MipsISelLowering.h revision 243702b95a471ffb7d2374dfad3d7f8b11bee7e7
1//===-- MipsISelLowering.h - Mips DAG Lowering Interface --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef MipsISELLOWERING_H
16#define MipsISELLOWERING_H
17
18#include "Mips.h"
19#include "MipsSubtarget.h"
20#include "MCTargetDesc/MipsBaseInfo.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/IR/Function.h"
24#include "llvm/Target/TargetLowering.h"
25#include <deque>
26#include <string>
27
28namespace llvm {
29  namespace MipsISD {
30    enum NodeType {
31      // Start the numbering from where ISD NodeType finishes.
32      FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34      // Jump and link (call)
35      JmpLink,
36
37      // Tail call
38      TailCall,
39
40      // Get the Higher 16 bits from a 32-bit immediate
41      // No relation with Mips Hi register
42      Hi,
43
44      // Get the Lower 16 bits from a 32-bit immediate
45      // No relation with Mips Lo register
46      Lo,
47
48      // Handle gp_rel (small data/bss sections) relocation.
49      GPRel,
50
51      // Thread Pointer
52      ThreadPointer,
53
54      // Floating Point Branch Conditional
55      FPBrcond,
56
57      // Floating Point Compare
58      FPCmp,
59
60      // Floating Point Conditional Moves
61      CMovFP_T,
62      CMovFP_F,
63
64      // FP-to-int truncation node.
65      TruncIntFP,
66
67      // Return
68      Ret,
69
70      EH_RETURN,
71
72      // Node used to extract integer from accumulator.
73      ExtractHI,
74      ExtractLO,
75
76      // Node used to insert integers to accumulator.
77      InsertLOHI,
78
79      // Mult nodes.
80      Mult,
81      Multu,
82
83      // MAdd/Sub nodes
84      MAdd,
85      MAddu,
86      MSub,
87      MSubu,
88
89      // DivRem(u)
90      DivRem,
91      DivRemU,
92      DivRem16,
93      DivRemU16,
94
95      BuildPairF64,
96      ExtractElementF64,
97
98      Wrapper,
99
100      DynAlloc,
101
102      Sync,
103
104      Ext,
105      Ins,
106
107      // EXTR.W instrinsic nodes.
108      EXTP,
109      EXTPDP,
110      EXTR_S_H,
111      EXTR_W,
112      EXTR_R_W,
113      EXTR_RS_W,
114      SHILO,
115      MTHLIP,
116
117      // DPA.W intrinsic nodes.
118      MULSAQ_S_W_PH,
119      MAQ_S_W_PHL,
120      MAQ_S_W_PHR,
121      MAQ_SA_W_PHL,
122      MAQ_SA_W_PHR,
123      DPAU_H_QBL,
124      DPAU_H_QBR,
125      DPSU_H_QBL,
126      DPSU_H_QBR,
127      DPAQ_S_W_PH,
128      DPSQ_S_W_PH,
129      DPAQ_SA_L_W,
130      DPSQ_SA_L_W,
131      DPA_W_PH,
132      DPS_W_PH,
133      DPAQX_S_W_PH,
134      DPAQX_SA_W_PH,
135      DPAX_W_PH,
136      DPSX_W_PH,
137      DPSQX_S_W_PH,
138      DPSQX_SA_W_PH,
139      MULSA_W_PH,
140
141      MULT,
142      MULTU,
143      MADD_DSP,
144      MADDU_DSP,
145      MSUB_DSP,
146      MSUBU_DSP,
147
148      // DSP shift nodes.
149      SHLL_DSP,
150      SHRA_DSP,
151      SHRL_DSP,
152
153      // DSP setcc and select_cc nodes.
154      SETCC_DSP,
155      SELECT_CC_DSP,
156
157      // Vector comparisons.
158      // These take a vector and return a boolean.
159      VALL_ZERO,
160      VANY_ZERO,
161      VALL_NONZERO,
162      VANY_NONZERO,
163
164      // These take a vector and return a vector bitmask.
165      VCEQ,
166      VCLE_S,
167      VCLE_U,
168      VCLT_S,
169      VCLT_U,
170
171      // Element-wise vector max/min.
