MipsInstrInfo.td revision 01a75c46e3292c1a66b577b5a6b7510a1867afdd
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_MipsDynAlloc    : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>,
37                                               SDTCisSameAs<0, 1>]>;
38def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
39
40def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
42def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
43                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
44                                   SDTCisSameAs<0, 4>]>;
45
46def SDTMipsLoadLR  : SDTypeProfile<1, 2,
47                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
48                                    SDTCisSameAs<0, 2>]>;
49
50// Call
51def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
52                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
53                          SDNPVariadic]>;
54
55// Tail call
56def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
57                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
58
59// Hi and Lo nodes are used to handle global addresses. Used on
60// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
61// static model. (nothing to do with Mips Registers Hi and Lo)
62def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
63def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
64def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
65
66// TlsGd node is used to handle General Dynamic TLS
67def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
68
69// TprelHi and TprelLo nodes are used to handle Local Exec TLS
70def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
71def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
72
73// Thread pointer
74def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
75
76// Return
77def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
78
79// These are target-independent nodes, but have target-specific formats.
80def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
81                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
82def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
83                           [SDNPHasChain, SDNPSideEffect,
84                            SDNPOptInGlue, SDNPOutGlue]>;
85
86// MAdd*/MSub* nodes
87def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
92                           [SDNPOptInGlue, SDNPOutGlue]>;
93def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
94                           [SDNPOptInGlue, SDNPOutGlue]>;
95
96// DivRem(u) nodes
97def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
98                           [SDNPOutGlue]>;
99def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
100                           [SDNPOutGlue]>;
101
102// Target constant nodes that are not part of any isel patterns and remain
103// unchanged can cause instructions with illegal operands to be emitted.
104// Wrapper node patterns give the instruction selector a chance to replace
105// target constant nodes that would otherwise remain unchanged with ADDiu
106// nodes. Without these wrapper node patterns, the following conditional move
107// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
108// compiled:
109//  movn  %got(d)($gp), %got(c)($gp), $4
110// This instruction is illegal since movn can take only register operands.
111
112def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
113
114// Pointer to dynamically allocated stack area.
115def MipsDynAlloc  : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
116                           [SDNPHasChain, SDNPInGlue]>;
117
118def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
119
120def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
121def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
122
123def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
124                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
125def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
126                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
127def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
128                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
129def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
130                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
131def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
132                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
133def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
134                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
135def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
136                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
137def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
138                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
139
140//===----------------------------------------------------------------------===//
141// Mips Instruction Predicate Definitions.
142//===----------------------------------------------------------------------===//
143def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
144                      AssemblerPredicate<"FeatureSEInReg">;
145def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
146                      AssemblerPredicate<"FeatureBitCount">;
147def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
148                      AssemblerPredicate<"FeatureSwap">;
149def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
150                      AssemblerPredicate<"FeatureCondMov">;
151def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
152                      AssemblerPredicate<"FeatureMips32">;
153def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
154                      AssemblerPredicate<"FeatureMips32r2">;
155def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
156                      AssemblerPredicate<"FeatureMips64">;
157def HasMips32r2Or64 : Predicate<"Subtarget.hasMips32r2Or64()">,
158                      AssemblerPredicate<"FeatureMips32r2,FeatureMips64">;
159def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
160                      AssemblerPredicate<"!FeatureMips64">;
161def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
162                      AssemblerPredicate<"FeatureMips64r2">;
163def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
164                      AssemblerPredicate<"FeatureN64">;
165def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
166                      AssemblerPredicate<"!FeatureN64">;
167def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
168                      AssemblerPredicate<"FeatureMips16">;
169def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
170                      AssemblerPredicate<"FeatureMips32">;
171def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
172                      AssemblerPredicate<"FeatureMips32">;
173def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
174                      AssemblerPredicate<"FeatureMips32">;
175def HasStandardEncoding : Predicate<"Subtarget.hasStandardEncoding()">,
176                          AssemblerPredicate<"!FeatureMips16">;
177
178class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
179  let Predicates = [HasStandardEncoding];
180}
181
182class IsBranch {
183  bit isBranch = 1;
184}
185
186class IsReturn {
187  bit isReturn = 1;
188}
189
190class IsCall {
191  bit isCall = 1;
192}
193
194class IsTailCall {
195  bit isCall = 1;
196  bit isTerminator = 1;
197  bit isReturn = 1;
198  bit isBarrier = 1;
199  bit hasExtraSrcRegAllocReq = 1;
200  bit isCodeGenOnly = 1;
201}
202
203//===----------------------------------------------------------------------===//
204// Instruction format superclass
205//===----------------------------------------------------------------------===//
206
207include "MipsInstrFormats.td"
208
209//===----------------------------------------------------------------------===//
210// Mips Operand, Complex Patterns and Transformations Definitions.
