MipsInstrFPU.td revision 1e7739f6140da773b6e998525d7900fa82670f00
1//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Mips FPU instruction set.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Floating Point Instructions
16// ------------------------
17// * 64bit fp:
18//    - 32 64-bit registers (default mode)
19//    - 16 even 32-bit registers (32-bit compatible mode) for
20//      single and double access.
21// * 32bit fp:
22//    - 16 even 32-bit registers - single and double (aliased)
23//    - 32 32-bit registers (within single-only mode)
24//===----------------------------------------------------------------------===//
25
26// Floating Point Compare and Branch
27def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
28                                            SDTCisVT<1, OtherVT>]>;
29def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
30                                         SDTCisVT<2, i32>]>;
31def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
32                                          SDTCisSameAs<1, 2>]>;
33def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
34                                                SDTCisVT<1, i32>,
35                                                SDTCisSameAs<1, 2>]>;
36def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
37                                                     SDTCisVT<1, f64>,
38                                                     SDTCisVT<2, i32>]>;
39
40def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
41def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
42def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
43def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
44                          [SDNPHasChain, SDNPOptInGlue]>;
45def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
46def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
47                                   SDT_MipsExtractElementF64>;
48
49// Operand for printing out a condition code.
50let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in
51  def condcode : Operand<i32>;
52
53//===----------------------------------------------------------------------===//
54// Feature predicates.
55//===----------------------------------------------------------------------===//
56
57def IsFP64bit        : Predicate<"Subtarget.isFP64bit()">,
58                       AssemblerPredicate<"FeatureFP64Bit">;
59def NotFP64bit       : Predicate<"!Subtarget.isFP64bit()">,
60                       AssemblerPredicate<"!FeatureFP64Bit">;
61def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">,
62                       AssemblerPredicate<"FeatureSingleFloat">;
63def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">,
64                       AssemblerPredicate<"!FeatureSingleFloat">;
65
66// FP immediate patterns.
67def fpimm0 : PatLeaf<(fpimm), [{
68  return N->isExactlyValue(+0.0);
69}]>;
70
71def fpimm0neg : PatLeaf<(fpimm), [{
72  return N->isExactlyValue(-0.0);
73}]>;
74
75//===----------------------------------------------------------------------===//
76// Instruction Class Templates
77//
78// A set of multiclasses is used to address the register usage.
