MipsInstrFPU.td revision 1c88a8d978e5cbcbd270f7a742bfe690ed798e0e
1//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Mips FPU instruction set.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Floating Point Instructions
16// ------------------------
17// * 64bit fp:
18//    - 32 64-bit registers (default mode)
19//    - 16 even 32-bit registers (32-bit compatible mode) for
20//      single and double access.
21// * 32bit fp:
22//    - 16 even 32-bit registers - single and double (aliased)
23//    - 32 32-bit registers (within single-only mode)
24//===----------------------------------------------------------------------===//
25
26// Floating Point Compare and Branch
27def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
28                                            SDTCisVT<1, OtherVT>]>;
29def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
30                                         SDTCisVT<2, i32>]>;
31def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
32                                          SDTCisSameAs<1, 2>]>;
33def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
34                                                SDTCisVT<1, i32>,
35                                                SDTCisSameAs<1, 2>]>;
36def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
37                                                     SDTCisVT<1, f64>,
38                                                     SDTCisVT<2, i32>]>;
39
40def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
41def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
42def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
43def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
44                          [SDNPHasChain, SDNPOptInGlue]>;
45def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
46def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
47                                   SDT_MipsExtractElementF64>;
48
49// Operand for printing out a condition code.
50let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in
51  def condcode : Operand<i32>;
52
53//===----------------------------------------------------------------------===//
54// Feature predicates.
55//===----------------------------------------------------------------------===//
56
57def IsFP64bit        : Predicate<"Subtarget.isFP64bit()">,
58                       AssemblerPredicate<"FeatureFP64Bit">;
59def NotFP64bit       : Predicate<"!Subtarget.isFP64bit()">,
60                       AssemblerPredicate<"!FeatureFP64Bit">;
61def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">,
62                       AssemblerPredicate<"FeatureSingleFloat">;
63def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">,
64                       AssemblerPredicate<"!FeatureSingleFloat">;
65
66// FP immediate patterns.
67def fpimm0 : PatLeaf<(fpimm), [{
68  return N->isExactlyValue(+0.0);
69}]>;
70
71def fpimm0neg : PatLeaf<(fpimm), [{
72  return N->isExactlyValue(-0.0);
73}]>;
74
75//===----------------------------------------------------------------------===//
76// Instruction Class Templates
77//
78// A set of multiclasses is used to address the register usage.
79//
80// S32 - single precision in 16 32bit even fp registers
81//       single precision in 32 32bit fp registers in SingleOnly mode
82// S64 - single precision in 32 64bit fp registers (In64BitMode)
83// D32 - double precision in 16 32bit even fp registers
84// D64 - double precision in 32 64bit fp registers (In64BitMode)
85//
86// Only S32 and D32 are supported right now.
87//===----------------------------------------------------------------------===//
88
89// FP load.
90let DecoderMethod = "DecodeFMem" in {
91class FPLoad<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
92  FMem<op, (outs RC:$ft), (ins MemOpnd:$addr),
93      !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (load addr:$addr))],
94      IILoad>;
95
96// FP store.
97class FPStore<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
98  FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr),
99      !strconcat(opstr, "\t$ft, $addr"), [(store RC:$ft, addr:$addr)],
100      IIStore>;
101}
102// FP indexed load.
103class FPIdxLoad<bits<6> funct, string opstr, RegisterClass DRC,
104                RegisterClass PRC, SDPatternOperator FOp = null_frag>:
105  FFMemIdx<funct, (outs DRC:$fd), (ins PRC:$base, PRC:$index),
106           !strconcat(opstr, "\t$fd, ${index}(${base})"),
107           [(set DRC:$fd, (FOp (add PRC:$base, PRC:$index)))]> {
108  let fs = 0;
109}
110
111// FP indexed store.