211//===----------------------------------------------------------------------===//
212
213// Instruction operand types
214def jmptarget   : Operand<OtherVT> {
215  let EncoderMethod = "getJumpTargetOpValue";
216}
217def brtarget    : Operand<OtherVT> {
218  let EncoderMethod = "getBranchTargetOpValue";
219  let OperandType = "OPERAND_PCREL";
220  let DecoderMethod = "DecodeBranchTarget";
221}
222def calltarget  : Operand<iPTR> {
223  let EncoderMethod = "getJumpTargetOpValue";
224}
225def calltarget64: Operand<i64>;
226def simm16      : Operand<i32> {
227  let DecoderMethod= "DecodeSimm16";
228}
229def simm16_64   : Operand<i64>;
230def shamt       : Operand<i32>;
231
232// Unsigned Operand
233def uimm16      : Operand<i32> {
234  let PrintMethod = "printUnsignedImm";
235}
236
237def MipsMemAsmOperand : AsmOperandClass {
238  let Name = "Mem";
239  let ParserMethod = "parseMemOperand";
240}
241
242// Address operand
243def mem : Operand<i32> {
244  let PrintMethod = "printMemOperand";
245  let MIOperandInfo = (ops CPURegs, simm16);
246  let EncoderMethod = "getMemEncoding";
247  let ParserMatchClass = MipsMemAsmOperand;
248}
249
250def mem64 : Operand<i64> {
251  let PrintMethod = "printMemOperand";
252  let MIOperandInfo = (ops CPU64Regs, simm16_64);
253  let EncoderMethod = "getMemEncoding";
254  let ParserMatchClass = MipsMemAsmOperand;
255}
256
257def mem_ea : Operand<i32> {
258  let PrintMethod = "printMemOperandEA";
259  let MIOperandInfo = (ops CPURegs, simm16);
260  let EncoderMethod = "getMemEncoding";
261}
262
263def mem_ea_64 : Operand<i64> {
264  let PrintMethod = "printMemOperandEA";
265  let MIOperandInfo = (ops CPU64Regs, simm16_64);
266  let EncoderMethod = "getMemEncoding";
267}
268
269// size operand of ext instruction
270def size_ext : Operand<i32> {
271  let EncoderMethod = "getSizeExtEncoding";
272  let DecoderMethod = "DecodeExtSize";
273}
274
275// size operand of ins instruction
276def size_ins : Operand<i32> {
277  let EncoderMethod = "getSizeInsEncoding";
278  let DecoderMethod = "DecodeInsSize";
279}
280
281// Transformation Function - get the lower 16 bits.
282def LO16 : SDNodeXForm<imm, [{
283  return getImm(N, N->getZExtValue() & 0xFFFF);
284}]>;
285
286// Transformation Function - get the higher 16 bits.
287def HI16 : SDNodeXForm<imm, [{
288  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
289}]>;
290
291// Node immediate fits as 16-bit sign extended on target immediate.
292// e.g. addi, andi
293def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
294
295// Node immediate fits as 16-bit zero extended on target immediate.
296// The LO16 param means that only the lower 16 bits of the node
297// immediate are caught.
298// e.g. addiu, sltiu
299def immZExt16  : PatLeaf<(imm), [{
300  if (N->getValueType(0) == MVT::i32)
301    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
302  else
303    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
304}], LO16>;
305
306// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
307def immLow16Zero : PatLeaf<(imm), [{
308  int64_t Val = N->getSExtValue();
309  return isInt<32>(Val) && !(Val & 0xffff);
310}]>;
311
312// shamt field must fit in 5 bits.
313def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
314
315// Mips Address Mode! SDNode frameindex could possibily be a match
316// since load and store instructions from stack used it.
