MipsISelLowering.cpp revision f934d159ae6b57f05d8163265b9deaa29315d2e7
1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "mips-lower"
16#include "MipsISelLowering.h"
17#include "MipsMachineFunction.h"
18#include "MipsTargetMachine.h"
19#include "MipsTargetObjectFile.h"
20#include "MipsSubtarget.h"
21#include "InstPrinter/MipsInstPrinter.h"
22#include "MCTargetDesc/MipsBaseInfo.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/CallingConv.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41// If I is a shifted mask, set the size (Size) and the first bit of the
42// mask (Pos), and return true.
43// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
44static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
45  if (!isShiftedMask_64(I))
46     return false;
47
48  Size = CountPopulation_64(I);
49  Pos = CountTrailingZeros_64(I);
50  return true;
51}
52
53static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
54  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
55  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
56}
57
58const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
59  switch (Opcode) {
60  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
61  case MipsISD::Hi:                return "MipsISD::Hi";
62  case MipsISD::Lo:                return "MipsISD::Lo";
63  case MipsISD::GPRel:             return "MipsISD::GPRel";
64  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
65  case MipsISD::Ret:               return "MipsISD::Ret";
66  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
67  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
68  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
69  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
70  case MipsISD::FPRound:           return "MipsISD::FPRound";
71  case MipsISD::MAdd:              return "MipsISD::MAdd";
72  case MipsISD::MAddu:             return "MipsISD::MAddu";
73  case MipsISD::MSub:              return "MipsISD::MSub";
74  case MipsISD::MSubu:             return "MipsISD::MSubu";
75  case MipsISD::DivRem:            return "MipsISD::DivRem";
76  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
77  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
78  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
79  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
80  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
81  case MipsISD::Sync:              return "MipsISD::Sync";
82  case MipsISD::Ext:               return "MipsISD::Ext";
83  case MipsISD::Ins:               return "MipsISD::Ins";
84  case MipsISD::LWL:               return "MipsISD::LWL";
85  case MipsISD::LWR:               return "MipsISD::LWR";
86  case MipsISD::SWL:               return "MipsISD::SWL";
87  case MipsISD::SWR:               return "MipsISD::SWR";
88  case MipsISD::LDL:               return "MipsISD::LDL";
89  case MipsISD::LDR:               return "MipsISD::LDR";
90  case MipsISD::SDL:               return "MipsISD::SDL";
91  case MipsISD::SDR:               return "MipsISD::SDR";
92  default:                         return NULL;
93  }
94}
95
96MipsTargetLowering::
97MipsTargetLowering(MipsTargetMachine &TM)
98  : TargetLowering(TM, new MipsTargetObjectFile()),
99    Subtarget(&TM.getSubtarget<MipsSubtarget>()),
100    HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
101    IsO32(Subtarget->isABI_O32()) {
102
103  // Mips does not have i1 type, so use i32 for
104  // setcc operations results (slt, sgt, ...).
105  setBooleanContents(ZeroOrOneBooleanContent);
106  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
107
108  // Set up the register classes
109  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
110
111  if (HasMips64)
112    addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
113
114  if (Subtarget->inMips16Mode()) {
115    addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
116  }
117
118  if (!TM.Options.UseSoftFloat) {
119    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
120
121    // When dealing with single precision only, use libcalls
122    if (!Subtarget->isSingleFloat()) {
123      if (HasMips64)
124        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
125      else
126        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
127    }
128  }
129
130  // Load extented operations for i1 types must be promoted
131  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
132  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
133  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
134
135  // MIPS doesn't have extending float->double load/store
136  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
137  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
138
139  // Used by legalize types to correctly generate the setcc result.
140  // Without this, every float setcc comes with a AND/OR with the result,
141  // we don't want this, since the fpcmp result goes to a flag register,
142  // which is used implicitly by brcond and select operations.
143  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
144
145  // Mips Custom Operations
146  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
147  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
148  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
149  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
150  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
151  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
152  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
153  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
154  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
155  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
156  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
157  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
158  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
159  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
160  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
161  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
162  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
163  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
164  if (!Subtarget->inMips16Mode()) {
165    setOperationAction(ISD::LOAD,               MVT::i32, Custom);
166    setOperationAction(ISD::STORE,              MVT::i32, Custom);
167  }
168
169  if (!TM.Options.NoNaNsFPMath) {
170    setOperationAction(ISD::FABS,             MVT::f32,   Custom);
171    setOperationAction(ISD::FABS,             MVT::f64,   Custom);
172  }
173
174  if (HasMips64) {
175    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
176    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
177    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
178    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
179    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
180    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
181    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
182    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
183  }
184
185  if (!HasMips64) {
186    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
187    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
188    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
189  }
190
191  setOperationAction(ISD::SDIV, MVT::i32, Expand);
192  setOperationAction(ISD::SREM, MVT::i32, Expand);
193  setOperationAction(ISD::UDIV, MVT::i32, Expand);
194  setOperationAction(ISD::UREM, MVT::i32, Expand);
195  setOperationAction(ISD::SDIV, MVT::i64, Expand);
196  setOperationAction(ISD::SREM, MVT::i64, Expand);
197  setOperationAction(ISD::UDIV, MVT::i64, Expand);
198  setOperationAction(ISD::UREM, MVT::i64, Expand);
199
200  // Operations not directly supported by Mips.
201  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
202  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
203  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
204  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
205  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
206  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
207  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
208  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
209  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
210  setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
211  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
212  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
213  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
214  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
215  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
216  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
217  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
218  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
219  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
220  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
221
222  if (!Subtarget->hasMips32r2())
223    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
224
225  if (!Subtarget->hasMips64r2())
226    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
227
228  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
229  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
230  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
231  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
232  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
233  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
234  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
235  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
236  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
237  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
238  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
239  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
240  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
241  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
242  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
243
244  if (!TM.Options.NoNaNsFPMath) {
245    setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
246    setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
247  }
248
249  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
250  setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
251  setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
252  setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
253
254  setOperationAction(ISD::VAARG,             MVT::Other, Expand);
255  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
256  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
257
258  // Use the default for now
259  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
260  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
261
262  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
263  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
264  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
265  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
266
267  setInsertFencesForAtomic(true);
268
269  if (!Subtarget->hasSEInReg()) {
270    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
271    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
272  }
273
274  if (!Subtarget->hasBitCount()) {
275    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
276    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
277  }
278
279  if (!Subtarget->hasSwap()) {
280    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
281    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
282  }
283
284  if (HasMips64) {
285    setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
286    setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
287    setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
288    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
289  }
290
291  setTargetDAGCombine(ISD::ADDE);
292  setTargetDAGCombine(ISD::SUBE);
293  setTargetDAGCombine(ISD::SDIVREM);
294  setTargetDAGCombine(ISD::UDIVREM);
295  setTargetDAGCombine(ISD::SELECT);
296  setTargetDAGCombine(ISD::AND);
297  setTargetDAGCombine(ISD::OR);
298  setTargetDAGCombine(ISD::ADD);
299
300  setMinFunctionAlignment(HasMips64 ? 3 : 2);
301
302  setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
303  computeRegisterProperties();
304
305  setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
306  setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
307
308  maxStoresPerMemcpy = 16;
309}
310
311bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
312  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
313
314  if (Subtarget->inMips16Mode())
315    return false;
316
317  switch (SVT) {
318  case MVT::i64:
319  case MVT::i32:
320    return true;
321  default:
322    return false;
323  }
324}
325
326EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
327  return MVT::i32;
328}
329
330// SelectMadd -
331// Transforms a subgraph in CurDAG if the following pattern is found:
332//  (addc multLo, Lo0), (adde multHi, Hi0),
333// where,
334//  multHi/Lo: product of multiplication
335//  Lo0: initial value of Lo register
336//  Hi0: initial value of Hi register
337// Return true if pattern matching was successful.
338static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
339  // ADDENode's second operand must be a flag output of an ADDC node in order
340  // for the matching to be successful.
341  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
342
343  if (ADDCNode->getOpcode() != ISD::ADDC)
344    return false;
345
346  SDValue MultHi = ADDENode->getOperand(0);
347  SDValue MultLo = ADDCNode->getOperand(0);
348  SDNode *MultNode = MultHi.getNode();
349  unsigned MultOpc = MultHi.getOpcode();
350
351  // MultHi and MultLo must be generated by the same node,
352  if (MultLo.getNode() != MultNode)
353    return false;
354
355  // and it must be a multiplication.
356  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
357    return false;
358
359  // MultLo amd MultHi must be the first and second output of MultNode
360  // respectively.
361  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
362    return false;
363
364  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
365  // of the values of MultNode, in which case MultNode will be removed in later
366  // phases.
367  // If there exist users other than ADDENode or ADDCNode, this function returns
368  // here, which will result in MultNode being mapped to a single MULT
369  // instruction node rather than a pair of MULT and MADD instructions being
370  // produced.
371  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
372    return false;
373
374  SDValue Chain = CurDAG->getEntryNode();
375  DebugLoc dl = ADDENode->getDebugLoc();
376
377  // create MipsMAdd(u) node
378  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
379
380  SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
381                                 MultNode->getOperand(0),// Factor 0
382                                 MultNode->getOperand(1),// Factor 1
383                                 ADDCNode->getOperand(1),// Lo0
384                                 ADDENode->getOperand(1));// Hi0
385
386  // create CopyFromReg nodes
387  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
388                                              MAdd);
389  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
390                                              Mips::HI, MVT::i32,
391                                              CopyFromLo.getValue(2));
392
393  // replace uses of adde and addc here
394  if (!SDValue(ADDCNode, 0).use_empty())
395    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
396
397  if (!SDValue(ADDENode, 0).use_empty())
398    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
399
400  return true;
401}
402
403// SelectMsub -
404// Transforms a subgraph in CurDAG if the following pattern is found:
405//  (addc Lo0, multLo), (sube Hi0, multHi),
406// where,
407//  multHi/Lo: product of multiplication
408//  Lo0: initial value of Lo register
409//  Hi0: initial value of Hi register
410// Return true if pattern matching was successful.
411static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
412  // SUBENode's second operand must be a flag output of an SUBC node in order
413  // for the matching to be successful.
414  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
415
416  if (SUBCNode->getOpcode() != ISD::SUBC)
417    return false;
418
419  SDValue MultHi = SUBENode->getOperand(1);
420  SDValue MultLo = SUBCNode->getOperand(1);
421  SDNode *MultNode = MultHi.getNode();
422  unsigned MultOpc = MultHi.getOpcode();
423
424  // MultHi and MultLo must be generated by the same node,
425  if (MultLo.getNode() != MultNode)
426    return false;
427
428  // and it must be a multiplication.
429  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
430    return false;
431
432  // MultLo amd MultHi must be the first and second output of MultNode
433  // respectively.
434  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
435    return false;
436
437  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
438  // of the values of MultNode, in which case MultNode will be removed in later
439  // phases.
440  // If there exist users other than SUBENode or SUBCNode, this function returns
441  // here, which will result in MultNode being mapped to a single MULT
442  // instruction node rather than a pair of MULT and MSUB instructions being
443  // produced.
444  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
445    return false;
446
447  SDValue Chain = CurDAG->getEntryNode();
448  DebugLoc dl = SUBENode->getDebugLoc();
449
450  // create MipsSub(u) node
451  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
452
453  SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
454                                 MultNode->getOperand(0),// Factor 0
455                                 MultNode->getOperand(1),// Factor 1
456                                 SUBCNode->getOperand(0),// Lo0
457                                 SUBENode->getOperand(0));// Hi0
458
459  // create CopyFromReg nodes
460  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
461                                              MSub);
462  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
463                                              Mips::HI, MVT::i32,
464                                              CopyFromLo.getValue(2));
465
466  // replace uses of sube and subc here
467  if (!SDValue(SUBCNode, 0).use_empty())
468    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
469
470  if (!SDValue(SUBENode, 0).use_empty())
471    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
472
473  return true;
474}
475
476static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
477                                  TargetLowering::DAGCombinerInfo &DCI,
478                                  const MipsSubtarget *Subtarget) {
479  if (DCI.isBeforeLegalize())
480    return SDValue();
481
482  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
483      SelectMadd(N, &DAG))
484    return SDValue(N, 0);
485
486  return SDValue();
487}
488
489static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
490                                  TargetLowering::DAGCombinerInfo &DCI,
491                                  const MipsSubtarget *Subtarget) {
492  if (DCI.isBeforeLegalize())
493    return SDValue();
494
495  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
496      SelectMsub(N, &DAG))
497    return SDValue(N, 0);
498
499  return SDValue();
500}
501
502static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
503                                    TargetLowering::DAGCombinerInfo &DCI,
504                                    const MipsSubtarget *Subtarget) {
505  if (DCI.isBeforeLegalizeOps())
506    return SDValue();
507
508  EVT Ty = N->getValueType(0);
509  unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
510  unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
511  unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
512                                                  MipsISD::DivRemU;
513  DebugLoc dl = N->getDebugLoc();
514
515  SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
516                               N->getOperand(0), N->getOperand(1));
517  SDValue InChain = DAG.getEntryNode();
518  SDValue InGlue = DivRem;
519
520  // insert MFLO
521  if (N->hasAnyUseOfValue(0)) {
522    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
523                                            InGlue);
524    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
525    InChain = CopyFromLo.getValue(1);
526    InGlue = CopyFromLo.getValue(2);
527  }
528
529  // insert MFHI
530  if (N->hasAnyUseOfValue(1)) {
531    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
532                                            HI, Ty, InGlue);
533    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
534  }
535
536  return SDValue();
537}
538
539static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
540  switch (CC) {
541  default: llvm_unreachable("Unknown fp condition code!");
542  case ISD::SETEQ:
543  case ISD::SETOEQ: return Mips::FCOND_OEQ;
544  case ISD::SETUNE: return Mips::FCOND_UNE;
545  case ISD::SETLT:
546  case ISD::SETOLT: return Mips::FCOND_OLT;
547  case ISD::SETGT:
548  case ISD::SETOGT: return Mips::FCOND_OGT;
549  case ISD::SETLE:
550  case ISD::SETOLE: return Mips::FCOND_OLE;
551  case ISD::SETGE:
552  case ISD::SETOGE: return Mips::FCOND_OGE;
553  case ISD::SETULT: return Mips::FCOND_ULT;
554  case ISD::SETULE: return Mips::FCOND_ULE;
555  case ISD::SETUGT: return Mips::FCOND_UGT;
556  case ISD::SETUGE: return Mips::FCOND_UGE;
557  case ISD::SETUO:  return Mips::FCOND_UN;
558  case ISD::SETO:   return Mips::FCOND_OR;
559  case ISD::SETNE:
560  case ISD::SETONE: return Mips::FCOND_ONE;
561  case ISD::SETUEQ: return Mips::FCOND_UEQ;
562  }
563}
564
565
566// Returns true if condition code has to be inverted.
