MipsISelLowering.cpp revision e193b325837bee5f9a848a16077a6e156fe88fba
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "MipsMachineFunction.h"
18#include "MipsTargetMachine.h"
19#include "MipsTargetObjectFile.h"
20#include "MipsSubtarget.h"
21#include "InstPrinter/MipsInstPrinter.h"
22#include "MCTargetDesc/MipsBaseInfo.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/CallingConv.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41// If I is a shifted mask, set the size (Size) and the first bit of the
42// mask (Pos), and return true.
43// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
44static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
45  if (!isShiftedMask_64(I))
46     return false;
47
48  Size = CountPopulation_64(I);
49  Pos = CountTrailingZeros_64(I);
50  return true;
51}
52
53static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
54  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
55  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
56}
57
58const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
59  switch (Opcode) {
60  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
61  case MipsISD::Hi:                return "MipsISD::Hi";
62  case MipsISD::Lo:                return "MipsISD::Lo";
63  case MipsISD::GPRel:             return "MipsISD::GPRel";
64  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
65  case MipsISD::Ret:               return "MipsISD::Ret";
66  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
67  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
68  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
69  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
70  case MipsISD::FPRound:           return "MipsISD::FPRound";
71  case MipsISD::MAdd:              return "MipsISD::MAdd";
72  case MipsISD::MAddu:             return "MipsISD::MAddu";
73  case MipsISD::MSub:              return "MipsISD::MSub";
74  case MipsISD::MSubu:             return "MipsISD::MSubu";
75  case MipsISD::DivRem:            return "MipsISD::DivRem";
76  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
77  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
78  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
79  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
80  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
81  case MipsISD::Sync:              return "MipsISD::Sync";
82  case MipsISD::Ext:               return "MipsISD::Ext";
83  case MipsISD::Ins:               return "MipsISD::Ins";
84  case MipsISD::LWL:               return "MipsISD::LWL";
85  case MipsISD::LWR:               return "MipsISD::LWR";
86  case MipsISD::SWL:               return "MipsISD::SWL";
87  case MipsISD::SWR:               return "MipsISD::SWR";
88  case MipsISD::LDL:               return "MipsISD::LDL";
89  case MipsISD::LDR:               return "MipsISD::LDR";
90  case MipsISD::SDL:               return "MipsISD::SDL";
91  case MipsISD::SDR:               return "MipsISD::SDR";
92  default:                         return NULL;
93  }
94}
95
96MipsTargetLowering::
97MipsTargetLowering(MipsTargetMachine &TM)
98  : TargetLowering(TM, new MipsTargetObjectFile()),
99    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
100    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
101    IsO32(Subtarget->isABI_O32()) {
102
103  // Mips does not have i1 type, so use i32 for
104  // setcc operations results (slt, sgt, ...).
105  setBooleanContents(ZeroOrOneBooleanContent);
106  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
107
108  // Set up the register classes
109  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
110
111  if (HasMips64)
112    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
113
114  if (Subtarget->inMips16Mode()) {
115    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
116    addRegisterClass(MVT::i32, &Mips::CPURARegRegClass);
117  }
118
119  if (!TM.Options.UseSoftFloat) {
120    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
121
122    // When dealing with single precision only, use libcalls
123    if (!Subtarget->isSingleFloat()) {
124      if (HasMips64)
125        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
126      else
127        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
128    }
129  }
130
131  // Load extented operations for i1 types must be promoted
132  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
133  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
134  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
135
136  // MIPS doesn't have extending float->double load/store
137  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
138  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
139
140  // Used by legalize types to correctly generate the setcc result.
141  // Without this, every float setcc comes with a AND/OR with the result,
142  // we don't want this, since the fpcmp result goes to a flag register,
143  // which is used implicitly by brcond and select operations.
144  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
145
146  // Mips Custom Operations
147  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
148  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
149  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
150  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
151  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
152  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
153  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
154  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
155  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
156  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
157  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
158  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Custom);
159  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
160  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
161  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
162  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
163  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
164  setOperationAction(ISD::LOAD,               MVT::i32, Custom);
165  setOperationAction(ISD::STORE,              MVT::i32, Custom);
166
167  if (!TM.Options.NoNaNsFPMath) {
168    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
169    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
170  }
171
172  if (HasMips64) {
173    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
174    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
175    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
176    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
177    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
178    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
179    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,   Custom);
180    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
181    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
182  }
183
184  if (!HasMips64) {
185    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
186    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
187    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
188  }
189
190  setOperationAction(ISD::SDIV, MVT::i32, Expand);
191  setOperationAction(ISD::SREM, MVT::i32, Expand);
192  setOperationAction(ISD::UDIV, MVT::i32, Expand);
193  setOperationAction(ISD::UREM, MVT::i32, Expand);
194  setOperationAction(ISD::SDIV, MVT::i64, Expand);
195  setOperationAction(ISD::SREM, MVT::i64, Expand);
196  setOperationAction(ISD::UDIV, MVT::i64, Expand);
197  setOperationAction(ISD::UREM, MVT::i64, Expand);
198
199  // Operations not directly supported by Mips.
200  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
201  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
202  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
203  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
204  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
205  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
206  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
207  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
208  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
209  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
210  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
211  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
212  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
213  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
214  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
215  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
216  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
217  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
218
219  if (!Subtarget->hasMips32r2())
220    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
221
222  if (!Subtarget->hasMips64r2())
223    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
224
225  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
226  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
227  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
228  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
229  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
230  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
231  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
232  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
233  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
234  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
235  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
236  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
237  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
238  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
239  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
240
241  if (!TM.Options.NoNaNsFPMath) {
242    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
243    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
244  }
245
246  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
247  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
248  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
249  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
250
251  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
252  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
253  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
254
255  // Use the default for now
256  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
257  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
258
259  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
260  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
261  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
262  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
263
264  setInsertFencesForAtomic(true);
265
266  if (Subtarget->isSingleFloat())
267    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
268
269  if (!Subtarget->hasSEInReg()) {
270    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
271    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
272  }
273
274  if (!Subtarget->hasBitCount()) {
275    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
276    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
277  }
278
279  if (!Subtarget->hasSwap()) {
280    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
281    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
282  }
283
284  if (HasMips64) {
285    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
286    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
287    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
288    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
289  }
290
291  setTargetDAGCombine(ISD::ADDE);
292  setTargetDAGCombine(ISD::SUBE);
293  setTargetDAGCombine(ISD::SDIVREM);
294  setTargetDAGCombine(ISD::UDIVREM);
295  setTargetDAGCombine(ISD::SELECT);
296  setTargetDAGCombine(ISD::AND);
297  setTargetDAGCombine(ISD::OR);
298
299  setMinFunctionAlignment(HasMips64 ? 3 : 2);
300
301  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
302  computeRegisterProperties();
303
304  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
305  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
306
307  maxStoresPerMemcpy = 16;
308}
309
310bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
311  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
312
313  switch (SVT) {
314  case MVT::i64:
315  case MVT::i32:
316    return true;
317  case MVT::f32:
318    return Subtarget->hasMips32r2Or64();
319  default:
320    return false;
321  }
322}
323
324EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
325  return MVT::i32;
326}
327
328// SelectMadd -
329// Transforms a subgraph in CurDAG if the following pattern is found:
330//  (addc multLo, Lo0), (adde multHi, Hi0),
331// where,
332//  multHi/Lo: product of multiplication
333//  Lo0: initial value of Lo register
334//  Hi0: initial value of Hi register
335// Return true if pattern matching was successful.
336static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) {
337  // ADDENode's second operand must be a flag output of an ADDC node in order
338  // for the matching to be successful.
339  SDNode* ADDCNode = ADDENode->getOperand(2).getNode();
340
341  if (ADDCNode->getOpcode() != ISD::ADDC)
342    return false;
343
344  SDValue MultHi = ADDENode->getOperand(0);
345  SDValue MultLo = ADDCNode->getOperand(0);
346  SDNode* MultNode = MultHi.getNode();
347  unsigned MultOpc = MultHi.getOpcode();
348
349  // MultHi and MultLo must be generated by the same node,
350  if (MultLo.getNode() != MultNode)
351    return false;
352
353  // and it must be a multiplication.
354  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
355    return false;
356
357  // MultLo amd MultHi must be the first and second output of MultNode
358  // respectively.
359  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
360    return false;
361
362  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
363  // of the values of MultNode, in which case MultNode will be removed in later
364  // phases.
365  // If there exist users other than ADDENode or ADDCNode, this function returns
366  // here, which will result in MultNode being mapped to a single MULT
367  // instruction node rather than a pair of MULT and MADD instructions being
368  // produced.
369  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
370    return false;
371
372  SDValue Chain = CurDAG->getEntryNode();
373  DebugLoc dl = ADDENode->getDebugLoc();
374
375  // create MipsMAdd(u) node
376  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
377
378  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
379                                 MultNode->getOperand(0),// Factor 0
380                                 MultNode->getOperand(1),// Factor 1
381                                 ADDCNode->getOperand(1),// Lo0
382                                 ADDENode->getOperand(1));// Hi0
383
384  // create CopyFromReg nodes
385  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
386                                              MAdd);
387  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
388                                              Mips::HI, MVT::i32,
389                                              CopyFromLo.getValue(2));
390
391  // replace uses of adde and addc here
392  if (!SDValue(ADDCNode, 0).use_empty())
393    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
394
395  if (!SDValue(ADDENode, 0).use_empty())
396    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
397
398  return true;
399}
400
401// SelectMsub -
402// Transforms a subgraph in CurDAG if the following pattern is found:
403//  (addc Lo0, multLo), (sube Hi0, multHi),
404// where,
405//  multHi/Lo: product of multiplication
406//  Lo0: initial value of Lo register
407//  Hi0: initial value of Hi register
408// Return true if pattern matching was successful.
409static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) {
410  // SUBENode's second operand must be a flag output of an SUBC node in order
411  // for the matching to be successful.
412  SDNode* SUBCNode = SUBENode->getOperand(2).getNode();
413
414  if (SUBCNode->getOpcode() != ISD::SUBC)
415    return false;
416
417  SDValue MultHi = SUBENode->getOperand(1);
418  SDValue MultLo = SUBCNode->getOperand(1);
419  SDNode* MultNode = MultHi.getNode();
420  unsigned MultOpc = MultHi.getOpcode();
421
422  // MultHi and MultLo must be generated by the same node,
423  if (MultLo.getNode() != MultNode)
424    return false;
425
426  // and it must be a multiplication.
427  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
428    return false;
429
430  // MultLo amd MultHi must be the first and second output of MultNode
431  // respectively.
432  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
433    return false;
434
435  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
436  // of the values of MultNode, in which case MultNode will be removed in later
437  // phases.
438  // If there exist users other than SUBENode or SUBCNode, this function returns
439  // here, which will result in MultNode being mapped to a single MULT
440  // instruction node rather than a pair of MULT and MSUB instructions being
441  // produced.
442  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
443    return false;
444
445  SDValue Chain = CurDAG->getEntryNode();
446  DebugLoc dl = SUBENode->getDebugLoc();
447
448  // create MipsSub(u) node
449  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
450
451  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
452                                 MultNode->getOperand(0),// Factor 0
453                                 MultNode->getOperand(1),// Factor 1
454                                 SUBCNode->getOperand(0),// Lo0
455                                 SUBENode->getOperand(0));// Hi0
456
457  // create CopyFromReg nodes
458  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
459                                              MSub);
460  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
461                                              Mips::HI, MVT::i32,
462                                              CopyFromLo.getValue(2));
463
464  // replace uses of sube and subc here
465  if (!SDValue(SUBCNode, 0).use_empty())
466    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
467
468  if (!SDValue(SUBENode, 0).use_empty())
469    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
470
471  return true;
472}
473
474static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG,
475                                  TargetLowering::DAGCombinerInfo &DCI,
476                                  const MipsSubtarget* Subtarget) {
477  if (DCI.isBeforeLegalize())
478    return SDValue();
479
480  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
481      SelectMadd(N, &DAG))
482    return SDValue(N, 0);
483
484  return SDValue();
485}
486
487static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG,
488                                  TargetLowering::DAGCombinerInfo &DCI,
489                                  const MipsSubtarget* Subtarget) {
490  if (DCI.isBeforeLegalize())
491    return SDValue();
492
493  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
494      SelectMsub(N, &DAG))
495    return SDValue(N, 0);
496
497  return SDValue();
498}
499
500static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG& DAG,
501                                    TargetLowering::DAGCombinerInfo &DCI,
502                                    const MipsSubtarget* Subtarget) {
503  if (DCI.isBeforeLegalizeOps())
504    return SDValue();
505
506  EVT Ty = N->getValueType(0);
507  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
508  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
509  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
510                                                  MipsISD::DivRemU;
511  DebugLoc dl = N->getDebugLoc();
512
513  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
514                               N->getOperand(0), N->getOperand(1));
515  SDValue InChain = DAG.getEntryNode();
516  SDValue InGlue = DivRem;
517
518  // insert MFLO
519  if (N->hasAnyUseOfValue(0)) {
520    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
521                                            InGlue);
522    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
523    InChain = CopyFromLo.getValue(1);
524    InGlue = CopyFromLo.getValue(2);
525  }
526
527  // insert MFHI
528  if (N->hasAnyUseOfValue(1)) {
529    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
530                                            HI, Ty, InGlue);
531    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
532  }
533
534  return SDValue();
535}
536
537static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
538  switch (CC) {
539  default: llvm_unreachable("Unknown fp condition code!");
540  case ISD::SETEQ:
541  case ISD::SETOEQ: return Mips::FCOND_OEQ;
542  case ISD::SETUNE: return Mips::FCOND_UNE;
543  case ISD::SETLT:
544  case ISD::SETOLT: return Mips::FCOND_OLT;
545  case ISD::SETGT:
546  case ISD::SETOGT: return Mips::FCOND_OGT;
547  case ISD::SETLE:
548  case ISD::SETOLE: return Mips::FCOND_OLE;
549  case ISD::SETGE:
550  case ISD::SETOGE: return Mips::FCOND_OGE;
551  case ISD::SETULT: return Mips::FCOND_ULT;
552  case ISD::SETULE: return Mips::FCOND_ULE;
553  case ISD::SETUGT: return Mips::FCOND_UGT;
554  case ISD::SETUGE: return Mips::FCOND_UGE;
555  case ISD::SETUO:  return Mips::FCOND_UN;
556  case ISD::SETO:   return Mips::FCOND_OR;
557  case ISD::SETNE:
558  case ISD::SETONE: return Mips::FCOND_ONE;
559  case ISD::SETUEQ: return Mips::FCOND_UEQ;
560  }
561}
562
563
564// Returns true if condition code has to be inverted.