172      VSMAX,
173      VSMIN,
174      VUMAX,
175      VUMIN,
176
177      // Vector Shuffle with mask as an operand
178      VSHF,  // Generic shuffle
179      SHF,   // 4-element set shuffle.
180      ILVEV, // Interleave even elements
181      ILVOD, // Interleave odd elements
182      ILVL,  // Interleave left elements
183      ILVR,  // Interleave right elements
184      PCKEV, // Pack even elements
185      PCKOD, // Pack odd elements
186
187      // Combined (XOR (OR $a, $b), -1)
188      VNOR,
189
190      // Extended vector element extraction
191      VEXTRACT_SEXT_ELT,
192      VEXTRACT_ZEXT_ELT,
193
194      // Load/Store Left/Right nodes.
195      LWL = ISD::FIRST_TARGET_MEMORY_OPCODE,
196      LWR,
197      SWL,
198      SWR,
199      LDL,
200      LDR,
201      SDL,
202      SDR
203    };
204  }
205
206  //===--------------------------------------------------------------------===//
207  // TargetLowering Implementation
208  //===--------------------------------------------------------------------===//
209  class MipsFunctionInfo;
210
211  class MipsTargetLowering : public TargetLowering  {
212  public:
213    explicit MipsTargetLowering(MipsTargetMachine &TM);
214
215    static const MipsTargetLowering *create(MipsTargetMachine &TM);
216
217    virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
218
219    virtual void LowerOperationWrapper(SDNode *N,
220                                       SmallVectorImpl<SDValue> &Results,
221                                       SelectionDAG &DAG) const;
222
223    /// LowerOperation - Provide custom lowering hooks for some operations.
224    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
225
226    /// ReplaceNodeResults - Replace the results of node with an illegal result
227    /// type with new values built out of custom code.
228    ///
229    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
230                                    SelectionDAG &DAG) const;
231
232    /// getTargetNodeName - This method returns the name of a target specific
233    //  DAG node.
234    virtual const char *getTargetNodeName(unsigned Opcode) const;
235
236    /// getSetCCResultType - get the ISD::SETCC result ValueType
237    EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
238
239    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
240
241    virtual MachineBasicBlock *
242    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
243
244    struct LTStr {
245      bool operator()(const char *S1, const char *S2) const {
246        return strcmp(S1, S2) < 0;
247      }
248    };
249
250  protected:
251    SDValue getGlobalReg(SelectionDAG &DAG, EVT Ty) const;
252
253    // This method creates the following nodes, which are necessary for
254    // computing a local symbol's address:
255    //
256    // (add (load (wrapper $gp, %got(sym)), %lo(sym))
257    template<class NodeTy>
258    SDValue getAddrLocal(NodeTy *N, EVT Ty, SelectionDAG &DAG,
259                         bool HasMips64) const {
260      SDLoc DL(N);
261      unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
262      SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
263                                getTargetNode(N, Ty, DAG, GOTFlag));
264      SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
265                                 MachinePointerInfo::getGOT(), false, false,
266                                 false, 0);
267      unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
268      SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty,
269                               getTargetNode(N, Ty, DAG, LoFlag));
270      return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
271    }
272
273    // This method creates the following nodes, which are necessary for
274    // computing a global symbol's address:
275    //
276    // (load (wrapper $gp, %got(sym)))
277    template<class NodeTy>
278    SDValue getAddrGlobal(NodeTy *N, EVT Ty, SelectionDAG &DAG,
279                          unsigned Flag, SDValue Chain,
280                          const MachinePointerInfo &PtrInfo) const {
281      SDLoc DL(N);
282      SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
283                                getTargetNode(N, Ty, DAG, Flag));
284      return DAG.getLoad(Ty, DL, Chain, Tgt, PtrInfo, false, false, false, 0);
285    }
286
287    // This method creates the following nodes, which are necessary for
288    // computing a global symbol's address in large-GOT mode:
289    //
290    // (load (wrapper (add %hi(sym), $gp), %lo(sym)))
291    template<class NodeTy>
292    SDValue getAddrGlobalLargeGOT(NodeTy *N, EVT Ty, SelectionDAG &DAG,
293                                  unsigned HiFlag, unsigned LoFlag,
294                                  SDValue Chain,
295                                  const MachinePointerInfo &PtrInfo) const {
296      SDLoc DL(N);
297      SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty,
298                               getTargetNode(N, Ty, DAG, HiFlag));
299      Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
300      SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
301                                    getTargetNode(N, Ty, DAG, LoFlag));
302      return DAG.getLoad(Ty, DL, Chain, Wrapper, PtrInfo, false, false, false,
303                         0);
304    }
305
306    // This method creates the following nodes, which are necessary for
307    // computing a symbol's address in non-PIC mode:
308    //
309    // (add %hi(sym), %lo(sym))
310    template<class NodeTy>
311    SDValue getAddrNonPIC(NodeTy *N, EVT Ty, SelectionDAG &DAG) const {
312      SDLoc DL(N);
313      SDValue Hi = getTargetNode(N, Ty, DAG, MipsII::MO_ABS_HI);
314      SDValue Lo = getTargetNode(N, Ty, DAG, MipsII::MO_ABS_LO);
315      return DAG.getNode(ISD::ADD, DL, Ty,
316                         DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
317                         DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
318    }
319
320    /// This function fills Ops, which is the list of operands that will later
321    /// be used when a function call node is created. It also generates
322    /// copyToReg nodes to set up argument registers.
