MipsInstrFPU.td revision 14180454726bbef6bf5041ae19736933617b51dd
1//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Mips FPU instruction set.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Floating Point Instructions
16// ------------------------
17// * 64bit fp:
18//    - 32 64-bit registers (default mode)
19//    - 16 even 32-bit registers (32-bit compatible mode) for
20//      single and double access.
21// * 32bit fp:
22//    - 16 even 32-bit registers - single and double (aliased)
23//    - 32 32-bit registers (within single-only mode)
24//===----------------------------------------------------------------------===//
25
26// Floating Point Compare and Branch
27def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
28                                            SDTCisVT<1, OtherVT>]>;
29def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
30                                         SDTCisVT<2, i32>]>;
31def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
32                                          SDTCisSameAs<1, 2>]>;
33def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
34                                                SDTCisVT<1, i32>,
35                                                SDTCisSameAs<1, 2>]>;
36def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
37                                                     SDTCisVT<1, f64>,
38                                                     SDTCisVT<2, i32>]>;
39
40def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
41def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
42def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
43def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
44                          [SDNPHasChain, SDNPOptInGlue]>;
45def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
46def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
47                                   SDT_MipsExtractElementF64>;
48
49// Operand for printing out a condition code.
50let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in
51  def condcode : Operand<i32>;
52
53//===----------------------------------------------------------------------===//
54// Feature predicates.
55//===----------------------------------------------------------------------===//
56
57def IsFP64bit        : Predicate<"Subtarget.isFP64bit()">,
58                       AssemblerPredicate<"FeatureFP64Bit">;
59def NotFP64bit       : Predicate<"!Subtarget.isFP64bit()">,
60                       AssemblerPredicate<"!FeatureFP64Bit">;
61def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">,
62                       AssemblerPredicate<"FeatureSingleFloat">;
63def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">,
64                       AssemblerPredicate<"!FeatureSingleFloat">;
65
66// FP immediate patterns.
67def fpimm0 : PatLeaf<(fpimm), [{
68  return N->isExactlyValue(+0.0);
69}]>;
70
71def fpimm0neg : PatLeaf<(fpimm), [{
72  return N->isExactlyValue(-0.0);
73}]>;
74
75//===----------------------------------------------------------------------===//
76// Instruction Class Templates
77//
78// A set of multiclasses is used to address the register usage.
79//
80// S32 - single precision in 16 32bit even fp registers
81//       single precision in 32 32bit fp registers in SingleOnly mode
82// S64 - single precision in 32 64bit fp registers (In64BitMode)
83// D32 - double precision in 16 32bit even fp registers
84// D64 - double precision in 32 64bit fp registers (In64BitMode)
85//
86// Only S32 and D32 are supported right now.
87//===----------------------------------------------------------------------===//
88
89// FP load.
90let DecoderMethod = "DecodeFMem" in {
91class FPLoad<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
92  FMem<op, (outs RC:$ft), (ins MemOpnd:$addr),
93      !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (load_a addr:$addr))],
94      IILoad>;
95
96// FP store.
97class FPStore<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
98  FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr),
99      !strconcat(opstr, "\t$ft, $addr"), [(store_a RC:$ft, addr:$addr)],
100      IIStore>;
101}
102// FP indexed load.
103class FPIdxLoad<bits<6> funct, string opstr, RegisterClass DRC,
104                RegisterClass PRC, PatFrag FOp>:
105  FFMemIdx<funct, (outs DRC:$fd), (ins PRC:$base, PRC:$index),
106           !strconcat(opstr, "\t$fd, $index($base)"),
107           [(set DRC:$fd, (FOp (add PRC:$base, PRC:$index)))]> {
108  let fs = 0;
109}
110
111// FP indexed store.
112class FPIdxStore<bits<6> funct, string opstr, RegisterClass DRC,
113                 RegisterClass PRC, PatFrag FOp>:
114  FFMemIdx<funct, (outs), (ins DRC:$fs, PRC:$base, PRC:$index),
115           !strconcat(opstr, "\t$fs, $index($base)"),
116           [(FOp DRC:$fs, (add PRC:$base, PRC:$index))]> {
117  let fd = 0;
118}
119
120// Instructions that convert an FP value to 32-bit fixed point.