567static bool InvertFPCondCode(Mips::CondCode CC) {
568  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
569    return false;
570
571  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
572         "Illegal Condition Code");
573
574  return true;
575}
576
577// Creates and returns an FPCmp node from a setcc node.
578// Returns Op if setcc is not a floating point comparison.
579static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
580  // must be a SETCC node
581  if (Op.getOpcode() != ISD::SETCC)
582    return Op;
583
584  SDValue LHS = Op.getOperand(0);
585
586  if (!LHS.getValueType().isFloatingPoint())
587    return Op;
588
589  SDValue RHS = Op.getOperand(1);
590  DebugLoc dl = Op.getDebugLoc();
591
592  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
593  // node if necessary.
594  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
595
596  return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
597                     DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
598}
599
600// Creates and returns a CMovFPT/F node.
601static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
602                            SDValue False, DebugLoc DL) {
603  bool invert = InvertFPCondCode((Mips::CondCode)
604                                 cast<ConstantSDNode>(Cond.getOperand(2))
605                                 ->getSExtValue());
606
607  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
608                     True.getValueType(), True, False, Cond);
609}
610
611static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
612                                    TargetLowering::DAGCombinerInfo &DCI,
613                                    const MipsSubtarget *Subtarget) {
614  if (DCI.isBeforeLegalizeOps())
615    return SDValue();
616
617  SDValue SetCC = N->getOperand(0);
618
619  if ((SetCC.getOpcode() != ISD::SETCC) ||
620      !SetCC.getOperand(0).getValueType().isInteger())
621    return SDValue();
622
623  SDValue False = N->getOperand(2);
624  EVT FalseTy = False.getValueType();
625
626  if (!FalseTy.isInteger())
627    return SDValue();
628
629  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
630
631  if (!CN || CN->getZExtValue())
632    return SDValue();
633
634  const DebugLoc DL = N->getDebugLoc();
635  ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
636  SDValue True = N->getOperand(1);
637
638  SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
639                       SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
640
641  return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
642}
643
644static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
645                                 TargetLowering::DAGCombinerInfo &DCI,
646                                 const MipsSubtarget *Subtarget) {
647  // Pattern match EXT.
648  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
649  //  => ext $dst, $src, size, pos
650  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
651    return SDValue();
652
653  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
654  unsigned ShiftRightOpc = ShiftRight.getOpcode();
655
656  // Op's first operand must be a shift right.
657  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
658    return SDValue();
659
660  // The second operand of the shift must be an immediate.
661  ConstantSDNode *CN;
662  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
663    return SDValue();
664
665  uint64_t Pos = CN->getZExtValue();
666  uint64_t SMPos, SMSize;
667
668  // Op's second operand must be a shifted mask.
669  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
670      !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
671    return SDValue();
672
673  // Return if the shifted mask does not start at bit 0 or the sum of its size
674  // and Pos exceeds the word's size.
675  EVT ValTy = N->getValueType(0);
676  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
677    return SDValue();
678
679  return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
680                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
681                     DAG.getConstant(SMSize, MVT::i32));
682}
683
684static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
685                                TargetLowering::DAGCombinerInfo &DCI,
686                                const MipsSubtarget *Subtarget) {
687  // Pattern match INS.
688  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
689  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
690  //  => ins $dst, $src, size, pos, $src1
691  if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
692    return SDValue();
693
694  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
695  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
696  ConstantSDNode *CN;
697
698  // See if Op's first operand matches (and $src1 , mask0).
699  if (And0.getOpcode() != ISD::AND)
700    return SDValue();
701
702  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
703      !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
704    return SDValue();
705
706  // See if Op's second operand matches (and (shl $src, pos), mask1).
707  if (And1.getOpcode() != ISD::AND)
708    return SDValue();
709
710  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
711      !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
712    return SDValue();
713
714  // The shift masks must have the same position and size.
715  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
716    return SDValue();
717
718  SDValue Shl = And1.getOperand(0);
719  if (Shl.getOpcode() != ISD::SHL)
720    return SDValue();
721
722  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
723    return SDValue();
724
725  unsigned Shamt = CN->getZExtValue();
726
727  // Return if the shift amount and the first bit position of mask are not the
728  // same.
729  EVT ValTy = N->getValueType(0);
730  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
731    return SDValue();
732
733  return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
734                     DAG.getConstant(SMPos0, MVT::i32),
735                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
736}
737
738static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
739                                 TargetLowering::DAGCombinerInfo &DCI,
740                                 const MipsSubtarget *Subtarget) {
741  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
742
743  if (DCI.isBeforeLegalizeOps())
744    return SDValue();
745
746  SDValue Add = N->getOperand(1);
747
748  if (Add.getOpcode() != ISD::ADD)
749    return SDValue();
750
751  SDValue Lo = Add.getOperand(1);
752
753  if ((Lo.getOpcode() != MipsISD::Lo) ||
754      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
755    return SDValue();
756
757  EVT ValTy = N->getValueType(0);
758  DebugLoc DL = N->getDebugLoc();
759
760  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
761                             Add.getOperand(0));
762  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
763}
764
765SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
766  const {
767  SelectionDAG &DAG = DCI.DAG;
768  unsigned opc = N->getOpcode();
769
770  switch (opc) {
771  default: break;
772  case ISD::ADDE:
773    return PerformADDECombine(N, DAG, DCI, Subtarget);
774  case ISD::SUBE:
775    return PerformSUBECombine(N, DAG, DCI, Subtarget);
776  case ISD::SDIVREM:
777  case ISD::UDIVREM:
778    return PerformDivRemCombine(N, DAG, DCI, Subtarget);
779  case ISD::SELECT:
780    return PerformSELECTCombine(N, DAG, DCI, Subtarget);
781  case ISD::AND:
782    return PerformANDCombine(N, DAG, DCI, Subtarget);
783  case ISD::OR:
784    return PerformORCombine(N, DAG, DCI, Subtarget);
785  case ISD::ADD:
786    return PerformADDCombine(N, DAG, DCI, Subtarget);
787  }
788
789  return SDValue();
790}
791
792SDValue MipsTargetLowering::
793LowerOperation(SDValue Op, SelectionDAG &DAG) const
794{
795  switch (Op.getOpcode())
796  {
797    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
798    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
799    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
800    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
801    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
802    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
803    case ISD::SELECT:             return LowerSELECT(Op, DAG);
804    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
805    case ISD::SETCC:              return LowerSETCC(Op, DAG);
806    case ISD::VASTART:            return LowerVASTART(Op, DAG);
807    case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
808    case ISD::FABS:               return LowerFABS(Op, DAG);
809    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
810    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
811    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
812    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
813    case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
814    case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
815    case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
816    case ISD::LOAD:               return LowerLOAD(Op, DAG);
817    case ISD::STORE:              return LowerSTORE(Op, DAG);
818  }
819  return SDValue();
820}
821
822//===----------------------------------------------------------------------===//
823//  Lower helper functions
824//===----------------------------------------------------------------------===//
825
826// AddLiveIn - This helper function adds the specified physical register to the
827// MachineFunction as a live in value.  It also creates a corresponding
828// virtual register for it.
829static unsigned
830AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
831{
832  assert(RC->contains(PReg) && "Not the correct regclass!");
833  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
834  MF.getRegInfo().addLiveIn(PReg, VReg);
835  return VReg;
836}
837
838// Get fp branch code (not opcode) from condition code.
839static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
840  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
841    return Mips::BRANCH_T;
842
843  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
844         "Invalid CondCode.");
845
846  return Mips::BRANCH_F;
847}
848
849/*
850static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
851                                        DebugLoc dl,
852                                        const MipsSubtarget *Subtarget,
853                                        const TargetInstrInfo *TII,
854                                        bool isFPCmp, unsigned Opc) {
855  // There is no need to expand CMov instructions if target has
856  // conditional moves.
857  if (Subtarget->hasCondMov())
858    return BB;
859
860  // To "insert" a SELECT_CC instruction, we actually have to insert the
861  // diamond control-flow pattern.  The incoming instruction knows the
862  // destination vreg to set, the condition code register to branch on, the
863  // true/false values to select between, and a branch opcode to use.
864  const BasicBlock *LLVM_BB = BB->getBasicBlock();
865  MachineFunction::iterator It = BB;
866  ++It;
867
868  //  thisMBB:
869  //  ...
870  //   TrueVal = ...
871  //   setcc r1, r2, r3
872  //   bNE   r1, r0, copy1MBB
873  //   fallthrough --> copy0MBB
874  MachineBasicBlock *thisMBB  = BB;
875  MachineFunction *F = BB->getParent();
876  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
877  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
878  F->insert(It, copy0MBB);
879  F->insert(It, sinkMBB);
880
881  // Transfer the remainder of BB and its successor edges to sinkMBB.
882  sinkMBB->splice(sinkMBB->begin(), BB,
883                  llvm::next(MachineBasicBlock::iterator(MI)),
884                  BB->end());
885  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
886
887  // Next, add the true and fallthrough blocks as its successors.
888  BB->addSuccessor(copy0MBB);
889  BB->addSuccessor(sinkMBB);
890
891  // Emit the right instruction according to the type of the operands compared
892  if (isFPCmp)
893    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
894  else
895    BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
896      .addReg(Mips::ZERO).addMBB(sinkMBB);
897
898  //  copy0MBB:
899  //   %FalseValue = ...
900  //   # fallthrough to sinkMBB
901  BB = copy0MBB;
902
903  // Update machine-CFG edges
904  BB->addSuccessor(sinkMBB);
905
906  //  sinkMBB:
907  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
908  //  ...
909  BB = sinkMBB;
910
911  if (isFPCmp)
