MipsInstrFPU.td revision 3c77033a902af3185aa9a759c4a845fa359a475c
1//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Mips FPU instruction set.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Floating Point Instructions
16// ------------------------
17// * 64bit fp:
18//    - 32 64-bit registers (default mode)
19//    - 16 even 32-bit registers (32-bit compatible mode) for
20//      single and double access.
21// * 32bit fp:
22//    - 16 even 32-bit registers - single and double (aliased)
23//    - 32 32-bit registers (within single-only mode)
24//===----------------------------------------------------------------------===//
25
26// Floating Point Compare and Branch
27def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
28                                            SDTCisVT<1, OtherVT>]>;
29def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
30                                         SDTCisVT<2, i32>]>;
31def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
32                                          SDTCisSameAs<1, 2>]>;
33def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
34                                                SDTCisVT<1, i32>,
35                                                SDTCisSameAs<1, 2>]>;
36def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
37                                                     SDTCisVT<1, f64>,
38                                                     SDTCisVT<2, i32>]>;
39
40def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
41def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
42def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
43def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
44                          [SDNPHasChain, SDNPOptInGlue]>;
45def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
46def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
47                                   SDT_MipsExtractElementF64>;
48
49// Operand for printing out a condition code.
50let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in
51  def condcode : Operand<i32>;
52
53//===----------------------------------------------------------------------===//
54// Feature predicates.
55//===----------------------------------------------------------------------===//
56
57def IsFP64bit        : Predicate<"Subtarget.isFP64bit()">,
58                       AssemblerPredicate<"FeatureFP64Bit">;
59def NotFP64bit       : Predicate<"!Subtarget.isFP64bit()">,
60                       AssemblerPredicate<"!FeatureFP64Bit">;
61def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">,
62                       AssemblerPredicate<"FeatureSingleFloat">;
63def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">,
64                       AssemblerPredicate<"!FeatureSingleFloat">;
65
66// FP immediate patterns.
67def fpimm0 : PatLeaf<(fpimm), [{
68  return N->isExactlyValue(+0.0);
69}]>;
70
71def fpimm0neg : PatLeaf<(fpimm), [{
72  return N->isExactlyValue(-0.0);
73}]>;
74
75//===----------------------------------------------------------------------===//
76// Instruction Class Templates
77//
78// A set of multiclasses is used to address the register usage.
79//
80// S32 - single precision in 16 32bit even fp registers
81//       single precision in 32 32bit fp registers in SingleOnly mode
82// S64 - single precision in 32 64bit fp registers (In64BitMode)
83// D32 - double precision in 16 32bit even fp registers
84// D64 - double precision in 32 64bit fp registers (In64BitMode)
85//
86// Only S32 and D32 are supported right now.
87//===----------------------------------------------------------------------===//
88
89// FP load.
90let DecoderMethod = "DecodeFMem" in {
91class FPLoad<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
92  FMem<op, (outs RC:$ft), (ins MemOpnd:$addr),
93      !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (load addr:$addr))],
94      IILoad>;
95
96// FP store.
97class FPStore<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
98  FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr),
99      !strconcat(opstr, "\t$ft, $addr"), [(store RC:$ft, addr:$addr)],
100      IIStore>;
101}
102// FP indexed load.
103class FPIdxLoad<bits<6> funct, string opstr, RegisterClass DRC,
104                RegisterClass PRC, SDPatternOperator FOp = null_frag>:
105  FFMemIdx<funct, (outs DRC:$fd), (ins PRC:$base, PRC:$index),
106           !strconcat(opstr, "\t$fd, ${index}(${base})"),
107           [(set DRC:$fd, (FOp (add PRC:$base, PRC:$index)))]> {
108  let fs = 0;
109}
110
111// FP indexed store.
112class FPIdxStore<bits<6> funct, string opstr, RegisterClass DRC,
113                 RegisterClass PRC, SDPatternOperator FOp= null_frag>:
114  FFMemIdx<funct, (outs), (ins DRC:$fs, PRC:$base, PRC:$index),
115           !strconcat(opstr, "\t$fs, ${index}(${base})"),
116           [(FOp DRC:$fs, (add PRC:$base, PRC:$index))]> {
117  let fd = 0;
118}
119
120// Instructions that convert an FP value to 32-bit fixed point.