121multiclass FFR1_W_M<bits<6> funct, string opstr> {
122  def _S   : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>;
123  def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>,
124             Requires<[NotFP64bit, HasStandardEncoding]>;
125  def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>,
126             Requires<[IsFP64bit, HasStandardEncoding]> {
127    let DecoderNamespace = "Mips64";
128  }
129}
130
131// Instructions that convert an FP value to 64-bit fixed point.
132let Predicates = [IsFP64bit, HasStandardEncoding], DecoderNamespace = "Mips64" in
133multiclass FFR1_L_M<bits<6> funct, string opstr> {
134  def _S   : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>;
135  def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>;
136}
137
138// FP-to-FP conversion instructions.
139multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
140  def _S   : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>;
141  def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>,
142             Requires<[NotFP64bit, HasStandardEncoding]>;
143  def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>,
144             Requires<[IsFP64bit, HasStandardEncoding]> {
145    let DecoderNamespace = "Mips64";
146  }
147}
148
149multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> {
150  let isCommutable = isComm in {
151  def _S   : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>;
152  def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>,
153             Requires<[NotFP64bit, HasStandardEncoding]>;
154  def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>,
155             Requires<[IsFP64bit, HasStandardEncoding]> {
156    let DecoderNamespace = "Mips64";
157  }
158}
159}
160
161// FP madd/msub/nmadd/nmsub instruction classes.
162class FMADDSUB<bits<3> funct, bits<3> fmt, string opstr, string fmtstr,
163               SDNode OpNode, RegisterClass RC> :
164  FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
165            !strconcat(opstr, ".", fmtstr, "\t$fd, $fr, $fs, $ft"),
166            [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))]>;
167
168class FNMADDSUB<bits<3> funct, bits<3> fmt, string opstr, string fmtstr,
169                SDNode OpNode, RegisterClass RC> :
170  FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
171            !strconcat(opstr, ".", fmtstr, "\t$fd, $fr, $fs, $ft"),
172            [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))]>;
173
174//===----------------------------------------------------------------------===//
175// Floating Point Instructions
176//===----------------------------------------------------------------------===//
177defm ROUND_W : FFR1_W_M<0xc, "round">;
178defm ROUND_L : FFR1_L_M<0x8, "round">;
179defm TRUNC_W : FFR1_W_M<0xd, "trunc">;
180defm TRUNC_L : FFR1_L_M<0x9, "trunc">;
181defm CEIL_W  : FFR1_W_M<0xe, "ceil">;
182defm CEIL_L  : FFR1_L_M<0xa, "ceil">;
183defm FLOOR_W : FFR1_W_M<0xf, "floor">;
184defm FLOOR_L : FFR1_L_M<0xb, "floor">;
185defm CVT_W   : FFR1_W_M<0x24, "cvt">;
186//defm CVT_L   : FFR1_L_M<0x25, "cvt">;
187
188def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>;
189def CVT_L_S : FFR1<0x25, 16, "cvt", "l.s", FGR64, FGR32>;
190def CVT_L_D64: FFR1<0x25, 17, "cvt", "l.d", FGR64, FGR64>;
191
192let Predicates = [NotFP64bit, HasStandardEncoding] in {
193  def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>;
194  def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>;
195  def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>;
196}
197
198let Predicates = [IsFP64bit, HasStandardEncoding], DecoderNamespace = "Mips64" in {
199 def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>;
200 def CVT_S_L   : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>;
201 def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>;
202 def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>;
203 def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>;
204}
205
206let Predicates = [NoNaNsFPMath, HasStandardEncoding] in {
207  defm FABS    : FFR1P_M<0x5, "abs",  fabs>;
208  defm FNEG    : FFR1P_M<0x7, "neg",  fneg>;
209}
210defm FSQRT   : FFR1P_M<0x4, "sqrt", fsqrt>;
211
212// The odd-numbered registers are only referenced when doing loads,
213// stores, and moves between floating-point and integer registers.
214// When defining instructions, we reference all 32-bit registers,
215// regardless of register aliasing.
