together with flags.
2765    Flag = Chain.getValue(1);
2766    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2767  }
2768
2769  // The mips ABIs for returning structs by value requires that we copy
2770  // the sret argument into $v0 for the return. We saved the argument into
2771  // a virtual register in the entry block, so now we copy the value out
2772  // and into $v0.
2773  if (MF.getFunction()->hasStructRetAttr()) {
2774    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2775    unsigned Reg = MipsFI->getSRetReturnReg();
2776
2777    if (!Reg)
2778      llvm_unreachable("sret virtual register not created in the entry block");
2779    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2780    unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2781
2782    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2783    Flag = Chain.getValue(1);
2784    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2785  }
2786
2787  RetOps[0] = Chain;  // Update chain.
2788
2789  // Add the flag if we have it.
2790  if (Flag.getNode())
2791    RetOps.push_back(Flag);
2792
2793  // Return on Mips is always a "jr $ra"
2794  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2795}
2796
2797//===----------------------------------------------------------------------===//
2798//                           Mips Inline Assembly Support
2799//===----------------------------------------------------------------------===//
2800
2801/// getConstraintType - Given a constraint letter, return the type of
2802/// constraint it is for this target.
2803MipsTargetLowering::ConstraintType MipsTargetLowering::
2804getConstraintType(const std::string &Constraint) const
2805{
2806  // Mips specific constrainy
2807  // GCC config/mips/constraints.md
2808  //
2809  // 'd' : An address register. Equivalent to r
2810  //       unless generating MIPS16 code.
2811  // 'y' : Equivalent to r; retained for
2812  //       backwards compatibility.
2813  // 'c' : A register suitable for use in an indirect
2814  //       jump. This will always be $25 for -mabicalls.
2815  // 'l' : The lo register. 1 word storage.
2816  // 'x' : The hilo register pair. Double word storage.
2817  if (Constraint.size() == 1) {
2818    switch (Constraint[0]) {
2819      default : break;
2820      case 'd':
2821      case 'y':
2822      case 'f':
2823      case 'c':
2824      case 'l':
2825      case 'x':
2826        return C_RegisterClass;
2827      case 'R':
2828        return C_Memory;
2829    }
2830  }
2831  return TargetLowering::getConstraintType(Constraint);
2832}
2833
2834/// Examine constraint type and operand type and determine a weight value.
2835/// This object must already have been set up with the operand type
2836/// and the current alternative constraint selected.
2837TargetLowering::ConstraintWeight
2838MipsTargetLowering::getSingleConstraintMatchWeight(
2839    AsmOperandInfo &info, const char *constraint) const {
2840  ConstraintWeight weight = CW_Invalid;
2841  Value *CallOperandVal = info.CallOperandVal;
2842    // If we don't have a value, we can't do a match,
2843    // but allow it at the lowest weight.
2844  if (CallOperandVal == NULL)
2845    return CW_Default;
2846  Type *type = CallOperandVal->getType();
2847  // Look at the constraint type.
2848  switch (*constraint) {
2849  default:
2850    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2851    break;
2852  case 'd':
2853  case 'y':
2854    if (type->isIntegerTy())
2855      weight = CW_Register;
2856    break;
2857  case 'f':
2858    if (type->isFloatTy())
2859      weight = CW_Register;
2860    break;
2861  case 'c': // $25 for indirect jumps
2862  case 'l': // lo register
2863  case 'x': // hilo register pair
2864      if (type->isIntegerTy())
2865      weight = CW_SpecificReg;
2866      break;
2867  case 'I': // signed 16 bit immediate
2868  case 'J': // integer zero
2869  case 'K': // unsigned 16 bit immediate
2870  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2871  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2872  case 'O': // signed 15 bit immediate (+- 16383)
2873  case 'P': // immediate in the range of 65535 to 1 (inclusive)
2874    if (isa<ConstantInt>(CallOperandVal))
2875      weight = CW_Constant;
2876    break;
2877  case 'R':
2878    weight = CW_Memory;
2879    break;
2880  }
2881  return weight;
2882}
2883
2884/// Given a register class constraint, like 'r', if this corresponds directly
2885/// to an LLVM register class, return a register of 0 and the register class
2886/// pointer.
2887std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2888getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2889{
2890  if (Constraint.size() == 1) {
2891    switch (Constraint[0]) {
2892    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2893    case 'y': // Same as 'r'. Exists for compatibility.
