MipsInstrFPU.td revision 82fdad75f7efa9d15261068e1bb3691f10fb3d36
1//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Mips FPU instruction set.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Floating Point Instructions
16// ------------------------
17// * 64bit fp:
18//    - 32 64-bit registers (default mode)
19//    - 16 even 32-bit registers (32-bit compatible mode) for
20//      single and double access.
21// * 32bit fp:
22//    - 16 even 32-bit registers - single and double (aliased)
23//    - 32 32-bit registers (within single-only mode)
24//===----------------------------------------------------------------------===//
25
26// Floating Point Compare and Branch
27def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
28                                            SDTCisVT<1, OtherVT>]>;
29def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
30                                         SDTCisVT<2, i32>]>;
31def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
32                                          SDTCisSameAs<1, 2>]>;
33def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
34                                                SDTCisVT<1, i32>,
35                                                SDTCisSameAs<1, 2>]>;
36def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
37                                                     SDTCisVT<1, f64>,
38                                                     SDTCisVT<2, i32>]>;
39
40def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
41def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
42def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
43def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
44                          [SDNPHasChain, SDNPOptInGlue]>;
45def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
46def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
47                                   SDT_MipsExtractElementF64>;
48
49// Operand for printing out a condition code.
50let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in
51  def condcode : Operand<i32>;
52
53//===----------------------------------------------------------------------===//
54// Feature predicates.
55//===----------------------------------------------------------------------===//
56
57def IsFP64bit        : Predicate<"Subtarget.isFP64bit()">,
58                       AssemblerPredicate<"FeatureFP64Bit">;
59def NotFP64bit       : Predicate<"!Subtarget.isFP64bit()">,
60                       AssemblerPredicate<"!FeatureFP64Bit">;
61def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">,
62                       AssemblerPredicate<"FeatureSingleFloat">;
63def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">,
64                       AssemblerPredicate<"!FeatureSingleFloat">;
65
66// FP immediate patterns.
67def fpimm0 : PatLeaf<(fpimm), [{
68  return N->isExactlyValue(+0.0);
69}]>;
70
71def fpimm0neg : PatLeaf<(fpimm), [{
72  return N->isExactlyValue(-0.0);
73}]>;
74
75//===----------------------------------------------------------------------===//
76// Instruction Class Templates
77//
78// A set of multiclasses is used to address the register usage.
79//
80// S32 - single precision in 16 32bit even fp registers
81//       single precision in 32 32bit fp registers in SingleOnly mode
82// S64 - single precision in 32 64bit fp registers (In64BitMode)
83// D32 - double precision in 16 32bit even fp registers
84// D64 - double precision in 32 64bit fp registers (In64BitMode)
85//
86// Only S32 and D32 are supported right now.
87//===----------------------------------------------------------------------===//
88
89// FP unary instructions without patterns.
90class FFR1<bits<6> funct, bits<5> fmt, string opstr, RegisterClass DstRC,
91           RegisterClass SrcRC> :
92  FFR<0x11, funct, fmt, (outs DstRC:$fd), (ins SrcRC:$fs),
93      !strconcat(opstr, "\t$fd, $fs"), []> {
94  let ft = 0;
95}
96
97// FP unary instructions with patterns.
98class FFR1P<bits<6> funct, bits<5> fmt, string opstr, RegisterClass DstRC,
99            RegisterClass SrcRC, SDNode OpNode> :
100  FFR<0x11, funct, fmt, (outs DstRC:$fd), (ins SrcRC:$fs),
101      !strconcat(opstr, "\t$fd, $fs"),
102      [(set DstRC:$fd, (OpNode SrcRC:$fs))]> {
103  let ft = 0;
104}
105
106class FFR2P<bits<6> funct, bits<5> fmt, string opstr, RegisterClass RC,
107            SDNode OpNode> :
108  FFR<0x11, funct, fmt, (outs RC:$fd), (ins RC:$fs, RC:$ft),
109      !strconcat(opstr, "\t$fd, $fs, $ft"),
110      [(set RC:$fd, (OpNode RC:$fs, RC:$ft))]>;
111
112// FP load.
113let DecoderMethod = "DecodeFMem" in {
114class FPLoad<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
115  FMem<op, (outs RC:$ft), (ins MemOpnd:$addr),
116      !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (load addr:$addr))],
117      IILoad>;
118
119// FP store.