216
217class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>:
218             FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> {
219  bits<5> rt;
220  let ft = rt;
221  let fd = 0;
222}
223
224/// Move Control Registers From/To CPU Registers
225def CFC1  : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs),
226                  "cfc1\t$rt, $fs", []>;
227
228def CTC1  : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt),
229                  "ctc1\t$rt, $fs", []>;
230
231def MFC1  : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
232                  "mfc1\t$rt, $fs",
233                  [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
234
235def MTC1  : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
236                  "mtc1\t$rt, $fs",
237                  [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
238
239def DMFC1 : FFRGPR<0x01, (outs CPU64Regs:$rt), (ins FGR64:$fs),
240                  "dmfc1\t$rt, $fs",
241                  [(set CPU64Regs:$rt, (bitconvert FGR64:$fs))]>;
242
243def DMTC1 : FFRGPR<0x05, (outs FGR64:$fs), (ins CPU64Regs:$rt),
244                  "dmtc1\t$rt, $fs",
245                  [(set FGR64:$fs, (bitconvert CPU64Regs:$rt))]>;
246
247def FMOV_S   : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>;
248def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>,
249               Requires<[NotFP64bit, HasStandardEncoding]>;
250def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>,
251               Requires<[IsFP64bit, HasStandardEncoding]> {
252  let DecoderNamespace = "Mips64";
253}
254
255/// Floating Point Memory Instructions
256let Predicates = [IsN64, HasStandardEncoding], DecoderNamespace = "Mips64" in {
257  def LWC1_P8   : FPLoad<0x31, "lwc1", FGR32, mem64>;
258  def SWC1_P8   : FPStore<0x39, "swc1", FGR32, mem64>;
259  def LDC164_P8 : FPLoad<0x35, "ldc1", FGR64, mem64> {
260    let isCodeGenOnly =1;
261  }
262  def SDC164_P8 : FPStore<0x3d, "sdc1", FGR64, mem64> {
263    let isCodeGenOnly =1;
264  }
265}
266
267let Predicates = [NotN64, HasStandardEncoding] in {
268  def LWC1   : FPLoad<0x31, "lwc1", FGR32, mem>;
269  def SWC1   : FPStore<0x39, "swc1", FGR32, mem>;
270}
271
272let Predicates = [NotN64, HasMips64, HasStandardEncoding],
273    DecoderNamespace = "Mips64" in {
274  def LDC164 : FPLoad<0x35, "ldc1", FGR64, mem>;
275  def SDC164 : FPStore<0x3d, "sdc1", FGR64, mem>;
276}
277
278let Predicates = [NotN64, NotMips64, HasStandardEncoding] in {
279  def LDC1   : FPLoad<0x35, "ldc1", AFGR64, mem>;
280  def SDC1   : FPStore<0x3d, "sdc1", AFGR64, mem>;
281}
282
283// Indexed loads and stores.
284let Predicates = [HasMips32r2Or64, HasStandardEncoding] in {
285  def LWXC1 : FPIdxLoad<0x0, "lwxc1", FGR32, CPURegs, load_a>;
286  def LUXC1 : FPIdxLoad<0x5, "luxc1", FGR32, CPURegs, load_u>;
287  def SWXC1 : FPIdxStore<0x8, "swxc1", FGR32, CPURegs, store_a>;
288  def SUXC1 : FPIdxStore<0xd, "suxc1", FGR32, CPURegs, store_u>;
289}
290
291let Predicates = [HasMips32r2, NotMips64, HasStandardEncoding] in {
292  def LDXC1 : FPIdxLoad<0x1, "ldxc1", AFGR64, CPURegs, load_a>;
293  def SDXC1 : FPIdxStore<0x9, "sdxc1", AFGR64, CPURegs, store_a>;
294}
295
296let Predicates = [HasMips64, NotN64, HasStandardEncoding], DecoderNamespace="Mips64" in {
297  def LDXC164 : FPIdxLoad<0x1, "ldxc1", FGR64, CPURegs, load_a>;