2894    case 'r':
2895      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2896        if (Subtarget->inMips16Mode())
2897          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2898        return std::make_pair(0U, &Mips::CPURegsRegClass);
2899      }
2900      if (VT == MVT::i64 && !HasMips64)
2901        return std::make_pair(0U, &Mips::CPURegsRegClass);
2902      if (VT == MVT::i64 && HasMips64)
2903        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
2904      // This will generate an error message
2905      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2906    case 'f':
2907      if (VT == MVT::f32)
2908        return std::make_pair(0U, &Mips::FGR32RegClass);
2909      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2910        if (Subtarget->isFP64bit())
2911          return std::make_pair(0U, &Mips::FGR64RegClass);
2912        return std::make_pair(0U, &Mips::AFGR64RegClass);
2913      }
2914      break;
2915    case 'c': // register suitable for indirect jump
2916      if (VT == MVT::i32)
2917        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
2918      assert(VT == MVT::i64 && "Unexpected type.");
2919      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
2920    case 'l': // register suitable for indirect jump
2921      if (VT == MVT::i32)
2922        return std::make_pair((unsigned)Mips::LO, &Mips::LORegsRegClass);
2923      return std::make_pair((unsigned)Mips::LO64, &Mips::LORegs64RegClass);
2924    case 'x': // register suitable for indirect jump
2925      // Fixme: Not triggering the use of both hi and low
2926      // This will generate an error message
2927      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2928    }
2929  }
2930  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2931}
2932
2933/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2934/// vector.  If it is invalid, don't add anything to Ops.
2935void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2936                                                     std::string &Constraint,
2937                                                     std::vector<SDValue>&Ops,
2938                                                     SelectionDAG &DAG) const {
2939  SDValue Result(0, 0);
2940
2941  // Only support length 1 constraints for now.
2942  if (Constraint.length() > 1) return;
2943
2944  char ConstraintLetter = Constraint[0];
2945  switch (ConstraintLetter) {
2946  default: break; // This will fall through to the generic implementation
2947  case 'I': // Signed 16 bit constant
2948    // If this fails, the parent routine will give an error
2949    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2950      EVT Type = Op.getValueType();
2951      int64_t Val = C->getSExtValue();
2952      if (isInt<16>(Val)) {
2953        Result = DAG.getTargetConstant(Val, Type);
2954        break;
2955      }
2956    }
2957    return;
2958  case 'J': // integer zero
2959    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2960      EVT Type = Op.getValueType();
2961      int64_t Val = C->getZExtValue();
2962      if (Val == 0) {
2963        Result = DAG.getTargetConstant(0, Type);
2964        break;
2965      }
2966    }
2967    return;
2968  case 'K': // unsigned 16 bit immediate
2969    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2970      EVT Type = Op.getValueType();
2971      uint64_t Val = (uint64_t)C->getZExtValue();
2972      if (isUInt<16>(Val)) {
2973        Result = DAG.getTargetConstant(Val, Type);
2974        break;
2975      }
2976    }
2977    return;
2978  case 'L': // signed 32 bit immediate where lower 16 bits are 0
2979    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2980      EVT Type = Op.getValueType();
2981      int64_t Val = C->getSExtValue();
2982      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
2983        Result = DAG.getTargetConstant(Val, Type);
2984        break;
2985      }
2986    }
2987    return;
2988  case 'N': // immediate in the range of -65535 to -1 (inclusive)
2989    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2990      EVT Type = Op.getValueType();
2991      int64_t Val = C->getSExtValue();
2992      if ((Val >= -65535) && (Val <= -1)) {
2993        Result = DAG.getTargetConstant(Val, Type);
2994        break;
2995      }
2996    }
2997    return;
2998  case 'O': // signed 15 bit immediate
2999    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3000      EVT Type = Op.getValueType();
3001      int64_t Val = C->getSExtValue();
3002      if ((isInt<15>(Val))) {
3003        Result = DAG.getTargetConstant(Val, Type);
3004        break;
3005      }
3006    }
3007    return;
3008  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3009    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3010      EVT Type = Op.getValueType();
3011      int64_t Val = C->getSExtValue();
3012      if ((Val <= 65535) && (Val >= 1)) {
3013        Result = DAG.getTargetConstant(Val, Type);
3014        break;
3015      }
3016    }
3017    return;
3018  }
3019
3020  if (Result.getNode()) {
3021    Ops.push_back(Result);
3022    return;
3023  }
3024
3025  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3026}
3027
3028bool
3029MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3030  // No global is ever allowed as a base.
3031  if (AM.BaseGV)
3032    return false;
3033
3034  switch (AM.Scale) {
3035  case 0: // "r+i" or just "i", depending on HasBaseReg.
3036    break;
3037  case 1:
3038    if (!AM.HasBaseReg) // allow "r+i".