121multiclass FFR1_W_M<bits<6> funct, string opstr> {
122  def _S   : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>;
123  def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>,
124             Requires<[NotFP64bit, HasStandardEncoding]>;
125  def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>,
126             Requires<[IsFP64bit, HasStandardEncoding]> {
127    let DecoderNamespace = "Mips64";
128  }
129}
130
131// Instructions that convert an FP value to 64-bit fixed point.
132let Predicates = [IsFP64bit, HasStandardEncoding], DecoderNamespace = "Mips64" in
133multiclass FFR1_L_M<bits<6> funct, string opstr> {
134  def _S   : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>;
135  def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>;
136}
137
138// FP-to-FP conversion instructions.
139multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
140  def _S   : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>;
141  def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>,
142             Requires<[NotFP64bit, HasStandardEncoding]>;
143  def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>,
144             Requires<[IsFP64bit, HasStandardEncoding]> {
145    let DecoderNamespace = "Mips64";
146  }
147}
148
149multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> {
150  let isCommutable = isComm in {
151  def _S   : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>;
152  def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>,
153             Requires<[NotFP64bit, HasStandardEncoding]>;
154  def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>,
155             Requires<[IsFP64bit, HasStandardEncoding]> {
156    let DecoderNamespace = "Mips64";
157  }
158}
159}
160
161// FP madd/msub/nmadd/nmsub instruction classes.
162class FMADDSUB<bits<3> funct, bits<3> fmt, string opstr, string fmtstr,
163               SDNode OpNode, RegisterClass RC> :
164  FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
165            !strconcat(opstr, ".", fmtstr, "\t$fd, $fr, $fs, $ft"),
166            [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))]>;
167
168class FNMADDSUB<bits<3> funct, bits<3> fmt, string opstr, string fmtstr,
169                SDNode OpNode, RegisterClass RC> :
170  FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
171            !strconcat(opstr, ".", fmtstr, "\t$fd, $fr, $fs, $ft"),
172            [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))]>;
173
174//===----------------------------------------------------------------------===//
175// Floating Point Instructions
176//===----------------------------------------------------------------------===//
177defm ROUND_W : FFR1_W_M<0xc, "round">;
178defm ROUND_L : FFR1_L_M<0x8, "round">;
179defm TRUNC_W : FFR1_W_M<0xd, "trunc">;
180defm TRUNC_L : FFR1_L_M<0x9, "trunc">;
181defm CEIL_W  : FFR1_W_M<0xe, "ceil">;
182defm CEIL_L  : FFR1_L_M<0xa, "ceil">;
183defm FLOOR_W : FFR1_W_M<0xf, "floor">;
184defm FLOOR_L : FFR1_L_M<0xb, "floor">;
185defm CVT_W   : FFR1_W_M<0x24, "cvt">, NeverHasSideEffects;
186//defm CVT_L   : FFR1_L_M<0x25, "cvt">;
187
188def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>, NeverHasSideEffects;
189def CVT_L_S : FFR1<0x25, 16, "cvt", "l.s", FGR64, FGR32>, NeverHasSideEffects;
190def CVT_L_D64: FFR1<0x25, 17, "cvt", "l.d", FGR64, FGR64>, NeverHasSideEffects;
191
192let Predicates = [NotFP64bit, HasStandardEncoding], neverHasSideEffects = 1 in {
193  def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>;
194  def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>;
195  def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>;
196}
197
198let Predicates = [IsFP64bit, HasStandardEncoding], DecoderNamespace = "Mips64",
199    neverHasSideEffects = 1 in {
200 def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>;
201 def CVT_S_L   : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>;
202 def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>;
203 def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>;
204 def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>;
205}
206
207let Predicates = [NoNaNsFPMath, HasStandardEncoding] in {
208  defm FABS    : FFR1P_M<0x5, "abs",  fabs>;
209  defm FNEG    : FFR1P_M<0x7, "neg",  fneg>;
210}
211defm FSQRT   : FFR1P_M<0x4, "sqrt", fsqrt>;
212
213// The odd-numbered registers are only referenced when doing loads,
214// stores, and moves between floating-point and integer registers.