298  def SDXC164 : FPIdxStore<0x9, "sdxc1", FGR64, CPURegs, store_a>;
299}
300
301// n64
302let Predicates = [IsN64, HasStandardEncoding], isCodeGenOnly=1 in {
303  def LWXC1_P8   : FPIdxLoad<0x0, "lwxc1", FGR32, CPU64Regs, load_a>;
304  def LUXC1_P8   : FPIdxLoad<0x5, "luxc1", FGR32, CPU64Regs, load_u>;
305  def LDXC164_P8 : FPIdxLoad<0x1, "ldxc1", FGR64, CPU64Regs, load_a>;
306  def SWXC1_P8   : FPIdxStore<0x8, "swxc1", FGR32, CPU64Regs, store_a>;
307  def SUXC1_P8   : FPIdxStore<0xd, "suxc1", FGR32, CPU64Regs, store_u>;
308  def SDXC164_P8 : FPIdxStore<0x9, "sdxc1", FGR64, CPU64Regs, store_a>;
309}
310
311/// Floating-point Aritmetic
312defm FADD : FFR2P_M<0x00, "add", fadd, 1>;
313defm FDIV : FFR2P_M<0x03, "div", fdiv>;
314defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>;
315defm FSUB : FFR2P_M<0x01, "sub", fsub>;
316
317let Predicates = [HasMips32r2, HasStandardEncoding] in {
318  def MADD_S : FMADDSUB<0x4, 0, "madd", "s", fadd, FGR32>;
319  def MSUB_S : FMADDSUB<0x5, 0, "msub", "s", fsub, FGR32>;
320}
321
322let Predicates = [HasMips32r2, NoNaNsFPMath, HasStandardEncoding] in {
323  def NMADD_S : FNMADDSUB<0x6, 0, "nmadd", "s", fadd, FGR32>;
324  def NMSUB_S : FNMADDSUB<0x7, 0, "nmsub", "s", fsub, FGR32>;
325}
326
327let Predicates = [HasMips32r2, NotFP64bit, HasStandardEncoding] in {
328  def MADD_D32 : FMADDSUB<0x4, 1, "madd", "d", fadd, AFGR64>;
329  def MSUB_D32 : FMADDSUB<0x5, 1, "msub", "d", fsub, AFGR64>;
330}
331
332let Predicates = [HasMips32r2, NotFP64bit, NoNaNsFPMath, HasStandardEncoding] in {
333  def NMADD_D32 : FNMADDSUB<0x6, 1, "nmadd", "d", fadd, AFGR64>;
334  def NMSUB_D32 : FNMADDSUB<0x7, 1, "nmsub", "d", fsub, AFGR64>;
335}
336
337let Predicates = [HasMips32r2, IsFP64bit, HasStandardEncoding], isCodeGenOnly=1 in {
338  def MADD_D64 : FMADDSUB<0x4, 1, "madd", "d", fadd, FGR64>;
339  def MSUB_D64 : FMADDSUB<0x5, 1, "msub", "d", fsub, FGR64>;
340}
341
342let Predicates = [HasMips32r2, IsFP64bit, NoNaNsFPMath, HasStandardEncoding],
343    isCodeGenOnly=1 in {
344  def NMADD_D64 : FNMADDSUB<0x6, 1, "nmadd", "d", fadd, FGR64>;
345  def NMSUB_D64 : FNMADDSUB<0x7, 1, "nmsub", "d", fsub, FGR64>;
346}
347
348//===----------------------------------------------------------------------===//
349// Floating Point Branch Codes
350//===----------------------------------------------------------------------===//
351// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
352// They must be kept in synch.
353def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
354def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;
355
356/// Floating Point Branch of False/True (Likely)
357let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
358  class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> :
359      FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
360        [(MipsFPBrcond op, bb:$dst)]> {
361  let Inst{20-18} = 0;
362  let Inst{17} = nd;
363  let Inst{16} = tf;
364}
365
366let DecoderMethod = "DecodeBC1" in {
367def BC1F  : FBRANCH<0, 0, MIPS_BRANCH_F,  "bc1f">;
368def BC1T  : FBRANCH<0, 1, MIPS_BRANCH_T,  "bc1t">;
369}
370//===----------------------------------------------------------------------===//
371// Floating Point Flag Conditions
372//===----------------------------------------------------------------------===//
373// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
374// They must be kept in synch.