565static bool InvertFPCondCode(Mips::CondCode CC) {
566  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
567    return false;
568
569  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
570         "Illegal Condition Code");
571
572  return true;
573}
574
575// Creates and returns an FPCmp node from a setcc node.
576// Returns Op if setcc is not a floating point comparison.
577static SDValue CreateFPCmp(SelectionDAG& DAG, const SDValue& Op) {
578  // must be a SETCC node
579  if (Op.getOpcode() != ISD::SETCC)
580    return Op;
581
582  SDValue LHS = Op.getOperand(0);
583
584  if (!LHS.getValueType().isFloatingPoint())
585    return Op;
586
587  SDValue RHS = Op.getOperand(1);
588  DebugLoc dl = Op.getDebugLoc();
589
590  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
591  // node if necessary.
592  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
593
594  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
595                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
596}
597
598// Creates and returns a CMovFPT/F node.
599static SDValue CreateCMovFP(SelectionDAG& DAG, SDValue Cond, SDValue True,
600                            SDValue False, DebugLoc DL) {
601  bool invert = InvertFPCondCode((Mips::CondCode)
602                                 cast<ConstantSDNode>(Cond.getOperand(2))
603                                 ->getSExtValue());
604
605  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
606                     True.getValueType(), True, False, Cond);
607}
608
609static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG& DAG,
610                                    TargetLowering::DAGCombinerInfo &DCI,
611                                    const MipsSubtarget* Subtarget) {
612  if (DCI.isBeforeLegalizeOps())
613    return SDValue();
614
615  SDValue SetCC = N->getOperand(0);
616
617  if ((SetCC.getOpcode() != ISD::SETCC) ||
618      !SetCC.getOperand(0).getValueType().isInteger())
619    return SDValue();
620
621  SDValue False = N->getOperand(2);
622  EVT FalseTy = False.getValueType();
623
624  if (!FalseTy.isInteger())
625    return SDValue();
626
627  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
628
629  if (!CN || CN->getZExtValue())
630    return SDValue();
631
632  const DebugLoc DL = N->getDebugLoc();
633  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
634  SDValue True = N->getOperand(1);
635
636  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
637                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
638
639  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
640}
641
642static SDValue PerformANDCombine(SDNode *N, SelectionDAG& DAG,
643                                 TargetLowering::DAGCombinerInfo &DCI,
644                                 const MipsSubtarget* Subtarget) {
645  // Pattern match EXT.
646  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
647  //  => ext $dst, $src, size, pos
648  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
649    return SDValue();
650
651  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
652  unsigned ShiftRightOpc = ShiftRight.getOpcode();
653
654  // Op's first operand must be a shift right.
655  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
656    return SDValue();
657
658  // The second operand of the shift must be an immediate.
659  ConstantSDNode *CN;
660  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
661    return SDValue();
662
663  uint64_t Pos = CN->getZExtValue();
664  uint64_t SMPos, SMSize;
665
666  // Op's second operand must be a shifted mask.
667  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
668      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
669    return SDValue();
670
671  // Return if the shifted mask does not start at bit 0 or the sum of its size
672  // and Pos exceeds the word's size.
673  EVT ValTy = N->getValueType(0);
674  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
675    return SDValue();
676
677  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
678                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
679                     DAG.getConstant(SMSize, MVT::i32));
680}
681
682static SDValue PerformORCombine(SDNode *N, SelectionDAG& DAG,
683                                TargetLowering::DAGCombinerInfo &DCI,
684                                const MipsSubtarget* Subtarget) {
685  // Pattern match INS.
686  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
687  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
688  //  => ins $dst, $src, size, pos, $src1
689  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
690    return SDValue();
691
692  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
693  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
694  ConstantSDNode *CN;
695
696  // See if Op's first operand matches (and $src1 , mask0).
697  if (And0.getOpcode() != ISD::AND)
698    return SDValue();
699
700  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
701      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
702    return SDValue();
703
704  // See if Op's second operand matches (and (shl $src, pos), mask1).
705  if (And1.getOpcode() != ISD::AND)
706    return SDValue();
707
708  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
709      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
710    return SDValue();
711
712  // The shift masks must have the same position and size.
713  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
714    return SDValue();
715
716  SDValue Shl = And1.getOperand(0);
717  if (Shl.getOpcode() != ISD::SHL)
718    return SDValue();
719
720  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
721    return SDValue();
722
723  unsigned Shamt = CN->getZExtValue();
724
725  // Return if the shift amount and the first bit position of mask are not the
726  // same.
727  EVT ValTy = N->getValueType(0);
728  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
729    return SDValue();
730
731  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
732                     DAG.getConstant(SMPos0, MVT::i32),
733                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
734}
735
736SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
737  const {
738  SelectionDAG &DAG = DCI.DAG;
739  unsigned opc = N->getOpcode();
740
741  switch (opc) {
742  default: break;
743  case ISD::ADDE:
744    return PerformADDECombine(N, DAG, DCI, Subtarget);
745  case ISD::SUBE:
746    return PerformSUBECombine(N, DAG, DCI, Subtarget);
747  case ISD::SDIVREM:
748  case ISD::UDIVREM:
749    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
750  case ISD::SELECT:
751    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
752  case ISD::AND:
753    return PerformANDCombine(N, DAG, DCI, Subtarget);
754  case ISD::OR:
755    return PerformORCombine(N, DAG, DCI, Subtarget);
756  }
757
758  return SDValue();
759}
760
761SDValue MipsTargetLowering::
762LowerOperation(SDValue Op, SelectionDAG &DAG) const
763{
764  switch (Op.getOpcode())
765  {
766    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
767    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
768    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
769    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
770    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
771    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
772    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
773    case ISD::SELECT:             return LowerSELECT(Op, DAG);
774    case ISD::SETCC:              return LowerSETCC(Op, DAG);
775    case ISD::VASTART:            return LowerVASTART(Op, DAG);
776    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
777    case ISD::FABS:               return LowerFABS(Op, DAG);
778    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
779    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
780    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
781    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
782    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
783    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
784    case ISD::LOAD:               return LowerLOAD(Op, DAG);
785    case ISD::STORE:              return LowerSTORE(Op, DAG);
786  }
787  return SDValue();
788}
789
790//===----------------------------------------------------------------------===//
791//  Lower helper functions
792//===----------------------------------------------------------------------===//
793
794// AddLiveIn - This helper function adds the specified physical register to the
795// MachineFunction as a live in value.  It also creates a corresponding
796// virtual register for it.
797static unsigned
798AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
799{
800  assert(RC->contains(PReg) && "Not the correct regclass!");
801  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
802  MF.getRegInfo().addLiveIn(PReg, VReg);
803  return VReg;
804}
805
806// Get fp branch code (not opcode) from condition code.
807static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
808  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
809    return Mips::BRANCH_T;
810
811  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
812         "Invalid CondCode.");
813
814  return Mips::BRANCH_F;
815}
816
817/*
818static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
819                                        DebugLoc dl,
820                                        const MipsSubtarget* Subtarget,
821                                        const TargetInstrInfo *TII,
822                                        bool isFPCmp, unsigned Opc) {
823  // There is no need to expand CMov instructions if target has
824  // conditional moves.
825  if (Subtarget->hasCondMov())
826    return BB;
827
828  // To "insert" a SELECT_CC instruction, we actually have to insert the
829  // diamond control-flow pattern.  The incoming instruction knows the
830  // destination vreg to set, the condition code register to branch on, the
831  // true/false values to select between, and a branch opcode to use.
832  const BasicBlock *LLVM_BB = BB->getBasicBlock();
833  MachineFunction::iterator It = BB;
834  ++It;
835
836  //  thisMBB:
837  //  ...
838  //   TrueVal = ...
839  //   setcc r1, r2, r3
840  //   bNE   r1, r0, copy1MBB
841  //   fallthrough --> copy0MBB
842  MachineBasicBlock *thisMBB  = BB;
843  MachineFunction *F = BB->getParent();
844  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
845  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
846  F->insert(It, copy0MBB);
847  F->insert(It, sinkMBB);
848
849  // Transfer the remainder of BB and its successor edges to sinkMBB.
850  sinkMBB->splice(sinkMBB->begin(), BB,
851                  llvm::next(MachineBasicBlock::iterator(MI)),
852                  BB->end());
853  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
854
855  // Next, add the true and fallthrough blocks as its successors.
856  BB->addSuccessor(copy0MBB);
857  BB->addSuccessor(sinkMBB);
858
859  // Emit the right instruction according to the type of the operands compared
860  if (isFPCmp)
861    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
862  else
863    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
864      .addReg(Mips::ZERO).addMBB(sinkMBB);
865
866  //  copy0MBB:
867  //   %FalseValue = ...
868  //   # fallthrough to sinkMBB
869  BB = copy0MBB;
870
871  // Update machine-CFG edges
872  BB->addSuccessor(sinkMBB);
873
874  //  sinkMBB:
875  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
876  //  ...
877  BB = sinkMBB;
878
879  if (isFPCmp)