912    BuildMI(*BB, BB->begin(), dl,
913            TII->get(Mips::PHI), MI->getOperand(0).getReg())
914      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
915      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
916  else
917    BuildMI(*BB, BB->begin(), dl,
918            TII->get(Mips::PHI), MI->getOperand(0).getReg())
919      .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
920      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
921
922  MI->eraseFromParent();   // The pseudo instruction is gone now.
923  return BB;
924}
925*/
926MachineBasicBlock *
927MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
928                                                MachineBasicBlock *BB) const {
929  switch (MI->getOpcode()) {
930  default: llvm_unreachable("Unexpected instr type to insert");
931  case Mips::ATOMIC_LOAD_ADD_I8:
932  case Mips::ATOMIC_LOAD_ADD_I8_P8:
933    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
934  case Mips::ATOMIC_LOAD_ADD_I16:
935  case Mips::ATOMIC_LOAD_ADD_I16_P8:
936    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
937  case Mips::ATOMIC_LOAD_ADD_I32:
938  case Mips::ATOMIC_LOAD_ADD_I32_P8:
939    return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
940  case Mips::ATOMIC_LOAD_ADD_I64:
941  case Mips::ATOMIC_LOAD_ADD_I64_P8:
942    return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
943
944  case Mips::ATOMIC_LOAD_AND_I8:
945  case Mips::ATOMIC_LOAD_AND_I8_P8:
946    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
947  case Mips::ATOMIC_LOAD_AND_I16:
948  case Mips::ATOMIC_LOAD_AND_I16_P8:
949    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
950  case Mips::ATOMIC_LOAD_AND_I32:
951  case Mips::ATOMIC_LOAD_AND_I32_P8:
952    return EmitAtomicBinary(MI, BB, 4, Mips::AND);
953  case Mips::ATOMIC_LOAD_AND_I64:
954  case Mips::ATOMIC_LOAD_AND_I64_P8:
955    return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
956
957  case Mips::ATOMIC_LOAD_OR_I8:
958  case Mips::ATOMIC_LOAD_OR_I8_P8:
959    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
960  case Mips::ATOMIC_LOAD_OR_I16:
961  case Mips::ATOMIC_LOAD_OR_I16_P8:
962    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
963  case Mips::ATOMIC_LOAD_OR_I32:
964  case Mips::ATOMIC_LOAD_OR_I32_P8:
965    return EmitAtomicBinary(MI, BB, 4, Mips::OR);
966  case Mips::ATOMIC_LOAD_OR_I64:
967  case Mips::ATOMIC_LOAD_OR_I64_P8:
968    return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
969
970  case Mips::ATOMIC_LOAD_XOR_I8:
971  case Mips::ATOMIC_LOAD_XOR_I8_P8:
972    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
973  case Mips::ATOMIC_LOAD_XOR_I16:
974  case Mips::ATOMIC_LOAD_XOR_I16_P8:
975    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
976  case Mips::ATOMIC_LOAD_XOR_I32:
977  case Mips::ATOMIC_LOAD_XOR_I32_P8:
978    return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
979  case Mips::ATOMIC_LOAD_XOR_I64:
980  case Mips::ATOMIC_LOAD_XOR_I64_P8:
981    return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
982
983  case Mips::ATOMIC_LOAD_NAND_I8:
984  case Mips::ATOMIC_LOAD_NAND_I8_P8:
985    return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
986  case Mips::ATOMIC_LOAD_NAND_I16:
987  case Mips::ATOMIC_LOAD_NAND_I16_P8:
988    return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
989  case Mips::ATOMIC_LOAD_NAND_I32:
990  case Mips::ATOMIC_LOAD_NAND_I32_P8:
991    return EmitAtomicBinary(MI, BB, 4, 0, true);
992  case Mips::ATOMIC_LOAD_NAND_I64:
993  case Mips::ATOMIC_LOAD_NAND_I64_P8:
994    return EmitAtomicBinary(MI, BB, 8, 0, true);
995
996  case Mips::ATOMIC_LOAD_SUB_I8:
997  case Mips::ATOMIC_LOAD_SUB_I8_P8:
998    return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
999  case Mips::ATOMIC_LOAD_SUB_I16:
1000  case Mips::ATOMIC_LOAD_SUB_I16_P8:
1001    return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1002  case Mips::ATOMIC_LOAD_SUB_I32:
1003  case Mips::ATOMIC_LOAD_SUB_I32_P8:
1004    return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1005  case Mips::ATOMIC_LOAD_SUB_I64:
1006  case Mips::ATOMIC_LOAD_SUB_I64_P8:
1007    return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1008
1009  case Mips::ATOMIC_SWAP_I8:
1010  case Mips::ATOMIC_SWAP_I8_P8:
1011    return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1012  case Mips::ATOMIC_SWAP_I16:
1013  case Mips::ATOMIC_SWAP_I16_P8:
1014    return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1015  case Mips::ATOMIC_SWAP_I32:
1016  case Mips::ATOMIC_SWAP_I32_P8:
1017    return EmitAtomicBinary(MI, BB, 4, 0);
1018  case Mips::ATOMIC_SWAP_I64:
1019  case Mips::ATOMIC_SWAP_I64_P8:
1020    return EmitAtomicBinary(MI, BB, 8, 0);
1021
1022  case Mips::ATOMIC_CMP_SWAP_I8:
1023  case Mips::ATOMIC_CMP_SWAP_I8_P8:
1024    return EmitAtomicCmpSwapPartword(MI, BB, 1);
1025  case Mips::ATOMIC_CMP_SWAP_I16:
1026  case Mips::ATOMIC_CMP_SWAP_I16_P8:
1027    return EmitAtomicCmpSwapPartword(MI, BB, 2);
1028  case Mips::ATOMIC_CMP_SWAP_I32:
1029  case Mips::ATOMIC_CMP_SWAP_I32_P8:
1030    return EmitAtomicCmpSwap(MI, BB, 4);
1031  case Mips::ATOMIC_CMP_SWAP_I64:
1032  case Mips::ATOMIC_CMP_SWAP_I64_P8:
1033    return EmitAtomicCmpSwap(MI, BB, 8);
1034  }
1035}
1036
1037// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1038// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1039MachineBasicBlock *
1040MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1041                                     unsigned Size, unsigned BinOpcode,
1042                                     bool Nand) const {
1043  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1044
1045  MachineFunction *MF = BB->getParent();
1046  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1047  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1048  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1049  DebugLoc dl = MI->getDebugLoc();
1050  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1051
1052  if (Size == 4) {
1053    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1054    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1055    AND = Mips::AND;
1056    NOR = Mips::NOR;
1057    ZERO = Mips::ZERO;
1058    BEQ = Mips::BEQ;
1059  }
1060  else {
1061    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1062    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1063    AND = Mips::AND64;
1064    NOR = Mips::NOR64;
1065    ZERO = Mips::ZERO_64;
1066    BEQ = Mips::BEQ64;
1067  }
1068
1069  unsigned OldVal = MI->getOperand(0).getReg();
1070  unsigned Ptr = MI->getOperand(1).getReg();
1071  unsigned Incr = MI->getOperand(2).getReg();
1072
1073  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1074  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1075  unsigned Success = RegInfo.createVirtualRegister(RC);
1076
1077  // insert new blocks after the current block
1078  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1079  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1080  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1081  MachineFunction::iterator It = BB;
1082  ++It;
1083  MF->insert(It, loopMBB);
1084  MF->insert(It, exitMBB);
1085
1086  // Transfer the remainder of BB and its successor edges to exitMBB.
1087  exitMBB->splice(exitMBB->begin(), BB,
1088                  llvm::next(MachineBasicBlock::iterator(MI)),
1089                  BB->end());
1090  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1091
1092  //  thisMBB:
1093  //    ...
1094  //    fallthrough --> loopMBB
1095  BB->addSuccessor(loopMBB);
1096  loopMBB->addSuccessor(loopMBB);
1097  loopMBB->addSuccessor(exitMBB);
1098
1099  //  loopMBB:
1100  //    ll oldval, 0(ptr)
1101  //    <binop> storeval, oldval, incr
1102  //    sc success, storeval, 0(ptr)
1103  //    beq success, $0, loopMBB
1104  BB = loopMBB;
1105  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1106  if (Nand) {
1107    //  and andres, oldval, incr
1108    //  nor storeval, $0, andres
1109    BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1110    BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1111  } else if (BinOpcode) {
1112    //  <binop> storeval, oldval, incr
1113    BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1114  } else {
1115    StoreVal = Incr;
1116  }
1117  BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1118  BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1119
1120  MI->eraseFromParent();   // The instruction is gone now.
1121
1122  return exitMBB;
1123}
1124
1125MachineBasicBlock *
1126MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1127                                             MachineBasicBlock *BB,
1128                                             unsigned Size, unsigned BinOpcode,
1129                                             bool Nand) const {
1130  assert((Size == 1 || Size == 2) &&
1131      "Unsupported size for EmitAtomicBinaryPartial.");
1132
1133  MachineFunction *MF = BB->getParent();
1134  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1135  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1136  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1137  DebugLoc dl = MI->getDebugLoc();
1138  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1139  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1140
1141  unsigned Dest = MI->getOperand(0).getReg();
1142  unsigned Ptr = MI->getOperand(1).getReg();
1143  unsigned Incr = MI->getOperand(2).getReg();
1144
1145  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1146  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1147  unsigned Mask = RegInfo.createVirtualRegister(RC);
1148  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1149  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1150  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1151  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1152  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1153  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1154  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1155  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1156  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1157  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1158  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1159  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1160  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1161  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1162  unsigned Success = RegInfo.createVirtualRegister(RC);
1163
1164  // insert new blocks after the current block
1165  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1166  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1167  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1168  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1169  MachineFunction::iterator It = BB;
1170  ++It;
1171  MF->insert(It, loopMBB);
1172  MF->insert(It, sinkMBB);
1173  MF->insert(It, exitMBB);
1174
1175  // Transfer the remainder of BB and its successor edges to exitMBB.
1176  exitMBB->splice(exitMBB->begin(), BB,
1177                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1178  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1179
1180  BB->addSuccessor(loopMBB);
1181  loopMBB->addSuccessor(loopMBB);
1182  loopMBB->addSuccessor(sinkMBB);
1183  sinkMBB->addSuccessor(exitMBB);
1184
1185  //  thisMBB:
1186  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1187  //    and     alignedaddr,ptr,masklsb2
1188  //    andi    ptrlsb2,ptr,3
1189  //    sll     shiftamt,ptrlsb2,3
1190  //    ori     maskupper,$0,255               # 0xff
1191  //    sll     mask,maskupper,shiftamt
1192  //    nor     mask2,$0,mask
1193  //    sll     incr2,incr,shiftamt
1194
1195  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1196  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1197    .addReg(Mips::ZERO).addImm(-4);
1198  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1199    .addReg(Ptr).addReg(MaskLSB2);
1200  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1201  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1202  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1203    .addReg(Mips::ZERO).addImm(MaskImm);
1204  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1205    .addReg(ShiftAmt).addReg(MaskUpper);
1206  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1207  BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1208
1209  // atomic.load.binop
1210  // loopMBB:
1211  //   ll      oldval,0(alignedaddr)
1212  //   binop   binopres,oldval,incr2
1213  //   and     newval,binopres,mask
1214  //   and     maskedoldval0,oldval,mask2
1215  //   or      storeval,maskedoldval0,newval
1216  //   sc      success,storeval,0(alignedaddr)
1217  //   beq     success,$0,loopMBB
1218
1219  // atomic.swap
1220  // loopMBB:
1221  //   ll      oldval,0(alignedaddr)
1222  //   and     newval,incr2,mask
1223  //   and     maskedoldval0,oldval,mask2
1224  //   or      storeval,maskedoldval0,newval
1225  //   sc      success,storeval,0(alignedaddr)
1226  //   beq     success,$0,loopMBB
1227
1228  BB = loopMBB;
1229  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1230  if (Nand) {
1231    //  and andres, oldval, incr2
1232    //  nor binopres, $0, andres
1233    //  and newval, binopres, mask
1234    BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1235    BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1236      .addReg(Mips::ZERO).addReg(AndRes);
1237    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1238  } else if (BinOpcode) {
1239    //  <binop> binopres, oldval, incr2
1240    //  and newval, binopres, mask
1241    BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1242    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1243  } else {// atomic.swap
1244    //  and newval, incr2, mask
1245    BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1246  }
1247
1248  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1249    .addReg(OldVal).addReg(Mask2);
1250  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1251    .addReg(MaskedOldVal0).addReg(NewVal);
1252  BuildMI(BB, dl, TII->get(SC), Success)
1253    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1254  BuildMI(BB, dl, TII->get(Mips::BEQ))
1255    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1256
1257  //  sinkMBB:
1258  //    and     maskedoldval1,oldval,mask
1259  //    srl     srlres,maskedoldval1,shiftamt
1260  //    sll     sllres,srlres,24
1261  //    sra     dest,sllres,24
1262  BB = sinkMBB;
1263  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1264
1265  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1266    .addReg(OldVal).addReg(Mask);
1267  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1268      .addReg(ShiftAmt).addReg(MaskedOldVal1);
1269  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1270      .addReg(SrlRes).addImm(ShiftImm);
1271  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1272      .addReg(SllRes).addImm(ShiftImm);
1273
1274  MI->eraseFromParent();   // The instruction is gone now.
1275
1276  return exitMBB;
1277}
1278
1279MachineBasicBlock *
1280MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1281                                      MachineBasicBlock *BB,
1282                                      unsigned Size) const {
1283  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1284
1285  MachineFunction *MF = BB->getParent();
1286  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1287  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1288  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1289  DebugLoc dl = MI->getDebugLoc();
1290  unsigned LL, SC, ZERO, BNE, BEQ;
1291
1292  if (Size == 4) {
1293    LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1294    SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1295    ZERO = Mips::ZERO;
1296    BNE = Mips::BNE;
1297    BEQ = Mips::BEQ;
1298  }
1299  else {
1300    LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1301    SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1302    ZERO = Mips::ZERO_64;
1303    BNE = Mips::BNE64;
1304    BEQ = Mips::BEQ64;
1305  }
1306
1307  unsigned Dest    = MI->getOperand(0).getReg();
1308  unsigned Ptr     = MI->getOperand(1).getReg();
1309  unsigned OldVal  = MI->getOperand(2).getReg();
1310  unsigned NewVal  = MI->getOperand(3).getReg();
1311
1312  unsigned Success = RegInfo.createVirtualRegister(RC);
1313
1314  // insert new blocks after the current block
1315  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1316  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1317  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1318  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1319  MachineFunction::iterator It = BB;
1320  ++It;
1321  MF->insert(It, loop1MBB);
1322  MF->insert(It, loop2MBB);
1323  MF->insert(It, exitMBB);
1324
1325  // Transfer the remainder of BB and its successor edges to exitMBB.
1326  exitMBB->splice(exitMBB->begin(), BB,
1327                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1328  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1329
1330  //  thisMBB:
1331  //    ...