112class FPIdxStore<bits<6> funct, string opstr, RegisterClass DRC,
113                 RegisterClass PRC, SDPatternOperator FOp= null_frag>:
114  FFMemIdx<funct, (outs), (ins DRC:$fs, PRC:$base, PRC:$index),
115           !strconcat(opstr, "\t$fs, ${index}(${base})"),
116           [(FOp DRC:$fs, (add PRC:$base, PRC:$index))]> {
117  let fd = 0;
118}
119
120// Instructions that convert an FP value to 32-bit fixed point.
121multiclass FFR1_W_M<bits<6> funct, string opstr> {
122  def _D32 : FFR1<funct, 17, opstr, FGR32, AFGR64>,
123             Requires<[NotFP64bit, HasStdEnc]>;
124  def _D64 : FFR1<funct, 17, opstr, FGR32, FGR64>,
125             Requires<[IsFP64bit, HasStdEnc]> {
126    let DecoderNamespace = "Mips64";
127  }
128}
129
130// FP-to-FP conversion instructions.
131multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
132  def _D32 : FFR1P<funct, 17, opstr, AFGR64, AFGR64, OpNode>,
133             Requires<[NotFP64bit, HasStdEnc]>;
134  def _D64 : FFR1P<funct, 17, opstr, FGR64, FGR64, OpNode>,
135             Requires<[IsFP64bit, HasStdEnc]> {
136    let DecoderNamespace = "Mips64";
137  }
138}
139
140multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> {
141  let isCommutable = isComm in {
142  def _D32 : FFR2P<funct, 17, opstr, AFGR64, OpNode>,
143             Requires<[NotFP64bit, HasStdEnc]>;
144  def _D64 : FFR2P<funct, 17, opstr, FGR64, OpNode>,
145             Requires<[IsFP64bit, HasStdEnc]> {
146    let DecoderNamespace = "Mips64";
147  }
148}
149}
150
151// FP madd/msub/nmadd/nmsub instruction classes.
152class FMADDSUB<bits<3> funct, bits<3> fmt, string opstr,
153               SDNode OpNode, RegisterClass RC> :
154  FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
155            !strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
156            [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))]>;
157
158class FNMADDSUB<bits<3> funct, bits<3> fmt, string opstr,
159                SDNode OpNode, RegisterClass RC> :
160  FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
161            !strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
162            [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))]>;
163
164//===----------------------------------------------------------------------===//
165// Floating Point Instructions
166//===----------------------------------------------------------------------===//
167def ROUND_W_S  : FFR1<0xc, 16, "round.w.s", FGR32, FGR32>;
168def TRUNC_W_S  : FFR1<0xd, 16, "trunc.w.s", FGR32, FGR32>;
169def CEIL_W_S   : FFR1<0xe, 16, "ceil.w.s", FGR32, FGR32>;