880    BuildMI(*BB, BB->begin(), dl,
881            TII->get(Mips::PHI), MI->getOperand(0).getReg())
882      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
883      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
884  else
885    BuildMI(*BB, BB->begin(), dl,
886            TII->get(Mips::PHI), MI->getOperand(0).getReg())
887      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
888      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
889
890  MI->eraseFromParent();   // The pseudo instruction is gone now.
891  return BB;
892}
893*/
894MachineBasicBlock *
895MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
896                                                MachineBasicBlock *BB) const {
897  switch (MI->getOpcode()) {
898  default: llvm_unreachable("Unexpected instr type to insert");
899  case Mips::ATOMIC_LOAD_ADD_I8:
900  case Mips::ATOMIC_LOAD_ADD_I8_P8:
901    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
902  case Mips::ATOMIC_LOAD_ADD_I16:
903  case Mips::ATOMIC_LOAD_ADD_I16_P8:
904    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
905  case Mips::ATOMIC_LOAD_ADD_I32:
906  case Mips::ATOMIC_LOAD_ADD_I32_P8:
907    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
908  case Mips::ATOMIC_LOAD_ADD_I64:
909  case Mips::ATOMIC_LOAD_ADD_I64_P8:
910    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
911
912  case Mips::ATOMIC_LOAD_AND_I8:
913  case Mips::ATOMIC_LOAD_AND_I8_P8:
914    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
915  case Mips::ATOMIC_LOAD_AND_I16:
916  case Mips::ATOMIC_LOAD_AND_I16_P8:
917    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
918  case Mips::ATOMIC_LOAD_AND_I32:
919  case Mips::ATOMIC_LOAD_AND_I32_P8:
920    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
921  case Mips::ATOMIC_LOAD_AND_I64:
922  case Mips::ATOMIC_LOAD_AND_I64_P8:
923    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
924
925  case Mips::ATOMIC_LOAD_OR_I8:
926  case Mips::ATOMIC_LOAD_OR_I8_P8:
927    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
928  case Mips::ATOMIC_LOAD_OR_I16:
929  case Mips::ATOMIC_LOAD_OR_I16_P8:
930    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
931  case Mips::ATOMIC_LOAD_OR_I32:
932  case Mips::ATOMIC_LOAD_OR_I32_P8:
933    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
934  case Mips::ATOMIC_LOAD_OR_I64:
935  case Mips::ATOMIC_LOAD_OR_I64_P8:
936    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
937
938  case Mips::ATOMIC_LOAD_XOR_I8:
939  case Mips::ATOMIC_LOAD_XOR_I8_P8:
940    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
941  case Mips::ATOMIC_LOAD_XOR_I16:
942  case Mips::ATOMIC_LOAD_XOR_I16_P8:
943    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
944  case Mips::ATOMIC_LOAD_XOR_I32:
945  case Mips::ATOMIC_LOAD_XOR_I32_P8:
946    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
947  case Mips::ATOMIC_LOAD_XOR_I64:
948  case Mips::ATOMIC_LOAD_XOR_I64_P8:
949    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
950
951  case Mips::ATOMIC_LOAD_NAND_I8:
952  case Mips::ATOMIC_LOAD_NAND_I8_P8:
953    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
954  case Mips::ATOMIC_LOAD_NAND_I16:
955  case Mips::ATOMIC_LOAD_NAND_I16_P8:
956    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
957  case Mips::ATOMIC_LOAD_NAND_I32:
958  case Mips::ATOMIC_LOAD_NAND_I32_P8:
959    return EmitAtomicBinary(MI, BB, 4, 0, true);
960  case Mips::ATOMIC_LOAD_NAND_I64:
961  case Mips::ATOMIC_LOAD_NAND_I64_P8:
962    return EmitAtomicBinary(MI, BB, 8, 0, true);
963
964  case Mips::ATOMIC_LOAD_SUB_I8:
965  case Mips::ATOMIC_LOAD_SUB_I8_P8:
966    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
967  case Mips::ATOMIC_LOAD_SUB_I16:
968  case Mips::ATOMIC_LOAD_SUB_I16_P8:
969    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
970  case Mips::ATOMIC_LOAD_SUB_I32:
971  case Mips::ATOMIC_LOAD_SUB_I32_P8:
972    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
973  case Mips::ATOMIC_LOAD_SUB_I64:
974  case Mips::ATOMIC_LOAD_SUB_I64_P8:
975    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
976
977  case Mips::ATOMIC_SWAP_I8:
978  case Mips::ATOMIC_SWAP_I8_P8:
979    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
980  case Mips::ATOMIC_SWAP_I16:
981  case Mips::ATOMIC_SWAP_I16_P8:
982    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
983  case Mips::ATOMIC_SWAP_I32:
984  case Mips::ATOMIC_SWAP_I32_P8:
985    return EmitAtomicBinary(MI, BB, 4, 0);
986  case Mips::ATOMIC_SWAP_I64:
987  case Mips::ATOMIC_SWAP_I64_P8:
988    return EmitAtomicBinary(MI, BB, 8, 0);
989
990  case Mips::ATOMIC_CMP_SWAP_I8:
991  case Mips::ATOMIC_CMP_SWAP_I8_P8:
992    return EmitAtomicCmpSwapPartword(MI, BB, 1);
993  case Mips::ATOMIC_CMP_SWAP_I16:
994  case Mips::ATOMIC_CMP_SWAP_I16_P8:
995    return EmitAtomicCmpSwapPartword(MI, BB, 2);
996  case Mips::ATOMIC_CMP_SWAP_I32:
997  case Mips::ATOMIC_CMP_SWAP_I32_P8:
998    return EmitAtomicCmpSwap(MI, BB, 4);
999  case Mips::ATOMIC_CMP_SWAP_I64:
1000  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1001    return EmitAtomicCmpSwap(MI, BB, 8);
1002  }
1003}
1004
1005// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1006// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1007MachineBasicBlock *
1008MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1009                                     unsigned Size, unsigned BinOpcode,
1010                                     bool Nand) const {
1011  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1012
1013  MachineFunction *MF = BB->getParent();
1014  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1015  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1016  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1017  DebugLoc dl = MI->getDebugLoc();
1018  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1019
1020  if (Size == 4) {
1021    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1022    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1023    AND = Mips::AND;
1024    NOR = Mips::NOR;
1025    ZERO = Mips::ZERO;
1026    BEQ = Mips::BEQ;
1027  }
1028  else {
1029    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1030    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1031    AND = Mips::AND64;
1032    NOR = Mips::NOR64;
1033    ZERO = Mips::ZERO_64;
1034    BEQ = Mips::BEQ64;
1035  }
1036
1037  unsigned OldVal = MI->getOperand(0).getReg();
1038  unsigned Ptr = MI->getOperand(1).getReg();
1039  unsigned Incr = MI->getOperand(2).getReg();
1040
1041  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1042  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1043  unsigned Success = RegInfo.createVirtualRegister(RC);
1044
1045  // insert new blocks after the current block
1046  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1047  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1048  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1049  MachineFunction::iterator It = BB;
1050  ++It;
1051  MF->insert(It, loopMBB);
1052  MF->insert(It, exitMBB);
1053
1054  // Transfer the remainder of BB and its successor edges to exitMBB.
1055  exitMBB->splice(exitMBB->begin(), BB,
1056                  llvm::next(MachineBasicBlock::iterator(MI)),
1057                  BB->end());
1058  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1059
1060  //  thisMBB:
1061  //    ...
1062  //    fallthrough --> loopMBB
1063  BB->addSuccessor(loopMBB);
1064  loopMBB->addSuccessor(loopMBB);
1065  loopMBB->addSuccessor(exitMBB);
1066
1067  //  loopMBB:
1068  //    ll oldval, 0(ptr)
1069  //    <binop> storeval, oldval, incr
1070  //    sc success, storeval, 0(ptr)
1071  //    beq success, $0, loopMBB
1072  BB = loopMBB;
1073  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1074  if (Nand) {
1075    //  and andres, oldval, incr
1076    //  nor storeval, $0, andres
1077    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1078    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1079  } else if (BinOpcode) {
1080    //  <binop> storeval, oldval, incr
1081    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1082  } else {
1083    StoreVal = Incr;
1084  }
1085  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1086  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1087
1088  MI->eraseFromParent();   // The instruction is gone now.
1089
1090  return exitMBB;
1091}
1092
1093MachineBasicBlock *
1094MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1095                                             MachineBasicBlock *BB,
1096                                             unsigned Size, unsigned BinOpcode,
1097                                             bool Nand) const {
1098  assert((Size == 1 || Size == 2) &&
1099      "Unsupported size for EmitAtomicBinaryPartial.");
1100
1101  MachineFunction *MF = BB->getParent();
1102  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1103  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1104  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1105  DebugLoc dl = MI->getDebugLoc();
1106  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1107  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1108
1109  unsigned Dest = MI->getOperand(0).getReg();
1110  unsigned Ptr = MI->getOperand(1).getReg();
1111  unsigned Incr = MI->getOperand(2).getReg();
1112
1113  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1114  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1115  unsigned Mask = RegInfo.createVirtualRegister(RC);
1116  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1117  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1118  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1119  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1120  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1121  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1122  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1123  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1124  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1125  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1126  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1127  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1128  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1129  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1130  unsigned Success = RegInfo.createVirtualRegister(RC);
1131
1132  // insert new blocks after the current block
1133  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1134  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1135  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1136  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1137  MachineFunction::iterator It = BB;
1138  ++It;
1139  MF->insert(It, loopMBB);
1140  MF->insert(It, sinkMBB);
1141  MF->insert(It, exitMBB);
1142
1143  // Transfer the remainder of BB and its successor edges to exitMBB.
1144  exitMBB->splice(exitMBB->begin(), BB,
1145                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1146  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1147
1148  BB->addSuccessor(loopMBB);
1149  loopMBB->addSuccessor(loopMBB);
1150  loopMBB->addSuccessor(sinkMBB);
1151  sinkMBB->addSuccessor(exitMBB);
1152
1153  //  thisMBB:
1154  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1155  //    and     alignedaddr,ptr,masklsb2
1156  //    andi    ptrlsb2,ptr,3
1157  //    sll     shiftamt,ptrlsb2,3
1158  //    ori     maskupper,$0,255               # 0xff
1159  //    sll     mask,maskupper,shiftamt
1160  //    nor     mask2,$0,mask
1161  //    sll     incr2,incr,shiftamt
1162
1163  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1164  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1165    .addReg(Mips::ZERO).addImm(-4);
1166  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1167    .addReg(Ptr).addReg(MaskLSB2);
1168  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1169  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1170  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1171    .addReg(Mips::ZERO).addImm(MaskImm);
1172  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1173    .addReg(ShiftAmt).addReg(MaskUpper);
1174  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1175  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1176
1177  // atomic.load.binop
1178  // loopMBB:
1179  //   ll      oldval,0(alignedaddr)
1180  //   binop   binopres,oldval,incr2
1181  //   and     newval,binopres,mask
1182  //   and     maskedoldval0,oldval,mask2
1183  //   or      storeval,maskedoldval0,newval
1184  //   sc      success,storeval,0(alignedaddr)
1185  //   beq     success,$0,loopMBB
1186
1187  // atomic.swap
1188  // loopMBB:
1189  //   ll      oldval,0(alignedaddr)
1190  //   and     newval,incr2,mask
1191  //   and     maskedoldval0,oldval,mask2
1192  //   or      storeval,maskedoldval0,newval
1193  //   sc      success,storeval,0(alignedaddr)
1194  //   beq     success,$0,loopMBB
1195
1196  BB = loopMBB;
1197  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1198  if (Nand) {
1199    //  and andres, oldval, incr2
1200    //  nor binopres, $0, andres
1201    //  and newval, binopres, mask
1202    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1203    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1204      .addReg(Mips::ZERO).addReg(AndRes);
1205    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1206  } else if (BinOpcode) {
1207    //  <binop> binopres, oldval, incr2
1208    //  and newval, binopres, mask
1209    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1210    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1211  } else {// atomic.swap
1212    //  and newval, incr2, mask
1213    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1214  }
1215
1216  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1217    .addReg(OldVal).addReg(Mask2);
1218  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1219    .addReg(MaskedOldVal0).addReg(NewVal);
1220  BuildMI(BB, dl, TII->get(SC), Success)
1221    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1222  BuildMI(BB, dl, TII->get(Mips::BEQ))
1223    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1224
1225  //  sinkMBB:
1226  //    and     maskedoldval1,oldval,mask
1227  //    srl     srlres,maskedoldval1,shiftamt
1228  //    sll     sllres,srlres,24
1229  //    sra     dest,sllres,24
1230  BB = sinkMBB;
1231  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1232
1233  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1234    .addReg(OldVal).addReg(Mask);
1235  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1236      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1237  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1238      .addReg(SrlRes).addImm(ShiftImm);
1239  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1240      .addReg(SllRes).addImm(ShiftImm);
1241
1242  MI->eraseFromParent();   // The instruction is gone now.
1243
1244  return exitMBB;
1245}
1246
1247MachineBasicBlock *
1248MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1249                                      MachineBasicBlock *BB,
1250                                      unsigned Size) const {
1251  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1252
1253  MachineFunction *MF = BB->getParent();
1254  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1255  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1256  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1257  DebugLoc dl = MI->getDebugLoc();
1258  unsigned LL, SC, ZERO, BNE, BEQ;
1259
1260  if (Size == 4) {
1261    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1262    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1263    ZERO = Mips::ZERO;
1264    BNE = Mips::BNE;
1265    BEQ = Mips::BEQ;
1266  }
1267  else {
1268    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1269    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1270    ZERO = Mips::ZERO_64;
1271    BNE = Mips::BNE64;
1272    BEQ = Mips::BEQ64;
1273  }
1274
1275  unsigned Dest    = MI->getOperand(0).getReg();
1276  unsigned Ptr     = MI->getOperand(1).getReg();
1277  unsigned OldVal  = MI->getOperand(2).getReg();
1278  unsigned NewVal  = MI->getOperand(3).getReg();
1279
1280  unsigned Success = RegInfo.createVirtualRegister(RC);
1281
1282  // insert new blocks after the current block
1283  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1284  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1285  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1286  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1287  MachineFunction::iterator It = BB;
1288  ++It;
1289  MF->insert(It, loop1MBB);
1290  MF->insert(It, loop2MBB);
1291  MF->insert(It, exitMBB);
1292
1293  // Transfer the remainder of BB and its successor edges to exitMBB.
1294  exitMBB->splice(exitMBB->begin(), BB,
1295                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1296  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1297
1298  //  thisMBB:
1299  //    ...
1300  //    fallthrough --> loop1MBB
1301  BB->addSuccessor(loop1MBB);
1302  loop1MBB->addSuccessor(exitMBB);
1303  loop1MBB->addSuccessor(loop2MBB);
1304  loop2MBB->addSuccessor(loop1MBB);
1305  loop2MBB->addSuccessor(exitMBB);
1306
1307  // loop1MBB:
1308  //   ll dest, 0(ptr)
1309  //   bne dest, oldval, exitMBB
1310  BB = loop1MBB;
1311  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1312  BuildMI(BB, dl, TII->get(BNE))
1313    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1314
1315  // loop2MBB:
1316  //   sc success, newval, 0(ptr)
1317  //   beq success, $0, loop1MBB
1318  BB = loop2MBB;
1319  BuildMI(BB, dl, TII->get(SC), Success)
1320    .addReg(NewVal).addReg(Ptr).addImm(0);
1321  BuildMI(BB, dl, TII->get(BEQ))
1322    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1323
1324  MI->eraseFromParent();   // The instruction is gone now.
1325
1326  return exitMBB;
1327}
1328
1329MachineBasicBlock *
1330MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1331                                              MachineBasicBlock *BB,
1332                                              unsigned Size) const {
1333  assert((Size == 1 || Size == 2) &&
1334      "Unsupported size for EmitAtomicCmpSwapPartial.");
1335
1336  MachineFunction *MF = BB->getParent();
1337  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1338  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1339  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1340  DebugLoc dl = MI->getDebugLoc();
1341  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1342  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1343
1344  unsigned Dest    = MI->getOperand(0).getReg();
1345  unsigned Ptr     = MI->getOperand(1).getReg();
1346  unsigned CmpVal  = MI->getOperand(2).getReg();
1347  unsigned NewVal  = MI->getOperand(3).getReg();
1348
1349  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1350  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1351  unsigned Mask = RegInfo.createVirtualRegister(RC);
1352  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1353  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1354  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1355  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1356  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1357  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1358  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1359  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1360  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1361  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1362  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1363  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1364  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1365  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1366  unsigned Success = RegInfo.createVirtualRegister(RC);
1367
1368  // insert new blocks after the current block
1369  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1370  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1371  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1372  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1373  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1374  MachineFunction::iterator It = BB;
1375  ++It;
1376  MF->insert(It, loop1MBB);
1377  MF->insert(It, loop2MBB);
1378  MF->insert(It, sinkMBB);
1379  MF->insert(It, exitMBB);
1380
1381  // Transfer the remainder of BB and its successor edges to exitMBB.