1332  //    fallthrough --> loop1MBB
1333  BB->addSuccessor(loop1MBB);
1334  loop1MBB->addSuccessor(exitMBB);
1335  loop1MBB->addSuccessor(loop2MBB);
1336  loop2MBB->addSuccessor(loop1MBB);
1337  loop2MBB->addSuccessor(exitMBB);
1338
1339  // loop1MBB:
1340  //   ll dest, 0(ptr)
1341  //   bne dest, oldval, exitMBB
1342  BB = loop1MBB;
1343  BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1344  BuildMI(BB, dl, TII->get(BNE))
1345    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1346
1347  // loop2MBB:
1348  //   sc success, newval, 0(ptr)
1349  //   beq success, $0, loop1MBB
1350  BB = loop2MBB;
1351  BuildMI(BB, dl, TII->get(SC), Success)
1352    .addReg(NewVal).addReg(Ptr).addImm(0);
1353  BuildMI(BB, dl, TII->get(BEQ))
1354    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1355
1356  MI->eraseFromParent();   // The instruction is gone now.
1357
1358  return exitMBB;
1359}
1360
1361MachineBasicBlock *
1362MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1363                                              MachineBasicBlock *BB,
1364                                              unsigned Size) const {
1365  assert((Size == 1 || Size == 2) &&
1366      "Unsupported size for EmitAtomicCmpSwapPartial.");
1367
1368  MachineFunction *MF = BB->getParent();
1369  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1370  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1371  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1372  DebugLoc dl = MI->getDebugLoc();
1373  unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1374  unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1375
1376  unsigned Dest    = MI->getOperand(0).getReg();
1377  unsigned Ptr     = MI->getOperand(1).getReg();
1378  unsigned CmpVal  = MI->getOperand(2).getReg();
1379  unsigned NewVal  = MI->getOperand(3).getReg();
1380
1381  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1382  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1383  unsigned Mask = RegInfo.createVirtualRegister(RC);
1384  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1385  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1386  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1387  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1388  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1389  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1390  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1391  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1392  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1393  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1394  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1395  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1396  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1397  unsigned SllRes = RegInfo.createVirtualRegister(RC);
1398  unsigned Success = RegInfo.createVirtualRegister(RC);
1399
1400  // insert new blocks after the current block
1401  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1402  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1403  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1404  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1405  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1406  MachineFunction::iterator It = BB;
1407  ++It;
1408  MF->insert(It, loop1MBB);
1409  MF->insert(It, loop2MBB);
1410  MF->insert(It, sinkMBB);
1411  MF->insert(It, exitMBB);
1412
1413  // Transfer the remainder of BB and its successor edges to exitMBB.
1414  exitMBB->splice(exitMBB->begin(), BB,
1415                  llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1416  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1417
1418  BB->addSuccessor(loop1MBB);
1419  loop1MBB->addSuccessor(sinkMBB);
1420  loop1MBB->addSuccessor(loop2MBB);
1421  loop2MBB->addSuccessor(loop1MBB);
1422  loop2MBB->addSuccessor(sinkMBB);
1423  sinkMBB->addSuccessor(exitMBB);
1424
1425  // FIXME: computation of newval2 can be moved to loop2MBB.
1426  //  thisMBB:
1427  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1428  //    and     alignedaddr,ptr,masklsb2
1429  //    andi    ptrlsb2,ptr,3
1430  //    sll     shiftamt,ptrlsb2,3
1431  //    ori     maskupper,$0,255               # 0xff
1432  //    sll     mask,maskupper,shiftamt
1433  //    nor     mask2,$0,mask
1434  //    andi    maskedcmpval,cmpval,255
1435  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1436  //    andi    maskednewval,newval,255
1437  //    sll     shiftednewval,maskednewval,shiftamt
1438  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1439  BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1440    .addReg(Mips::ZERO).addImm(-4);
1441  BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1442    .addReg(Ptr).addReg(MaskLSB2);
1443  BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1444  BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1445  BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1446    .addReg(Mips::ZERO).addImm(MaskImm);
1447  BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1448    .addReg(ShiftAmt).addReg(MaskUpper);
1449  BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1450  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1451    .addReg(CmpVal).addImm(MaskImm);
1452  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1453    .addReg(ShiftAmt).addReg(MaskedCmpVal);
1454  BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1455    .addReg(NewVal).addImm(MaskImm);
1456  BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1457    .addReg(ShiftAmt).addReg(MaskedNewVal);
1458
1459  //  loop1MBB:
1460  //    ll      oldval,0(alginedaddr)
1461  //    and     maskedoldval0,oldval,mask
1462  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1463  BB = loop1MBB;
1464  BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1465  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1466    .addReg(OldVal).addReg(Mask);
1467  BuildMI(BB, dl, TII->get(Mips::BNE))
1468    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1469
1470  //  loop2MBB:
1471  //    and     maskedoldval1,oldval,mask2
1472  //    or      storeval,maskedoldval1,shiftednewval
1473  //    sc      success,storeval,0(alignedaddr)
1474  //    beq     success,$0,loop1MBB
1475  BB = loop2MBB;
1476  BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1477    .addReg(OldVal).addReg(Mask2);
1478  BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1479    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1480  BuildMI(BB, dl, TII->get(SC), Success)
1481      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1482  BuildMI(BB, dl, TII->get(Mips::BEQ))
1483      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1484
1485  //  sinkMBB:
1486  //    srl     srlres,maskedoldval0,shiftamt
1487  //    sll     sllres,srlres,24
1488  //    sra     dest,sllres,24
1489  BB = sinkMBB;
1490  int64_t ShiftImm = (Size == 1) ? 24 : 16;
1491
1492  BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1493      .addReg(ShiftAmt).addReg(MaskedOldVal0);
1494  BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1495      .addReg(SrlRes).addImm(ShiftImm);
1496  BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1497      .addReg(SllRes).addImm(ShiftImm);
1498
1499  MI->eraseFromParent();   // The instruction is gone now.
1500
1501  return exitMBB;
1502}
1503
1504//===----------------------------------------------------------------------===//
1505//  Misc Lower Operation implementation
1506//===----------------------------------------------------------------------===//
1507SDValue MipsTargetLowering::
1508LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1509{
1510  // The first operand is the chain, the second is the condition, the third is
1511  // the block to branch to if the condition is true.
1512  SDValue Chain = Op.getOperand(0);
1513  SDValue Dest = Op.getOperand(2);
1514  DebugLoc dl = Op.getDebugLoc();
1515
1516  SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1517
1518  // Return if flag is not set by a floating point comparison.
1519  if (CondRes.getOpcode() != MipsISD::FPCmp)
1520    return Op;
1521
1522  SDValue CCNode  = CondRes.getOperand(2);
1523  Mips::CondCode CC =
1524    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1525  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1526
1527  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1528                     Dest, CondRes);
1529}
1530
1531SDValue MipsTargetLowering::
1532LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1533{
1534  SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1535
1536  // Return if flag is not set by a floating point comparison.
1537  if (Cond.getOpcode() != MipsISD::FPCmp)
1538    return Op;
1539
1540  return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1541                      Op.getDebugLoc());
1542}
1543
1544SDValue MipsTargetLowering::
1545LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1546{
1547  DebugLoc DL = Op.getDebugLoc();
1548  EVT Ty = Op.getOperand(0).getValueType();
1549  SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1550                             Op.getOperand(0), Op.getOperand(1),
1551                             Op.getOperand(4));
1552
1553  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1554                     Op.getOperand(3));
1555}
1556
1557SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1558  SDValue Cond = CreateFPCmp(DAG, Op);
1559
1560  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1561         "Floating point operand expected.");
1562
1563  SDValue True  = DAG.getConstant(1, MVT::i32);
1564  SDValue False = DAG.getConstant(0, MVT::i32);
1565
1566  return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1567}
1568
1569SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1570                                               SelectionDAG &DAG) const {
1571  // FIXME there isn't actually debug info here
1572  DebugLoc dl = Op.getDebugLoc();
1573  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1574
1575  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1576    SDVTList VTs = DAG.getVTList(MVT::i32);
1577
1578    const MipsTargetObjectFile &TLOF =
1579      (const MipsTargetObjectFile&)getObjFileLowering();
1580
1581    // %gp_rel relocation
1582    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1583      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1584                                              MipsII::MO_GPREL);
1585      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1586      SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1587      return DAG.getNode(ISD::ADD, dl, MVT::i32, GPReg, GPRelNode);
1588    }
1589    // %hi/%lo relocation
1590    SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1591                                              MipsII::MO_ABS_HI);
1592    SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1593                                              MipsII::MO_ABS_LO);
1594    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1595    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1596    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1597  }
1598
1599  EVT ValTy = Op.getValueType();
1600  bool HasGotOfst = (GV->hasInternalLinkage() ||
1601                     (GV->hasLocalLinkage() && !isa<Function>(GV)));
1602  unsigned GotFlag = HasMips64 ?
1603                     (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1604                     (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16);
1605  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1606  GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA);
1607  SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA,
1608                                MachinePointerInfo(), false, false, false, 0);
1609  // On functions and global targets not internal linked only
1610  // a load from got/GP is necessary for PIC to work.
1611  if (!HasGotOfst)
1612    return ResNode;
1613  SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1614                                            HasMips64 ? MipsII::MO_GOT_OFST :
1615                                                        MipsII::MO_ABS_LO);
1616  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1617  return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1618}
1619
1620SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1621                                              SelectionDAG &DAG) const {
1622  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1623  // FIXME there isn't actually debug info here
1624  DebugLoc dl = Op.getDebugLoc();
1625
1626  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1627    // %hi/%lo relocation
1628    SDValue BAHi = DAG.getTargetBlockAddress(BA, MVT::i32, 0, MipsII::MO_ABS_HI);
1629    SDValue BALo = DAG.getTargetBlockAddress(BA, MVT::i32, 0, MipsII::MO_ABS_LO);
1630    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1631    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1632    return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1633  }
1634
1635  EVT ValTy = Op.getValueType();
1636  unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1637  unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1638  SDValue BAGOTOffset = DAG.getTargetBlockAddress(BA, ValTy, 0, GOTFlag);
1639  BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy,
1640                            GetGlobalReg(DAG, ValTy), BAGOTOffset);
1641  SDValue BALOOffset = DAG.getTargetBlockAddress(BA, ValTy, 0, OFSTFlag);
1642  SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset,
1643                             MachinePointerInfo(), false, false, false, 0);
1644  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset);
1645  return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1646}
1647
1648SDValue MipsTargetLowering::
1649LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1650{
1651  // If the relocation model is PIC, use the General Dynamic TLS Model or
1652  // Local Dynamic TLS model, otherwise use the Initial Exec or
1653  // Local Exec TLS Model.
1654
1655  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1656  DebugLoc dl = GA->getDebugLoc();
1657  const GlobalValue *GV = GA->getGlobal();
1658  EVT PtrVT = getPointerTy();
1659
1660  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1661
1662  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1663    // General Dynamic and Local Dynamic TLS Model.
1664    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1665                                                      : MipsII::MO_TLSGD;
1666
1667    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1668    SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1669                                   GetGlobalReg(DAG, PtrVT), TGA);
1670    unsigned PtrSize = PtrVT.getSizeInBits();
1671    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1672
1673    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1674
1675    ArgListTy Args;
1676    ArgListEntry Entry;
1677    Entry.Node = Argument;
1678    Entry.Ty = PtrTy;
1679    Args.push_back(Entry);
1680
1681    TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1682                  false, false, false, false, 0, CallingConv::C,
1683                  /*isTailCall=*/false, /*doesNotRet=*/false,
1684                  /*isReturnValueUsed=*/true,
1685                  TlsGetAddr, Args, DAG, dl);
1686    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1687
1688    SDValue Ret = CallResult.first;
1689
1690    if (model != TLSModel::LocalDynamic)
1691      return Ret;
1692
1693    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1694                                               MipsII::MO_DTPREL_HI);
1695    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1696    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1697                                               MipsII::MO_DTPREL_LO);
1698    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1699    SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1700    return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1701  }
1702
1703  SDValue Offset;
1704  if (model == TLSModel::InitialExec) {
1705    // Initial Exec TLS Model
1706    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1707                                             MipsII::MO_GOTTPREL);
1708    TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1709                      TGA);
1710    Offset = DAG.getLoad(PtrVT, dl,
1711                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1712                         false, false, false, 0);
1713  } else {
1714    // Local Exec TLS Model
1715    assert(model == TLSModel::LocalExec);
1716    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1717                                               MipsII::MO_TPREL_HI);
1718    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1719                                               MipsII::MO_TPREL_LO);
1720    SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1721    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1722    Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1723  }
1724
1725  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1726  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1727}
1728
1729SDValue MipsTargetLowering::
1730LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1731{
1732  SDValue HiPart, JTI, JTILo;
1733  // FIXME there isn't actually debug info here
1734  DebugLoc dl = Op.getDebugLoc();
1735  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1736  EVT PtrVT = Op.getValueType();
1737  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1738
1739  if (!IsPIC && !IsN64) {
1740    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI);
1741    HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI);
1742    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO);
1743  } else {// Emit Load from Global Pointer
1744    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1745    unsigned OfstFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1746    JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag);
1747    JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1748                      JTI);
1749    HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI,
1750                         MachinePointerInfo(), false, false, false, 0);
1751    JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag);
1752  }
1753
1754  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo);
1755  return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo);
1756}
1757
1758SDValue MipsTargetLowering::
1759LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1760{
1761  SDValue ResNode;
1762  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1763  const Constant *C = N->getConstVal();
1764  // FIXME there isn't actually debug info here
1765  DebugLoc dl = Op.getDebugLoc();
1766
1767  // gp_rel relocation
1768  // FIXME: we should reference the constant pool using small data sections,
1769  // but the asm printer currently doesn't support this feature without
1770  // hacking it. This feature should come soon so we can uncomment the
1771  // stuff below.