79//
80// S32 - single precision in 16 32bit even fp registers
81//       single precision in 32 32bit fp registers in SingleOnly mode
82// S64 - single precision in 32 64bit fp registers (In64BitMode)
83// D32 - double precision in 16 32bit even fp registers
84// D64 - double precision in 32 64bit fp registers (In64BitMode)
85//
86// Only S32 and D32 are supported right now.
87//===----------------------------------------------------------------------===//
88
89class ADDS_FT<string opstr, RegisterClass RC, InstrItinClass Itin, bit IsComm,
90              SDPatternOperator OpNode= null_frag> :
91  InstSE<(outs RC:$fd), (ins RC:$fs, RC:$ft),
92         !strconcat(opstr, "\t$fd, $fs, $ft"),
93         [(set RC:$fd, (OpNode RC:$fs, RC:$ft))], Itin, FrmFR> {
94  let isCommutable = IsComm;
95}
96
97multiclass ADDS_M<string opstr, InstrItinClass Itin, bit IsComm,
98                  SDPatternOperator OpNode = null_frag> {
99  def _D32 : ADDS_FT<opstr, AFGR64, Itin, IsComm, OpNode>,
100             Requires<[NotFP64bit, HasStdEnc]>;
101  def _D64 : ADDS_FT<opstr, FGR64, Itin, IsComm, OpNode>,
102             Requires<[IsFP64bit, HasStdEnc]> {
103    string DecoderNamespace = "Mips64";
104  }
105}
106
107class ABSS_FT<string opstr, RegisterClass DstRC, RegisterClass SrcRC,
108              InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
109  InstSE<(outs DstRC:$fd), (ins SrcRC:$fs), !strconcat(opstr, "\t$fd, $fs"),
110         [(set DstRC:$fd, (OpNode SrcRC:$fs))], Itin, FrmFR>;
111
112multiclass ABSS_M<string opstr, InstrItinClass Itin,
113                  SDPatternOperator OpNode= null_frag> {
114  def _D32 : ABSS_FT<opstr, AFGR64, AFGR64, Itin, OpNode>,
115             Requires<[NotFP64bit, HasStdEnc]>;
116  def _D64 : ABSS_FT<opstr, FGR64, FGR64, Itin, OpNode>,
117             Requires<[IsFP64bit, HasStdEnc]> {
118    string DecoderNamespace = "Mips64";
119  }
120}
121
122multiclass ROUND_M<string opstr, InstrItinClass Itin> {
123  def _D32 : ABSS_FT<opstr, FGR32, AFGR64, Itin>,
124             Requires<[NotFP64bit, HasStdEnc]>;
125  def _D64 : ABSS_FT<opstr, FGR32, FGR64, Itin>,
126             Requires<[IsFP64bit, HasStdEnc]> {
127    let DecoderNamespace = "Mips64";
128  }
129}
130
131class MFC1_FT<string opstr, RegisterClass DstRC, RegisterClass SrcRC,
132              InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
133  InstSE<(outs DstRC:$rt), (ins SrcRC:$fs), !strconcat(opstr, "\t$rt, $fs"),
134         [(set DstRC:$rt, (OpNode SrcRC:$fs))], Itin, FrmFR>;
135
136class MTC1_FT<string opstr, RegisterClass DstRC, RegisterClass SrcRC,
137              InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
138  InstSE<(outs DstRC:$fs), (ins SrcRC:$rt), !strconcat(opstr, "\t$rt, $fs"),
139         [(set DstRC:$fs, (OpNode SrcRC:$rt))], Itin, FrmFR>;
140
141class LW_FT<string opstr, RegisterClass RC, InstrItinClass Itin,
142            Operand MemOpnd, SDPatternOperator OpNode= null_frag> :
143  InstSE<(outs RC:$rt), (ins MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
144         [(set RC:$rt, (OpNode addr:$addr))], Itin, FrmFI> {
145  let DecoderMethod = "DecodeFMem";
146}
147