1382  exitMBB->splice(exitMBB->begin(), BB,
1383                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1384  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1385
1386  BB->addSuccessor(loop1MBB);
1387  loop1MBB->addSuccessor(sinkMBB);
1388  loop1MBB->addSuccessor(loop2MBB);
1389  loop2MBB->addSuccessor(loop1MBB);
1390  loop2MBB->addSuccessor(sinkMBB);
1391  sinkMBB->addSuccessor(exitMBB);
1392
1393  // FIXME: computation of newval2 can be moved to loop2MBB.
1394  //  thisMBB:
1395  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1396  //    and     alignedaddr,ptr,masklsb2
1397  //    andi    ptrlsb2,ptr,3
1398  //    sll     shiftamt,ptrlsb2,3
1399  //    ori     maskupper,$0,255               # 0xff
1400  //    sll     mask,maskupper,shiftamt
1401  //    nor     mask2,$0,mask
1402  //    andi    maskedcmpval,cmpval,255
1403  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1404  //    andi    maskednewval,newval,255
1405  //    sll     shiftednewval,maskednewval,shiftamt
1406  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1407  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1408    .addReg(Mips::ZERO).addImm(-4);
1409  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1410    .addReg(Ptr).addReg(MaskLSB2);
1411  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1412  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1413  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1414    .addReg(Mips::ZERO).addImm(MaskImm);
1415  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1416    .addReg(ShiftAmt).addReg(MaskUpper);
1417  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1418  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1419    .addReg(CmpVal).addImm(MaskImm);
1420  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1421    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1422  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1423    .addReg(NewVal).addImm(MaskImm);
1424  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1425    .addReg(ShiftAmt).addReg(MaskedNewVal);
1426
1427  //  loop1MBB:
1428  //    ll      oldval,0(alginedaddr)
1429  //    and     maskedoldval0,oldval,mask
1430  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1431  BB = loop1MBB;
1432  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1433  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1434    .addReg(OldVal).addReg(Mask);
1435  BuildMI(BB, dl, TII->get(Mips::BNE))
1436    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1437
1438  //  loop2MBB:
1439  //    and     maskedoldval1,oldval,mask2
1440  //    or      storeval,maskedoldval1,shiftednewval
1441  //    sc      success,storeval,0(alignedaddr)
1442  //    beq     success,$0,loop1MBB
1443  BB = loop2MBB;
1444  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1445    .addReg(OldVal).addReg(Mask2);
1446  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1447    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1448  BuildMI(BB, dl, TII->get(SC), Success)
1449      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1450  BuildMI(BB, dl, TII->get(Mips::BEQ))
1451      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1452
1453  //  sinkMBB:
1454  //    srl     srlres,maskedoldval0,shiftamt
1455  //    sll     sllres,srlres,24
1456  //    sra     dest,sllres,24
1457  BB = sinkMBB;
1458  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1459
1460  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1461      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1462  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1463      .addReg(SrlRes).addImm(ShiftImm);
1464  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1465      .addReg(SllRes).addImm(ShiftImm);
1466
1467  MI->eraseFromParent();   // The instruction is gone now.
1468
1469  return exitMBB;
1470}
1471
1472//===----------------------------------------------------------------------===//
1473//  Misc Lower Operation implementation
1474//===----------------------------------------------------------------------===//
1475SDValue MipsTargetLowering::
1476LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
1477{
1478  MachineFunction &MF = DAG.getMachineFunction();
1479  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1480  unsigned SP = IsN64 ? Mips::SP_64 : Mips::SP;
1481
1482  assert(getTargetMachine().getFrameLowering()->getStackAlignment() >=
1483         cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue() &&
1484         "Cannot lower if the alignment of the allocated space is larger than \
1485          that of the stack.");
1486
1487  SDValue Chain = Op.getOperand(0);
1488  SDValue Size = Op.getOperand(1);
1489  DebugLoc dl = Op.getDebugLoc();
1490
1491  // Get a reference from Mips stack pointer
1492  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SP, getPointerTy());
1493
1494  // Subtract the dynamic size from the actual stack size to
1495  // obtain the new stack size.
1496  SDValue Sub = DAG.getNode(ISD::SUB, dl, getPointerTy(), StackPointer, Size);
1497
1498  // The Sub result contains the new stack start address, so it
1499  // must be placed in the stack pointer register.
1500  Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, SP, Sub, SDValue());
1501
1502  // This node always has two return values: a new stack pointer
1503  // value and a chain
1504  SDVTList VTLs = DAG.getVTList(getPointerTy(), MVT::Other);
1505  SDValue Ptr = DAG.getFrameIndex(MipsFI->getDynAllocFI(), getPointerTy());
1506  SDValue Ops[] = { Chain, Ptr, Chain.getValue(1) };
1507
1508  return DAG.getNode(MipsISD::DynAlloc, dl, VTLs, Ops, 3);
1509}
1510
1511SDValue MipsTargetLowering::
1512LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1513{
1514  // The first operand is the chain, the second is the condition, the third is
1515  // the block to branch to if the condition is true.
1516  SDValue Chain = Op.getOperand(0);
1517  SDValue Dest = Op.getOperand(2);
1518  DebugLoc dl = Op.getDebugLoc();
1519
1520  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1521
1522  // Return if flag is not set by a floating point comparison.
1523  if (CondRes.getOpcode() != MipsISD::FPCmp)
1524    return Op;
1525
1526  SDValue CCNode  = CondRes.getOperand(2);
1527  Mips::CondCode CC =
1528    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1529  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1530
1531  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1532                     Dest, CondRes);
1533}
1534
1535SDValue MipsTargetLowering::
1536LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1537{
1538  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1539
1540  // Return if flag is not set by a floating point comparison.
1541  if (Cond.getOpcode() != MipsISD::FPCmp)
1542    return Op;
1543
1544  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1545                      Op.getDebugLoc());
1546}
1547
1548SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1549  SDValue Cond = CreateFPCmp(DAG, Op);
1550
1551  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1552         "Floating point operand expected.");
1553
1554  SDValue True  = DAG.getConstant(1, MVT::i32);
1555  SDValue False = DAG.getConstant(0, MVT::i32);
1556
1557  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1558}
1559
1560SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1561                                               SelectionDAG &DAG) const {
1562  // FIXME there isn't actually debug info here
1563  DebugLoc dl = Op.getDebugLoc();
1564  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1565
1566  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1567    SDVTList VTs = DAG.getVTList(MVT::i32);
1568
1569    MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
1570
1571    // %gp_rel relocation
1572    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1573      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1574                                              MipsII::MO_GPREL);
1575      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1576      SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1577      return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
1578    }
1579    // %hi/%lo relocation
1580    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1581                                              MipsII::MO_ABS_HI);
1582    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1583                                              MipsII::MO_ABS_LO);
1584    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1585    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1586    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1587  }
1588
1589  EVT ValTy = Op.getValueType();
1590  bool HasGotOfst = (GV->hasInternalLinkage() ||
1591                     (GV->hasLocalLinkage() && !isa<Function>(GV)));
1592  unsigned GotFlag = HasMips64 ?
1593                     (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1594                     (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16);
1595  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1596  GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA);
1597  SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA,
1598                                MachinePointerInfo(), false, false, false, 0);
1599  // On functions and global targets not internal linked only
1600  // a load from got/GP is necessary for PIC to work.
1601  if (!HasGotOfst)
1602    return ResNode;
1603  SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1604                                            HasMips64 ? MipsII::MO_GOT_OFST :
1605                                                        MipsII::MO_ABS_LO);
1606  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1607  return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1608}
1609
1610SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1611                                              SelectionDAG &DAG) const {
1612  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1613  // FIXME there isn't actually debug info here
1614  DebugLoc dl = Op.getDebugLoc();
1615
1616  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1617    // %hi/%lo relocation
1618    SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_HI);
1619    SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_LO);
1620    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1621    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1622    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1623  }
1624
1625  EVT ValTy = Op.getValueType();
1626  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1627  unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1628  SDValue BAGOTOffset = DAG.getBlockAddress(BA, ValTy, true, GOTFlag);
1629  BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy,
1630                            GetGlobalReg(DAG, ValTy), BAGOTOffset);
1631  SDValue BALOOffset = DAG.getBlockAddress(BA, ValTy, true, OFSTFlag);
1632  SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset,
1633                             MachinePointerInfo(), false, false, false, 0);
1634  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset);
1635  return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1636}
1637
1638SDValue MipsTargetLowering::
1639LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1640{
1641  // If the relocation model is PIC, use the General Dynamic TLS Model or
1642  // Local Dynamic TLS model, otherwise use the Initial Exec or
1643  // Local Exec TLS Model.
1644
1645  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1646  DebugLoc dl = GA->getDebugLoc();
1647  const GlobalValue *GV = GA->getGlobal();
1648  EVT PtrVT = getPointerTy();
1649
1650  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1651
1652  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1653    // General Dynamic and Local Dynamic TLS Model.
1654    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1655                                                      : MipsII::MO_TLSGD;
1656
1657    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1658    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1659                                   GetGlobalReg(DAG, PtrVT), TGA);
1660    unsigned PtrSize = PtrVT.getSizeInBits();
1661    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1662
1663    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1664
1665    ArgListTy Args;
1666    ArgListEntry Entry;
1667    Entry.Node = Argument;
1668    Entry.Ty = PtrTy;
1669    Args.push_back(Entry);
1670
1671    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1672                  false, false, false, false, 0, CallingConv::C,
1673                  /*isTailCall=*/false, /*doesNotRet=*/false,
1674                  /*isReturnValueUsed=*/true,
1675                  TlsGetAddr, Args, DAG, dl);
1676    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1677
1678    SDValue Ret = CallResult.first;
1679
1680    if (model != TLSModel::LocalDynamic)
1681      return Ret;
1682
1683    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1684                                               MipsII::MO_DTPREL_HI);
1685    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1686    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1687                                               MipsII::MO_DTPREL_LO);
1688    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1689    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1690    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1691  }
1692
1693  SDValue Offset;
1694  if (model == TLSModel::InitialExec) {
1695    // Initial Exec TLS Model
1696    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1697                                             MipsII::MO_GOTTPREL);
1698    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1699                      TGA);
1700    Offset = DAG.getLoad(PtrVT, dl,
1701                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1702                         false, false, false, 0);
1703  } else {
1704    // Local Exec TLS Model
1705    assert(model == TLSModel::LocalExec);
1706    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1707                                               MipsII::MO_TPREL_HI);
1708    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1709                                               MipsII::MO_TPREL_LO);
1710    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1711    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1712    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1713  }
1714
1715  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1716  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1717}
1718
1719SDValue MipsTargetLowering::
1720LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1721{
1722  SDValue HiPart, JTI, JTILo;
1723  // FIXME there isn't actually debug info here
1724  DebugLoc dl = Op.getDebugLoc();
1725  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1726  EVT PtrVT = Op.getValueType();
1727  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1728
1729  if (!IsPIC && !IsN64) {
1730    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI);
1731    HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI);
1732    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO);
1733  } else {// Emit Load from Global Pointer
1734    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1735    unsigned OfstFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1736    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag);
1737    JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1738                      JTI);
1739    HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI,
1740                         MachinePointerInfo(), false, false, false, 0);
1741    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag);
1742  }
1743
1744  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo);
1745  return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo);
1746}
1747
1748SDValue MipsTargetLowering::
1749LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1750{
1751  SDValue ResNode;
1752  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1753  const Constant *C = N->getConstVal();
1754  // FIXME there isn't actually debug info here
1755  DebugLoc dl = Op.getDebugLoc();
1756
1757  // gp_rel relocation
1758  // FIXME: we should reference the constant pool using small data sections,
1759  // but the asm printer currently doesn't support this feature without
1760  // hacking it. This feature should come soon so we can uncomment the
1761  // stuff below.
1762  //if (IsInSmallSection(C->getType())) {
1763  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1764  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1765  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1766
1767  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1768    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1769                                             N->getOffset(), MipsII::MO_ABS_HI);
1770    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1771                                             N->getOffset(), MipsII::MO_ABS_LO);
1772    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1773    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1774    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1775  } else {
1776    EVT ValTy = Op.getValueType();
1777    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1778    unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1779    SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1780                                           N->getOffset(), GOTFlag);
1781    CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP);
1782    SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP,
1783                               MachinePointerInfo::getConstantPool(), false,
1784                               false, false, 0);
1785    SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1786                                             N->getOffset(), OFSTFlag);
1787    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo);
1788    ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1789  }
1790
1791  return ResNode;
1792}
1793
1794SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1795  MachineFunction &MF = DAG.getMachineFunction();
1796  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1797
1798  DebugLoc dl = Op.getDebugLoc();
1799  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1800                                 getPointerTy());
1801
1802  // vastart just stores the address of the VarArgsFrameIndex slot into the
1803  // memory location argument.