1772  //if (IsInSmallSection(C->getType())) {
1773  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1774  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1775  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1776
1777  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1778    SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1779                                             N->getOffset(), MipsII::MO_ABS_HI);
1780    SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1781                                             N->getOffset(), MipsII::MO_ABS_LO);
1782    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1783    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1784    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1785  } else {
1786    EVT ValTy = Op.getValueType();
1787    unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1788    unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1789    SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1790                                           N->getOffset(), GOTFlag);
1791    CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP);
1792    SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP,
1793                               MachinePointerInfo::getConstantPool(), false,
1794                               false, false, 0);
1795    SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1796                                             N->getOffset(), OFSTFlag);
1797    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo);
1798    ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1799  }
1800
1801  return ResNode;
1802}
1803
1804SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1805  MachineFunction &MF = DAG.getMachineFunction();
1806  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1807
1808  DebugLoc dl = Op.getDebugLoc();
1809  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1810                                 getPointerTy());
1811
1812  // vastart just stores the address of the VarArgsFrameIndex slot into the
1813  // memory location argument.
1814  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1815  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1816                      MachinePointerInfo(SV), false, false, 0);
1817}
1818
1819static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1820  EVT TyX = Op.getOperand(0).getValueType();
1821  EVT TyY = Op.getOperand(1).getValueType();
1822  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1823  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1824  DebugLoc DL = Op.getDebugLoc();
1825  SDValue Res;
1826
1827  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1828  // to i32.
1829  SDValue X = (TyX == MVT::f32) ?
1830    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1831    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1832                Const1);
1833  SDValue Y = (TyY == MVT::f32) ?
1834    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1835    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1836                Const1);
1837
1838  if (HasR2) {
1839    // ext  E, Y, 31, 1  ; extract bit31 of Y
1840    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1841    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1842    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1843  } else {
1844    // sll SllX, X, 1
1845    // srl SrlX, SllX, 1
1846    // srl SrlY, Y, 31
1847    // sll SllY, SrlX, 31
1848    // or  Or, SrlX, SllY
1849    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1850    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1851    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1852    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1853    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1854  }
1855
1856  if (TyX == MVT::f32)
1857    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1858
1859  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1860                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1861  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1862}
1863
1864static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1865  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1866  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1867  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1868  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1869  DebugLoc DL = Op.getDebugLoc();
1870
1871  // Bitcast to integer nodes.
1872  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1873  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1874
1875  if (HasR2) {
1876    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1877    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1878    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1879                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1880
1881    if (WidthX > WidthY)
1882      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1883    else if (WidthY > WidthX)
1884      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1885
1886    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1887                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1888    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1889  }
1890
1891  // (d)sll SllX, X, 1
1892  // (d)srl SrlX, SllX, 1
1893  // (d)srl SrlY, Y, width(Y)-1
1894  // (d)sll SllY, SrlX, width(Y)-1
1895  // or     Or, SrlX, SllY
1896  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1897  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1898  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1899                             DAG.getConstant(WidthY - 1, MVT::i32));
1900
1901  if (WidthX > WidthY)
1902    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1903  else if (WidthY > WidthX)
1904    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1905
1906  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1907                             DAG.getConstant(WidthX - 1, MVT::i32));
1908  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1909  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1910}
1911
1912SDValue
1913MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1914  if (Subtarget->hasMips64())
1915    return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1916
1917  return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1918}
1919
1920static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1921  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1922  DebugLoc DL = Op.getDebugLoc();
1923
1924  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1925  // to i32.
1926  SDValue X = (Op.getValueType() == MVT::f32) ?
1927    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1928    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1929                Const1);
1930
1931  // Clear MSB.
1932  if (HasR2)
1933    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1934                      DAG.getRegister(Mips::ZERO, MVT::i32),
1935                      DAG.getConstant(31, MVT::i32), Const1, X);
1936  else {
1937    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1938    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1939  }
1940
1941  if (Op.getValueType() == MVT::f32)
1942    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1943
1944  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1945                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1946  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1947}
1948
1949static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1950  SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1951  DebugLoc DL = Op.getDebugLoc();
1952
1953  // Bitcast to integer node.
1954  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1955
1956  // Clear MSB.
1957  if (HasR2)
1958    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1959                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
1960                      DAG.getConstant(63, MVT::i32), Const1, X);
1961  else {
1962    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1963    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1964  }
1965
1966  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1967}
1968
1969SDValue
1970MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
1971  if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1972    return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1973
1974  return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1975}
1976
1977SDValue MipsTargetLowering::
1978LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1979  // check the depth
1980  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1981         "Frame address can only be determined for current frame.");
1982
1983  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1984  MFI->setFrameAddressIsTaken(true);
1985  EVT VT = Op.getValueType();
1986  DebugLoc dl = Op.getDebugLoc();
1987  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1988                                         IsN64 ? Mips::FP_64 : Mips::FP, VT);
1989  return FrameAddr;
1990}
1991
1992SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
1993                                            SelectionDAG &DAG) const {
1994  // check the depth
1995  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1996         "Return address can be determined only for current frame.");
1997
1998  MachineFunction &MF = DAG.getMachineFunction();
1999  MachineFrameInfo *MFI = MF.getFrameInfo();
2000  EVT VT = Op.getValueType();
2001  unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
2002  MFI->setReturnAddressIsTaken(true);
2003
2004  // Return RA, which contains the return address. Mark it an implicit live-in.
2005  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2006  return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2007}
2008
2009// TODO: set SType according to the desired memory barrier behavior.
2010SDValue
2011MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2012  unsigned SType = 0;
2013  DebugLoc dl = Op.getDebugLoc();
2014  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2015                     DAG.getConstant(SType, MVT::i32));
2016}
2017
2018SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2019                                              SelectionDAG &DAG) const {
2020  // FIXME: Need pseudo-fence for 'singlethread' fences
2021  // FIXME: Set SType for weaker fences where supported/appropriate.
2022  unsigned SType = 0;
2023  DebugLoc dl = Op.getDebugLoc();
2024  return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2025                     DAG.getConstant(SType, MVT::i32));
2026}
2027
2028SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2029                                                SelectionDAG &DAG) const {
2030  DebugLoc DL = Op.getDebugLoc();
2031  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2032  SDValue Shamt = Op.getOperand(2);
2033
2034  // if shamt < 32:
2035  //  lo = (shl lo, shamt)
2036  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2037  // else:
2038  //  lo = 0
2039  //  hi = (shl lo, shamt[4:0])
2040  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2041                            DAG.getConstant(-1, MVT::i32));
2042  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2043                                      DAG.getConstant(1, MVT::i32));
2044  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2045                                     Not);
2046  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2047  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2048  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2049  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2050                             DAG.getConstant(0x20, MVT::i32));
2051  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2052                   DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2053  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2054
2055  SDValue Ops[2] = {Lo, Hi};
2056  return DAG.getMergeValues(Ops, 2, DL);
2057}
2058
2059SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2060                                                 bool IsSRA) const {
2061  DebugLoc DL = Op.getDebugLoc();
2062  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2063  SDValue Shamt = Op.getOperand(2);
2064
2065  // if shamt < 32:
2066  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2067  //  if isSRA:
2068  //    hi = (sra hi, shamt)
2069  //  else:
2070  //    hi = (srl hi, shamt)
2071  // else:
2072  //  if isSRA:
2073  //   lo = (sra hi, shamt[4:0])
2074  //   hi = (sra hi, 31)
2075  //  else:
2076  //   lo = (srl hi, shamt[4:0])
2077  //   hi = 0
2078  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2079                            DAG.getConstant(-1, MVT::i32));
2080  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2081                                     DAG.getConstant(1, MVT::i32));
2082  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2083  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2084  SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2085  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2086                                     Hi, Shamt);
2087  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2088                             DAG.getConstant(0x20, MVT::i32));
2089  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2090                                DAG.getConstant(31, MVT::i32));
2091  Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2092  Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2093                   IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2094                   ShiftRightHi);
2095
2096  SDValue Ops[2] = {Lo, Hi};
2097  return DAG.getMergeValues(Ops, 2, DL);
2098}
2099
2100static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2101                            SDValue Chain, SDValue Src, unsigned Offset) {
2102  SDValue Ptr = LD->getBasePtr();
2103  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2104  EVT BasePtrVT = Ptr.getValueType();
2105  DebugLoc DL = LD->getDebugLoc();
2106  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2107
2108  if (Offset)
2109    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2110                      DAG.getConstant(Offset, BasePtrVT));
2111
2112  SDValue Ops[] = { Chain, Ptr, Src };
2113  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2114                                 LD->getMemOperand());
2115}
2116
2117// Expand an unaligned 32 or 64-bit integer load node.
2118SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2119  LoadSDNode *LD = cast<LoadSDNode>(Op);
2120  EVT MemVT = LD->getMemoryVT();
2121
2122  // Return if load is aligned or if MemVT is neither i32 nor i64.
2123  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2124      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2125    return SDValue();
2126
2127  bool IsLittle = Subtarget->isLittle();
2128  EVT VT = Op.getValueType();
2129  ISD::LoadExtType ExtType = LD->getExtensionType();
2130  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2131
2132  assert((VT == MVT::i32) || (VT == MVT::i64));
2133
2134  // Expand
2135  //  (set dst, (i64 (load baseptr)))
2136  // to
2137  //  (set tmp, (ldl (add baseptr, 7), undef))
2138  //  (set dst, (ldr baseptr, tmp))
2139  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2140    SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2141                               IsLittle ? 7 : 0);
2142    return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2143                        IsLittle ? 0 : 7);
2144  }
2145
2146  SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2147                             IsLittle ? 3 : 0);
2148  SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2149                             IsLittle ? 0 : 3);
2150
2151  // Expand
2152  //  (set dst, (i32 (load baseptr))) or
2153  //  (set dst, (i64 (sextload baseptr))) or
2154  //  (set dst, (i64 (extload baseptr)))
2155  // to
2156  //  (set tmp, (lwl (add baseptr, 3), undef))
2157  //  (set dst, (lwr baseptr, tmp))
2158  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2159      (ExtType == ISD::EXTLOAD))
2160    return LWR;
2161
2162  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2163
2164  // Expand
2165  //  (set dst, (i64 (zextload baseptr)))
2166  // to
2167  //  (set tmp0, (lwl (add baseptr, 3), undef))
2168  //  (set tmp1, (lwr baseptr, tmp0))
2169  //  (set tmp2, (shl tmp1, 32))
2170  //  (set dst, (srl tmp2, 32))
2171  DebugLoc DL = LD->getDebugLoc();
2172  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2173  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2174  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2175  SDValue Ops[] = { SRL, LWR.getValue(1) };
2176  return DAG.getMergeValues(Ops, 2, DL);
2177}
2178
2179static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2180                             SDValue Chain, unsigned Offset) {
2181  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2182  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2183  DebugLoc DL = SD->getDebugLoc();
2184  SDVTList VTList = DAG.getVTList(MVT::Other);
2185
2186  if (Offset)
2187    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2188                      DAG.getConstant(Offset, BasePtrVT));
2189
2190  SDValue Ops[] = { Chain, Value, Ptr };
2191  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2192                                 SD->getMemOperand());
2193}
2194
2195// Expand an unaligned 32 or 64-bit integer store node.
2196SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2197  StoreSDNode *SD = cast<StoreSDNode>(Op);
2198  EVT MemVT = SD->getMemoryVT();
2199
2200  // Return if store is aligned or if MemVT is neither i32 nor i64.
2201  if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2202      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2203    return SDValue();
2204
2205  bool IsLittle = Subtarget->isLittle();
2206  SDValue Value = SD->getValue(), Chain = SD->getChain();
2207  EVT VT = Value.getValueType();
2208
2209  // Expand
2210  //  (store val, baseptr) or
2211  //  (truncstore val, baseptr)
2212  // to
2213  //  (swl val, (add baseptr, 3))
2214  //  (swr val, baseptr)
2215  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2216    SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2217                                IsLittle ? 3 : 0);
2218    return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2219  }
2220
2221  assert(VT == MVT::i64);
2222
2223  // Expand
2224  //  (store val, baseptr)
2225  // to
2226  //  (sdl val, (add baseptr, 7))
2227  //  (sdr val, baseptr)
2228  SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2229  return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2230}
2231
2232//===----------------------------------------------------------------------===//
2233//                      Calling Convention Implementation
2234//===----------------------------------------------------------------------===//
2235
2236//===----------------------------------------------------------------------===//
2237// TODO: Implement a generic logic using tblgen that can support this.
2238// Mips O32 ABI rules:
2239// ---
2240// i32 - Passed in A0, A1, A2, A3 and stack
2241// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2242//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2243// f64 - Only passed in two aliased f32 registers if no int reg has been used
2244//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2245//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2246//       go to stack.
2247//
2248//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2249//===----------------------------------------------------------------------===//
2250
2251static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2252                       MVT LocVT, CCValAssign::LocInfo LocInfo,
2253                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
2254
2255  static const unsigned IntRegsSize=4, FloatRegsSize=2;
2256
2257  static const uint16_t IntRegs[] = {
2258      Mips::A0, Mips::A1, Mips::A2, Mips::A3
2259  };
2260  static const uint16_t F32Regs[] = {
2261      Mips::F12, Mips::F14
2262  };
2263  static const uint16_t F64Regs[] = {
2264      Mips::D6, Mips::D7
2265  };
2266
2267  // ByVal Args
2268  if (ArgFlags.isByVal()) {
2269    State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
2270                      1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
2271    unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
2272    for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
2273         r < std::min(IntRegsSize, NextReg); ++r)
2274      State.AllocateReg(IntRegs[r]);
2275    return false;
2276  }
2277
2278  // Promote i8 and i16
2279  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2280    LocVT = MVT::i32;
2281    if (ArgFlags.isSExt())
2282      LocInfo = CCValAssign::SExt;
2283    else if (ArgFlags.isZExt())
2284      LocInfo = CCValAssign::ZExt;
2285    else
2286      LocInfo = CCValAssign::AExt;
2287  }
2288
2289  unsigned Reg;
2290
2291  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2292  // is true: function is vararg, argument is 3rd or higher, there is previous
2293  // argument which is not f32 or f64.