317def addr :
318  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
319
320//===----------------------------------------------------------------------===//
321// Instructions specific format
322//===----------------------------------------------------------------------===//
323
324/// Move Control Registers From/To CPU Registers
325def MFC0_3OP  : MFC3OP<0x10, 0, (outs CPURegs:$rt),
326                       (ins CPURegs:$rd, uimm16:$sel),"mfc0\t$rt, $rd, $sel">;
327def : InstAlias<"mfc0 $rt, $rd", (MFC0_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
328
329def MTC0_3OP  : MFC3OP<0x10, 4, (outs CPURegs:$rd, uimm16:$sel),
330                       (ins CPURegs:$rt),"mtc0\t$rt, $rd, $sel">;
331def : InstAlias<"mtc0 $rt, $rd", (MTC0_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
332
333def MFC2_3OP  : MFC3OP<0x12, 0, (outs CPURegs:$rt),
334                       (ins CPURegs:$rd, uimm16:$sel),"mfc2\t$rt, $rd, $sel">;
335def : InstAlias<"mfc2 $rt, $rd", (MFC2_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
336
337def MTC2_3OP  : MFC3OP<0x12, 4, (outs CPURegs:$rd, uimm16:$sel),
338                       (ins CPURegs:$rt),"mtc2\t$rt, $rd, $sel">;
339def : InstAlias<"mtc2 $rt, $rd", (MTC2_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
340
341// Arithmetic and logical instructions with 3 register operands.
342class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
343                  InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
344  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
345     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
346     [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> {
347  let shamt = 0;
348  let isCommutable = isComm;
349  let isReMaterializable = 1;
350}
351
352class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
353                    InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
354  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
355     !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> {
356  let shamt = 0;
357  let isCommutable = isComm;
358}
359
360// Arithmetic and logical instructions with 2 register operands.
361class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode,
362                  Operand Od, PatLeaf imm_type, RegisterClass RC> :
363  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
364     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
365     [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu> {
366  let isReMaterializable = 1;
367}
368
369class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
370                     Operand Od, PatLeaf imm_type, RegisterClass RC> :
371  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
372     !strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>;
373
374// Arithmetic Multiply ADD/SUB
375let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
376class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
377  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
378     !strconcat(instr_asm, "\t$rs, $rt"),
379     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
380  let rd = 0;
381  let shamt = 0;
382  let isCommutable = isComm;
383}
384
385//  Logical
386class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
387  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
388     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
389     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
390  let shamt = 0;
391  let isCommutable = 1;
392}
393
394// Shifts
395class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm,
396                       SDNode OpNode, PatFrag PF, Operand ImmOpnd,
397                       RegisterClass RC>:
398  FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
399     !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
400     [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> {
401  let rs = isRotate;
402}
403
404// 32-bit shift instructions.
405class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm,
406                         SDNode OpNode>:
407  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>;
408
409class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
410                       SDNode OpNode, RegisterClass RC>:
411  FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
412     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
413     [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> {
414  let shamt = isRotate;
415}
416
417// Load Upper Imediate
418class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
419  FI<op, (outs RC:$rt), (ins Imm:$imm16),
420     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> {
421  let rs = 0;
422  let neverHasSideEffects = 1;
423  let isReMaterializable = 1;
424}
425
426class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
427          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
428  bits<21> addr;
429  let Inst{25-21} = addr{20-16};
430  let Inst{15-0}  = addr{15-0};
431  let DecoderMethod = "DecodeMem";
432}
433
434// Memory Load/Store
435let canFoldAsLoad = 1 in
436class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
437            Operand MemOpnd, bit Pseudo>:
438  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
439     !strconcat(instr_asm, "\t$rt, $addr"),
440     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
441  let isPseudo = Pseudo;
442}
443
444class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
445             Operand MemOpnd, bit Pseudo>:
446  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
447     !strconcat(instr_asm, "\t$rt, $addr"),
448     [(OpNode RC:$rt, addr:$addr)], IIStore> {
449  let isPseudo = Pseudo;
450}
451
452// 32-bit load.
453multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
454                   bit Pseudo = 0> {
455  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
456               Requires<[NotN64, HasStandardEncoding]>;
457  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
458               Requires<[IsN64, HasStandardEncoding]> {
459    let DecoderNamespace = "Mips64";
460    let isCodeGenOnly = 1;
461  }
462}
463
464// 64-bit load.
465multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
466                   bit Pseudo = 0> {
467  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
468               Requires<[NotN64, HasStandardEncoding]>;
469  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
470               Requires<[IsN64, HasStandardEncoding]> {
471    let DecoderNamespace = "Mips64";
472    let isCodeGenOnly = 1;
473  }
474}
475
476// 32-bit store.
477multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
478                    bit Pseudo = 0> {
479  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
480               Requires<[NotN64, HasStandardEncoding]>;
481  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
482               Requires<[IsN64, HasStandardEncoding]> {
483    let DecoderNamespace = "Mips64";
484    let isCodeGenOnly = 1;
485  }
486}
487
488// 64-bit store.
489multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
490                    bit Pseudo = 0> {
491  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
492               Requires<[NotN64, HasStandardEncoding]>;
493  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
494               Requires<[IsN64, HasStandardEncoding]> {
495    let DecoderNamespace = "Mips64";
496    let isCodeGenOnly = 1;
497  }
498}
499
500// Load/Store Left/Right
501let canFoldAsLoad = 1 in
502class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
503                    RegisterClass RC, Operand MemOpnd> :
504  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
505       !strconcat(instr_asm, "\t$rt, $addr"),
506       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
507  string Constraints = "$src = $rt";
508}
509
510class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
511                     RegisterClass RC, Operand MemOpnd>:
512  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
513       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
514       IIStore>;
515
516// 32-bit load left/right.
517multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
518  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
519               Requires<[NotN64, HasStandardEncoding]>;
520  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
521               Requires<[IsN64, HasStandardEncoding]> {
522    let DecoderNamespace = "Mips64";
523    let isCodeGenOnly = 1;
524  }
525}
526
527// 64-bit load left/right.
528multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
529  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
530               Requires<[NotN64, HasStandardEncoding]>;
531  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
532               Requires<[IsN64, HasStandardEncoding]> {
533    let DecoderNamespace = "Mips64";
534    let isCodeGenOnly = 1;
535  }
536}
537
538// 32-bit store left/right.
539multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
540  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
541               Requires<[NotN64, HasStandardEncoding]>;
542  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
543               Requires<[IsN64, HasStandardEncoding]> {
544    let DecoderNamespace = "Mips64";
545    let isCodeGenOnly = 1;
546  }
547}
548
549// 64-bit store left/right.
550multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
551  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
552               Requires<[NotN64, HasStandardEncoding]>;
553  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
554               Requires<[IsN64, HasStandardEncoding]> {
555    let DecoderNamespace = "Mips64";
556    let isCodeGenOnly = 1;
557  }
558}
559
560// Conditional Branch
561class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
562  BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
563             !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
564             [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
565  let isBranch = 1;
566  let isTerminator = 1;
567  let hasDelaySlot = 1;
568  let Defs = [AT];
569}
570
571class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
572                  RegisterClass RC>:
573  BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
574             !strconcat(instr_asm, "\t$rs, $imm16"),
575             [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
576  let rt = _rt;
577  let isBranch = 1;
578  let isTerminator = 1;
579  let hasDelaySlot = 1;
580  let Defs = [AT];
581}
582
583// SetCC
584class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
585              RegisterClass RC>:
586  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
587     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
588     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
589     IIAlu> {
590  let shamt = 0;
591}
592
593class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
594              PatLeaf imm_type, RegisterClass RC>:
595  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
596     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
597     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
598     IIAlu>;
599
600// Jump
601class JumpFJ<bits<6> op, string instr_asm, SDPatternOperator operator>:
602  FJ<op, (outs), (ins jmptarget:$target), !strconcat(instr_asm, "\t$target"),
603     [(operator bb:$target)], IIBranch> {
604  let isTerminator=1;
605  let isBarrier=1;
606  let hasDelaySlot = 1;
607  let DecoderMethod = "DecodeJumpTarget";
608  let Defs = [AT];
609}
610
611// Unconditional branch
612class UncondBranch<bits<6> op, string instr_asm>:
613  BranchBase<op, (outs), (ins brtarget:$imm16),
614             !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
615  let rs = 0;
616  let rt = 0;
617  let isBranch = 1;
618  let isTerminator = 1;
619  let isBarrier = 1;
620  let hasDelaySlot = 1;
621  let Predicates = [RelocPIC, HasStandardEncoding];
622  let Defs = [AT];
623}
624
625// Base class for indirect branch and return instruction classes.