215// When defining instructions, we reference all 32-bit registers,
216// regardless of register aliasing.
217
218class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>:
219             FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> {
220  bits<5> rt;
221  let ft = rt;
222  let fd = 0;
223}
224
225/// Move Control Registers From/To CPU Registers
226def CFC1  : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs),
227                  "cfc1\t$rt, $fs", []>;
228
229def CTC1  : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt),
230                  "ctc1\t$rt, $fs", []>;
231
232def MFC1  : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
233                  "mfc1\t$rt, $fs",
234                  [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
235
236def MTC1  : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
237                  "mtc1\t$rt, $fs",
238                  [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
239
240def DMFC1 : FFRGPR<0x01, (outs CPU64Regs:$rt), (ins FGR64:$fs),
241                  "dmfc1\t$rt, $fs",
242                  [(set CPU64Regs:$rt, (bitconvert FGR64:$fs))]>;
243
244def DMTC1 : FFRGPR<0x05, (outs FGR64:$fs), (ins CPU64Regs:$rt),
245                  "dmtc1\t$rt, $fs",
246                  [(set FGR64:$fs, (bitconvert CPU64Regs:$rt))]>;
247
248def FMOV_S   : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>;
249def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>,
250               Requires<[NotFP64bit, HasStandardEncoding]>;
251def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>,
252               Requires<[IsFP64bit, HasStandardEncoding]> {
253  let DecoderNamespace = "Mips64";
254}
255
256/// Floating Point Memory Instructions
257let Predicates = [IsN64, HasStandardEncoding], DecoderNamespace = "Mips64" in {
258  def LWC1_P8   : FPLoad<0x31, "lwc1", FGR32, mem64>;
259  def SWC1_P8   : FPStore<0x39, "swc1", FGR32, mem64>;
260  def LDC164_P8 : FPLoad<0x35, "ldc1", FGR64, mem64> {
261    let isCodeGenOnly =1;
262  }
263  def SDC164_P8 : FPStore<0x3d, "sdc1", FGR64, mem64> {
264    let isCodeGenOnly =1;
265  }
266}
267
268let Predicates = [NotN64, HasStandardEncoding] in {
269  def LWC1   : FPLoad<0x31, "lwc1", FGR32, mem>;
270  def SWC1   : FPStore<0x39, "swc1", FGR32, mem>;
271}
272
273let Predicates = [NotN64, HasMips64, HasStandardEncoding],
274  DecoderNamespace = "Mips64" in {
275  def LDC164 : FPLoad<0x35, "ldc1", FGR64, mem>;
276  def SDC164 : FPStore<0x3d, "sdc1", FGR64, mem>;
277}
278
279let Predicates = [NotN64, NotMips64, HasStandardEncoding] in {
280  def LDC1   : FPLoad<0x35, "ldc1", AFGR64, mem>;
281  def SDC1   : FPStore<0x3d, "sdc1", AFGR64, mem>;
282}
283
284// Indexed loads and stores.
285let Predicates = [HasMips32r2Or64, HasStandardEncoding] in {
286  def LWXC1 : FPIdxLoad<0x0, "lwxc1", FGR32, CPURegs, load>;
287  def SWXC1 : FPIdxStore<0x8, "swxc1", FGR32, CPURegs, store>;
288}
289
290let Predicates = [HasMips32r2, NotMips64, HasStandardEncoding] in {
291  def LDXC1 : FPIdxLoad<0x1, "ldxc1", AFGR64, CPURegs, load>;
292  def SDXC1 : FPIdxStore<0x9, "sdxc1", AFGR64, CPURegs, store>;
293}
294
295let Predicates = [HasMips64, NotN64, HasStandardEncoding], DecoderNamespace="Mips64" in {
296  def LDXC164 : FPIdxLoad<0x1, "ldxc1", FGR64, CPURegs, load>;
297  def SDXC164 : FPIdxStore<0x9, "sdxc1", FGR64, CPURegs, store>;
298}
299
300// n64
301let Predicates = [IsN64, HasStandardEncoding], isCodeGenOnly=1 in {
302  def LWXC1_P8   : FPIdxLoad<0x0, "lwxc1", FGR32, CPU64Regs, load>;
303  def LDXC164_P8 : FPIdxLoad<0x1, "ldxc1", FGR64, CPU64Regs, load>;
304  def SWXC1_P8   : FPIdxStore<0x8, "swxc1", FGR32, CPU64Regs, store>;
305  def SDXC164_P8 : FPIdxStore<0x9, "sdxc1", FGR64, CPU64Regs, store>;
306}
307
308// Load/store doubleword indexed unaligned.