2294  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2295      || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2296  unsigned OrigAlign = ArgFlags.getOrigAlign();
2297  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2298
2299  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2300    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2301    // If this is the first part of an i64 arg,
2302    // the allocated register must be either A0 or A2.
2303    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2304      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2305    LocVT = MVT::i32;
2306  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2307    // Allocate int register and shadow next int register. If first
2308    // available register is Mips::A1 or Mips::A3, shadow it too.
2309    Reg = State.AllocateReg(IntRegs, IntRegsSize);
2310    if (Reg == Mips::A1 || Reg == Mips::A3)
2311      Reg = State.AllocateReg(IntRegs, IntRegsSize);
2312    State.AllocateReg(IntRegs, IntRegsSize);
2313    LocVT = MVT::i32;
2314  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2315    // we are guaranteed to find an available float register
2316    if (ValVT == MVT::f32) {
2317      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2318      // Shadow int register
2319      State.AllocateReg(IntRegs, IntRegsSize);
2320    } else {
2321      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2322      // Shadow int registers
2323      unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2324      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2325        State.AllocateReg(IntRegs, IntRegsSize);
2326      State.AllocateReg(IntRegs, IntRegsSize);
2327    }
2328  } else
2329    llvm_unreachable("Cannot handle this ValVT.");
2330
2331  unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
2332  unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
2333
2334  if (!Reg)
2335    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2336  else
2337    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2338
2339  return false; // CC must always match
2340}
2341
2342static const uint16_t Mips64IntRegs[8] =
2343  {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
2344   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64};
2345static const uint16_t Mips64DPRegs[8] =
2346  {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
2347   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64};
2348
2349static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT,
2350                           CCValAssign::LocInfo LocInfo,
2351                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
2352  unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8);
2353  unsigned Size  = (ArgFlags.getByValSize() + 7) / 8 * 8;
2354  unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8);
2355
2356  assert(Align <= 16 && "Cannot handle alignments larger than 16.");
2357
2358  // If byval is 16-byte aligned, the first arg register must be even.
2359  if ((Align == 16) && (FirstIdx % 2)) {
2360    State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]);
2361    ++FirstIdx;
2362  }
2363
2364  // Mark the registers allocated.
2365  for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I)
2366    State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]);
2367
2368  // Allocate space on caller's stack.
2369  unsigned Offset = State.AllocateStack(Size, Align);
2370
2371  if (FirstIdx < 8)
2372    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx],
2373                                     LocVT, LocInfo));
2374  else
2375    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2376
2377  return true;
2378}
2379
2380#include "MipsGenCallingConv.inc"
2381
2382static void
2383AnalyzeMips64CallOperands(CCState &CCInfo,
2384                          const SmallVectorImpl<ISD::OutputArg> &Outs) {
2385  unsigned NumOps = Outs.size();
2386  for (unsigned i = 0; i != NumOps; ++i) {
2387    MVT ArgVT = Outs[i].VT;
2388    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2389    bool R;
2390
2391    if (Outs[i].IsFixed)
2392      R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2393    else
2394      R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2395
2396    if (R) {
2397#ifndef NDEBUG
2398      dbgs() << "Call operand #" << i << " has unhandled type "
2399             << EVT(ArgVT).getEVTString();
2400#endif
2401      llvm_unreachable(0);
2402    }
2403  }
2404}
2405
2406//===----------------------------------------------------------------------===//
2407//                  Call Calling Convention Implementation
2408//===----------------------------------------------------------------------===//
2409
2410static const unsigned O32IntRegsSize = 4;
2411
2412static const uint16_t O32IntRegs[] = {
2413  Mips::A0, Mips::A1, Mips::A2, Mips::A3
2414};
2415
2416// Return next O32 integer argument register.
2417static unsigned getNextIntArgReg(unsigned Reg) {
2418  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2419  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2420}
2421
2422// Write ByVal Arg to arg registers and stack.
2423static void
2424WriteByValArg(SDValue Chain, DebugLoc dl,
2425              SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2426              SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
2427              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2428              const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2429              MVT PtrType, bool isLittle) {
2430  unsigned LocMemOffset = VA.getLocMemOffset();
2431  unsigned Offset = 0;
2432  uint32_t RemainingSize = Flags.getByValSize();
2433  unsigned ByValAlign = Flags.getByValAlign();
2434
2435  // Copy the first 4 words of byval arg to registers A0 - A3.
2436  // FIXME: Use a stricter alignment if it enables better optimization in passes
2437  //        run later.
2438  for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
2439       Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
2440    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2441                                  DAG.getConstant(Offset, MVT::i32));
2442    SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
2443                                  MachinePointerInfo(), false, false, false,
2444                                  std::min(ByValAlign, (unsigned )4));
2445    MemOpChains.push_back(LoadVal.getValue(1));
2446    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2447    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2448  }
2449
2450  if (RemainingSize == 0)
2451    return;
2452
2453  // If there still is a register available for argument passing, write the
2454  // remaining part of the structure to it using subword loads and shifts.
2455  if (LocMemOffset < 4 * 4) {
2456    assert(RemainingSize <= 3 && RemainingSize >= 1 &&
2457           "There must be one to three bytes remaining.");
2458    unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
2459    SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2460                                  DAG.getConstant(Offset, MVT::i32));
2461    unsigned Alignment = std::min(ByValAlign, (unsigned )4);
2462    SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2463                                     LoadPtr, MachinePointerInfo(),
2464                                     MVT::getIntegerVT(LoadSize * 8), false,
2465                                     false, Alignment);
2466    MemOpChains.push_back(LoadVal.getValue(1));
2467
2468    // If target is big endian, shift it to the most significant half-word or
2469    // byte.
2470    if (!isLittle)
2471      LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
2472                            DAG.getConstant(32 - LoadSize * 8, MVT::i32));
2473
2474    Offset += LoadSize;
2475    RemainingSize -= LoadSize;
2476
2477    // Read second subword if necessary.
2478    if (RemainingSize != 0)  {
2479      assert(RemainingSize == 1 && "There must be one byte remaining.");
2480      LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2481                            DAG.getConstant(Offset, MVT::i32));
2482      unsigned Alignment = std::min(ByValAlign, (unsigned )2);
2483      SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2484                                       LoadPtr, MachinePointerInfo(),
2485                                       MVT::i8, false, false, Alignment);
2486      MemOpChains.push_back(Subword.getValue(1));
2487      // Insert the loaded byte to LoadVal.
2488      // FIXME: Use INS if supported by target.
2489      unsigned ShiftAmt = isLittle ? 16 : 8;
2490      SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
2491                                  DAG.getConstant(ShiftAmt, MVT::i32));
2492      LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
2493    }
2494
2495    unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2496    RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2497    return;
2498  }
2499
2500  // Copy remaining part of byval arg using memcpy.
2501  SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2502                            DAG.getConstant(Offset, MVT::i32));
2503  SDValue Dst = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr,
2504                            DAG.getIntPtrConstant(LocMemOffset));
2505  Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
2506                        DAG.getConstant(RemainingSize, MVT::i32),
2507                        std::min(ByValAlign, (unsigned)4),
2508                        /*isVolatile=*/false, /*AlwaysInline=*/false,
2509                        MachinePointerInfo(0), MachinePointerInfo(0));
2510  MemOpChains.push_back(Chain);
2511}
2512
2513// Copy Mips64 byVal arg to registers and stack.
2514void static
2515PassByValArg64(SDValue Chain, DebugLoc dl,
2516               SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2517               SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
2518               MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2519               const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2520               EVT PtrTy, bool isLittle) {
2521  unsigned ByValSize = Flags.getByValSize();
2522  unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8);
2523  bool IsRegLoc = VA.isRegLoc();
2524  unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
2525  unsigned LocMemOffset = 0;
2526  unsigned MemCpySize = ByValSize;
2527
2528  if (!IsRegLoc)
2529    LocMemOffset = VA.getLocMemOffset();
2530  else {
2531    const uint16_t *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8,
2532                                    VA.getLocReg());
2533    const uint16_t *RegEnd = Mips64IntRegs + 8;
2534
2535    // Copy double words to registers.
2536    for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) {
2537      SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2538                                    DAG.getConstant(Offset, PtrTy));
2539      SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr,
2540                                    MachinePointerInfo(), false, false, false,
2541                                    Alignment);
2542      MemOpChains.push_back(LoadVal.getValue(1));
2543      RegsToPass.push_back(std::make_pair(*Reg, LoadVal));
2544    }
2545
2546    // Return if the struct has been fully copied.
2547    if (!(MemCpySize = ByValSize - Offset))
2548      return;
2549
2550    // If there is an argument register available, copy the remainder of the
2551    // byval argument with sub-doubleword loads and shifts.
2552    if (Reg != RegEnd) {
2553      assert((ByValSize < Offset + 8) &&
2554             "Size of the remainder should be smaller than 8-byte.");
2555      SDValue Val;
2556      for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) {
2557        unsigned RemSize = ByValSize - Offset;
2558
2559        if (RemSize < LoadSize)
2560          continue;
2561
2562        SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2563                                      DAG.getConstant(Offset, PtrTy));
2564        SDValue LoadVal =
2565          DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr,
2566                         MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
2567                         false, false, Alignment);
2568        MemOpChains.push_back(LoadVal.getValue(1));
2569
2570        // Offset in number of bits from double word boundary.
2571        unsigned OffsetDW = (Offset % 8) * 8;
2572        unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8);
2573        SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal,
2574                                    DAG.getConstant(Shamt, MVT::i32));
2575
2576        Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) :
2577                              Shift;
2578        Offset += LoadSize;
2579        Alignment = std::min(Alignment, LoadSize);
2580      }
2581
2582      RegsToPass.push_back(std::make_pair(*Reg, Val));
2583      return;
2584    }
2585  }
2586
2587  assert(MemCpySize && "MemCpySize must not be zero.");
2588
2589  // Copy remainder of byval arg to it with memcpy.
2590  SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2591                            DAG.getConstant(Offset, PtrTy));
2592  SDValue Dst = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr,
2593                            DAG.getIntPtrConstant(LocMemOffset));
2594  Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
2595                        DAG.getConstant(MemCpySize, PtrTy), Alignment,
2596                        /*isVolatile=*/false, /*AlwaysInline=*/false,
2597                        MachinePointerInfo(0), MachinePointerInfo(0));
2598  MemOpChains.push_back(Chain);
2599}
2600
2601/// LowerCall - functions arguments are copied from virtual regs to
2602/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2603/// TODO: isTailCall.
2604SDValue
2605MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2606                              SmallVectorImpl<SDValue> &InVals) const {
2607  SelectionDAG &DAG                     = CLI.DAG;
2608  DebugLoc &dl                          = CLI.DL;
2609  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2610  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2611  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2612  SDValue Chain                         = CLI.Chain;
2613  SDValue Callee                        = CLI.Callee;
2614  bool &isTailCall                      = CLI.IsTailCall;
2615  CallingConv::ID CallConv              = CLI.CallConv;
2616  bool isVarArg                         = CLI.IsVarArg;
2617
2618  // MIPs target does not yet support tail call optimization.
2619  isTailCall = false;
2620
2621  MachineFunction &MF = DAG.getMachineFunction();
2622  MachineFrameInfo *MFI = MF.getFrameInfo();
2623  const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2624  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2625  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2626
2627  // Analyze operands of the call, assigning locations to each operand.
2628  SmallVector<CCValAssign, 16> ArgLocs;
2629  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2630                 getTargetMachine(), ArgLocs, *DAG.getContext());
2631
2632  if (CallConv == CallingConv::Fast)
2633    CCInfo.AnalyzeCallOperands(Outs, CC_Mips_FastCC);
2634  else if (IsO32)
2635    CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
2636  else if (HasMips64)
2637    AnalyzeMips64CallOperands(CCInfo, Outs);
2638  else
2639    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
2640
2641  // Get a count of how many bytes are to be pushed on the stack.
2642  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2643  unsigned StackAlignment = TFL->getStackAlignment();
2644  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2645
2646  // Update size of the maximum argument space.
2647  // For O32, a minimum of four words (16 bytes) of argument space is
2648  // allocated.
2649  if (IsO32 && (CallConv != CallingConv::Fast))
2650    NextStackOffset = std::max(NextStackOffset, (unsigned)16);
2651
2652  // Chain is the output chain of the last Load/Store or CopyToReg node.
2653  // ByValChain is the output chain of the last Memcpy node created for copying
2654  // byval arguments to the stack.
2655  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2656  Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
2657
2658  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
2659                                        IsN64 ? Mips::SP_64 : Mips::SP,
2660                                        getPointerTy());
2661
2662  if (MipsFI->getMaxCallFrameSize() < NextStackOffset)
2663    MipsFI->setMaxCallFrameSize(NextStackOffset);
2664
2665  // With EABI is it possible to have 16 args on registers.