1804  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1805  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1806                      MachinePointerInfo(SV), false, false, 0);
1807}
1808
1809static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1810  EVT TyX = Op.getOperand(0).getValueType();
1811  EVT TyY = Op.getOperand(1).getValueType();
1812  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1813  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1814  DebugLoc DL = Op.getDebugLoc();
1815  SDValue Res;
1816
1817  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1818  // to i32.
1819  SDValue X = (TyX == MVT::f32) ?
1820    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1821    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1822                Const1);
1823  SDValue Y = (TyY == MVT::f32) ?
1824    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1825    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1826                Const1);
1827
1828  if (HasR2) {
1829    // ext  E, Y, 31, 1  ; extract bit31 of Y
1830    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1831    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1832    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1833  } else {
1834    // sll SllX, X, 1
1835    // srl SrlX, SllX, 1
1836    // srl SrlY, Y, 31
1837    // sll SllY, SrlX, 31
1838    // or  Or, SrlX, SllY
1839    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1840    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1841    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1842    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1843    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1844  }
1845
1846  if (TyX == MVT::f32)
1847    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1848
1849  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1850                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1851  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1852}
1853
1854static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1855  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1856  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1857  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1858  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1859  DebugLoc DL = Op.getDebugLoc();
1860
1861  // Bitcast to integer nodes.
1862  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1863  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1864
1865  if (HasR2) {
1866    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1867    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1868    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1869                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1870
1871    if (WidthX > WidthY)
1872      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1873    else if (WidthY > WidthX)
1874      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1875
1876    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1877                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1878    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1879  }
1880
1881  // (d)sll SllX, X, 1
1882  // (d)srl SrlX, SllX, 1
1883  // (d)srl SrlY, Y, width(Y)-1
1884  // (d)sll SllY, SrlX, width(Y)-1
1885  // or     Or, SrlX, SllY
1886  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1887  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1888  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1889                             DAG.getConstant(WidthY - 1, MVT::i32));
1890
1891  if (WidthX > WidthY)
1892    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1893  else if (WidthY > WidthX)
1894    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1895
1896  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1897                             DAG.getConstant(WidthX - 1, MVT::i32));
1898  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1899  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1900}
1901
1902SDValue
1903MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1904  if (Subtarget->hasMips64())
1905    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1906
1907  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1908}
1909
1910static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1911  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1912  DebugLoc DL = Op.getDebugLoc();
1913
1914  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1915  // to i32.
1916  SDValue X = (Op.getValueType() == MVT::f32) ?
1917    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1918    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1919                Const1);
1920
1921  // Clear MSB.
1922  if (HasR2)
1923    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1924                      DAG.getRegister(Mips::ZERO, MVT::i32),
1925                      DAG.getConstant(31, MVT::i32), Const1, X);
1926  else {
1927    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1928    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1929  }
1930
1931  if (Op.getValueType() == MVT::f32)
1932    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1933
1934  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1935                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1936  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1937}
1938
1939static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1940  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1941  DebugLoc DL = Op.getDebugLoc();
1942
1943  // Bitcast to integer node.
1944  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1945
1946  // Clear MSB.
1947  if (HasR2)
1948    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1949                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1950                      DAG.getConstant(63, MVT::i32), Const1, X);
1951  else {
1952    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1953    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1954  }
1955
1956  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1957}
1958
1959SDValue
1960MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
1961  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1962    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1963
1964  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1965}
1966
1967SDValue MipsTargetLowering::
1968LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1969  // check the depth
1970  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1971         "Frame address can only be determined for current frame.");
1972
1973  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1974  MFI->setFrameAddressIsTaken(true);
1975  EVT VT = Op.getValueType();
1976  DebugLoc dl = Op.getDebugLoc();
1977  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1978                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1979  return FrameAddr;
1980}
1981
1982// TODO: set SType according to the desired memory barrier behavior.
1983SDValue
1984MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG& DAG) const {
1985  unsigned SType = 0;
1986  DebugLoc dl = Op.getDebugLoc();
1987  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
1988                     DAG.getConstant(SType, MVT::i32));
1989}
1990
1991SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
1992                                              SelectionDAG& DAG) const {
1993  // FIXME: Need pseudo-fence for 'singlethread' fences
1994  // FIXME: Set SType for weaker fences where supported/appropriate.
1995  unsigned SType = 0;
1996  DebugLoc dl = Op.getDebugLoc();
1997  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
1998                     DAG.getConstant(SType, MVT::i32));
1999}
2000
2001SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2002                                                SelectionDAG& DAG) const {
2003  DebugLoc DL = Op.getDebugLoc();
2004  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2005  SDValue Shamt = Op.getOperand(2);
2006
2007  // if shamt < 32:
2008  //  lo = (shl lo, shamt)
2009  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2010  // else:
2011  //  lo = 0
2012  //  hi = (shl lo, shamt[4:0])
2013  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2014                            DAG.getConstant(-1, MVT::i32));
2015  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2016                                      DAG.getConstant(1, MVT::i32));
2017  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2018                                     Not);
2019  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2020  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2021  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2022  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2023                             DAG.getConstant(0x20, MVT::i32));
2024  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, DAG.getConstant(0, MVT::i32),
2025                   ShiftLeftLo);
2026  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2027
2028  SDValue Ops[2] = {Lo, Hi};
2029  return DAG.getMergeValues(Ops, 2, DL);
2030}
2031
2032SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG& DAG,
2033                                                 bool IsSRA) const {
2034  DebugLoc DL = Op.getDebugLoc();
2035  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2036  SDValue Shamt = Op.getOperand(2);
2037
2038  // if shamt < 32:
2039  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2040  //  if isSRA:
2041  //    hi = (sra hi, shamt)
2042  //  else:
2043  //    hi = (srl hi, shamt)
2044  // else:
2045  //  if isSRA:
2046  //   lo = (sra hi, shamt[4:0])
2047  //   hi = (sra hi, 31)
2048  //  else:
2049  //   lo = (srl hi, shamt[4:0])
2050  //   hi = 0
2051  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2052                            DAG.getConstant(-1, MVT::i32));
2053  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2054                                     DAG.getConstant(1, MVT::i32));
2055  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2056  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2057  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2058  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2059                                     Hi, Shamt);
2060  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2061                             DAG.getConstant(0x20, MVT::i32));
2062  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2063                                DAG.getConstant(31, MVT::i32));
2064  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2065  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2066                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2067                   ShiftRightHi);
2068
2069  SDValue Ops[2] = {Lo, Hi};
2070  return DAG.getMergeValues(Ops, 2, DL);
2071}
2072
2073static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2074                            SDValue Chain, SDValue Src, unsigned Offset) {
2075  SDValue Ptr = LD->getBasePtr();
2076  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2077  EVT BasePtrVT = Ptr.getValueType();
2078  DebugLoc DL = LD->getDebugLoc();
2079  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2080
2081  if (Offset)
2082    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2083                      DAG.getConstant(Offset, BasePtrVT));
2084
2085  SDValue Ops[] = { Chain, Ptr, Src };
2086  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2087                                 LD->getMemOperand());
2088}
2089
2090// Expand an unaligned 32 or 64-bit integer load node.
2091SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2092  LoadSDNode *LD = cast<LoadSDNode>(Op);
2093  EVT MemVT = LD->getMemoryVT();
2094
2095  // Return if load is aligned or if MemVT is neither i32 nor i64.
2096  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2097      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2098    return SDValue();
2099
2100  bool IsLittle = Subtarget->isLittle();
2101  EVT VT = Op.getValueType();
2102  ISD::LoadExtType ExtType = LD->getExtensionType();
2103  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2104
2105  assert((VT == MVT::i32) || (VT == MVT::i64));
2106
2107  // Expand
2108  //  (set dst, (i64 (load baseptr)))
2109  // to
2110  //  (set tmp, (ldl (add baseptr, 7), undef))
2111  //  (set dst, (ldr baseptr, tmp))
2112  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2113    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2114                               IsLittle ? 7 : 0);
2115    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2116                        IsLittle ? 0 : 7);
2117  }
2118
2119  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2120                             IsLittle ? 3 : 0);
2121  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2122                             IsLittle ? 0 : 3);
2123
2124  // Expand
2125  //  (set dst, (i32 (load baseptr))) or
2126  //  (set dst, (i64 (sextload baseptr))) or
2127  //  (set dst, (i64 (extload baseptr)))
2128  // to
2129  //  (set tmp, (lwl (add baseptr, 3), undef))
2130  //  (set dst, (lwr baseptr, tmp))
2131  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2132      (ExtType == ISD::EXTLOAD))
2133    return LWR;
2134
2135  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2136
2137  // Expand
2138  //  (set dst, (i64 (zextload baseptr)))
2139  // to
2140  //  (set tmp0, (lwl (add baseptr, 3), undef))
2141  //  (set tmp1, (lwr baseptr, tmp0))
2142  //  (set tmp2, (shl tmp1, 32))
2143  //  (set dst, (srl tmp2, 32))
2144  DebugLoc DL = LD->getDebugLoc();
2145  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2146  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2147  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2148  SDValue Ops[] = { SRL, LWR.getValue(1) };
2149  return DAG.getMergeValues(Ops, 2, DL);
2150}
2151
2152static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2153                             SDValue Chain, unsigned Offset) {
2154  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2155  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2156  DebugLoc DL = SD->getDebugLoc();
2157  SDVTList VTList = DAG.getVTList(MVT::Other);
2158
2159  if (Offset)
2160    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2161                      DAG.getConstant(Offset, BasePtrVT));
2162
2163  SDValue Ops[] = { Chain, Value, Ptr };
2164  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2165                                 SD->getMemOperand());
2166}
2167
2168// Expand an unaligned 32 or 64-bit integer store node.
2169SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2170  StoreSDNode *SD = cast<StoreSDNode>(Op);
2171  EVT MemVT = SD->getMemoryVT();
2172
2173  // Return if store is aligned or if MemVT is neither i32 nor i64.
2174  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2175      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2176    return SDValue();
2177
2178  bool IsLittle = Subtarget->isLittle();
2179  SDValue Value = SD->getValue(), Chain = SD->getChain();
2180  EVT VT = Value.getValueType();
2181
2182  // Expand
2183  //  (store val, baseptr) or
2184  //  (truncstore val, baseptr)
2185  // to
2186  //  (swl val, (add baseptr, 3))
2187  //  (swr val, baseptr)
2188  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2189    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2190                                IsLittle ? 3 : 0);
2191    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2192  }
2193
2194  assert(VT == MVT::i64);
2195
2196  // Expand
2197  //  (store val, baseptr)
2198  // to
2199  //  (sdl val, (add baseptr, 7))
2200  //  (sdr val, baseptr)
2201  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2202  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2203}
2204
2205//===----------------------------------------------------------------------===//
2206//                      Calling Convention Implementation
2207//===----------------------------------------------------------------------===//
2208
2209//===----------------------------------------------------------------------===//
2210// TODO: Implement a generic logic using tblgen that can support this.
2211// Mips O32 ABI rules:
2212// ---
2213// i32 - Passed in A0, A1, A2, A3 and stack
2214// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2215//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2216// f64 - Only passed in two aliased f32 registers if no int reg has been used
2217//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2218//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2219//       go to stack.
2220//
2221//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2222//===----------------------------------------------------------------------===//
2223
2224static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2225                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2226                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2227
2228  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2229
2230  static const uint16_t IntRegs[] = {
2231      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2232  };
2233  static const uint16_t F32Regs[] = {
2234      Mips::F12, Mips::F14
2235  };
2236  static const uint16_t F64Regs[] = {
2237      Mips::D6, Mips::D7
2238  };
2239
2240  // ByVal Args
2241  if (ArgFlags.isByVal()) {
2242    State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
2243                      1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
2244    unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
2245    for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
2246         r < std::min(IntRegsSize, NextReg); ++r)
2247      State.AllocateReg(IntRegs[r]);
2248    return false;
2249  }
2250
2251  // Promote i8 and i16
2252  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2253    LocVT = MVT::i32;
2254    if (ArgFlags.isSExt())
2255      LocInfo = CCValAssign::SExt;
2256    else if (ArgFlags.isZExt())
2257      LocInfo = CCValAssign::ZExt;
2258    else
2259      LocInfo = CCValAssign::AExt;
2260  }
2261
2262  unsigned Reg;
2263
2264  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2265  // is true: function is vararg, argument is 3rd or higher, there is previous
2266  // argument which is not f32 or f64.
2267  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2268      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2269  unsigned OrigAlign = ArgFlags.getOrigAlign();
2270  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2271
2272  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2273    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2274    // If this is the first part of an i64 arg,
2275    // the allocated register must be either A0 or A2.
2276    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2277      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2278    LocVT = MVT::i32;
2279  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2280    // Allocate int register and shadow next int register. If first
2281    // available register is Mips::A1 or Mips::A3, shadow it too.