309let Predicates = [NotMips64, HasStandardEncoding] in {
310  def LUXC1 : FPIdxLoad<0x5, "luxc1", AFGR64, CPURegs>;
311  def SUXC1 : FPIdxStore<0xd, "suxc1", AFGR64, CPURegs>;
312}
313
314let Predicates = [HasMips64, HasStandardEncoding],
315  DecoderNamespace="Mips64" in {
316  def LUXC164 : FPIdxLoad<0x5, "luxc1", FGR64, CPURegs>;
317  def SUXC164 : FPIdxStore<0xd, "suxc1", FGR64, CPURegs>;
318}
319
320/// Floating-point Aritmetic
321defm FADD : FFR2P_M<0x00, "add", fadd, 1>;
322defm FDIV : FFR2P_M<0x03, "div", fdiv>;
323defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>;
324defm FSUB : FFR2P_M<0x01, "sub", fsub>;
325
326let Predicates = [HasMips32r2, HasStandardEncoding] in {
327  def MADD_S : FMADDSUB<0x4, 0, "madd", "s", fadd, FGR32>;
328  def MSUB_S : FMADDSUB<0x5, 0, "msub", "s", fsub, FGR32>;
329}
330
331let Predicates = [HasMips32r2, NoNaNsFPMath, HasStandardEncoding] in {
332  def NMADD_S : FNMADDSUB<0x6, 0, "nmadd", "s", fadd, FGR32>;
333  def NMSUB_S : FNMADDSUB<0x7, 0, "nmsub", "s", fsub, FGR32>;
334}
335
336let Predicates = [HasMips32r2, NotFP64bit, HasStandardEncoding] in {
337  def MADD_D32 : FMADDSUB<0x4, 1, "madd", "d", fadd, AFGR64>;
338  def MSUB_D32 : FMADDSUB<0x5, 1, "msub", "d", fsub, AFGR64>;
339}
340
341let Predicates = [HasMips32r2, NotFP64bit, NoNaNsFPMath, HasStandardEncoding] in {
342  def NMADD_D32 : FNMADDSUB<0x6, 1, "nmadd", "d", fadd, AFGR64>;
343  def NMSUB_D32 : FNMADDSUB<0x7, 1, "nmsub", "d", fsub, AFGR64>;
344}
345
346let Predicates = [HasMips32r2, IsFP64bit, HasStandardEncoding], isCodeGenOnly=1 in {
347  def MADD_D64 : FMADDSUB<0x4, 1, "madd", "d", fadd, FGR64>;
348  def MSUB_D64 : FMADDSUB<0x5, 1, "msub", "d", fsub, FGR64>;
349}
350
351let Predicates = [HasMips32r2, IsFP64bit, NoNaNsFPMath, HasStandardEncoding],
352    isCodeGenOnly=1 in {
353  def NMADD_D64 : FNMADDSUB<0x6, 1, "nmadd", "d", fadd, FGR64>;
354  def NMSUB_D64 : FNMADDSUB<0x7, 1, "nmsub", "d", fsub, FGR64>;
355}
356
357//===----------------------------------------------------------------------===//
358// Floating Point Branch Codes
359//===----------------------------------------------------------------------===//
360// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
361// They must be kept in synch.