170def FLOOR_W_S  : FFR1<0xf, 16, "floor.w.s", FGR32, FGR32>;
171def CVT_W_S    : FFR1<0x24, 16, "cvt.w.s", FGR32, FGR32>, NeverHasSideEffects;
172
173defm ROUND_W : FFR1_W_M<0xc, "round.w.d">;
174defm TRUNC_W : FFR1_W_M<0xd, "trunc.w.d">;
175defm CEIL_W  : FFR1_W_M<0xe, "ceil.w.d">;
176defm FLOOR_W : FFR1_W_M<0xf, "floor.w.d">;
177defm CVT_W   : FFR1_W_M<0x24, "cvt.w.d">, NeverHasSideEffects;
178
179let Predicates = [IsFP64bit, HasStdEnc], DecoderNamespace = "Mips64" in {
180  def ROUND_L_S   : FFR1<0x8, 16, "round.l.s", FGR64, FGR32>;
181  def ROUND_L_D64 : FFR1<0x8, 17, "round.l.d", FGR64, FGR64>;
182  def TRUNC_L_S   : FFR1<0x9, 16, "trunc.l.s", FGR64, FGR32>;
183  def TRUNC_L_D64 : FFR1<0x9, 17, "trunc.l.d", FGR64, FGR64>;
184  def CEIL_L_S   : FFR1<0xa, 16, "ceil.l.s", FGR64, FGR32>;
185  def CEIL_L_D64 : FFR1<0xa, 17, "ceil.l.d", FGR64, FGR64>;
186  def FLOOR_L_S   : FFR1<0xb, 16, "floor.l.s", FGR64, FGR32>;
187  def FLOOR_L_D64 : FFR1<0xb, 17, "floor.l.d", FGR64, FGR64>;
188}
189
190def CVT_S_W : FFR1<0x20, 20, "cvt.s.w", FGR32, FGR32>, NeverHasSideEffects;
191def CVT_L_S : FFR1<0x25, 16, "cvt.l.s", FGR64, FGR32>, NeverHasSideEffects;
192def CVT_L_D64: FFR1<0x25, 17, "cvt.l.d", FGR64, FGR64>, NeverHasSideEffects;
193
194let Predicates = [NotFP64bit, HasStdEnc], neverHasSideEffects = 1 in {
195  def CVT_S_D32 : FFR1<0x20, 17, "cvt.s.d", FGR32, AFGR64>;
196  def CVT_D32_W : FFR1<0x21, 20, "cvt.d.w", AFGR64, FGR32>;
197  def CVT_D32_S : FFR1<0x21, 16, "cvt.d.s", AFGR64, FGR32>;
198}
199
200let Predicates = [IsFP64bit, HasStdEnc], DecoderNamespace = "Mips64",
201    neverHasSideEffects = 1 in {
202 def CVT_S_D64 : FFR1<0x20, 17, "cvt.s.d", FGR32, FGR64>;
203 def CVT_S_L   : FFR1<0x20, 21, "cvt.s.l", FGR32, FGR64>;
204 def CVT_D64_W : FFR1<0x21, 20, "cvt.d.w", FGR64, FGR32>;
205 def CVT_D64_S : FFR1<0x21, 16, "cvt.d.s", FGR64, FGR32>;
206 def CVT_D64_L : FFR1<0x21, 21, "cvt.d.l", FGR64, FGR64>;
207}
208
209let Predicates = [NoNaNsFPMath, HasStdEnc] in {
210  def FABS_S   : FFR1P<0x5, 16, "abs.s", FGR32, FGR32, fabs>;
211  def FNEG_S   : FFR1P<0x7, 16, "neg.s", FGR32, FGR32, fneg>;
212  defm FABS  : FFR1P_M<0x5, "abs.d", fabs>;
213  defm FNEG  : FFR1P_M<0x7, "neg.d", fneg>;
214}
215
216def  FSQRT_S : FFR1P<0x4, 16, "sqrt.s", FGR32, FGR32, fsqrt>;
217defm FSQRT   : FFR1P_M<0x4, "sqrt.d", fsqrt>;
218
219// The odd-numbered registers are only referenced when doing loads,
220// stores, and moves between floating-point and integer registers.
221// When defining instructions, we reference all 32-bit registers,
222// regardless of register aliasing.