148class SW_FT<string opstr, RegisterClass RC, InstrItinClass Itin,
149            Operand MemOpnd, SDPatternOperator OpNode= null_frag> :
150  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
151         [(OpNode RC:$rt, addr:$addr)], Itin, FrmFI> {
152  let DecoderMethod = "DecodeFMem";
153}
154
155class MADDS_FT<string opstr, RegisterClass RC, InstrItinClass Itin,
156               SDPatternOperator OpNode = null_frag> :
157  InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
158         !strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
159         [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))], Itin, FrmFR>;
160
161class NMADDS_FT<string opstr, RegisterClass RC, InstrItinClass Itin,
162                SDPatternOperator OpNode = null_frag> :
163  InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
164         !strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
165         [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))],
166         Itin, FrmFR>;
167
168class LWXC1_FT<string opstr, RegisterClass DRC, RegisterClass PRC,
169               InstrItinClass Itin, SDPatternOperator OpNode = null_frag> :
170  InstSE<(outs DRC:$fd), (ins PRC:$base, PRC:$index),
171         !strconcat(opstr, "\t$fd, ${index}(${base})"),
172         [(set DRC:$fd, (OpNode (add PRC:$base, PRC:$index)))], Itin, FrmFI>;
173
174class SWXC1_FT<string opstr, RegisterClass DRC, RegisterClass PRC,
175               InstrItinClass Itin, SDPatternOperator OpNode = null_frag> :
176  InstSE<(outs), (ins DRC:$fs, PRC:$base, PRC:$index),
177         !strconcat(opstr, "\t$fs, ${index}(${base})"),
178         [(OpNode DRC:$fs, (add PRC:$base, PRC:$index))], Itin, FrmFI>;
179
180class BC1F_FT<string opstr, InstrItinClass Itin,
181              SDPatternOperator Op = null_frag>  :
182  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
183         [(MipsFPBrcond Op, bb:$offset)], Itin, FrmFI> {
184  let isBranch = 1;
185  let isTerminator = 1;
186  let hasDelaySlot = 1;
187  let Defs = [AT];
188  let Uses = [FCR31];
189}
190
191class CEQS_FT<string typestr, RegisterClass RC, InstrItinClass Itin,
192              SDPatternOperator OpNode = null_frag>  :
193  InstSE<(outs), (ins RC:$fs, RC:$ft, condcode:$cond),
194         !strconcat("c.$cond.", typestr, "\t$fs, $ft"),
195         [(OpNode RC:$fs, RC:$ft, imm:$cond)], Itin, FrmFR> {
196  let Defs = [FCR31];
197}
198
199//===----------------------------------------------------------------------===//
200// Floating Point Instructions
201//===----------------------------------------------------------------------===//
202def ROUND_W_S  : ABSS_FT<"round.w.s", FGR32, FGR32, IIFcvt>, ABSS_FM<0xc, 16>;
203def TRUNC_W_S  : ABSS_FT<"trunc.w.s", FGR32, FGR32, IIFcvt>, ABSS_FM<0xd, 16>;
204def CEIL_W_S   : ABSS_FT<"ceil.w.s", FGR32, FGR32, IIFcvt>, ABSS_FM<0xe, 16>;
205def FLOOR_W_S  : ABSS_FT<"floor.w.s", FGR32, FGR32, IIFcvt>, ABSS_FM<0xf, 16>;
206def CVT_W_S    : ABSS_FT<"cvt.w.s", FGR32, FGR32, IIFcvt>, ABSS_FM<0x24, 16>,
207                 NeverHasSideEffects;
208
209defm ROUND_W : ROUND_M<"round.w.d", IIFcvt>, ABSS_FM<0xc, 17>;
210defm TRUNC_W : ROUND_M<"trunc.w.d", IIFcvt>, ABSS_FM<0xd, 17>;