120class FPStore<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
121  FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr),
122      !strconcat(opstr, "\t$ft, $addr"), [(store RC:$ft, addr:$addr)],
123      IIStore>;
124}
125// FP indexed load.
126class FPIdxLoad<bits<6> funct, string opstr, RegisterClass DRC,
127                RegisterClass PRC, SDPatternOperator FOp = null_frag>:
128  FFMemIdx<funct, (outs DRC:$fd), (ins PRC:$base, PRC:$index),
129           !strconcat(opstr, "\t$fd, ${index}(${base})"),
130           [(set DRC:$fd, (FOp (add PRC:$base, PRC:$index)))]> {
131  let fs = 0;
132}
133
134// FP indexed store.
135class FPIdxStore<bits<6> funct, string opstr, RegisterClass DRC,
136                 RegisterClass PRC, SDPatternOperator FOp= null_frag>:
137  FFMemIdx<funct, (outs), (ins DRC:$fs, PRC:$base, PRC:$index),
138           !strconcat(opstr, "\t$fs, ${index}(${base})"),
139           [(FOp DRC:$fs, (add PRC:$base, PRC:$index))]> {
140  let fd = 0;
141}
142
143// Instructions that convert an FP value to 32-bit fixed point.
144multiclass FFR1_W_M<bits<6> funct, string opstr> {
145  def _D32 : FFR1<funct, 17, opstr, FGR32, AFGR64>,
146             Requires<[NotFP64bit, HasStdEnc]>;
147  def _D64 : FFR1<funct, 17, opstr, FGR32, FGR64>,
148             Requires<[IsFP64bit, HasStdEnc]> {
149    let DecoderNamespace = "Mips64";
150  }
151}
152
153// FP-to-FP conversion instructions.
154multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
155  def _D32 : FFR1P<funct, 17, opstr, AFGR64, AFGR64, OpNode>,
156             Requires<[NotFP64bit, HasStdEnc]>;
157  def _D64 : FFR1P<funct, 17, opstr, FGR64, FGR64, OpNode>,
158             Requires<[IsFP64bit, HasStdEnc]> {
159    let DecoderNamespace = "Mips64";
160  }
161}
162
163multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode> {
164  def _D32 : FFR2P<funct, 17, opstr, AFGR64, OpNode>,
165             Requires<[NotFP64bit, HasStdEnc]>;
166  def _D64 : FFR2P<funct, 17, opstr, FGR64, OpNode>,
167             Requires<[IsFP64bit, HasStdEnc]> {
168    let DecoderNamespace = "Mips64";
169  }
170}
171
172// FP madd/msub/nmadd/nmsub instruction classes.
173class FMADDSUB<bits<3> funct, bits<3> fmt, string opstr,
174               SDNode OpNode, RegisterClass RC> :
175  FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
176            !strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
177            [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))]>;
178
179class FNMADDSUB<bits<3> funct, bits<3> fmt, string opstr,
180                SDNode OpNode, RegisterClass RC> :
181  FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
182            !strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
183            [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))]>;
184
185class ADDS_FT<string opstr, RegisterClass RC, InstrItinClass Itin, bit IsComm,
186              SDPatternOperator OpNode= null_frag> :
187  InstSE<(outs RC:$fd), (ins RC:$fs, RC:$ft),
188         !strconcat(opstr, "\t$fd, $fs, $ft"),
189         [(set RC:$fd, (OpNode RC:$fs, RC:$ft))], Itin, FrmFR> {
190  let isCommutable = IsComm;
191}
192
193multiclass ADDS_M<string opstr, InstrItinClass Itin, bit IsComm,
194                  SDPatternOperator OpNode = null_frag> {