3039      break;
3040    return false; // disallow "r+r" or "r+r+i".
3041  default:
3042    return false;
3043  }
3044
3045  return true;
3046}
3047
3048bool
3049MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3050  // The Mips target isn't yet aware of offsets.
3051  return false;
3052}
3053
3054EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3055                                            unsigned SrcAlign,
3056                                            bool IsMemset, bool ZeroMemset,
3057                                            bool MemcpyStrSrc,
3058                                            MachineFunction &MF) const {
3059  if (Subtarget->hasMips64())
3060    return MVT::i64;
3061
3062  return MVT::i32;
3063}
3064
3065bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3066  if (VT != MVT::f32 && VT != MVT::f64)
3067    return false;
3068  if (Imm.isNegZero())
3069    return false;
3070  return Imm.isZero();
3071}
3072
3073unsigned MipsTargetLowering::getJumpTableEncoding() const {
3074  if (IsN64)
3075    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3076
3077  return TargetLowering::getJumpTableEncoding();
3078}
3079
3080/// This function returns true if CallSym is a long double emulation routine.
3081static bool isF128SoftLibCall(const char *CallSym) {
3082  const char *const LibCalls[] =
3083    {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3084     "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3085     "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3086     "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3087     "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3088     "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3089     "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3090     "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3091     "truncl"};
3092
3093  const char * const *End = LibCalls + array_lengthof(LibCalls);
3094
3095  // Check that LibCalls is sorted alphabetically.
3096  MipsTargetLowering::LTStr Comp;
3097
3098#ifndef NDEBUG
3099  for (const char * const *I = LibCalls; I < End - 1; ++I)
3100    assert(Comp(*I, *(I + 1)));
3101#endif
3102
3103  return std::binary_search(LibCalls, End, CallSym, Comp);
3104}
3105
3106/// This function returns true if Ty is fp128 or i128 which was originally a
3107/// fp128.
3108static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3109  if (Ty->isFP128Ty())
3110    return true;
3111
3112  const ExternalSymbolSDNode *ES =
3113    dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3114
3115  // If the Ty is i128 and the function being called is a long double emulation
3116  // routine, then the original type is f128.
3117  return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3118}
3119
3120MipsTargetLowering::MipsCC::SpecialCallingConvType
3121  MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3122  MipsCC::SpecialCallingConvType SpecialCallingConv =
3123    MipsCC::NoSpecialCallingConv;;
3124  if (Subtarget->inMips16HardFloat()) {
3125    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3126      llvm::StringRef Sym = G->getGlobal()->getName();
3127      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3128      if (F->hasFnAttribute("__Mips16RetHelper")) {
3129        SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3130      }
3131    }
3132  }
3133  return SpecialCallingConv;
3134}
3135
3136MipsTargetLowering::MipsCC::MipsCC(
3137  CallingConv::ID CC, bool IsO32_, CCState &Info,
3138    MipsCC::SpecialCallingConvType SpecialCallingConv_)
3139  : CCInfo(Info), CallConv(CC), IsO32(IsO32_),
3140    SpecialCallingConv(SpecialCallingConv_){
3141  // Pre-allocate reserved argument area.
3142  CCInfo.AllocateStack(reservedArgArea(), 1);
3143}
3144
3145
3146void MipsTargetLowering::MipsCC::
3147analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3148                    bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3149                    std::vector<ArgListEntry> &FuncArgs) {
3150  assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3151         "CallingConv::Fast shouldn't be used for vararg functions.");
3152
3153  unsigned NumOpnds = Args.size();
3154  llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3155
3156  for (unsigned I = 0; I != NumOpnds; ++I) {
3157    MVT ArgVT = Args[I].VT;
3158    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3159    bool R;
3160
3161    if (ArgFlags.isByVal()) {
3162      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3163      continue;
3164    }
3165
3166    if (IsVarArg && !Args[I].IsFixed)
3167      R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3168    else {
3169      MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3170                           IsSoftFloat);
3171      R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3172    }
3173
3174    if (R) {
3175#ifndef NDEBUG
3176      dbgs() << "Call operand #" << I << " has unhandled type "
3177             << EVT(ArgVT).getEVTString();
3178#endif
3179      llvm_unreachable(0);
3180    }
3181  }
3182}
3183
3184void MipsTargetLowering::MipsCC::
3185analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3186                       bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3187  unsigned NumArgs = Args.size();
3188  llvm::CCAssignFn *FixedFn = fixedArgFn();
3189  unsigned CurArgIdx = 0;
3190
3191  for (unsigned I = 0; I != NumArgs; ++I) {
3192    MVT ArgVT = Args[I].VT;
3193    ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3194    std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3195    CurArgIdx = Args[I].OrigArgIndex;
3196
3197    if (ArgFlags.isByVal()) {
3198      handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3199      continue;
3200    }
3201
3202    MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3203
3204    if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3205      continue;