375def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
376def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
377def MIPS_FCOND_OEQ  : PatLeaf<(i32 2)>;
378def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
379def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
380def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
381def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
382def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
383def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
384def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
385def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
386def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
387def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
388def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
389def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
390def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;
391
392class FCMP<bits<5> fmt, RegisterClass RC, string typestr> :
393  FCC<fmt, (outs), (ins RC:$fs, RC:$ft, condcode:$cc),
394      !strconcat("c.$cc.", typestr, "\t$fs, $ft"),
395      [(MipsFPCmp RC:$fs, RC:$ft, imm:$cc)]>;
396
397/// Floating Point Compare
398let Defs=[FCR31] in {
399  def FCMP_S32 : FCMP<0x10, FGR32, "s">;
400  def FCMP_D32 : FCMP<0x11, AFGR64, "d">,
401      Requires<[NotFP64bit, HasStandardEncoding]>;
402  def FCMP_D64 : FCMP<0x11, FGR64, "d">,
403      Requires<[IsFP64bit, HasStandardEncoding]> {
404    let DecoderNamespace = "Mips64";
405  }
406}
407
408//===----------------------------------------------------------------------===//
409// Floating Point Pseudo-Instructions
410//===----------------------------------------------------------------------===//
411def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
412                             "# MOVCCRToCCR", []>;
413
414// This pseudo instr gets expanded into 2 mtc1 instrs after register
415// allocation.
416def BuildPairF64 :
417  MipsPseudo<(outs AFGR64:$dst),
418             (ins CPURegs:$lo, CPURegs:$hi), "",
419             [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
420
421// This pseudo instr gets expanded into 2 mfc1 instrs after register
422// allocation.
423// if n is 0, lower part of src is extracted.
424// if n is 1, higher part of src is extracted.
425def ExtractElementF64 :
426  MipsPseudo<(outs CPURegs:$dst),
427             (ins AFGR64:$src, i32imm:$n), "",
428             [(set CPURegs:$dst,
429               (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
430
431//===----------------------------------------------------------------------===//
432// Floating Point Patterns
433//===----------------------------------------------------------------------===//
434def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>;
435def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
436
437def : MipsPat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
438def : MipsPat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
439
440let Predicates = [NotFP64bit, HasStandardEncoding] in {
441  def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
442                (CVT_D32_W (MTC1 CPURegs:$src))>;
443  def : MipsPat<(i32 (fp_to_sint AFGR64:$src)),
444                (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
445  def : MipsPat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
446  def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
447}
448
449let Predicates = [IsFP64bit, HasStandardEncoding] in {
450  def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>;
451  def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>;
452
453  def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
454                (CVT_D64_W (MTC1 CPURegs:$src))>;
455  def : MipsPat<(f32 (sint_to_fp CPU64Regs:$src)),
456                (CVT_S_L (DMTC1 CPU64Regs:$src))>;
457  def : MipsPat<(f64 (sint_to_fp CPU64Regs:$src)),
458                (CVT_D64_L (DMTC1 CPU64Regs:$src))>;
459
460  def : MipsPat<(i32 (fp_to_sint FGR64:$src)),
461                (MFC1 (TRUNC_W_D64 FGR64:$src))>;
462  def : MipsPat<(i64 (fp_to_sint FGR32:$src)), (DMFC1 (TRUNC_L_S FGR32:$src))>;
463  def : MipsPat<(i64 (fp_to_sint FGR64:$src)),
464                (DMFC1 (TRUNC_L_D64 FGR64:$src))>;
465
466  def : MipsPat<(f32 (fround FGR64:$src)), (CVT_S_D64 FGR64:$src)>;
467  def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D64_S FGR32:$src)>;
468}
469
470// Patterns for unaligned floating point loads and stores.
471let Predicates = [HasMips32r2Or64, NotN64, HasStandardEncoding] in {
472  def : MipsPat<(f32 (load_u CPURegs:$addr)), (LUXC1 CPURegs:$addr, ZERO)>;
473  def : MipsPat<(store_u FGR32:$src, CPURegs:$addr),
474                (SUXC1 FGR32:$src, CPURegs:$addr, ZERO)>;
475}
476
477let Predicates = [IsN64, HasStandardEncoding] in {
478  def : MipsPat<(f32 (load_u CPU64Regs:$addr)),
479                (LUXC1_P8 CPU64Regs:$addr, ZERO_64)>;
480  def : MipsPat<(store_u FGR32:$src, CPU64Regs:$addr),
481                (SUXC1_P8 FGR32:$src, CPU64Regs:$addr, ZERO_64)>;
482}
483