2282    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2283    if (Reg == Mips::A1 || Reg == Mips::A3)
2284      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2285    State.AllocateReg(IntRegs, IntRegsSize);
2286    LocVT = MVT::i32;
2287  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2288    // we are guaranteed to find an available float register
2289    if (ValVT == MVT::f32) {
2290      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2291      // Shadow int register
2292      State.AllocateReg(IntRegs, IntRegsSize);
2293    } else {
2294      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2295      // Shadow int registers
2296      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2297      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2298        State.AllocateReg(IntRegs, IntRegsSize);
2299      State.AllocateReg(IntRegs, IntRegsSize);
2300    }
2301  } else
2302    llvm_unreachable("Cannot handle this ValVT.");
2303
2304  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
2305  unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
2306
2307  if (!Reg)
2308    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2309  else
2310    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2311
2312  return false; // CC must always match
2313}
2314
2315static const uint16_t Mips64IntRegs[8] =
2316  {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
2317   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64};
2318static const uint16_t Mips64DPRegs[8] =
2319  {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
2320   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64};
2321
2322static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT,
2323                           CCValAssign::LocInfo LocInfo,
2324                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
2325  unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8);
2326  unsigned Size  = (ArgFlags.getByValSize() + 7) / 8 * 8;
2327  unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8);
2328
2329  assert(Align <= 16 && "Cannot handle alignments larger than 16.");
2330
2331  // If byval is 16-byte aligned, the first arg register must be even.
2332  if ((Align == 16) && (FirstIdx % 2)) {
2333    State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]);
2334    ++FirstIdx;
2335  }
2336
2337  // Mark the registers allocated.
2338  for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I)
2339    State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]);
2340
2341  // Allocate space on caller's stack.
2342  unsigned Offset = State.AllocateStack(Size, Align);
2343
2344  if (FirstIdx < 8)
2345    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx],
2346                                     LocVT, LocInfo));
2347  else
2348    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2349
2350  return true;
2351}
2352
2353#include "MipsGenCallingConv.inc"
2354
2355static void
2356AnalyzeMips64CallOperands(CCState &CCInfo,
2357                          const SmallVectorImpl<ISD::OutputArg> &Outs) {
2358  unsigned NumOps = Outs.size();
2359  for (unsigned i = 0; i != NumOps; ++i) {
2360    MVT ArgVT = Outs[i].VT;
2361    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2362    bool R;
2363
2364    if (Outs[i].IsFixed)
2365      R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2366    else
2367      R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2368
2369    if (R) {
2370#ifndef NDEBUG
2371      dbgs() << "Call operand #" << i << " has unhandled type "
2372             << EVT(ArgVT).getEVTString();
2373#endif
2374      llvm_unreachable(0);
2375    }
2376  }
2377}
2378
2379//===----------------------------------------------------------------------===//
2380//                  Call Calling Convention Implementation
2381//===----------------------------------------------------------------------===//
2382
2383static const unsigned O32IntRegsSize = 4;
2384
2385static const uint16_t O32IntRegs[] = {
2386  Mips::A0, Mips::A1, Mips::A2, Mips::A3
2387};
2388
2389// Return next O32 integer argument register.
2390static unsigned getNextIntArgReg(unsigned Reg) {
2391  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2392  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2393}
2394
2395// Write ByVal Arg to arg registers and stack.
2396static void
2397WriteByValArg(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
2398              SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass,
2399              SmallVector<SDValue, 8>& MemOpChains, int& LastFI,
2400              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2401              const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2402              MVT PtrType, bool isLittle) {
2403  unsigned LocMemOffset = VA.getLocMemOffset();
2404  unsigned Offset = 0;
2405  uint32_t RemainingSize = Flags.getByValSize();
2406  unsigned ByValAlign = Flags.getByValAlign();
2407
2408  // Copy the first 4 words of byval arg to registers A0 - A3.
2409  // FIXME: Use a stricter alignment if it enables better optimization in passes
2410  //        run later.
2411  for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
2412       Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
2413    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2414                                  DAG.getConstant(Offset, MVT::i32));
2415    SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
2416                                  MachinePointerInfo(), false, false, false,
2417                                  std::min(ByValAlign, (unsigned )4));
2418    MemOpChains.push_back(LoadVal.getValue(1));
2419    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2420    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2421  }
2422
2423  if (RemainingSize == 0)
2424    return;
2425
2426  // If there still is a register available for argument passing, write the
2427  // remaining part of the structure to it using subword loads and shifts.
2428  if (LocMemOffset < 4 * 4) {
2429    assert(RemainingSize <= 3 && RemainingSize >= 1 &&
2430           "There must be one to three bytes remaining.");
2431    unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
2432    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2433                                  DAG.getConstant(Offset, MVT::i32));
2434    unsigned Alignment = std::min(ByValAlign, (unsigned )4);
2435    SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2436                                     LoadPtr, MachinePointerInfo(),
2437                                     MVT::getIntegerVT(LoadSize * 8), false,
2438                                     false, Alignment);
2439    MemOpChains.push_back(LoadVal.getValue(1));
2440
2441    // If target is big endian, shift it to the most significant half-word or
2442    // byte.
2443    if (!isLittle)
2444      LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
2445                            DAG.getConstant(32 - LoadSize * 8, MVT::i32));
2446
2447    Offset += LoadSize;
2448    RemainingSize -= LoadSize;
2449
2450    // Read second subword if necessary.
2451    if (RemainingSize != 0)  {
2452      assert(RemainingSize == 1 && "There must be one byte remaining.");
2453      LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2454                            DAG.getConstant(Offset, MVT::i32));
2455      unsigned Alignment = std::min(ByValAlign, (unsigned )2);
2456      SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2457                                       LoadPtr, MachinePointerInfo(),
2458                                       MVT::i8, false, false, Alignment);
2459      MemOpChains.push_back(Subword.getValue(1));
2460      // Insert the loaded byte to LoadVal.
2461      // FIXME: Use INS if supported by target.
2462      unsigned ShiftAmt = isLittle ? 16 : 8;
2463      SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
2464                                  DAG.getConstant(ShiftAmt, MVT::i32));
2465      LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
2466    }
2467
2468    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2469    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2470    return;
2471  }
2472
2473  // Create a fixed object on stack at offset LocMemOffset and copy
2474  // remaining part of byval arg to it using memcpy.
2475  SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2476                            DAG.getConstant(Offset, MVT::i32));
2477  LastFI = MFI->CreateFixedObject(RemainingSize, LocMemOffset, true);
2478  SDValue Dst = DAG.getFrameIndex(LastFI, PtrType);
2479  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
2480                             DAG.getConstant(RemainingSize, MVT::i32),
2481                             std::min(ByValAlign, (unsigned)4),
2482                             /*isVolatile=*/false, /*AlwaysInline=*/false,
2483                             MachinePointerInfo(0), MachinePointerInfo(0));
2484}
2485
2486// Copy Mips64 byVal arg to registers and stack.
2487void static
2488PassByValArg64(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
2489               SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass,
2490               SmallVector<SDValue, 8>& MemOpChains, int& LastFI,
2491               MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2492               const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2493               EVT PtrTy, bool isLittle) {
2494  unsigned ByValSize = Flags.getByValSize();
2495  unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8);
2496  bool IsRegLoc = VA.isRegLoc();
2497  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
2498  unsigned LocMemOffset = 0;
2499  unsigned MemCpySize = ByValSize;
2500
2501  if (!IsRegLoc)
2502    LocMemOffset = VA.getLocMemOffset();
2503  else {
2504    const uint16_t *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8,
2505                                    VA.getLocReg());
2506    const uint16_t *RegEnd = Mips64IntRegs + 8;
2507
2508    // Copy double words to registers.
2509    for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) {
2510      SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2511                                    DAG.getConstant(Offset, PtrTy));
2512      SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr,
2513                                    MachinePointerInfo(), false, false, false,
2514                                    Alignment);
2515      MemOpChains.push_back(LoadVal.getValue(1));
2516      RegsToPass.push_back(std::make_pair(*Reg, LoadVal));
2517    }
2518
2519    // Return if the struct has been fully copied.
2520    if (!(MemCpySize = ByValSize - Offset))
2521      return;
2522
2523    // If there is an argument register available, copy the remainder of the
2524    // byval argument with sub-doubleword loads and shifts.
2525    if (Reg != RegEnd) {
2526      assert((ByValSize < Offset + 8) &&
2527             "Size of the remainder should be smaller than 8-byte.");
2528      SDValue Val;
2529      for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) {
2530        unsigned RemSize = ByValSize - Offset;
2531
2532        if (RemSize < LoadSize)
2533          continue;
2534
2535        SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2536                                      DAG.getConstant(Offset, PtrTy));
2537        SDValue LoadVal =
2538          DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr,
2539                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
2540                         false, false, Alignment);
2541        MemOpChains.push_back(LoadVal.getValue(1));
2542
2543        // Offset in number of bits from double word boundary.
2544        unsigned OffsetDW = (Offset % 8) * 8;
2545        unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8);
2546        SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal,
2547                                    DAG.getConstant(Shamt, MVT::i32));
2548
2549        Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) :
2550                              Shift;
2551        Offset += LoadSize;
2552        Alignment = std::min(Alignment, LoadSize);
2553      }
2554
2555      RegsToPass.push_back(std::make_pair(*Reg, Val));
2556      return;
2557    }
2558  }
2559
2560  assert(MemCpySize && "MemCpySize must not be zero.");
2561
2562  // Create a fixed object on stack at offset LocMemOffset and copy
2563  // remainder of byval arg to it with memcpy.
2564  SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2565                            DAG.getConstant(Offset, PtrTy));
2566  LastFI = MFI->CreateFixedObject(MemCpySize, LocMemOffset, true);
2567  SDValue Dst = DAG.getFrameIndex(LastFI, PtrTy);
2568  ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
2569                             DAG.getConstant(MemCpySize, PtrTy), Alignment,
2570                             /*isVolatile=*/false, /*AlwaysInline=*/false,
2571                             MachinePointerInfo(0), MachinePointerInfo(0));
2572}
2573
2574/// LowerCall - functions arguments are copied from virtual regs to
2575/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2576/// TODO: isTailCall.
2577SDValue
2578MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2579                              SmallVectorImpl<SDValue> &InVals) const {
2580  SelectionDAG &DAG                     = CLI.DAG;
2581  DebugLoc &dl                          = CLI.DL;
2582  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2583  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2584  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2585  SDValue InChain                       = CLI.Chain;
2586  SDValue Callee                        = CLI.Callee;
2587  bool &isTailCall                      = CLI.IsTailCall;
2588  CallingConv::ID CallConv              = CLI.CallConv;
2589  bool isVarArg                         = CLI.IsVarArg;
2590
2591  // MIPs target does not yet support tail call optimization.
2592  isTailCall = false;
2593
2594  MachineFunction &MF = DAG.getMachineFunction();
2595  MachineFrameInfo *MFI = MF.getFrameInfo();
2596  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2597  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2598  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2599
2600  // Analyze operands of the call, assigning locations to each operand.
2601  SmallVector<CCValAssign, 16> ArgLocs;
2602  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2603                 getTargetMachine(), ArgLocs, *DAG.getContext());
2604
2605  if (CallConv == CallingConv::Fast)
2606    CCInfo.AnalyzeCallOperands(Outs, CC_Mips_FastCC);
2607  else if (IsO32)
2608    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
2609  else if (HasMips64)
2610    AnalyzeMips64CallOperands(CCInfo, Outs);
2611  else
2612    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
2613
2614  // Get a count of how many bytes are to be pushed on the stack.
2615  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2616
2617  // Chain is the output chain of the last Load/Store or CopyToReg node.
2618  // ByValChain is the output chain of the last Memcpy node created for copying
2619  // byval arguments to the stack.
2620  SDValue Chain, CallSeqStart, ByValChain;
2621  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2622  Chain = CallSeqStart = DAG.getCALLSEQ_START(InChain, NextStackOffsetVal);
2623  ByValChain = InChain;
2624
2625  // Get the frame index of the stack frame object that points to the location
2626  // of dynamically allocated area on the stack.
2627  int DynAllocFI = MipsFI->getDynAllocFI();
2628
2629  // Update size of the maximum argument space.
2630  // For O32, a minimum of four words (16 bytes) of argument space is
2631  // allocated.
2632  if (IsO32 && (CallConv != CallingConv::Fast))
2633    NextStackOffset = std::max(NextStackOffset, (unsigned)16);
2634
2635  unsigned MaxCallFrameSize = MipsFI->getMaxCallFrameSize();
2636
2637  if (MaxCallFrameSize < NextStackOffset) {
2638    MipsFI->setMaxCallFrameSize(NextStackOffset);
2639
2640    // Set the offsets relative to $sp of the $gp restore slot and dynamically
2641    // allocated stack space. These offsets must be aligned to a boundary
2642    // determined by the stack alignment of the ABI.
2643    unsigned StackAlignment = TFL->getStackAlignment();
2644    NextStackOffset = (NextStackOffset + StackAlignment - 1) /
2645                      StackAlignment * StackAlignment;
2646
2647    MFI->setObjectOffset(DynAllocFI, NextStackOffset);
2648  }
2649
2650  // With EABI is it possible to have 16 args on registers.
2651  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2652  SmallVector<SDValue, 8> MemOpChains;
2653
2654  int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0;
2655
2656  // Walk the register/memloc assignments, inserting copies/loads.
2657  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2658    SDValue Arg = OutVals[i];
2659    CCValAssign &VA = ArgLocs[i];
2660    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2661    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2662
2663    // ByVal Arg.