223
224class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>:
225             FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> {
226  bits<5> rt;
227  let ft = rt;
228  let fd = 0;
229}
230
231/// Move Control Registers From/To CPU Registers
232def CFC1  : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs),
233                  "cfc1\t$rt, $fs", []>;
234
235def CTC1  : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt),
236                  "ctc1\t$rt, $fs", []>;
237
238def MFC1  : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
239                  "mfc1\t$rt, $fs",
240                  [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
241
242def MTC1  : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
243                  "mtc1\t$rt, $fs",
244                  [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
245
246def DMFC1 : FFRGPR<0x01, (outs CPU64Regs:$rt), (ins FGR64:$fs),
247                  "dmfc1\t$rt, $fs",
248                  [(set CPU64Regs:$rt, (bitconvert FGR64:$fs))]>;
249
250def DMTC1 : FFRGPR<0x05, (outs FGR64:$fs), (ins CPU64Regs:$rt),
251                  "dmtc1\t$rt, $fs",
252                  [(set FGR64:$fs, (bitconvert CPU64Regs:$rt))]>;
253
254def FMOV_S   : FFR1<0x6, 16, "mov.s", FGR32, FGR32>;
255def FMOV_D32 : FFR1<0x6, 17, "mov.d", AFGR64, AFGR64>,
256               Requires<[NotFP64bit, HasStdEnc]>;
257def FMOV_D64 : FFR1<0x6, 17, "mov.d", FGR64, FGR64>,
258               Requires<[IsFP64bit, HasStdEnc]> {
259  let DecoderNamespace = "Mips64";
260}
261
262/// Floating Point Memory Instructions
263let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
264  def LWC1_P8   : FPLoad<0x31, "lwc1", FGR32, mem64>;
265  def SWC1_P8   : FPStore<0x39, "swc1", FGR32, mem64>;
266  def LDC164_P8 : FPLoad<0x35, "ldc1", FGR64, mem64> {
267    let isCodeGenOnly =1;
268  }
269  def SDC164_P8 : FPStore<0x3d, "sdc1", FGR64, mem64> {
270    let isCodeGenOnly =1;
271  }
272}
273
274let Predicates = [NotN64, HasStdEnc] in {
275  def LWC1   : FPLoad<0x31, "lwc1", FGR32, mem>;
276  def SWC1   : FPStore<0x39, "swc1", FGR32, mem>;
277}
278
279let Predicates = [NotN64, HasMips64, HasStdEnc],
280  DecoderNamespace = "Mips64" in {
281  def LDC164 : FPLoad<0x35, "ldc1", FGR64, mem>;
282  def SDC164 : FPStore<0x3d, "sdc1", FGR64, mem>;
283}
284
285let Predicates = [NotN64, NotMips64, HasStdEnc] in {
286  def LDC1   : FPLoad<0x35, "ldc1", AFGR64, mem>;
287  def SDC1   : FPStore<0x3d, "sdc1", AFGR64, mem>;
288}
289
290// Indexed loads and stores.
291let Predicates = [HasFPIdx, HasStdEnc] in {
292  def LWXC1 : FPIdxLoad<0x0, "lwxc1", FGR32, CPURegs, load>;
293  def SWXC1 : FPIdxStore<0x8, "swxc1", FGR32, CPURegs, store>;
294}
295
296let Predicates = [HasMips32r2, NotMips64, HasStdEnc] in {
297  def LDXC1 : FPIdxLoad<0x1, "ldxc1", AFGR64, CPURegs, load>;
298  def SDXC1 : FPIdxStore<0x9, "sdxc1", AFGR64, CPURegs, store>;
299}
300
301let Predicates = [HasMips64, NotN64, HasStdEnc], DecoderNamespace="Mips64" in {
302  def LDXC164 : FPIdxLoad<0x1, "ldxc1", FGR64, CPURegs, load>;
303  def SDXC164 : FPIdxStore<0x9, "sdxc1", FGR64, CPURegs, store>;
304}
305
306// n64
307let Predicates = [IsN64, HasStdEnc], isCodeGenOnly=1 in {
308  def LWXC1_P8   : FPIdxLoad<0x0, "lwxc1", FGR32, CPU64Regs, load>;
309  def LDXC164_P8 : FPIdxLoad<0x1, "ldxc1", FGR64, CPU64Regs, load>;
310  def SWXC1_P8   : FPIdxStore<0x8, "swxc1", FGR32, CPU64Regs, store>;
311  def SDXC164_P8 : FPIdxStore<0x9, "sdxc1", FGR64, CPU64Regs, store>;
312}
313
314// Load/store doubleword indexed unaligned.