195  def _D32 : ADDS_FT<opstr, AFGR64, Itin, IsComm, OpNode>,
196             Requires<[NotFP64bit, HasStdEnc]>;
197  def _D64 : ADDS_FT<opstr, FGR64, Itin, IsComm, OpNode>,
198             Requires<[IsFP64bit, HasStdEnc]> {
199    string DecoderNamespace = "Mips64";
200  }
201}
202
203//===----------------------------------------------------------------------===//
204// Floating Point Instructions
205//===----------------------------------------------------------------------===//
206def ROUND_W_S  : FFR1<0xc, 16, "round.w.s", FGR32, FGR32>;
207def TRUNC_W_S  : FFR1<0xd, 16, "trunc.w.s", FGR32, FGR32>;
208def CEIL_W_S   : FFR1<0xe, 16, "ceil.w.s", FGR32, FGR32>;
209def FLOOR_W_S  : FFR1<0xf, 16, "floor.w.s", FGR32, FGR32>;
210def CVT_W_S    : FFR1<0x24, 16, "cvt.w.s", FGR32, FGR32>, NeverHasSideEffects;
211
212defm ROUND_W : FFR1_W_M<0xc, "round.w.d">;
213defm TRUNC_W : FFR1_W_M<0xd, "trunc.w.d">;
214defm CEIL_W  : FFR1_W_M<0xe, "ceil.w.d">;
215defm FLOOR_W : FFR1_W_M<0xf, "floor.w.d">;
216defm CVT_W   : FFR1_W_M<0x24, "cvt.w.d">, NeverHasSideEffects;
217
218let Predicates = [IsFP64bit, HasStdEnc], DecoderNamespace = "Mips64" in {
219  def ROUND_L_S   : FFR1<0x8, 16, "round.l.s", FGR64, FGR32>;
220  def ROUND_L_D64 : FFR1<0x8, 17, "round.l.d", FGR64, FGR64>;
221  def TRUNC_L_S   : FFR1<0x9, 16, "trunc.l.s", FGR64, FGR32>;
222  def TRUNC_L_D64 : FFR1<0x9, 17, "trunc.l.d", FGR64, FGR64>;
223  def CEIL_L_S   : FFR1<0xa, 16, "ceil.l.s", FGR64, FGR32>;
224  def CEIL_L_D64 : FFR1<0xa, 17, "ceil.l.d", FGR64, FGR64>;
225  def FLOOR_L_S   : FFR1<0xb, 16, "floor.l.s", FGR64, FGR32>;
226  def FLOOR_L_D64 : FFR1<0xb, 17, "floor.l.d", FGR64, FGR64>;
227}
228
229def CVT_S_W : FFR1<0x20, 20, "cvt.s.w", FGR32, FGR32>, NeverHasSideEffects;
230def CVT_L_S : FFR1<0x25, 16, "cvt.l.s", FGR64, FGR32>, NeverHasSideEffects;
231def CVT_L_D64: FFR1<0x25, 17, "cvt.l.d", FGR64, FGR64>, NeverHasSideEffects;
232
233let Predicates = [NotFP64bit, HasStdEnc], neverHasSideEffects = 1 in {
234  def CVT_S_D32 : FFR1<0x20, 17, "cvt.s.d", FGR32, AFGR64>;
235  def CVT_D32_W : FFR1<0x21, 20, "cvt.d.w", AFGR64, FGR32>;
236  def CVT_D32_S : FFR1<0x21, 16, "cvt.d.s", AFGR64, FGR32>;
237}
238
239let Predicates = [IsFP64bit, HasStdEnc], DecoderNamespace = "Mips64",
240    neverHasSideEffects = 1 in {
241 def CVT_S_D64 : FFR1<0x20, 17, "cvt.s.d", FGR32, FGR64>;
242 def CVT_S_L   : FFR1<0x20, 21, "cvt.s.l", FGR32, FGR64>;
243 def CVT_D64_W : FFR1<0x21, 20, "cvt.d.w", FGR64, FGR32>;
244 def CVT_D64_S : FFR1<0x21, 16, "cvt.d.s", FGR64, FGR32>;
245 def CVT_D64_L : FFR1<0x21, 21, "cvt.d.l", FGR64, FGR64>;
246}
247
248let Predicates = [NoNaNsFPMath, HasStdEnc] in {
249  def FABS_S   : FFR1P<0x5, 16, "abs.s", FGR32, FGR32, fabs>;
250  def FNEG_S   : FFR1P<0x7, 16, "neg.s", FGR32, FGR32, fneg>;
251  defm FABS  : FFR1P_M<0x5, "abs.d", fabs>;
252  defm FNEG  : FFR1P_M<0x7, "neg.d", fneg>;
253}
254
255def  FSQRT_S : FFR1P<0x4, 16, "sqrt.s", FGR32, FGR32, fsqrt>;
256defm FSQRT   : FFR1P_M<0x4, "sqrt.d", fsqrt>;
257
258// The odd-numbered registers are only referenced when doing loads,
259// stores, and moves between floating-point and integer registers.
260// When defining instructions, we reference all 32-bit registers,
261// regardless of register aliasing.