3206
3207#ifndef NDEBUG
3208    dbgs() << "Formal Arg #" << I << " has unhandled type "
3209           << EVT(ArgVT).getEVTString();
3210#endif
3211    llvm_unreachable(0);
3212  }
3213}
3214
3215template<typename Ty>
3216void MipsTargetLowering::MipsCC::
3217analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3218              const SDNode *CallNode, const Type *RetTy) const {
3219  CCAssignFn *Fn;
3220
3221  if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3222    Fn = RetCC_F128Soft;
3223  else
3224    Fn = RetCC_Mips;
3225
3226  for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3227    MVT VT = RetVals[I].VT;
3228    ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3229    MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3230
3231    if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3232#ifndef NDEBUG
3233      dbgs() << "Call result #" << I << " has unhandled type "
3234             << EVT(VT).getEVTString() << '\n';
3235#endif
3236      llvm_unreachable(0);
3237    }
3238  }
3239}
3240
3241void MipsTargetLowering::MipsCC::
3242analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3243                  const SDNode *CallNode, const Type *RetTy) const {
3244  analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3245}
3246
3247void MipsTargetLowering::MipsCC::
3248analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3249              const Type *RetTy) const {
3250  analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3251}
3252
3253void
3254MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3255                                           MVT LocVT,
3256                                           CCValAssign::LocInfo LocInfo,
3257                                           ISD::ArgFlagsTy ArgFlags) {
3258  assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3259
3260  struct ByValArgInfo ByVal;
3261  unsigned RegSize = regSize();
3262  unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3263  unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3264                            RegSize * 2);
3265
3266  if (useRegsForByval())
3267    allocateRegs(ByVal, ByValSize, Align);
3268
3269  // Allocate space on caller's stack.
3270  ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3271                                       Align);
3272  CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3273                                    LocInfo));
3274  ByValArgs.push_back(ByVal);
3275}
3276
3277unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3278  return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3279}
3280
3281unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3282  return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3283}
3284
3285const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3286  return IsO32 ? O32IntRegs : Mips64IntRegs;
3287}
3288
3289llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3290  if (CallConv == CallingConv::Fast)
3291    return CC_Mips_FastCC;
3292
3293  if (SpecialCallingConv == Mips16RetHelperConv)
3294    return CC_Mips16RetHelper;
3295  return IsO32 ? CC_MipsO32 : CC_MipsN;
3296}
3297
3298llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3299  return IsO32 ? CC_MipsO32 : CC_MipsN_VarArg;
3300}
3301
3302const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3303  return IsO32 ? O32IntRegs : Mips64DPRegs;
3304}
3305
3306void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3307                                              unsigned ByValSize,
3308                                              unsigned Align) {
3309  unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3310  const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3311  assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3312         "Byval argument's size and alignment should be a multiple of"
3313         "RegSize.");
3314
3315  ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3316
3317  // If Align > RegSize, the first arg register must be even.
3318  if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3319    CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3320    ++ByVal.FirstIdx;
3321  }
3322
3323  // Mark the registers allocated.
3324  for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3325       ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3326    CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3327}
3328
3329MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3330                                         const SDNode *CallNode,
3331                                         bool IsSoftFloat) const {
3332  if (IsSoftFloat || IsO32)
3333    return VT;
3334
3335  // Check if the original type was fp128.
3336  if (originalTypeIsF128(OrigTy, CallNode)) {
3337    assert(VT == MVT::i64);
3338    return MVT::f64;
3339  }
3340
3341  return VT;
3342}
3343
3344void MipsTargetLowering::
3345copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3346              SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3347              SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3348              const MipsCC &CC, const ByValArgInfo &ByVal) const {
3349  MachineFunction &MF = DAG.getMachineFunction();
3350  MachineFrameInfo *MFI = MF.getFrameInfo();
3351  unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3352  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3353  int FrameObjOffset;
3354
3355  if (RegAreaSize)
3356    FrameObjOffset = (int)CC.reservedArgArea() -
3357      (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3358  else
3359    FrameObjOffset = ByVal.Address;
3360
3361  // Create frame object.
3362  EVT PtrTy = getPointerTy();
3363  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3364  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3365  InVals.push_back(FIN);
3366
3367  if (!ByVal.NumRegs)
3368    return;
3369
3370  // Copy arg registers.