2666  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2667  SmallVector<SDValue, 8> MemOpChains;
2668
2669  // Walk the register/memloc assignments, inserting copies/loads.
2670  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2671    SDValue Arg = OutVals[i];
2672    CCValAssign &VA = ArgLocs[i];
2673    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2674    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2675
2676    // ByVal Arg.
2677    if (Flags.isByVal()) {
2678      assert(Flags.getByValSize() &&
2679             "ByVal args of size 0 should have been ignored by front-end.");
2680      if (IsO32)
2681        WriteByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr,
2682                      MFI, DAG, Arg, VA, Flags, getPointerTy(),
2683                      Subtarget->isLittle());
2684      else
2685        PassByValArg64(Chain, dl, RegsToPass, MemOpChains, StackPtr,
2686                       MFI, DAG, Arg, VA, Flags, getPointerTy(),
2687                       Subtarget->isLittle());
2688      continue;
2689    }
2690
2691    // Promote the value if needed.
2692    switch (VA.getLocInfo()) {
2693    default: llvm_unreachable("Unknown loc info!");
2694    case CCValAssign::Full:
2695      if (VA.isRegLoc()) {
2696        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2697            (ValVT == MVT::f64 && LocVT == MVT::i64))
2698          Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2699        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2700          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2701                                   Arg, DAG.getConstant(0, MVT::i32));
2702          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2703                                   Arg, DAG.getConstant(1, MVT::i32));
2704          if (!Subtarget->isLittle())
2705            std::swap(Lo, Hi);
2706          unsigned LocRegLo = VA.getLocReg();
2707          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2708          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2709          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2710          continue;
2711        }
2712      }
2713      break;
2714    case CCValAssign::SExt:
2715      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2716      break;
2717    case CCValAssign::ZExt:
2718      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2719      break;
2720    case CCValAssign::AExt:
2721      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2722      break;
2723    }
2724
2725    // Arguments that can be passed on register must be kept at
2726    // RegsToPass vector
2727    if (VA.isRegLoc()) {
2728      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2729      continue;
2730    }
2731
2732    // Register can't get to this point...
2733    assert(VA.isMemLoc());
2734
2735    // emit ISD::STORE whichs stores the
2736    // parameter value to a stack Location
2737    SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
2738                                 DAG.getIntPtrConstant(VA.getLocMemOffset()));
2739    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2740                                       MachinePointerInfo(), false, false, 0));
2741  }
2742
2743  // Transform all store nodes into one single node because all store
2744  // nodes are independent of each other.
2745  if (!MemOpChains.empty())
2746    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2747                        &MemOpChains[0], MemOpChains.size());
2748
2749  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2750  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2751  // node so that legalize doesn't hack it.
2752  unsigned char OpFlag;
2753  bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2754  bool GlobalOrExternal = false;
2755  SDValue CalleeLo;
2756
2757  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2758    if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
2759      OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
2760      unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
2761      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
2762                                          OpFlag);
2763      CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
2764                                            0, LoFlag);
2765    } else {
2766      OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
2767      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2768                                          getPointerTy(), 0, OpFlag);
2769    }
2770
2771    GlobalOrExternal = true;
2772  }
2773  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2774    if (IsN64 || (!IsO32 && IsPIC))
2775      OpFlag = MipsII::MO_GOT_DISP;
2776    else if (!IsPIC) // !N64 && static
2777      OpFlag = MipsII::MO_NO_FLAG;
2778    else // O32 & PIC
2779      OpFlag = MipsII::MO_GOT_CALL;
2780    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2781                                         OpFlag);
2782    GlobalOrExternal = true;
2783  }
2784
2785  SDValue InFlag;
2786
2787  // Create nodes that load address of callee and copy it to T9
2788  if (IsPICCall) {
2789    if (GlobalOrExternal) {
2790      // Load callee address
2791      Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(),
2792                           GetGlobalReg(DAG, getPointerTy()), Callee);
2793      SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
2794                                      Callee, MachinePointerInfo::getGOT(),
2795                                      false, false, false, 0);
2796
2797      // Use GOT+LO if callee has internal linkage.
2798      if (CalleeLo.getNode()) {
2799        SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
2800        Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
2801      } else
2802        Callee = LoadValue;
2803    }
2804  }
2805
2806  // T9 register operand.
2807  SDValue T9;
2808
2809  // T9 should contain the address of the callee function if
2810  // -reloction-model=pic or it is an indirect call.
2811  if (IsPICCall || !GlobalOrExternal) {
2812    // copy to T9
2813    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
2814    Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
2815    InFlag = Chain.getValue(1);
2816
2817    if (Subtarget->inMips16Mode())
2818      T9 = DAG.getRegister(T9Reg, getPointerTy());
2819    else
2820      Callee = DAG.getRegister(T9Reg, getPointerTy());
2821  }
2822
2823  // Insert node "GP copy globalreg" before call to function.
2824  // Lazy-binding stubs require GP to point to the GOT.
2825  if (IsPICCall) {
2826    unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2827    EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2828    RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
2829  }
2830
2831  // Build a sequence of copy-to-reg nodes chained together with token
2832  // chain and flag operands which copy the outgoing args into registers.
2833  // The InFlag in necessary since all emitted instructions must be
2834  // stuck together.
2835  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2836    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2837                             RegsToPass[i].second, InFlag);
2838    InFlag = Chain.getValue(1);
2839  }
2840
2841  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
2842  //             = Chain, Callee, Reg#1, Reg#2, ...
2843  //
2844  // Returns a chain & a flag for retval copy to use.
2845  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2846  SmallVector<SDValue, 8> Ops;
2847  Ops.push_back(Chain);
2848  Ops.push_back(Callee);
2849
2850  // Add argument registers to the end of the list so that they are
2851  // known live into the call.
2852  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2853    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2854                                  RegsToPass[i].second.getValueType()));
2855
2856  // Add T9 register operand.
2857  if (T9.getNode())
2858    Ops.push_back(T9);
2859
2860  // Add a register mask operand representing the call-preserved registers.
2861  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2862  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2863  assert(Mask && "Missing call preserved mask for calling convention");
2864  Ops.push_back(DAG.getRegisterMask(Mask));
2865
2866  if (InFlag.getNode())
2867    Ops.push_back(InFlag);
2868
2869  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
2870  InFlag = Chain.getValue(1);
2871
2872  // Create the CALLSEQ_END node.
2873  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2874                             DAG.getIntPtrConstant(0, true), InFlag);
2875  InFlag = Chain.getValue(1);
2876
2877  // Handle result values, copying them out of physregs into vregs that we
2878  // return.
2879  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2880                         Ins, dl, DAG, InVals);
2881}
2882
2883/// LowerCallResult - Lower the result values of a call into the
2884/// appropriate copies out of appropriate physical registers.
2885SDValue
2886MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2887                                    CallingConv::ID CallConv, bool isVarArg,
2888                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2889                                    DebugLoc dl, SelectionDAG &DAG,
2890                                    SmallVectorImpl<SDValue> &InVals) const {
2891  // Assign locations to each value returned by this call.
2892  SmallVector<CCValAssign, 16> RVLocs;
2893  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2894                 getTargetMachine(), RVLocs, *DAG.getContext());
2895
2896  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
2897
2898  // Copy all of the result registers out of their specified physreg.
2899  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2900    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
2901                               RVLocs[i].getValVT(), InFlag).getValue(1);
2902    InFlag = Chain.getValue(2);
2903    InVals.push_back(Chain.getValue(0));
2904  }
2905
2906  return Chain;
2907}
2908
2909//===----------------------------------------------------------------------===//
2910//             Formal Arguments Calling Convention Implementation
2911//===----------------------------------------------------------------------===//
2912static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2913                         std::vector<SDValue> &OutChains,
2914                         SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
2915                         const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2916                         const Argument *FuncArg) {
2917  unsigned LocMem = VA.getLocMemOffset();
2918  unsigned FirstWord = LocMem / 4;
2919
2920  // copy register A0 - A3 to frame object
2921  for (unsigned i = 0; i < NumWords; ++i) {
2922    unsigned CurWord = FirstWord + i;
2923    if (CurWord >= O32IntRegsSize)
2924      break;
2925
2926    unsigned SrcReg = O32IntRegs[CurWord];
2927    unsigned Reg = AddLiveIn(MF, SrcReg, &Mips::CPURegsRegClass);
2928    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
2929                                   DAG.getConstant(i * 4, MVT::i32));
2930    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
2931                                 StorePtr, MachinePointerInfo(FuncArg, i * 4),
2932                                 false, false, 0);
2933    OutChains.push_back(Store);
2934  }
2935}
2936
2937// Create frame object on stack and copy registers used for byval passing to it.
2938static unsigned
2939CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2940                    std::vector<SDValue> &OutChains, SelectionDAG &DAG,
2941                    const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2942                    MachineFrameInfo *MFI, bool IsRegLoc,
2943                    SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI,
2944                    EVT PtrTy, const Argument *FuncArg) {
2945  const uint16_t *Reg = Mips64IntRegs + 8;
2946  int FOOffset; // Frame object offset from virtual frame pointer.
2947
2948  if (IsRegLoc) {
2949    Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg());
2950    FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8;
2951  }
2952  else
2953    FOOffset = VA.getLocMemOffset();
2954
2955  // Create frame object.
2956  unsigned NumRegs = (Flags.getByValSize() + 7) / 8;
2957  unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true);
2958  SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy);
2959  InVals.push_back(FIN);
2960
2961  // Copy arg registers.
2962  for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs);
2963       ++Reg, ++I) {
2964    unsigned VReg = AddLiveIn(MF, *Reg, &Mips::CPU64RegsRegClass);
2965    SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN,
2966                                   DAG.getConstant(I * 8, PtrTy));
2967    SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64),
2968                                 StorePtr, MachinePointerInfo(FuncArg, I * 8),
2969                                 false, false, 0);
2970    OutChains.push_back(Store);
2971  }
2972
2973  return LastFI;
2974}
2975
2976/// LowerFormalArguments - transform physical registers into virtual registers
2977/// and generate load operations for arguments places on the stack.
2978SDValue
2979MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2980                                         CallingConv::ID CallConv,
2981                                         bool isVarArg,
2982                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2983                                         DebugLoc dl, SelectionDAG &DAG,
2984                                         SmallVectorImpl<SDValue> &InVals)
2985                                          const {
2986  MachineFunction &MF = DAG.getMachineFunction();
2987  MachineFrameInfo *MFI = MF.getFrameInfo();
2988  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2989
2990  MipsFI->setVarArgsFrameIndex(0);
2991
2992  // Used with vargs to acumulate store chains.
2993  std::vector<SDValue> OutChains;
2994
2995  // Assign locations to all of the incoming arguments.
2996  SmallVector<CCValAssign, 16> ArgLocs;
2997  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2998                 getTargetMachine(), ArgLocs, *DAG.getContext());
2999
3000  if (CallConv == CallingConv::Fast)
3001    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FastCC);
3002  else if (IsO32)
3003    CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
3004  else
3005    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
3006
3007  Function::const_arg_iterator FuncArg =
3008    DAG.getMachineFunction().getFunction()->arg_begin();
3009  int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
3010
3011  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++FuncArg) {
3012    CCValAssign &VA = ArgLocs[i];
3013    EVT ValVT = VA.getValVT();
3014    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3015    bool IsRegLoc = VA.isRegLoc();
3016
3017    if (Flags.isByVal()) {
3018      assert(Flags.getByValSize() &&
3019             "ByVal args of size 0 should have been ignored by front-end.");
3020      if (IsO32) {
3021        unsigned NumWords = (Flags.getByValSize() + 3) / 4;
3022        LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
3023                                        true);
3024        SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3025        InVals.push_back(FIN);
3026        ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags,
3027                     &*FuncArg);
3028      } else // N32/64
3029        LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags,
3030                                     MFI, IsRegLoc, InVals, MipsFI,
3031                                     getPointerTy(), &*FuncArg);
3032      continue;
3033    }
3034
3035    // Arguments stored on registers
3036    if (IsRegLoc) {
3037      EVT RegVT = VA.getLocVT();
3038      unsigned ArgReg = VA.getLocReg();
3039      const TargetRegisterClass *RC;
3040
3041      if (RegVT == MVT::i32)
3042        RC = &Mips::CPURegsRegClass;
3043      else if (RegVT == MVT::i64)
3044        RC = &Mips::CPU64RegsRegClass;
3045      else if (RegVT == MVT::f32)
3046        RC = &Mips::FGR32RegClass;
3047      else if (RegVT == MVT::f64)
3048        RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3049      else
3050        llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3051
3052      // Transform the arguments stored on
3053      // physical registers into virtual ones
3054      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3055      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3056
3057      // If this is an 8 or 16-bit value, it has been passed promoted
3058      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3059      // truncate to the right size.
3060      if (VA.getLocInfo() != CCValAssign::Full) {
3061        unsigned Opcode = 0;
3062        if (VA.getLocInfo() == CCValAssign::SExt)
3063          Opcode = ISD::AssertSext;
3064        else if (VA.getLocInfo() == CCValAssign::ZExt)
3065          Opcode = ISD::AssertZext;
3066        if (Opcode)
3067          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3068                                 DAG.getValueType(ValVT));
3069        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3070      }
3071
3072      // Handle floating point arguments passed in integer registers.