262
263class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>:
264             FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> {
265  bits<5> rt;
266  let ft = rt;
267  let fd = 0;
268}
269
270/// Move Control Registers From/To CPU Registers
271def CFC1  : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs),
272                  "cfc1\t$rt, $fs", []>;
273
274def CTC1  : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt),
275                  "ctc1\t$rt, $fs", []>;
276
277def MFC1  : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
278                  "mfc1\t$rt, $fs",
279                  [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
280
281def MTC1  : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
282                  "mtc1\t$rt, $fs",
283                  [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
284
285def DMFC1 : FFRGPR<0x01, (outs CPU64Regs:$rt), (ins FGR64:$fs),
286                  "dmfc1\t$rt, $fs",
287                  [(set CPU64Regs:$rt, (bitconvert FGR64:$fs))]>;
288
289def DMTC1 : FFRGPR<0x05, (outs FGR64:$fs), (ins CPU64Regs:$rt),
290                  "dmtc1\t$rt, $fs",
291                  [(set FGR64:$fs, (bitconvert CPU64Regs:$rt))]>;
292
293def FMOV_S   : FFR1<0x6, 16, "mov.s", FGR32, FGR32>;
294def FMOV_D32 : FFR1<0x6, 17, "mov.d", AFGR64, AFGR64>,
295               Requires<[NotFP64bit, HasStdEnc]>;
296def FMOV_D64 : FFR1<0x6, 17, "mov.d", FGR64, FGR64>,
297               Requires<[IsFP64bit, HasStdEnc]> {
298  let DecoderNamespace = "Mips64";
299}
300
301/// Floating Point Memory Instructions
302let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
303  def LWC1_P8   : FPLoad<0x31, "lwc1", FGR32, mem64>;
304  def SWC1_P8   : FPStore<0x39, "swc1", FGR32, mem64>;
305  def LDC164_P8 : FPLoad<0x35, "ldc1", FGR64, mem64> {
306    let isCodeGenOnly =1;
307  }
308  def SDC164_P8 : FPStore<0x3d, "sdc1", FGR64, mem64> {
309    let isCodeGenOnly =1;
310  }
311}
312
313let Predicates = [NotN64, HasStdEnc] in {
314  def LWC1   : FPLoad<0x31, "lwc1", FGR32, mem>;
315  def SWC1   : FPStore<0x39, "swc1", FGR32, mem>;
316}
317
318let Predicates = [NotN64, HasMips64, HasStdEnc],
319  DecoderNamespace = "Mips64" in {
320  def LDC164 : FPLoad<0x35, "ldc1", FGR64, mem>;
321  def SDC164 : FPStore<0x3d, "sdc1", FGR64, mem>;
322}
323
324let Predicates = [NotN64, NotMips64, HasStdEnc] in {
325  def LDC1   : FPLoad<0x35, "ldc1", AFGR64, mem>;
326  def SDC1   : FPStore<0x3d, "sdc1", AFGR64, mem>;
327}
328
329// Indexed loads and stores.
330let Predicates = [HasFPIdx, HasStdEnc] in {
331  def LWXC1 : FPIdxLoad<0x0, "lwxc1", FGR32, CPURegs, load>;
332  def SWXC1 : FPIdxStore<0x8, "swxc1", FGR32, CPURegs, store>;
333}
334
335let Predicates = [HasMips32r2, NotMips64, HasStdEnc] in {
336  def LDXC1 : FPIdxLoad<0x1, "ldxc1", AFGR64, CPURegs, load>;
337  def SDXC1 : FPIdxStore<0x9, "sdxc1", AFGR64, CPURegs, store>;
338}
339
340let Predicates = [HasMips64, NotN64, HasStdEnc], DecoderNamespace="Mips64" in {
341  def LDXC164 : FPIdxLoad<0x1, "ldxc1", FGR64, CPURegs, load>;
342  def SDXC164 : FPIdxStore<0x9, "sdxc1", FGR64, CPURegs, store>;
343}
344
345// n64
346let Predicates = [IsN64, HasStdEnc], isCodeGenOnly=1 in {
347  def LWXC1_P8   : FPIdxLoad<0x0, "lwxc1", FGR32, CPU64Regs, load>;
348  def LDXC164_P8 : FPIdxLoad<0x1, "ldxc1", FGR64, CPU64Regs, load>;
349  def SWXC1_P8   : FPIdxStore<0x8, "swxc1", FGR32, CPU64Regs, store>;
350  def SDXC164_P8 : FPIdxStore<0x9, "sdxc1", FGR64, CPU64Regs, store>;
351}
352
353// Load/store doubleword indexed unaligned.