2664    if (Flags.isByVal()) {
2665      assert(Flags.getByValSize() &&
2666             "ByVal args of size 0 should have been ignored by front-end.");
2667      if (IsO32)
2668        WriteByValArg(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI,
2669                      MFI, DAG, Arg, VA, Flags, getPointerTy(),
2670                      Subtarget->isLittle());
2671      else
2672        PassByValArg64(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI,
2673                       MFI, DAG, Arg, VA, Flags, getPointerTy(),
2674                       Subtarget->isLittle());
2675      continue;
2676    }
2677
2678    // Promote the value if needed.
2679    switch (VA.getLocInfo()) {
2680    default: llvm_unreachable("Unknown loc info!");
2681    case CCValAssign::Full:
2682      if (VA.isRegLoc()) {
2683        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2684            (ValVT == MVT::f64 && LocVT == MVT::i64))
2685          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2686        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2687          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2688                                   Arg, DAG.getConstant(0, MVT::i32));
2689          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2690                                   Arg, DAG.getConstant(1, MVT::i32));
2691          if (!Subtarget->isLittle())
2692            std::swap(Lo, Hi);
2693          unsigned LocRegLo = VA.getLocReg();
2694          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2695          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2696          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2697          continue;
2698        }
2699      }
2700      break;
2701    case CCValAssign::SExt:
2702      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2703      break;
2704    case CCValAssign::ZExt:
2705      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2706      break;
2707    case CCValAssign::AExt:
2708      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2709      break;
2710    }
2711
2712    // Arguments that can be passed on register must be kept at
2713    // RegsToPass vector
2714    if (VA.isRegLoc()) {
2715      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2716      continue;
2717    }
2718
2719    // Register can't get to this point...
2720    assert(VA.isMemLoc());
2721
2722    // Create the frame index object for this incoming parameter
2723    LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2724                                    VA.getLocMemOffset(), true);
2725    SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
2726
2727    // emit ISD::STORE whichs stores the
2728    // parameter value to a stack Location
2729    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2730                                       MachinePointerInfo(), false, false, 0));
2731  }
2732
2733  // Extend range of indices of frame objects for outgoing arguments that were
2734  // created during this function call. Skip this step if no such objects were
2735  // created.
2736  if (LastFI)
2737    MipsFI->extendOutArgFIRange(FirstFI, LastFI);
2738
2739  // If a memcpy has been created to copy a byval arg to a stack, replace the
2740  // chain input of CallSeqStart with ByValChain.
2741  if (InChain != ByValChain)
2742    DAG.UpdateNodeOperands(CallSeqStart.getNode(), ByValChain,
2743                           NextStackOffsetVal);
2744
2745  // Transform all store nodes into one single node because all store
2746  // nodes are independent of each other.
2747  if (!MemOpChains.empty())
2748    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2749                        &MemOpChains[0], MemOpChains.size());
2750
2751  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2752  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2753  // node so that legalize doesn't hack it.
2754  unsigned char OpFlag;
2755  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2756  bool GlobalOrExternal = false;
2757  SDValue CalleeLo;
2758
2759  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2760    if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
2761      OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
2762      unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
2763      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
2764                                          OpFlag);
2765      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
2766                                            0, LoFlag);
2767    } else {
2768      OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
2769      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2770                                          getPointerTy(), 0, OpFlag);
2771    }
2772
2773    GlobalOrExternal = true;
2774  }
2775  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2776    if (IsN64 || (!IsO32 && IsPIC))
2777      OpFlag = MipsII::MO_GOT_DISP;
2778    else if (!IsPIC) // !N64 && static
2779      OpFlag = MipsII::MO_NO_FLAG;
2780    else // O32 & PIC
2781      OpFlag = MipsII::MO_GOT_CALL;
2782    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2783                                         OpFlag);
2784    GlobalOrExternal = true;
2785  }
2786
2787  SDValue InFlag;
2788
2789  // Create nodes that load address of callee and copy it to T9
2790  if (IsPICCall) {
2791    if (GlobalOrExternal) {
2792      // Load callee address
2793      Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(),
2794                           GetGlobalReg(DAG, getPointerTy()), Callee);
2795      SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
2796                                      Callee, MachinePointerInfo::getGOT(),
2797                                      false, false, false, 0);
2798
2799      // Use GOT+LO if callee has internal linkage.
2800      if (CalleeLo.getNode()) {
2801        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
2802        Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
2803      } else
2804        Callee = LoadValue;
2805    }
2806  }
2807
2808  // T9 should contain the address of the callee function if
2809  // -reloction-model=pic or it is an indirect call.
2810  if (IsPICCall || !GlobalOrExternal) {
2811    // copy to T9
2812    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
2813    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
2814    InFlag = Chain.getValue(1);
2815    Callee = DAG.getRegister(T9Reg, getPointerTy());
2816  }
2817
2818  // Insert node "GP copy globalreg" before call to function.
2819  // Lazy-binding stubs require GP to point to the GOT.
2820  if (IsPICCall) {
2821    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2822    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2823    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
2824  }
2825
2826  // Build a sequence of copy-to-reg nodes chained together with token
2827  // chain and flag operands which copy the outgoing args into registers.
2828  // The InFlag in necessary since all emitted instructions must be
2829  // stuck together.
2830  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2831    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2832                             RegsToPass[i].second, InFlag);
2833    InFlag = Chain.getValue(1);
2834  }
2835
2836  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
2837  //             = Chain, Callee, Reg#1, Reg#2, ...
2838  //
2839  // Returns a chain & a flag for retval copy to use.
2840  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2841  SmallVector<SDValue, 8> Ops;
2842  Ops.push_back(Chain);
2843  Ops.push_back(Callee);
2844
2845  // Add argument registers to the end of the list so that they are
2846  // known live into the call.
2847  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2848    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2849                                  RegsToPass[i].second.getValueType()));
2850
2851  // Add a register mask operand representing the call-preserved registers.
2852  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2853  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2854  assert(Mask && "Missing call preserved mask for calling convention");
2855  Ops.push_back(DAG.getRegisterMask(Mask));
2856
2857  if (InFlag.getNode())
2858    Ops.push_back(InFlag);
2859
2860  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
2861  InFlag = Chain.getValue(1);
2862
2863  // Create the CALLSEQ_END node.
2864  Chain = DAG.getCALLSEQ_END(Chain,
2865                             DAG.getIntPtrConstant(NextStackOffset, true),
2866                             DAG.getIntPtrConstant(0, true), InFlag);
2867  InFlag = Chain.getValue(1);
2868
2869  // Handle result values, copying them out of physregs into vregs that we
2870  // return.
2871  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2872                         Ins, dl, DAG, InVals);
2873}
2874
2875/// LowerCallResult - Lower the result values of a call into the
2876/// appropriate copies out of appropriate physical registers.
2877SDValue
2878MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2879                                    CallingConv::ID CallConv, bool isVarArg,
2880                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2881                                    DebugLoc dl, SelectionDAG &DAG,
2882                                    SmallVectorImpl<SDValue> &InVals) const {
2883  // Assign locations to each value returned by this call.
2884  SmallVector<CCValAssign, 16> RVLocs;
2885  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2886		 getTargetMachine(), RVLocs, *DAG.getContext());
2887
2888  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
2889
2890  // Copy all of the result registers out of their specified physreg.
2891  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2892    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
2893                               RVLocs[i].getValVT(), InFlag).getValue(1);
2894    InFlag = Chain.getValue(2);
2895    InVals.push_back(Chain.getValue(0));
2896  }
2897
2898  return Chain;
2899}
2900
2901//===----------------------------------------------------------------------===//
2902//             Formal Arguments Calling Convention Implementation
2903//===----------------------------------------------------------------------===//
2904static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2905                         std::vector<SDValue>& OutChains,
2906                         SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
2907                         const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2908                         const Argument *FuncArg) {
2909  unsigned LocMem = VA.getLocMemOffset();
2910  unsigned FirstWord = LocMem / 4;
2911
2912  // copy register A0 - A3 to frame object
2913  for (unsigned i = 0; i < NumWords; ++i) {
2914    unsigned CurWord = FirstWord + i;
2915    if (CurWord >= O32IntRegsSize)
2916      break;
2917
2918    unsigned SrcReg = O32IntRegs[CurWord];
2919    unsigned Reg = AddLiveIn(MF, SrcReg, &Mips::CPURegsRegClass);
2920    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
2921                                   DAG.getConstant(i * 4, MVT::i32));
2922    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
2923                                 StorePtr, MachinePointerInfo(FuncArg, i * 4),
2924                                 false, false, 0);
2925    OutChains.push_back(Store);
2926  }
2927}
2928
2929// Create frame object on stack and copy registers used for byval passing to it.
2930static unsigned
2931CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2932                    std::vector<SDValue>& OutChains, SelectionDAG &DAG,
2933                    const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
2934                    MachineFrameInfo *MFI, bool IsRegLoc,
2935                    SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI,
2936                    EVT PtrTy, const Argument *FuncArg) {
2937  const uint16_t *Reg = Mips64IntRegs + 8;
2938  int FOOffset; // Frame object offset from virtual frame pointer.
2939
2940  if (IsRegLoc) {
2941    Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg());
2942    FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8;
2943  }
2944  else
2945    FOOffset = VA.getLocMemOffset();
2946
2947  // Create frame object.
2948  unsigned NumRegs = (Flags.getByValSize() + 7) / 8;
2949  unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true);
2950  SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy);
2951  InVals.push_back(FIN);
2952
2953  // Copy arg registers.
2954  for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs);
2955       ++Reg, ++I) {
2956    unsigned VReg = AddLiveIn(MF, *Reg, &Mips::CPU64RegsRegClass);
2957    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN,
2958                                   DAG.getConstant(I * 8, PtrTy));
2959    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64),
2960                                 StorePtr, MachinePointerInfo(FuncArg, I * 8),
2961                                 false, false, 0);
2962    OutChains.push_back(Store);
2963  }
2964
2965  return LastFI;
2966}
2967
2968/// LowerFormalArguments - transform physical registers into virtual registers
2969/// and generate load operations for arguments places on the stack.
2970SDValue
2971MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2972                                         CallingConv::ID CallConv,
2973                                         bool isVarArg,
2974                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2975                                         DebugLoc dl, SelectionDAG &DAG,
2976                                         SmallVectorImpl<SDValue> &InVals)
2977                                          const {
2978  MachineFunction &MF = DAG.getMachineFunction();
2979  MachineFrameInfo *MFI = MF.getFrameInfo();
2980  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2981
2982  MipsFI->setVarArgsFrameIndex(0);
2983
2984  // Used with vargs to acumulate store chains.
2985  std::vector<SDValue> OutChains;
2986
2987  // Assign locations to all of the incoming arguments.
2988  SmallVector<CCValAssign, 16> ArgLocs;
2989  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2990                 getTargetMachine(), ArgLocs, *DAG.getContext());
2991
2992  if (CallConv == CallingConv::Fast)
2993    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FastCC);
2994  else if (IsO32)
2995    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
2996  else
2997    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
2998
2999  Function::const_arg_iterator FuncArg =
3000    DAG.getMachineFunction().getFunction()->arg_begin();
3001  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
3002
3003  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++FuncArg) {
3004    CCValAssign &VA = ArgLocs[i];
3005    EVT ValVT = VA.getValVT();
3006    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3007    bool IsRegLoc = VA.isRegLoc();
3008
3009    if (Flags.isByVal()) {
3010      assert(Flags.getByValSize() &&
3011             "ByVal args of size 0 should have been ignored by front-end.");
3012      if (IsO32) {
3013        unsigned NumWords = (Flags.getByValSize() + 3) / 4;
3014        LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
3015                                        true);
3016        SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3017        InVals.push_back(FIN);
3018        ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags,
3019                     &*FuncArg);
3020      } else // N32/64
3021        LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags,
3022                                     MFI, IsRegLoc, InVals, MipsFI,
3023                                     getPointerTy(), &*FuncArg);
3024      continue;
3025    }
3026
3027    // Arguments stored on registers
3028    if (IsRegLoc) {
3029      EVT RegVT = VA.getLocVT();
3030      unsigned ArgReg = VA.getLocReg();
3031      const TargetRegisterClass *RC;
3032
3033      if (RegVT == MVT::i32)
3034        RC = &Mips::CPURegsRegClass;
3035      else if (RegVT == MVT::i64)
3036        RC = &Mips::CPU64RegsRegClass;
3037      else if (RegVT == MVT::f32)
3038        RC = &Mips::FGR32RegClass;
3039      else if (RegVT == MVT::f64)
3040        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3041      else
3042        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3043
3044      // Transform the arguments stored on
3045      // physical registers into virtual ones
3046      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3047      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3048
3049      // If this is an 8 or 16-bit value, it has been passed promoted
3050      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3051      // truncate to the right size.
3052      if (VA.getLocInfo() != CCValAssign::Full) {
3053        unsigned Opcode = 0;
3054        if (VA.getLocInfo() == CCValAssign::SExt)
3055          Opcode = ISD::AssertSext;
3056        else if (VA.getLocInfo() == CCValAssign::ZExt)
3057          Opcode = ISD::AssertZext;
3058        if (Opcode)
3059          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3060                                 DAG.getValueType(ValVT));
3061        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3062      }
3063
3064      // Handle floating point arguments passed in integer registers.