315let Predicates = [NotMips64, HasStdEnc] in {
316  def LUXC1 : FPIdxLoad<0x5, "luxc1", AFGR64, CPURegs>;
317  def SUXC1 : FPIdxStore<0xd, "suxc1", AFGR64, CPURegs>;
318}
319
320let Predicates = [HasMips64, HasStdEnc],
321  DecoderNamespace="Mips64" in {
322  def LUXC164 : FPIdxLoad<0x5, "luxc1", FGR64, CPURegs>;
323  def SUXC164 : FPIdxStore<0xd, "suxc1", FGR64, CPURegs>;
324}
325
326/// Floating-point Aritmetic
327def FADD_S : FFR2P<0x00, 16, "add.s", FGR32, fadd>, IsCommutable;
328defm FADD : FFR2P_M<0x00, "add.d", fadd, 1>;
329def FDIV_S : FFR2P<0x03, 16, "div.s", FGR32, fdiv>;
330defm FDIV : FFR2P_M<0x03, "div.d", fdiv>;
331def FMUL_S : FFR2P<0x02, 16, "mul.s", FGR32, fmul>, IsCommutable;
332defm FMUL : FFR2P_M<0x02, "mul.d", fmul, 1>;
333def FSUB_S : FFR2P<0x01, 16, "sub.s", FGR32, fsub>;
334defm FSUB : FFR2P_M<0x01, "sub.d", fsub>;
335
336let Predicates = [HasMips32r2, HasStdEnc] in {
337  def MADD_S : FMADDSUB<0x4, 0, "madd.s", fadd, FGR32>;
338  def MSUB_S : FMADDSUB<0x5, 0, "msub.s", fsub, FGR32>;
339}
340
341let Predicates = [HasMips32r2, NoNaNsFPMath, HasStdEnc] in {
342  def NMADD_S : FNMADDSUB<0x6, 0, "nmadd.s", fadd, FGR32>;
343  def NMSUB_S : FNMADDSUB<0x7, 0, "nmsub.s", fsub, FGR32>;
344}
345
346let Predicates = [HasMips32r2, NotFP64bit, HasStdEnc] in {
347  def MADD_D32 : FMADDSUB<0x4, 1, "madd.d", fadd, AFGR64>;
348  def MSUB_D32 : FMADDSUB<0x5, 1, "msub.d", fsub, AFGR64>;
349}
350
351let Predicates = [HasMips32r2, NotFP64bit, NoNaNsFPMath, HasStdEnc] in {
352  def NMADD_D32 : FNMADDSUB<0x6, 1, "nmadd.d", fadd, AFGR64>;
353  def NMSUB_D32 : FNMADDSUB<0x7, 1, "nmsub.d", fsub, AFGR64>;
354}
355
356let Predicates = [HasMips32r2, IsFP64bit, HasStdEnc], isCodeGenOnly=1 in {
357  def MADD_D64 : FMADDSUB<0x4, 1, "madd.d", fadd, FGR64>;
358  def MSUB_D64 : FMADDSUB<0x5, 1, "msub.d", fsub, FGR64>;
359}
360
361let Predicates = [HasMips32r2, IsFP64bit, NoNaNsFPMath, HasStdEnc],
362    isCodeGenOnly=1 in {
363  def NMADD_D64 : FNMADDSUB<0x6, 1, "nmadd.d", fadd, FGR64>;
364  def NMSUB_D64 : FNMADDSUB<0x7, 1, "nmsub.d", fsub, FGR64>;
365}
366
367//===----------------------------------------------------------------------===//
368// Floating Point Branch Codes
369//===----------------------------------------------------------------------===//
370// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
371// They must be kept in synch.
372def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
373def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;
374
375/// Floating Point Branch of False/True (Likely)
376let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
377  class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> :
378      FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
379        [(MipsFPBrcond op, bb:$dst)]> {
380  let Inst{20-18} = 0;
381  let Inst{17} = nd;
382  let Inst{16} = tf;
383}
384
385let DecoderMethod = "DecodeBC1" in {
386def BC1F  : FBRANCH<0, 0, MIPS_BRANCH_F,  "bc1f">;
387def BC1T  : FBRANCH<0, 1, MIPS_BRANCH_T,  "bc1t">;
388}
389//===----------------------------------------------------------------------===//
390// Floating Point Flag Conditions
391//===----------------------------------------------------------------------===//
392// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
393// They must be kept in synch.