354let Predicates = [NotMips64, HasStdEnc] in {
355  def LUXC1 : FPIdxLoad<0x5, "luxc1", AFGR64, CPURegs>;
356  def SUXC1 : FPIdxStore<0xd, "suxc1", AFGR64, CPURegs>;
357}
358
359let Predicates = [HasMips64, HasStdEnc],
360  DecoderNamespace="Mips64" in {
361  def LUXC164 : FPIdxLoad<0x5, "luxc1", FGR64, CPURegs>;
362  def SUXC164 : FPIdxStore<0xd, "suxc1", FGR64, CPURegs>;
363}
364
365/// Floating-point Aritmetic
366def FADD_S : ADDS_FT<"add.s", FGR32, IIFadd, 1, fadd>, ADDS_FM<0x00, 16>;
367defm FADD : ADDS_M<"add.d", IIFadd, 1, fadd>, ADDS_FM<0x00, 17>;
368def FDIV_S : ADDS_FT<"div.s", FGR32, IIFdivSingle, 0, fdiv>, ADDS_FM<0x03, 16>;
369defm FDIV : ADDS_M<"div.d", IIFdivDouble, 0, fdiv>, ADDS_FM<0x03, 17>;
370def FMUL_S : ADDS_FT<"mul.s", FGR32, IIFmulSingle, 1, fmul>, ADDS_FM<0x02, 16>;
371defm FMUL : ADDS_M<"mul.d", IIFmulDouble, 1, fmul>, ADDS_FM<0x02, 17>;
372def FSUB_S : ADDS_FT<"sub.s", FGR32, IIFadd, 0, fsub>, ADDS_FM<0x01, 16>;
373defm FSUB : ADDS_M<"sub.d", IIFadd, 0, fsub>, ADDS_FM<0x01, 17>;
374
375let Predicates = [HasMips32r2, HasStdEnc] in {
376  def MADD_S : FMADDSUB<0x4, 0, "madd.s", fadd, FGR32>;
377  def MSUB_S : FMADDSUB<0x5, 0, "msub.s", fsub, FGR32>;
378}
379
380let Predicates = [HasMips32r2, NoNaNsFPMath, HasStdEnc] in {
381  def NMADD_S : FNMADDSUB<0x6, 0, "nmadd.s", fadd, FGR32>;
382  def NMSUB_S : FNMADDSUB<0x7, 0, "nmsub.s", fsub, FGR32>;
383}
384
385let Predicates = [HasMips32r2, NotFP64bit, HasStdEnc] in {
386  def MADD_D32 : FMADDSUB<0x4, 1, "madd.d", fadd, AFGR64>;
387  def MSUB_D32 : FMADDSUB<0x5, 1, "msub.d", fsub, AFGR64>;
388}
389
390let Predicates = [HasMips32r2, NotFP64bit, NoNaNsFPMath, HasStdEnc] in {
391  def NMADD_D32 : FNMADDSUB<0x6, 1, "nmadd.d", fadd, AFGR64>;
392  def NMSUB_D32 : FNMADDSUB<0x7, 1, "nmsub.d", fsub, AFGR64>;
393}
394
395let Predicates = [HasMips32r2, IsFP64bit, HasStdEnc], isCodeGenOnly=1 in {
396  def MADD_D64 : FMADDSUB<0x4, 1, "madd.d", fadd, FGR64>;
397  def MSUB_D64 : FMADDSUB<0x5, 1, "msub.d", fsub, FGR64>;
398}
399
400let Predicates = [HasMips32r2, IsFP64bit, NoNaNsFPMath, HasStdEnc],
401    isCodeGenOnly=1 in {
402  def NMADD_D64 : FNMADDSUB<0x6, 1, "nmadd.d", fadd, FGR64>;
403  def NMSUB_D64 : FNMADDSUB<0x7, 1, "nmsub.d", fsub, FGR64>;
404}
405
406//===----------------------------------------------------------------------===//
407// Floating Point Branch Codes
408//===----------------------------------------------------------------------===//
409// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
410// They must be kept in synch.