211defm CEIL_W  : ROUND_M<"ceil.w.d", IIFcvt>, ABSS_FM<0xe, 17>;
212defm FLOOR_W : ROUND_M<"floor.w.d", IIFcvt>, ABSS_FM<0xf, 17>;
213defm CVT_W   : ROUND_M<"cvt.w.d", IIFcvt>, ABSS_FM<0x24, 17>,
214               NeverHasSideEffects;
215
216let Predicates = [IsFP64bit, HasStdEnc], DecoderNamespace = "Mips64" in {
217  def ROUND_L_S : ABSS_FT<"round.l.s", FGR64, FGR32, IIFcvt>, ABSS_FM<0x8, 16>;
218  def ROUND_L_D64 : ABSS_FT<"round.l.d", FGR64, FGR64, IIFcvt>,
219                    ABSS_FM<0x8, 17>;
220  def TRUNC_L_S : ABSS_FT<"trunc.l.s", FGR64, FGR32, IIFcvt>, ABSS_FM<0x9, 16>;
221  def TRUNC_L_D64 : ABSS_FT<"trunc.l.d", FGR64, FGR64, IIFcvt>,
222                    ABSS_FM<0x9, 17>;
223  def CEIL_L_S  : ABSS_FT<"ceil.l.s", FGR64, FGR32, IIFcvt>, ABSS_FM<0xa, 16>;
224  def CEIL_L_D64 : ABSS_FT<"ceil.l.d", FGR64, FGR64, IIFcvt>, ABSS_FM<0xa, 17>;
225  def FLOOR_L_S : ABSS_FT<"floor.l.s", FGR64, FGR32, IIFcvt>, ABSS_FM<0xb, 16>;
226  def FLOOR_L_D64 : ABSS_FT<"floor.l.d", FGR64, FGR64, IIFcvt>,
227                    ABSS_FM<0xb, 17>;
228}
229
230def CVT_S_W : ABSS_FT<"cvt.s.w", FGR32, FGR32, IIFcvt>, ABSS_FM<0x20, 20>;
231def CVT_L_S : ABSS_FT<"cvt.l.s", FGR64, FGR32, IIFcvt>, ABSS_FM<0x25, 16>,
232              NeverHasSideEffects;
233def CVT_L_D64: ABSS_FT<"cvt.l.d", FGR64, FGR64, IIFcvt>, ABSS_FM<0x25, 17>,
234               NeverHasSideEffects;
235
236let Predicates = [NotFP64bit, HasStdEnc], neverHasSideEffects = 1 in {
237  def CVT_S_D32 : ABSS_FT<"cvt.s.d", FGR32, AFGR64, IIFcvt>, ABSS_FM<0x20, 17>;
238  def CVT_D32_W : ABSS_FT<"cvt.d.w", AFGR64, FGR32, IIFcvt>, ABSS_FM<0x21, 20>;
239  def CVT_D32_S : ABSS_FT<"cvt.d.s", AFGR64, FGR32, IIFcvt>, ABSS_FM<0x21, 16>;
240}
241
242let Predicates = [IsFP64bit, HasStdEnc], DecoderNamespace = "Mips64",
243    neverHasSideEffects = 1 in {
244 def CVT_S_D64 : ABSS_FT<"cvt.s.d", FGR32, FGR64, IIFcvt>, ABSS_FM<0x20, 17>;
245 def CVT_S_L   : ABSS_FT<"cvt.s.l", FGR32, FGR64, IIFcvt>, ABSS_FM<0x20, 21>;
246 def CVT_D64_W : ABSS_FT<"cvt.d.w", FGR64, FGR32, IIFcvt>, ABSS_FM<0x21, 20>;
247 def CVT_D64_S : ABSS_FT<"cvt.d.s", FGR64, FGR32, IIFcvt>, ABSS_FM<0x21, 16>;
248 def CVT_D64_L : ABSS_FT<"cvt.d.l", FGR64, FGR64, IIFcvt>, ABSS_FM<0x21, 21>;
249}
250
251let Predicates = [NoNaNsFPMath, HasStdEnc] in {
252  def FABS_S : ABSS_FT<"abs.s", FGR32, FGR32, IIFcvt, fabs>, ABSS_FM<0x5, 16>;
253  def FNEG_S : ABSS_FT<"neg.s", FGR32, FGR32, IIFcvt, fneg>, ABSS_FM<0x7, 16>;
254  defm FABS : ABSS_M<"abs.d", IIFcvt, fabs>, ABSS_FM<0x5, 17>;
255  defm FNEG : ABSS_M<"neg.d", IIFcvt, fneg>, ABSS_FM<0x7, 17>;
256}
257
258def  FSQRT_S : ABSS_FT<"sqrt.s", FGR32, FGR32, IIFsqrtSingle, fsqrt>,
259               ABSS_FM<0x4, 16>;
260defm FSQRT : ABSS_M<"sqrt.d", IIFsqrtDouble, fsqrt>, ABSS_FM<0x4, 17>;
261
262// The odd-numbered registers are only referenced when doing loads,
263// stores, and moves between floating-point and integer registers.
264// When defining instructions, we reference all 32-bit registers,
265// regardless of register aliasing.
266
267/// Move Control Registers From/To CPU Registers
268def CFC1 : MFC1_FT<"cfc1", CPURegs, CCR, IIFmove>, MFC1_FM<2>;