3371  MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3372  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3373
3374  for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3375    unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3376    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3377    unsigned Offset = I * CC.regSize();
3378    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3379                                   DAG.getConstant(Offset, PtrTy));
3380    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3381                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3382                                 false, false, 0);
3383    OutChains.push_back(Store);
3384  }
3385}
3386
3387// Copy byVal arg to registers and stack.
3388void MipsTargetLowering::
3389passByValArg(SDValue Chain, SDLoc DL,
3390             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3391             SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
3392             MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3393             const MipsCC &CC, const ByValArgInfo &ByVal,
3394             const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3395  unsigned ByValSize = Flags.getByValSize();
3396  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3397  unsigned RegSize = CC.regSize();
3398  unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3399  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3400
3401  if (ByVal.NumRegs) {
3402    const uint16_t *ArgRegs = CC.intArgRegs();
3403    bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3404    unsigned I = 0;
3405
3406    // Copy words to registers.
3407    for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3408      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3409                                    DAG.getConstant(Offset, PtrTy));
3410      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3411                                    MachinePointerInfo(), false, false, false,
3412                                    Alignment);
3413      MemOpChains.push_back(LoadVal.getValue(1));
3414      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3415      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3416    }
3417
3418    // Return if the struct has been fully copied.
3419    if (ByValSize == Offset)
3420      return;
3421
3422    // Copy the remainder of the byval argument with sub-word loads and shifts.
3423    if (LeftoverBytes) {
3424      assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3425             "Size of the remainder should be smaller than RegSize.");
3426      SDValue Val;
3427
3428      for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3429           Offset < ByValSize; LoadSize /= 2) {
3430        unsigned RemSize = ByValSize - Offset;
3431
3432        if (RemSize < LoadSize)
3433          continue;
3434
3435        // Load subword.
3436        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3437                                      DAG.getConstant(Offset, PtrTy));
3438        SDValue LoadVal =
3439          DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3440                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3441                         false, false, Alignment);
3442        MemOpChains.push_back(LoadVal.getValue(1));
3443
3444        // Shift the loaded value.
3445        unsigned Shamt;
3446
3447        if (isLittle)
3448          Shamt = TotalSizeLoaded;
3449        else
3450          Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3451
3452        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3453                                    DAG.getConstant(Shamt, MVT::i32));
3454
3455        if (Val.getNode())
3456          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3457        else
3458          Val = Shift;
3459
3460        Offset += LoadSize;
3461        TotalSizeLoaded += LoadSize;
3462        Alignment = std::min(Alignment, LoadSize);
3463      }
3464
3465      unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3466      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3467      return;
3468    }
3469  }
3470
3471  // Copy remainder of byval arg to it with memcpy.
3472  unsigned MemCpySize = ByValSize - Offset;
3473  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3474                            DAG.getConstant(Offset, PtrTy));
3475  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3476                            DAG.getIntPtrConstant(ByVal.Address));
3477  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3478                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
3479                        /*isVolatile=*/false, /*AlwaysInline=*/false,
3480                        MachinePointerInfo(0), MachinePointerInfo(0));
3481  MemOpChains.push_back(Chain);
3482}
3483
3484void
3485MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3486                                    const MipsCC &CC, SDValue Chain,
3487                                    SDLoc DL, SelectionDAG &DAG) const {
3488  unsigned NumRegs = CC.numIntArgRegs();
3489  const uint16_t *ArgRegs = CC.intArgRegs();
3490  const CCState &CCInfo = CC.getCCInfo();
3491  unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3492  unsigned RegSize = CC.regSize();
3493  MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3494  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3495  MachineFunction &MF = DAG.getMachineFunction();
3496  MachineFrameInfo *MFI = MF.getFrameInfo();
3497  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3498
3499  // Offset of the first variable argument from stack pointer.
3500  int VaArgOffset;
3501
3502  if (NumRegs == Idx)
3503    VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3504  else
3505    VaArgOffset =
3506      (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3507
3508  // Record the frame index of the first variable argument
3509  // which is a value necessary to VASTART.
3510  int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3511  MipsFI->setVarArgsFrameIndex(FI);
3512
3513  // Copy the integer registers that have not been used for argument passing
3514  // to the argument register save area. For O32, the save area is allocated
3515  // in the caller's stack frame, while for N32/64, it is allocated in the
3516  // callee's stack frame.
3517  for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3518    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3519    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3520    FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3521    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3522    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3523                                 MachinePointerInfo(), false, false, 0);
3524    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3525    OutChains.push_back(Store);
3526  }
3527}
3528