411def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
412def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;
413
414/// Floating Point Branch of False/True (Likely)
415let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
416  class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> :
417      FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
418        [(MipsFPBrcond op, bb:$dst)]> {
419  let Inst{20-18} = 0;
420  let Inst{17} = nd;
421  let Inst{16} = tf;
422}
423
424let DecoderMethod = "DecodeBC1" in {
425def BC1F  : FBRANCH<0, 0, MIPS_BRANCH_F,  "bc1f">;
426def BC1T  : FBRANCH<0, 1, MIPS_BRANCH_T,  "bc1t">;
427}
428//===----------------------------------------------------------------------===//
429// Floating Point Flag Conditions
430//===----------------------------------------------------------------------===//
431// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
432// They must be kept in synch.
433def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
434def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
435def MIPS_FCOND_OEQ  : PatLeaf<(i32 2)>;
436def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
437def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
438def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
439def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
440def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
441def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
442def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
443def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
444def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
445def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
446def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
447def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
448def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;
449
450class FCMP<bits<5> fmt, RegisterClass RC, string typestr> :
451  FCC<fmt, (outs), (ins RC:$fs, RC:$ft, condcode:$cc),
452      !strconcat("c.$cc.", typestr, "\t$fs, $ft"),
453      [(MipsFPCmp RC:$fs, RC:$ft, imm:$cc)]>;
454
455/// Floating Point Compare
456let Defs=[FCR31] in {
457  def FCMP_S32 : FCMP<0x10, FGR32, "s">;
458  def FCMP_D32 : FCMP<0x11, AFGR64, "d">,
459      Requires<[NotFP64bit, HasStdEnc]>;
460  def FCMP_D64 : FCMP<0x11, FGR64, "d">,
461      Requires<[IsFP64bit, HasStdEnc]> {
462    let DecoderNamespace = "Mips64";
463  }
464}
465
466//===----------------------------------------------------------------------===//
467// Floating Point Pseudo-Instructions
468//===----------------------------------------------------------------------===//
469def MOVCCRToCCR : PseudoSE<(outs CCR:$dst), (ins CCR:$src),
470                           "# MOVCCRToCCR", []>;
471
472// This pseudo instr gets expanded into 2 mtc1 instrs after register
473// allocation.
474def BuildPairF64 :
475  PseudoSE<(outs AFGR64:$dst),
476           (ins CPURegs:$lo, CPURegs:$hi), "",
477           [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
478
479// This pseudo instr gets expanded into 2 mfc1 instrs after register
480// allocation.
481// if n is 0, lower part of src is extracted.
482// if n is 1, higher part of src is extracted.
483def ExtractElementF64 :
484  PseudoSE<(outs CPURegs:$dst), (ins AFGR64:$src, i32imm:$n), "",
485           [(set CPURegs:$dst, (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
486
487//===----------------------------------------------------------------------===//
488// Floating Point Patterns
489//===----------------------------------------------------------------------===//
490def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>;
491def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
492
493def : MipsPat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
494def : MipsPat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
495
496let Predicates = [NotFP64bit, HasStdEnc] in {
497  def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
498                (CVT_D32_W (MTC1 CPURegs:$src))>;
499  def : MipsPat<(i32 (fp_to_sint AFGR64:$src)),
500                (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
501  def : MipsPat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
502  def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
503}
504
505let Predicates = [IsFP64bit, HasStdEnc] in {
506  def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>;
507  def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>;
508
509  def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
510                (CVT_D64_W (MTC1 CPURegs:$src))>;
511  def : MipsPat<(f32 (sint_to_fp CPU64Regs:$src)),
512                (CVT_S_L (DMTC1 CPU64Regs:$src))>;
513  def : MipsPat<(f64 (sint_to_fp CPU64Regs:$src)),
514                (CVT_D64_L (DMTC1 CPU64Regs:$src))>;
515
516  def : MipsPat<(i32 (fp_to_sint FGR64:$src)),
517                (MFC1 (TRUNC_W_D64 FGR64:$src))>;
518  def : MipsPat<(i64 (fp_to_sint FGR32:$src)), (DMFC1 (TRUNC_L_S FGR32:$src))>;
519  def : MipsPat<(i64 (fp_to_sint FGR64:$src)),
520                (DMFC1 (TRUNC_L_D64 FGR64:$src))>;
521
522  def : MipsPat<(f32 (fround FGR64:$src)), (CVT_S_D64 FGR64:$src)>;
523  def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D64_S FGR32:$src)>;
524}
525