269def CTC1 : MTC1_FT<"ctc1", CCR, CPURegs, IIFmove>, MFC1_FM<6>;
270def MFC1 : MFC1_FT<"mfc1", CPURegs, FGR32, IIFmove, bitconvert>, MFC1_FM<0>;
271def MTC1 : MTC1_FT<"mtc1", FGR32, CPURegs, IIFmove, bitconvert>, MFC1_FM<4>;
272def DMFC1 : MFC1_FT<"dmfc1", CPU64Regs, FGR64, IIFmove, bitconvert>, MFC1_FM<1>;
273def DMTC1 : MTC1_FT<"dmtc1", FGR64, CPU64Regs, IIFmove, bitconvert>, MFC1_FM<5>;
274
275def FMOV_S   : ABSS_FT<"mov.s", FGR32, FGR32, IIFmove>, ABSS_FM<0x6, 16>;
276def FMOV_D32 : ABSS_FT<"mov.d", AFGR64, AFGR64, IIFmove>, ABSS_FM<0x6, 17>,
277               Requires<[NotFP64bit, HasStdEnc]>;
278def FMOV_D64 : ABSS_FT<"mov.d", FGR64, FGR64, IIFmove>, ABSS_FM<0x6, 17>,
279               Requires<[IsFP64bit, HasStdEnc]> {
280  let DecoderNamespace = "Mips64";
281}
282
283/// Floating Point Memory Instructions
284let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
285  def LWC1_P8 : LW_FT<"lwc1", FGR32, IILoad, mem64, load>, LW_FM<0x31>;
286  def SWC1_P8 : SW_FT<"swc1", FGR32, IIStore, mem64, store>, LW_FM<0x39>;
287  def LDC164_P8 : LW_FT<"ldc1", FGR64, IILoad, mem64, load>, LW_FM<0x35> {
288    let isCodeGenOnly =1;
289  }
290  def SDC164_P8 : SW_FT<"sdc1", FGR64, IIStore, mem64, store>, LW_FM<0x3d> {
291    let isCodeGenOnly =1;
292  }
293}
294
295let Predicates = [NotN64, HasStdEnc] in {
296  def LWC1 : LW_FT<"lwc1", FGR32, IILoad, mem, load>, LW_FM<0x31>;
297  def SWC1 : SW_FT<"swc1", FGR32, IIStore, mem, store>, LW_FM<0x39>;
298}
299
300let Predicates = [NotN64, HasMips64, HasStdEnc],
301  DecoderNamespace = "Mips64" in {
302  def LDC164 : LW_FT<"ldc1", FGR64, IILoad, mem, load>, LW_FM<0x35>;
303  def SDC164 : SW_FT<"sdc1", FGR64, IIStore, mem, store>, LW_FM<0x3d>;
304}
305
306let Predicates = [NotN64, NotMips64, HasStdEnc] in {
307  def LDC1 : LW_FT<"ldc1", AFGR64, IILoad, mem, load>, LW_FM<0x35>;
308  def SDC1 : SW_FT<"sdc1", AFGR64, IIStore, mem, store>, LW_FM<0x3d>;
309}
310
311// Indexed loads and stores.
312let Predicates = [HasFPIdx, HasStdEnc] in {
313  def LWXC1 : LWXC1_FT<"lwxc1", FGR32, CPURegs, IILoad, load>, LWXC1_FM<0>;
314  def SWXC1 : SWXC1_FT<"swxc1", FGR32, CPURegs, IIStore, store>, SWXC1_FM<8>;
315}
316
317let Predicates = [HasMips32r2, NotMips64, HasStdEnc] in {
318  def LDXC1 : LWXC1_FT<"ldxc1", AFGR64, CPURegs, IILoad, load>, LWXC1_FM<1>;
319  def SDXC1 : SWXC1_FT<"sdxc1", AFGR64, CPURegs, IIStore, store>, SWXC1_FM<9>;
320}
321
322let Predicates = [HasMips64, NotN64, HasStdEnc], DecoderNamespace="Mips64" in {
323  def LDXC164 : LWXC1_FT<"ldxc1", FGR64, CPURegs, IILoad, load>, LWXC1_FM<1>;
324  def SDXC164 : SWXC1_FT<"sdxc1", FGR64, CPURegs, IIStore, store>, SWXC1_FM<9>;
325}
326
327// n64
328let Predicates = [IsN64, HasStdEnc], isCodeGenOnly=1 in {
329  def LWXC1_P8 : LWXC1_FT<"lwxc1", FGR32, CPU64Regs, IILoad, load>, LWXC1_FM<0>;
330  def LDXC164_P8 : LWXC1_FT<"ldxc1", FGR64, CPU64Regs, IILoad, load>,
331                   LWXC1_FM<1>;
332  def SWXC1_P8 : SWXC1_FT<"swxc1", FGR32, CPU64Regs, IIStore, store>,
333                 SWXC1_FM<8>;
334  def SDXC164_P8 : SWXC1_FT<"sdxc1", FGR64, CPU64Regs, IIStore, store>,
335                   SWXC1_FM<9>;
336}
337
338// Load/store doubleword indexed unaligned.