323    virtual void
324    getOpndList(SmallVectorImpl<SDValue> &Ops,
325                std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
326                bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
327                CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const;
328
329    /// ByValArgInfo - Byval argument information.
330    struct ByValArgInfo {
331      unsigned FirstIdx; // Index of the first register used.
332      unsigned NumRegs;  // Number of registers used for this argument.
333      unsigned Address;  // Offset of the stack area used to pass this argument.
334
335      ByValArgInfo() : FirstIdx(0), NumRegs(0), Address(0) {}
336    };
337
338    /// MipsCC - This class provides methods used to analyze formal and call
339    /// arguments and inquire about calling convention information.
340    class MipsCC {
341    public:
342      enum SpecialCallingConvType {
343        Mips16RetHelperConv, NoSpecialCallingConv
344      };
345
346      MipsCC(CallingConv::ID CallConv, bool IsO32, bool IsFP64, CCState &Info,
347             SpecialCallingConvType SpecialCallingConv = NoSpecialCallingConv);
348
349
350      void analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
351                               bool IsVarArg, bool IsSoftFloat,
352                               const SDNode *CallNode,
353                               std::vector<ArgListEntry> &FuncArgs);
354      void analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
355                                  bool IsSoftFloat,
356                                  Function::const_arg_iterator FuncArg);
357
358      void analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
359                             bool IsSoftFloat, const SDNode *CallNode,
360                             const Type *RetTy) const;
361
362      void analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
363                         bool IsSoftFloat, const Type *RetTy) const;
364
365      const CCState &getCCInfo() const { return CCInfo; }
366
367      /// hasByValArg - Returns true if function has byval arguments.
368      bool hasByValArg() const { return !ByValArgs.empty(); }
369
370      /// regSize - Size (in number of bits) of integer registers.
371      unsigned regSize() const { return IsO32 ? 4 : 8; }
372
373      /// numIntArgRegs - Number of integer registers available for calls.
374      unsigned numIntArgRegs() const;
375
376      /// reservedArgArea - The size of the area the caller reserves for
377      /// register arguments. This is 16-byte if ABI is O32.
378      unsigned reservedArgArea() const;
379
380      /// Return pointer to array of integer argument registers.
381      const uint16_t *intArgRegs() const;
382
383      typedef SmallVectorImpl<ByValArgInfo>::const_iterator byval_iterator;
384      byval_iterator byval_begin() const { return ByValArgs.begin(); }
385      byval_iterator byval_end() const { return ByValArgs.end(); }
386
387    private:
388      void handleByValArg(unsigned ValNo, MVT ValVT, MVT LocVT,
389                          CCValAssign::LocInfo LocInfo,
390                          ISD::ArgFlagsTy ArgFlags);
391
392      /// useRegsForByval - Returns true if the calling convention allows the
393      /// use of registers to pass byval arguments.
394      bool useRegsForByval() const { return CallConv != CallingConv::Fast; }
395
396      /// Return the function that analyzes fixed argument list functions.
397      llvm::CCAssignFn *fixedArgFn() const;
398
399      /// Return the function that analyzes variable argument list functions.