394def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
395def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
396def MIPS_FCOND_OEQ  : PatLeaf<(i32 2)>;
397def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
398def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
399def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
400def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
401def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
402def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
403def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
404def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
405def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
406def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
407def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
408def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
409def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;
410
411class FCMP<bits<5> fmt, RegisterClass RC, string typestr> :
412  FCC<fmt, (outs), (ins RC:$fs, RC:$ft, condcode:$cc),
413      !strconcat("c.$cc.", typestr, "\t$fs, $ft"),
414      [(MipsFPCmp RC:$fs, RC:$ft, imm:$cc)]>;
415
416/// Floating Point Compare
417let Defs=[FCR31] in {
418  def FCMP_S32 : FCMP<0x10, FGR32, "s">;
419  def FCMP_D32 : FCMP<0x11, AFGR64, "d">,
420      Requires<[NotFP64bit, HasStdEnc]>;
421  def FCMP_D64 : FCMP<0x11, FGR64, "d">,
422      Requires<[IsFP64bit, HasStdEnc]> {
423    let DecoderNamespace = "Mips64";
424  }
425}
426
427//===----------------------------------------------------------------------===//
428// Floating Point Pseudo-Instructions
429//===----------------------------------------------------------------------===//
430def MOVCCRToCCR : PseudoSE<(outs CCR:$dst), (ins CCR:$src),
431                           "# MOVCCRToCCR", []>;
432
433// This pseudo instr gets expanded into 2 mtc1 instrs after register
434// allocation.
435def BuildPairF64 :
436  PseudoSE<(outs AFGR64:$dst),
437           (ins CPURegs:$lo, CPURegs:$hi), "",
438           [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
439
440// This pseudo instr gets expanded into 2 mfc1 instrs after register
441// allocation.
442// if n is 0, lower part of src is extracted.
443// if n is 1, higher part of src is extracted.
444def ExtractElementF64 :
445  PseudoSE<(outs CPURegs:$dst), (ins AFGR64:$src, i32imm:$n), "",
446           [(set CPURegs:$dst, (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
447
448//===----------------------------------------------------------------------===//
449// Floating Point Patterns
450//===----------------------------------------------------------------------===//
451def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>;
452def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
453
454def : MipsPat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
455def : MipsPat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
456
457let Predicates = [NotFP64bit, HasStdEnc] in {
458  def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
459                (CVT_D32_W (MTC1 CPURegs:$src))>;
460  def : MipsPat<(i32 (fp_to_sint AFGR64:$src)),
461                (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
462  def : MipsPat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
463  def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
464}
465
466let Predicates = [IsFP64bit, HasStdEnc] in {
467  def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>;
468  def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>;
469
470  def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
471                (CVT_D64_W (MTC1 CPURegs:$src))>;
472  def : MipsPat<(f32 (sint_to_fp CPU64Regs:$src)),
473                (CVT_S_L (DMTC1 CPU64Regs:$src))>;
474  def : MipsPat<(f64 (sint_to_fp CPU64Regs:$src)),
475                (CVT_D64_L (DMTC1 CPU64Regs:$src))>;
476
477  def : MipsPat<(i32 (fp_to_sint FGR64:$src)),
478                (MFC1 (TRUNC_W_D64 FGR64:$src))>;
479  def : MipsPat<(i64 (fp_to_sint FGR32:$src)), (DMFC1 (TRUNC_L_S FGR32:$src))>;
480  def : MipsPat<(i64 (fp_to_sint FGR64:$src)),
481                (DMFC1 (TRUNC_L_D64 FGR64:$src))>;
482
483  def : MipsPat<(f32 (fround FGR64:$src)), (CVT_S_D64 FGR64:$src)>;
484  def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D64_S FGR32:$src)>;
485}
486