339let Predicates = [NotMips64, HasStdEnc] in {
340  def LUXC1 : LWXC1_FT<"luxc1", AFGR64, CPURegs, IILoad>, LWXC1_FM<0x5>;
341  def SUXC1 : SWXC1_FT<"suxc1", AFGR64, CPURegs, IIStore>, SWXC1_FM<0xd>;
342}
343
344let Predicates = [HasMips64, HasStdEnc],
345  DecoderNamespace="Mips64" in {
346  def LUXC164 : LWXC1_FT<"luxc1", FGR64, CPURegs, IILoad>, LWXC1_FM<0x5>;
347  def SUXC164 : SWXC1_FT<"suxc1", FGR64, CPURegs, IIStore>, SWXC1_FM<0xd>;
348}
349
350/// Floating-point Aritmetic
351def FADD_S : ADDS_FT<"add.s", FGR32, IIFadd, 1, fadd>, ADDS_FM<0x00, 16>;
352defm FADD : ADDS_M<"add.d", IIFadd, 1, fadd>, ADDS_FM<0x00, 17>;
353def FDIV_S : ADDS_FT<"div.s", FGR32, IIFdivSingle, 0, fdiv>, ADDS_FM<0x03, 16>;
354defm FDIV : ADDS_M<"div.d", IIFdivDouble, 0, fdiv>, ADDS_FM<0x03, 17>;
355def FMUL_S : ADDS_FT<"mul.s", FGR32, IIFmulSingle, 1, fmul>, ADDS_FM<0x02, 16>;
356defm FMUL : ADDS_M<"mul.d", IIFmulDouble, 1, fmul>, ADDS_FM<0x02, 17>;
357def FSUB_S : ADDS_FT<"sub.s", FGR32, IIFadd, 0, fsub>, ADDS_FM<0x01, 16>;
358defm FSUB : ADDS_M<"sub.d", IIFadd, 0, fsub>, ADDS_FM<0x01, 17>;
359
360let Predicates = [HasMips32r2, HasStdEnc] in {
361  def MADD_S : MADDS_FT<"madd.s", FGR32, IIFmulSingle, fadd>, MADDS_FM<4, 0>;
362  def MSUB_S : MADDS_FT<"msub.s", FGR32, IIFmulSingle, fsub>, MADDS_FM<5, 0>;
363}
364
365let Predicates = [HasMips32r2, NoNaNsFPMath, HasStdEnc] in {
366  def NMADD_S : NMADDS_FT<"nmadd.s", FGR32, IIFmulSingle, fadd>, MADDS_FM<6, 0>;
367  def NMSUB_S : NMADDS_FT<"nmsub.s", FGR32, IIFmulSingle, fsub>, MADDS_FM<7, 0>;
368}
369
370let Predicates = [HasMips32r2, NotFP64bit, HasStdEnc] in {
371  def MADD_D32 : MADDS_FT<"madd.d", AFGR64, IIFmulDouble, fadd>, MADDS_FM<4, 1>;
372  def MSUB_D32 : MADDS_FT<"msub.d", AFGR64, IIFmulDouble, fsub>, MADDS_FM<5, 1>;
373}
374
375let Predicates = [HasMips32r2, NotFP64bit, NoNaNsFPMath, HasStdEnc] in {
376  def NMADD_D32 : NMADDS_FT<"nmadd.d", AFGR64, IIFmulDouble, fadd>,
377                  MADDS_FM<6, 1>;
378  def NMSUB_D32 : NMADDS_FT<"nmsub.d", AFGR64, IIFmulDouble, fsub>,
379                  MADDS_FM<7, 1>;
380}
381
382let Predicates = [HasMips32r2, IsFP64bit, HasStdEnc], isCodeGenOnly=1 in {
383  def MADD_D64 : MADDS_FT<"madd.d", FGR64, IIFmulDouble, fadd>, MADDS_FM<4, 1>;
384  def MSUB_D64 : MADDS_FT<"msub.d", FGR64, IIFmulDouble, fsub>, MADDS_FM<5, 1>;
385}
386
387let Predicates = [HasMips32r2, IsFP64bit, NoNaNsFPMath, HasStdEnc],
388    isCodeGenOnly=1 in {
389  def NMADD_D64 : NMADDS_FT<"nmadd.d", FGR64, IIFmulDouble, fadd>,
390                  MADDS_FM<6, 1>;
391  def NMSUB_D64 : NMADDS_FT<"nmsub.d", FGR64, IIFmulDouble, fsub>,
392                  MADDS_FM<7, 1>;
393}
394
395//===----------------------------------------------------------------------===//
396// Floating Point Branch Codes
397//===----------------------------------------------------------------------===//
398// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
399// They must be kept in synch.