400      llvm::CCAssignFn *varArgFn() const;
401
402      const uint16_t *shadowRegs() const;
403
404      void allocateRegs(ByValArgInfo &ByVal, unsigned ByValSize,
405                        unsigned Align);
406
407      /// Return the type of the register which is used to pass an argument or
408      /// return a value. This function returns f64 if the argument is an i64
409      /// value which has been generated as a result of softening an f128 value.
410      /// Otherwise, it just returns VT.
411      MVT getRegVT(MVT VT, const Type *OrigTy, const SDNode *CallNode,
412                   bool IsSoftFloat) const;
413
414      template<typename Ty>
415      void analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
416                         const SDNode *CallNode, const Type *RetTy) const;
417
418      CCState &CCInfo;
419      CallingConv::ID CallConv;
420      bool IsO32, IsFP64;
421      SpecialCallingConvType SpecialCallingConv;
422      SmallVector<ByValArgInfo, 2> ByValArgs;
423    };
424  protected:
425    SDValue lowerLOAD(SDValue Op, SelectionDAG &DAG) const;
426    SDValue lowerSTORE(SDValue Op, SelectionDAG &DAG) const;
427
428    // Subtarget Info
429    const MipsSubtarget *Subtarget;
430
431    bool HasMips64, IsN64, IsO32;
432
433  private:
434    // Create a TargetGlobalAddress node.
435    SDValue getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
436                          unsigned Flag) const;
437
438    // Create a TargetExternalSymbol node.
439    SDValue getTargetNode(ExternalSymbolSDNode *N, EVT Ty, SelectionDAG &DAG,
440                          unsigned Flag) const;
441
442    // Create a TargetBlockAddress node.
443    SDValue getTargetNode(BlockAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
444                          unsigned Flag) const;
445
446    // Create a TargetJumpTable node.
447    SDValue getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG,
448                          unsigned Flag) const;
449
450    // Create a TargetConstantPool node.
451    SDValue getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG,
452                          unsigned Flag) const;
453
454    MipsCC::SpecialCallingConvType getSpecialCallingConv(SDValue Callee) const;
455    // Lower Operand helpers
456    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
457                            CallingConv::ID CallConv, bool isVarArg,
458                            const SmallVectorImpl<ISD::InputArg> &Ins,
459                            SDLoc dl, SelectionDAG &DAG,
460                            SmallVectorImpl<SDValue> &InVals,
461                            const SDNode *CallNode, const Type *RetTy) const;
462
463    // Lower Operand specifics
464    SDValue lowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
465    SDValue lowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
466    SDValue lowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
467    SDValue lowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
468    SDValue lowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
469    SDValue lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
470    SDValue lowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
471    SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG) const;
472    SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
473    SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
474    SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
475    SDValue lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
476    SDValue lowerFABS(SDValue Op, SelectionDAG &DAG) const;
477    SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
478    SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
479    SDValue lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
480    SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const;
481    SDValue lowerShiftLeftParts(SDValue Op, SelectionDAG& DAG) const;
482    SDValue lowerShiftRightParts(SDValue Op, SelectionDAG& DAG,
483                                 bool IsSRA) const;
484    SDValue lowerADD(SDValue Op, SelectionDAG &DAG) const;
485    SDValue lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
486
487    /// isEligibleForTailCallOptimization - Check whether the call is eligible
488    /// for tail call optimization.
489    virtual bool
490    isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
491                                      unsigned NextStackOffset,
492                                      const MipsFunctionInfo& FI) const = 0;
493
494    /// copyByValArg - Copy argument registers which were used to pass a byval
495    /// argument to the stack. Create a stack frame object for the byval
496    /// argument.
497    void copyByValRegs(SDValue Chain, SDLoc DL,
498                       std::vector<SDValue> &OutChains, SelectionDAG &DAG,
499                       const ISD::ArgFlagsTy &Flags,
500                       SmallVectorImpl<SDValue> &InVals,
501                       const Argument *FuncArg,
502                       const MipsCC &CC, const ByValArgInfo &ByVal) const;
503
504    /// passByValArg - Pass a byval argument in registers or on stack.