3065      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3066          (RegVT == MVT::i64 && ValVT == MVT::f64))
3067        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3068      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3069        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3070                                  getNextIntArgReg(ArgReg), RC);
3071        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3072        if (!Subtarget->isLittle())
3073          std::swap(ArgValue, ArgValue2);
3074        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3075                               ArgValue, ArgValue2);
3076      }
3077
3078      InVals.push_back(ArgValue);
3079    } else { // VA.isRegLoc()
3080
3081      // sanity check
3082      assert(VA.isMemLoc());
3083
3084      // The stack pointer offset is relative to the caller stack frame.
3085      LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3086                                      VA.getLocMemOffset(), true);
3087
3088      // Create load nodes to retrieve arguments from the stack
3089      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3090      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3091                                   MachinePointerInfo::getFixedStack(LastFI),
3092                                   false, false, false, 0));
3093    }
3094  }
3095
3096  // The mips ABIs for returning structs by value requires that we copy
3097  // the sret argument into $v0 for the return. Save the argument into
3098  // a virtual register so that we can access it from the return points.
3099  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3100    unsigned Reg = MipsFI->getSRetReturnReg();
3101    if (!Reg) {
3102      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
3103      MipsFI->setSRetReturnReg(Reg);
3104    }
3105    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3106    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3107  }
3108
3109  if (isVarArg) {
3110    unsigned NumOfRegs = IsO32 ? 4 : 8;
3111    const uint16_t *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs;
3112    unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs);
3113    int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot.
3114    const TargetRegisterClass *RC = IsO32 ?
3115      (const TargetRegisterClass*)&Mips::CPURegsRegClass :
3116      (const TargetRegisterClass*)&Mips::CPU64RegsRegClass;
3117    unsigned RegSize = RC->getSize();
3118    int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize;
3119
3120    // Offset of the first variable argument from stack pointer.
3121    int FirstVaArgOffset;
3122
3123    if (IsO32 || (Idx == NumOfRegs)) {
3124      FirstVaArgOffset =
3125        (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize;
3126    } else
3127      FirstVaArgOffset = RegSlotOffset;
3128
3129    // Record the frame index of the first variable argument
3130    // which is a value necessary to VASTART.
3131    LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true);
3132    MipsFI->setVarArgsFrameIndex(LastFI);
3133
3134    // Copy the integer registers that have not been used for argument passing
3135    // to the argument register save area. For O32, the save area is allocated
3136    // in the caller's stack frame, while for N32/64, it is allocated in the
3137    // callee's stack frame.
3138    for (int StackOffset = RegSlotOffset;
3139         Idx < NumOfRegs; ++Idx, StackOffset += RegSize) {
3140      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC);
3141      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3142                                            MVT::getIntegerVT(RegSize * 8));
3143      LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true);
3144      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
3145      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
3146                                       MachinePointerInfo(), false, false, 0));
3147    }
3148  }
3149
3150  MipsFI->setLastInArgFI(LastFI);
3151
3152  // All stores are grouped in one node to allow the matching between
3153  // the size of Ins and InVals. This only happens when on varg functions
3154  if (!OutChains.empty()) {
3155    OutChains.push_back(Chain);
3156    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3157                        &OutChains[0], OutChains.size());
3158  }
3159
3160  return Chain;
3161}
3162
3163//===----------------------------------------------------------------------===//
3164//               Return Value Calling Convention Implementation
3165//===----------------------------------------------------------------------===//
3166
3167SDValue
3168MipsTargetLowering::LowerReturn(SDValue Chain,
3169                                CallingConv::ID CallConv, bool isVarArg,
3170                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3171                                const SmallVectorImpl<SDValue> &OutVals,
3172                                DebugLoc dl, SelectionDAG &DAG) const {
3173
3174  // CCValAssign - represent the assignment of
3175  // the return value to a location
3176  SmallVector<CCValAssign, 16> RVLocs;
3177
3178  // CCState - Info about the registers and stack slot.
3179  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3180		 getTargetMachine(), RVLocs, *DAG.getContext());
3181
3182  // Analize return values.
3183  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3184
3185  // If this is the first return lowered for this function, add
3186  // the regs to the liveout set for the function.
3187  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3188    for (unsigned i = 0; i != RVLocs.size(); ++i)
3189      if (RVLocs[i].isRegLoc())
3190        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3191  }
3192
3193  SDValue Flag;
3194
3195  // Copy the result values into the output registers.
3196  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3197    CCValAssign &VA = RVLocs[i];
3198    assert(VA.isRegLoc() && "Can only return in registers!");
3199
3200    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3201
3202    // guarantee that all emitted copies are
3203    // stuck together, avoiding something bad
3204    Flag = Chain.getValue(1);
3205  }
3206
3207  // The mips ABIs for returning structs by value requires that we copy
3208  // the sret argument into $v0 for the return. We saved the argument into
3209  // a virtual register in the entry block, so now we copy the value out
3210  // and into $v0.
3211  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3212    MachineFunction &MF      = DAG.getMachineFunction();
3213    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3214    unsigned Reg = MipsFI->getSRetReturnReg();
3215
3216    if (!Reg)
3217      llvm_unreachable("sret virtual register not created in the entry block");
3218    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3219
3220    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
3221    Flag = Chain.getValue(1);
3222  }
3223
3224  // Return on Mips is always a "jr $ra"
3225  if (Flag.getNode())
3226    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
3227                       Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
3228  else // Return Void
3229    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
3230                       Chain, DAG.getRegister(Mips::RA, MVT::i32));
3231}
3232
3233//===----------------------------------------------------------------------===//
3234//                           Mips Inline Assembly Support
3235//===----------------------------------------------------------------------===//
3236
3237/// getConstraintType - Given a constraint letter, return the type of
3238/// constraint it is for this target.
3239MipsTargetLowering::ConstraintType MipsTargetLowering::
3240getConstraintType(const std::string &Constraint) const
3241{
3242  // Mips specific constrainy
3243  // GCC config/mips/constraints.md
3244  //
3245  // 'd' : An address register. Equivalent to r
3246  //       unless generating MIPS16 code.
3247  // 'y' : Equivalent to r; retained for
3248  //       backwards compatibility.
3249  // 'c' : A register suitable for use in an indirect
3250  //       jump. This will always be $25 for -mabicalls.
3251  // 'l' : The lo register. 1 word storage.
3252  // 'x' : The hilo register pair. Double word storage.
3253  if (Constraint.size() == 1) {
3254    switch (Constraint[0]) {
3255      default : break;
3256      case 'd':
3257      case 'y':
3258      case 'f':
3259      case 'c':
3260      case 'l':
3261      case 'x':
3262        return C_RegisterClass;
3263    }
3264  }
3265  return TargetLowering::getConstraintType(Constraint);
3266}
3267
3268/// Examine constraint type and operand type and determine a weight value.
3269/// This object must already have been set up with the operand type
3270/// and the current alternative constraint selected.
3271TargetLowering::ConstraintWeight
3272MipsTargetLowering::getSingleConstraintMatchWeight(
3273    AsmOperandInfo &info, const char *constraint) const {
3274  ConstraintWeight weight = CW_Invalid;
3275  Value *CallOperandVal = info.CallOperandVal;
3276    // If we don't have a value, we can't do a match,
3277    // but allow it at the lowest weight.
3278  if (CallOperandVal == NULL)
3279    return CW_Default;
3280  Type *type = CallOperandVal->getType();
3281  // Look at the constraint type.
3282  switch (*constraint) {
3283  default:
3284    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3285    break;
3286  case 'd':
3287  case 'y':
3288    if (type->isIntegerTy())
3289      weight = CW_Register;
3290    break;
3291  case 'f':
3292    if (type->isFloatTy())
3293      weight = CW_Register;
3294    break;
3295  case 'c': // $25 for indirect jumps
3296  case 'l': // lo register
3297  case 'x': // hilo register pair
3298      if (type->isIntegerTy())
3299      weight = CW_SpecificReg;
3300      break;
3301  case 'I': // signed 16 bit immediate
3302  case 'J': // integer zero
3303  case 'K': // unsigned 16 bit immediate
3304  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3305  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3306  case 'O': // signed 15 bit immediate (+- 16383)
3307  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3308    if (isa<ConstantInt>(CallOperandVal))
3309      weight = CW_Constant;
3310    break;
3311  }
3312  return weight;
3313}
3314
3315/// Given a register class constraint, like 'r', if this corresponds directly
3316/// to an LLVM register class, return a register of 0 and the register class
3317/// pointer.
3318std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3319getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3320{
3321  if (Constraint.size() == 1) {
3322    switch (Constraint[0]) {
3323    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3324    case 'y': // Same as 'r'. Exists for compatibility.
3325    case 'r':
3326      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
3327        return std::make_pair(0U, &Mips::CPURegsRegClass);
3328      if (VT == MVT::i64 && HasMips64)
3329        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3330      // This will generate an error message
3331      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3332    case 'f':
3333      if (VT == MVT::f32)
3334        return std::make_pair(0U, &Mips::FGR32RegClass);
3335      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3336        if (Subtarget->isFP64bit())
3337          return std::make_pair(0U, &Mips::FGR64RegClass);
3338        return std::make_pair(0U, &Mips::AFGR64RegClass);
3339      }
3340      break;
3341    case 'c': // register suitable for indirect jump
3342      if (VT == MVT::i32)
3343        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3344      assert(VT == MVT::i64 && "Unexpected type.");
3345      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3346    case 'l': // register suitable for indirect jump
3347      if (VT == MVT::i32)
3348        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3349      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3350    case 'x': // register suitable for indirect jump
3351      // Fixme: Not triggering the use of both hi and low
3352      // This will generate an error message
3353      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3354    }
3355  }
3356  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3357}
3358
3359/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3360/// vector.  If it is invalid, don't add anything to Ops.
3361void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3362                                                     std::string &Constraint,
3363                                                     std::vector<SDValue>&Ops,
3364                                                     SelectionDAG &DAG) const {
3365  SDValue Result(0, 0);
3366
3367  // Only support length 1 constraints for now.
3368  if (Constraint.length() > 1) return;
3369
3370  char ConstraintLetter = Constraint[0];
3371  switch (ConstraintLetter) {
3372  default: break; // This will fall through to the generic implementation
3373  case 'I': // Signed 16 bit constant
3374    // If this fails, the parent routine will give an error
3375    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3376      EVT Type = Op.getValueType();
3377      int64_t Val = C->getSExtValue();
3378      if (isInt<16>(Val)) {
3379        Result = DAG.getTargetConstant(Val, Type);
3380        break;
3381      }
3382    }
3383    return;
3384  case 'J': // integer zero
3385    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3386      EVT Type = Op.getValueType();
3387      int64_t Val = C->getZExtValue();
3388      if (Val == 0) {
3389        Result = DAG.getTargetConstant(0, Type);
3390        break;
3391      }
3392    }
3393    return;
3394  case 'K': // unsigned 16 bit immediate
3395    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3396      EVT Type = Op.getValueType();
3397      uint64_t Val = (uint64_t)C->getZExtValue();
3398      if (isUInt<16>(Val)) {
3399        Result = DAG.getTargetConstant(Val, Type);
3400        break;
3401      }
3402    }
3403    return;
3404  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3405    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3406      EVT Type = Op.getValueType();
3407      int64_t Val = C->getSExtValue();
3408      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3409        Result = DAG.getTargetConstant(Val, Type);
3410        break;
3411      }
3412    }
3413    return;
3414  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3415    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3416      EVT Type = Op.getValueType();
3417      int64_t Val = C->getSExtValue();
3418      if ((Val >= -65535) && (Val <= -1)) {
3419        Result = DAG.getTargetConstant(Val, Type);
3420        break;
3421      }
3422    }
3423    return;
3424  case 'O': // signed 15 bit immediate
3425    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3426      EVT Type = Op.getValueType();
3427      int64_t Val = C->getSExtValue();
3428      if ((isInt<15>(Val))) {
3429        Result = DAG.getTargetConstant(Val, Type);
3430        break;
3431      }
3432    }
3433    return;
3434  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3435    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3436      EVT Type = Op.getValueType();
3437      int64_t Val = C->getSExtValue();
3438      if ((Val <= 65535) && (Val >= 1)) {
3439        Result = DAG.getTargetConstant(Val, Type);
3440        break;
3441      }
3442    }
3443    return;
3444  }
3445
3446  if (Result.getNode()) {
3447    Ops.push_back(Result);
3448    return;
3449  }
3450
3451  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3452}
3453
3454bool
3455MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3456  // The Mips target isn't yet aware of offsets.
3457  return false;
3458}
3459
3460EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3461                                            unsigned SrcAlign, bool IsZeroVal,
3462                                            bool MemcpyStrSrc,
3463                                            MachineFunction &MF) const {
3464  if (Subtarget->hasMips64())
3465    return MVT::i64;
3466
3467  return MVT::i32;
3468}
3469
3470bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3471  if (VT != MVT::f32 && VT != MVT::f64)
3472    return false;
3473  if (Imm.isNegZero())
3474    return false;
3475  return Imm.isZero();
3476}
3477
3478unsigned MipsTargetLowering::getJumpTableEncoding() const {
3479  if (IsN64)
3480    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3481
3482  return TargetLowering::getJumpTableEncoding();
3483}
3484