400def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
401def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;
402
403let DecoderMethod = "DecodeBC1" in {
404def BC1F : BC1F_FT<"bc1f", IIBranch, MIPS_BRANCH_F>, BC1F_FM<0, 0>;
405def BC1T : BC1F_FT<"bc1t", IIBranch, MIPS_BRANCH_T>, BC1F_FM<0, 1>;
406}
407//===----------------------------------------------------------------------===//
408// Floating Point Flag Conditions
409//===----------------------------------------------------------------------===//
410// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
411// They must be kept in synch.
412def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
413def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
414def MIPS_FCOND_OEQ  : PatLeaf<(i32 2)>;
415def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
416def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
417def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
418def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
419def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
420def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
421def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
422def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
423def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
424def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
425def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
426def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
427def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;
428
429/// Floating Point Compare
430def FCMP_S32 : CEQS_FT<"s", FGR32, IIFcmp, MipsFPCmp>, CEQS_FM<16>;
431def FCMP_D32 : CEQS_FT<"d", AFGR64, IIFcmp, MipsFPCmp>, CEQS_FM<17>,
432               Requires<[NotFP64bit, HasStdEnc]>;
433let DecoderNamespace = "Mips64" in
434def FCMP_D64 : CEQS_FT<"d", FGR64, IIFcmp, MipsFPCmp>, CEQS_FM<17>,
435               Requires<[IsFP64bit, HasStdEnc]>;
436
437//===----------------------------------------------------------------------===//
438// Floating Point Pseudo-Instructions
439//===----------------------------------------------------------------------===//
440def MOVCCRToCCR : PseudoSE<(outs CCR:$dst), (ins CCR:$src), []>;
441
442// This pseudo instr gets expanded into 2 mtc1 instrs after register
443// allocation.
444def BuildPairF64 :
445  PseudoSE<(outs AFGR64:$dst),
446           (ins CPURegs:$lo, CPURegs:$hi),
447           [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
448
449// This pseudo instr gets expanded into 2 mfc1 instrs after register
450// allocation.
451// if n is 0, lower part of src is extracted.
452// if n is 1, higher part of src is extracted.
453def ExtractElementF64 :
454  PseudoSE<(outs CPURegs:$dst), (ins AFGR64:$src, i32imm:$n),
455           [(set CPURegs:$dst, (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
456
457//===----------------------------------------------------------------------===//
458// Floating Point Patterns
459//===----------------------------------------------------------------------===//
460def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>;
461def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
462
463def : MipsPat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
464def : MipsPat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
465
466let Predicates = [NotFP64bit, HasStdEnc] in {
467  def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
468                (CVT_D32_W (MTC1 CPURegs:$src))>;
469  def : MipsPat<(i32 (fp_to_sint AFGR64:$src)),
470                (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
471  def : MipsPat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
472  def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
473}
474
475let Predicates = [IsFP64bit, HasStdEnc] in {
476  def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>;
477  def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>;
478
479  def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
480                (CVT_D64_W (MTC1 CPURegs:$src))>;
481  def : MipsPat<(f32 (sint_to_fp CPU64Regs:$src)),
482                (CVT_S_L (DMTC1 CPU64Regs:$src))>;
483  def : MipsPat<(f64 (sint_to_fp CPU64Regs:$src)),
484                (CVT_D64_L (DMTC1 CPU64Regs:$src))>;
485
486  def : MipsPat<(i32 (fp_to_sint FGR64:$src)),
487                (MFC1 (TRUNC_W_D64 FGR64:$src))>;
488  def : MipsPat<(i64 (fp_to_sint FGR32:$src)), (DMFC1 (TRUNC_L_S FGR32:$src))>;
489  def : MipsPat<(i64 (fp_to_sint FGR64:$src)),
490                (DMFC1 (TRUNC_L_D64 FGR64:$src))>;
491
492  def : MipsPat<(f32 (fround FGR64:$src)), (CVT_S_D64 FGR64:$src)>;
493  def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D64_S FGR32:$src)>;
494}
495