362def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
363def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;
364
365/// Floating Point Branch of False/True (Likely)
366let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
367  class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> :
368      FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
369        [(MipsFPBrcond op, bb:$dst)]> {
370  let Inst{20-18} = 0;
371  let Inst{17} = nd;
372  let Inst{16} = tf;
373}
374
375let DecoderMethod = "DecodeBC1" in {
376def BC1F  : FBRANCH<0, 0, MIPS_BRANCH_F,  "bc1f">;
377def BC1T  : FBRANCH<0, 1, MIPS_BRANCH_T,  "bc1t">;
378}
379//===----------------------------------------------------------------------===//
380// Floating Point Flag Conditions
381//===----------------------------------------------------------------------===//
382// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
383// They must be kept in synch.
384def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
385def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
386def MIPS_FCOND_OEQ  : PatLeaf<(i32 2)>;
387def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
388def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
389def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
390def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
391def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
392def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
393def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
394def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
395def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
396def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
397def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
398def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
399def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;
400
401class FCMP<bits<5> fmt, RegisterClass RC, string typestr> :
402  FCC<fmt, (outs), (ins RC:$fs, RC:$ft, condcode:$cc),
403      !strconcat("c.$cc.", typestr, "\t$fs, $ft"),
404      [(MipsFPCmp RC:$fs, RC:$ft, imm:$cc)]>;
405
406/// Floating Point Compare
407let Defs=[FCR31] in {
408  def FCMP_S32 : FCMP<0x10, FGR32, "s">;
409  def FCMP_D32 : FCMP<0x11, AFGR64, "d">,
410      Requires<[NotFP64bit, HasStandardEncoding]>;
411  def FCMP_D64 : FCMP<0x11, FGR64, "d">,
412      Requires<[IsFP64bit, HasStandardEncoding]> {
413    let DecoderNamespace = "Mips64";
414  }
415}
416
417//===----------------------------------------------------------------------===//
418// Floating Point Pseudo-Instructions
419//===----------------------------------------------------------------------===//
420def MOVCCRToCCR : PseudoSE<(outs CCR:$dst), (ins CCR:$src),
421                           "# MOVCCRToCCR", []>;
422
423// This pseudo instr gets expanded into 2 mtc1 instrs after register
424// allocation.
425def BuildPairF64 :
426  PseudoSE<(outs AFGR64:$dst),
427           (ins CPURegs:$lo, CPURegs:$hi), "",
428           [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
429
430// This pseudo instr gets expanded into 2 mfc1 instrs after register
431// allocation.
432// if n is 0, lower part of src is extracted.
433// if n is 1, higher part of src is extracted.
434def ExtractElementF64 :
435  PseudoSE<(outs CPURegs:$dst), (ins AFGR64:$src, i32imm:$n), "",
436           [(set CPURegs:$dst, (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
437
438//===----------------------------------------------------------------------===//
439// Floating Point Patterns
440//===----------------------------------------------------------------------===//
441def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>;
442def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
443
444def : MipsPat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
445def : MipsPat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
446
447let Predicates = [NotFP64bit, HasStandardEncoding] in {
448  def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
449                (CVT_D32_W (MTC1 CPURegs:$src))>;
450  def : MipsPat<(i32 (fp_to_sint AFGR64:$src)),
451                (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
452  def : MipsPat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
453  def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
454}
455
456let Predicates = [IsFP64bit, HasStandardEncoding] in {
457  def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>;
458  def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>;
459
460  def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
461                (CVT_D64_W (MTC1 CPURegs:$src))>;
462  def : MipsPat<(f32 (sint_to_fp CPU64Regs:$src)),
463                (CVT_S_L (DMTC1 CPU64Regs:$src))>;
464  def : MipsPat<(f64 (sint_to_fp CPU64Regs:$src)),
465                (CVT_D64_L (DMTC1 CPU64Regs:$src))>;
466
467  def : MipsPat<(i32 (fp_to_sint FGR64:$src)),
468                (MFC1 (TRUNC_W_D64 FGR64:$src))>;
469  def : MipsPat<(i64 (fp_to_sint FGR32:$src)), (DMFC1 (TRUNC_L_S FGR32:$src))>;
470  def : MipsPat<(i64 (fp_to_sint FGR64:$src)),
471                (DMFC1 (TRUNC_L_D64 FGR64:$src))>;
472
473  def : MipsPat<(f32 (fround FGR64:$src)), (CVT_S_D64 FGR64:$src)>;
474  def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D64_S FGR32:$src)>;
475}
476