505    void passByValArg(SDValue Chain, SDLoc DL,
506                      std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
507                      SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
508                      MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
509                      const MipsCC &CC, const ByValArgInfo &ByVal,
510                      const ISD::ArgFlagsTy &Flags, bool isLittle) const;
511
512    /// writeVarArgRegs - Write variable function arguments passed in registers
513    /// to the stack. Also create a stack frame object for the first variable
514    /// argument.
515    void writeVarArgRegs(std::vector<SDValue> &OutChains, const MipsCC &CC,
516                         SDValue Chain, SDLoc DL, SelectionDAG &DAG) const;
517
518    virtual SDValue
519      LowerFormalArguments(SDValue Chain,
520                           CallingConv::ID CallConv, bool isVarArg,
521                           const SmallVectorImpl<ISD::InputArg> &Ins,
522                           SDLoc dl, SelectionDAG &DAG,
523                           SmallVectorImpl<SDValue> &InVals) const;
524
525    SDValue passArgOnStack(SDValue StackPtr, unsigned Offset, SDValue Chain,
526                           SDValue Arg, SDLoc DL, bool IsTailCall,
527                           SelectionDAG &DAG) const;
528
529    virtual SDValue
530      LowerCall(TargetLowering::CallLoweringInfo &CLI,
531                SmallVectorImpl<SDValue> &InVals) const;
532
533    virtual bool
534      CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
535                     bool isVarArg,
536                     const SmallVectorImpl<ISD::OutputArg> &Outs,
537                     LLVMContext &Context) const;
538
539    virtual SDValue
540      LowerReturn(SDValue Chain,
541                  CallingConv::ID CallConv, bool isVarArg,
542                  const SmallVectorImpl<ISD::OutputArg> &Outs,
543                  const SmallVectorImpl<SDValue> &OutVals,
544                  SDLoc dl, SelectionDAG &DAG) const;
545
546    // Inline asm support
547    ConstraintType getConstraintType(const std::string &Constraint) const;
548
549    /// Examine constraint string and operand type and determine a weight value.
550    /// The operand object must already have been set up with the operand type.
551    ConstraintWeight getSingleConstraintMatchWeight(
552      AsmOperandInfo &info, const char *constraint) const;
553
554    /// This function parses registers that appear in inline-asm constraints.
555    /// It returns pair (0, 0) on failure.
556    std::pair<unsigned, const TargetRegisterClass *>
557    parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const;
558
559    std::pair<unsigned, const TargetRegisterClass*>
560              getRegForInlineAsmConstraint(const std::string &Constraint,
561                                           MVT VT) const;
562
563    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
564    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
565    /// true it means one of the asm constraint of the inline asm instruction
566    /// being processed is 'm'.
567    virtual void LowerAsmOperandForConstraint(SDValue Op,
568                                              std::string &Constraint,
569                                              std::vector<SDValue> &Ops,
570                                              SelectionDAG &DAG) const;
571
572    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
573
574    virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
575
576    virtual EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
577                                    unsigned SrcAlign,
578                                    bool IsMemset, bool ZeroMemset,
579                                    bool MemcpyStrSrc,
580                                    MachineFunction &MF) const;
581
582    /// isFPImmLegal - Returns true if the target can instruction select the
583    /// specified FP immediate natively. If false, the legalizer will
584    /// materialize the FP immediate as a load from a constant pool.
585    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
586
587    virtual unsigned getJumpTableEncoding() const;
588
589    MachineBasicBlock *emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
590                    unsigned Size, unsigned BinOpcode, bool Nand = false) const;
591    MachineBasicBlock *emitAtomicBinaryPartword(MachineInstr *MI,
592                    MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode,
593                    bool Nand = false) const;
594    MachineBasicBlock *emitAtomicCmpSwap(MachineInstr *MI,
595                                  MachineBasicBlock *BB, unsigned Size) const;
596    MachineBasicBlock *emitAtomicCmpSwapPartword(MachineInstr *MI,
597                                  MachineBasicBlock *BB, unsigned Size) const;
598  };
599
600  /// Create MipsTargetLowering objects.
601  const MipsTargetLowering *createMips16TargetLowering(MipsTargetMachine &TM);
602  const MipsTargetLowering *createMipsSETargetLowering(MipsTargetMachine &TM);
603}
604
605#endif // MipsISELLOWERING_H
606