3073      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3074          (RegVT == MVT::i64 && ValVT == MVT::f64))
3075        ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3076      else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3077        unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3078                                  getNextIntArgReg(ArgReg), RC);
3079        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3080        if (!Subtarget->isLittle())
3081          std::swap(ArgValue, ArgValue2);
3082        ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3083                               ArgValue, ArgValue2);
3084      }
3085
3086      InVals.push_back(ArgValue);
3087    } else { // VA.isRegLoc()
3088
3089      // sanity check
3090      assert(VA.isMemLoc());
3091
3092      // The stack pointer offset is relative to the caller stack frame.
3093      LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3094                                      VA.getLocMemOffset(), true);
3095
3096      // Create load nodes to retrieve arguments from the stack
3097      SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3098      InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3099                                   MachinePointerInfo::getFixedStack(LastFI),
3100                                   false, false, false, 0));
3101    }
3102  }
3103
3104  // The mips ABIs for returning structs by value requires that we copy
3105  // the sret argument into $v0 for the return. Save the argument into
3106  // a virtual register so that we can access it from the return points.
3107  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3108    unsigned Reg = MipsFI->getSRetReturnReg();
3109    if (!Reg) {
3110      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
3111      MipsFI->setSRetReturnReg(Reg);
3112    }
3113    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3114    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3115  }
3116
3117  if (isVarArg) {
3118    unsigned NumOfRegs = IsO32 ? 4 : 8;
3119    const uint16_t *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs;
3120    unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs);
3121    int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot.
3122    const TargetRegisterClass *RC = IsO32 ?
3123      (const TargetRegisterClass*)&Mips::CPURegsRegClass :
3124      (const TargetRegisterClass*)&Mips::CPU64RegsRegClass;
3125    unsigned RegSize = RC->getSize();
3126    int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize;
3127
3128    // Offset of the first variable argument from stack pointer.
3129    int FirstVaArgOffset;
3130
3131    if (IsO32 || (Idx == NumOfRegs)) {
3132      FirstVaArgOffset =
3133        (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize;
3134    } else
3135      FirstVaArgOffset = RegSlotOffset;
3136
3137    // Record the frame index of the first variable argument
3138    // which is a value necessary to VASTART.
3139    LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true);
3140    MipsFI->setVarArgsFrameIndex(LastFI);
3141
3142    // Copy the integer registers that have not been used for argument passing
3143    // to the argument register save area. For O32, the save area is allocated
3144    // in the caller's stack frame, while for N32/64, it is allocated in the
3145    // callee's stack frame.
3146    for (int StackOffset = RegSlotOffset;
3147         Idx < NumOfRegs; ++Idx, StackOffset += RegSize) {
3148      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC);
3149      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3150                                            MVT::getIntegerVT(RegSize * 8));
3151      LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true);
3152      SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
3153      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
3154                                       MachinePointerInfo(), false, false, 0));
3155    }
3156  }
3157
3158  MipsFI->setLastInArgFI(LastFI);
3159
3160  // All stores are grouped in one node to allow the matching between
3161  // the size of Ins and InVals. This only happens when on varg functions
3162  if (!OutChains.empty()) {
3163    OutChains.push_back(Chain);
3164    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3165                        &OutChains[0], OutChains.size());
3166  }
3167
3168  return Chain;
3169}
3170
3171//===----------------------------------------------------------------------===//
3172//               Return Value Calling Convention Implementation
3173//===----------------------------------------------------------------------===//
3174
3175SDValue
3176MipsTargetLowering::LowerReturn(SDValue Chain,
3177                                CallingConv::ID CallConv, bool isVarArg,
3178                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3179                                const SmallVectorImpl<SDValue> &OutVals,
3180                                DebugLoc dl, SelectionDAG &DAG) const {
3181
3182  // CCValAssign - represent the assignment of
3183  // the return value to a location
3184  SmallVector<CCValAssign, 16> RVLocs;
3185
3186  // CCState - Info about the registers and stack slot.
3187  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3188                 getTargetMachine(), RVLocs, *DAG.getContext());
3189
3190  // Analize return values.
3191  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3192
3193  // If this is the first return lowered for this function, add
3194  // the regs to the liveout set for the function.
3195  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3196    for (unsigned i = 0; i != RVLocs.size(); ++i)
3197      if (RVLocs[i].isRegLoc())
3198        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3199  }
3200
3201  SDValue Flag;
3202
3203  // Copy the result values into the output registers.
3204  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3205    CCValAssign &VA = RVLocs[i];
3206    assert(VA.isRegLoc() && "Can only return in registers!");
3207
3208    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3209
3210    // guarantee that all emitted copies are
3211    // stuck together, avoiding something bad
3212    Flag = Chain.getValue(1);
3213  }
3214
3215  // The mips ABIs for returning structs by value requires that we copy
3216  // the sret argument into $v0 for the return. We saved the argument into
3217  // a virtual register in the entry block, so now we copy the value out
3218  // and into $v0.
3219  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3220    MachineFunction &MF      = DAG.getMachineFunction();
3221    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3222    unsigned Reg = MipsFI->getSRetReturnReg();
3223
3224    if (!Reg)
3225      llvm_unreachable("sret virtual register not created in the entry block");
3226    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3227
3228    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
3229    Flag = Chain.getValue(1);
3230  }
3231
3232  // Return on Mips is always a "jr $ra"
3233  if (Flag.getNode())
3234    return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain, Flag);
3235
3236  // Return Void
3237  return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain);
3238}
3239
3240//===----------------------------------------------------------------------===//
3241//                           Mips Inline Assembly Support
3242//===----------------------------------------------------------------------===//
3243
3244/// getConstraintType - Given a constraint letter, return the type of
3245/// constraint it is for this target.
3246MipsTargetLowering::ConstraintType MipsTargetLowering::
3247getConstraintType(const std::string &Constraint) const
3248{
3249  // Mips specific constrainy
3250  // GCC config/mips/constraints.md
3251  //
3252  // 'd' : An address register. Equivalent to r
3253  //       unless generating MIPS16 code.
3254  // 'y' : Equivalent to r; retained for
3255  //       backwards compatibility.
3256  // 'c' : A register suitable for use in an indirect
3257  //       jump. This will always be $25 for -mabicalls.
3258  // 'l' : The lo register. 1 word storage.
3259  // 'x' : The hilo register pair. Double word storage.
3260  if (Constraint.size() == 1) {
3261    switch (Constraint[0]) {
3262      default : break;
3263      case 'd':
3264      case 'y':
3265      case 'f':
3266      case 'c':
3267      case 'l':
3268      case 'x':
3269        return C_RegisterClass;
3270    }
3271  }
3272  return TargetLowering::getConstraintType(Constraint);
3273}
3274
3275/// Examine constraint type and operand type and determine a weight value.
3276/// This object must already have been set up with the operand type
3277/// and the current alternative constraint selected.
3278TargetLowering::ConstraintWeight
3279MipsTargetLowering::getSingleConstraintMatchWeight(
3280    AsmOperandInfo &info, const char *constraint) const {
3281  ConstraintWeight weight = CW_Invalid;
3282  Value *CallOperandVal = info.CallOperandVal;
3283    // If we don't have a value, we can't do a match,
3284    // but allow it at the lowest weight.
3285  if (CallOperandVal == NULL)
3286    return CW_Default;
3287  Type *type = CallOperandVal->getType();
3288  // Look at the constraint type.
3289  switch (*constraint) {
3290  default:
3291    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3292    break;
3293  case 'd':
3294  case 'y':
3295    if (type->isIntegerTy())
3296      weight = CW_Register;
3297    break;
3298  case 'f':
3299    if (type->isFloatTy())
3300      weight = CW_Register;
3301    break;
3302  case 'c': // $25 for indirect jumps
3303  case 'l': // lo register
3304  case 'x': // hilo register pair
3305      if (type->isIntegerTy())
3306      weight = CW_SpecificReg;
3307      break;
3308  case 'I': // signed 16 bit immediate
3309  case 'J': // integer zero
3310  case 'K': // unsigned 16 bit immediate
3311  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3312  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3313  case 'O': // signed 15 bit immediate (+- 16383)
3314  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3315    if (isa<ConstantInt>(CallOperandVal))
3316      weight = CW_Constant;
3317    break;
3318  }
3319  return weight;
3320}
3321
3322/// Given a register class constraint, like 'r', if this corresponds directly
3323/// to an LLVM register class, return a register of 0 and the register class
3324/// pointer.
3325std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3326getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3327{
3328  if (Constraint.size() == 1) {
3329    switch (Constraint[0]) {
3330    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3331    case 'y': // Same as 'r'. Exists for compatibility.
3332    case 'r':
3333      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3334        if (Subtarget->inMips16Mode())
3335          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3336        return std::make_pair(0U, &Mips::CPURegsRegClass);
3337      }
3338      if (VT == MVT::i64 && !HasMips64)
3339        return std::make_pair(0U, &Mips::CPURegsRegClass);
3340      if (VT == MVT::i64 && HasMips64)
3341        return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3342      // This will generate an error message
3343      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3344    case 'f':
3345      if (VT == MVT::f32)
3346        return std::make_pair(0U, &Mips::FGR32RegClass);
3347      if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3348        if (Subtarget->isFP64bit())
3349          return std::make_pair(0U, &Mips::FGR64RegClass);
3350        return std::make_pair(0U, &Mips::AFGR64RegClass);
3351      }
3352      break;
3353    case 'c': // register suitable for indirect jump
3354      if (VT == MVT::i32)
3355        return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3356      assert(VT == MVT::i64 && "Unexpected type.");
3357      return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3358    case 'l': // register suitable for indirect jump
3359      if (VT == MVT::i32)
3360        return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3361      return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3362    case 'x': // register suitable for indirect jump
3363      // Fixme: Not triggering the use of both hi and low
3364      // This will generate an error message
3365      return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3366    }
3367  }
3368  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3369}
3370
3371/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3372/// vector.  If it is invalid, don't add anything to Ops.
3373void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3374                                                     std::string &Constraint,
3375                                                     std::vector<SDValue>&Ops,
3376                                                     SelectionDAG &DAG) const {
3377  SDValue Result(0, 0);
3378
3379  // Only support length 1 constraints for now.
3380  if (Constraint.length() > 1) return;
3381
3382  char ConstraintLetter = Constraint[0];
3383  switch (ConstraintLetter) {
3384  default: break; // This will fall through to the generic implementation
3385  case 'I': // Signed 16 bit constant
3386    // If this fails, the parent routine will give an error
3387    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3388      EVT Type = Op.getValueType();
3389      int64_t Val = C->getSExtValue();
3390      if (isInt<16>(Val)) {
3391        Result = DAG.getTargetConstant(Val, Type);
3392        break;
3393      }
3394    }
3395    return;
3396  case 'J': // integer zero
3397    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3398      EVT Type = Op.getValueType();
3399      int64_t Val = C->getZExtValue();
3400      if (Val == 0) {
3401        Result = DAG.getTargetConstant(0, Type);
3402        break;
3403      }
3404    }
3405    return;
3406  case 'K': // unsigned 16 bit immediate
3407    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3408      EVT Type = Op.getValueType();
3409      uint64_t Val = (uint64_t)C->getZExtValue();
3410      if (isUInt<16>(Val)) {
3411        Result = DAG.getTargetConstant(Val, Type);
3412        break;
3413      }
3414    }
3415    return;
3416  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3417    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3418      EVT Type = Op.getValueType();
3419      int64_t Val = C->getSExtValue();
3420      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3421        Result = DAG.getTargetConstant(Val, Type);
3422        break;
3423      }
3424    }
3425    return;
3426  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3427    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3428      EVT Type = Op.getValueType();
3429      int64_t Val = C->getSExtValue();
3430      if ((Val >= -65535) && (Val <= -1)) {
3431        Result = DAG.getTargetConstant(Val, Type);
3432        break;
3433      }
3434    }
3435    return;
3436  case 'O': // signed 15 bit immediate
3437    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3438      EVT Type = Op.getValueType();
3439      int64_t Val = C->getSExtValue();
3440      if ((isInt<15>(Val))) {
3441        Result = DAG.getTargetConstant(Val, Type);
3442        break;
3443      }
3444    }
3445    return;
3446  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3447    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3448      EVT Type = Op.getValueType();
3449      int64_t Val = C->getSExtValue();
3450      if ((Val <= 65535) && (Val >= 1)) {
3451        Result = DAG.getTargetConstant(Val, Type);
3452        break;
3453      }
3454    }
3455    return;
3456  }
3457
3458  if (Result.getNode()) {
3459    Ops.push_back(Result);
3460    return;
3461  }
3462
3463  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3464}
3465
3466bool
3467MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3468  // The Mips target isn't yet aware of offsets.
3469  return false;
3470}
3471
3472EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3473                                            unsigned SrcAlign, bool IsZeroVal,
3474                                            bool MemcpyStrSrc,
3475                                            MachineFunction &MF) const {
3476  if (Subtarget->hasMips64())
3477    return MVT::i64;
3478
3479  return MVT::i32;
3480}
3481
3482bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3483  if (VT != MVT::f32 && VT != MVT::f64)
3484    return false;
3485  if (Imm.isNegZero())
3486    return false;
3487  return Imm.isZero();
3488}
3489
3490unsigned MipsTargetLowering::getJumpTableEncoding() const {
3491  if (IsN64)
3492    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3493
3494  return TargetLowering::getJumpTableEncoding();
3495}
3496