626let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
627class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
628  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch> {
629  let rt = 0;
630  let rd = 0;
631  let shamt = 0;
632}
633
634// Indirect branch
635class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
636  let isBranch = 1;
637  let isIndirectBranch = 1;
638}
639
640// Return instruction
641class RetBase<RegisterClass RC>: JumpFR<RC> {
642  let isReturn = 1;
643  let isCodeGenOnly = 1;
644  let hasCtrlDep = 1;
645  let hasExtraSrcRegAllocReq = 1;
646}
647
648// Jump and Link (Call)
649let isCall=1, hasDelaySlot=1, Defs = [RA] in {
650  class JumpLink<bits<6> op, string instr_asm>:
651    FJ<op, (outs), (ins calltarget:$target),
652       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
653       IIBranch> {
654       let DecoderMethod = "DecodeJumpTarget";
655       }
656
657  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
658                    RegisterClass RC>:
659    FR<op, func, (outs), (ins RC:$rs),
660       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
661    let rt = 0;
662    let rd = 31;
663    let shamt = 0;
664  }
665
666  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
667    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
668       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
669    let rt = _rt;
670  }
671}
672
673// Mul, Div
674class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
675           RegisterClass RC, list<Register> DefRegs>:
676  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
677     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
678  let rd = 0;
679  let shamt = 0;
680  let isCommutable = 1;
681  let Defs = DefRegs;
682  let neverHasSideEffects = 1;
683}
684
685class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
686  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
687
688class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
689          RegisterClass RC, list<Register> DefRegs>:
690  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
691     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
692     [(op RC:$rs, RC:$rt)], itin> {
693  let rd = 0;
694  let shamt = 0;
695  let Defs = DefRegs;
696}
697
698class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
699  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
700
701// Move from Hi/Lo
702class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
703                   list<Register> UseRegs>:
704  FR<0x00, func, (outs RC:$rd), (ins),
705     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
706  let rs = 0;
707  let rt = 0;
708  let shamt = 0;
709  let Uses = UseRegs;
710  let neverHasSideEffects = 1;
711}
712
713class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
714                 list<Register> DefRegs>:
715  FR<0x00, func, (outs), (ins RC:$rs),
716     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
717  let rt = 0;
718  let rd = 0;
719  let shamt = 0;
720  let Defs = DefRegs;
721  let neverHasSideEffects = 1;
722}
723
724class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
725  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
726     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
727 let isCodeGenOnly = 1;
728}
729
730// Count Leading Ones/Zeros in Word
731class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
732  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
733     !strconcat(instr_asm, "\t$rd, $rs"),
734     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
735     Requires<[HasBitCount, HasStandardEncoding]> {
736  let shamt = 0;
737  let rt = rd;
738}
739
740class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
741  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
742     !strconcat(instr_asm, "\t$rd, $rs"),
743     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
744     Requires<[HasBitCount, HasStandardEncoding]> {
745  let shamt = 0;
746  let rt = rd;
747}
748
749// Sign Extend in Register.
750class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
751                   RegisterClass RC>:
752  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
753     !strconcat(instr_asm, "\t$rd, $rt"),
754     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
755  let rs = 0;
756  let shamt = sa;
757  let Predicates = [HasSEInReg, HasStandardEncoding];
758}
759
760// Subword Swap
761class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
762  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
763     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
764  let rs = 0;
765  let shamt = sa;
766  let Predicates = [HasSwap, HasStandardEncoding];
767  let neverHasSideEffects = 1;
768}
769
770// Read Hardware
771class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
772  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
773       "rdhwr\t$rt, $rd", [], IIAlu> {
774  let rs = 0;
775  let shamt = 0;
776}
777
778// Ext and Ins
779class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
780  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
781     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
782     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
783  bits<5> pos;
784  bits<5> sz;
785  let rd = sz;
786  let shamt = pos;
787  let Predicates = [HasMips32r2, HasStandardEncoding];
788}
789
790class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
791  FR<0x1f, _funct, (outs RC:$rt),
792     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
793     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
794     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
795     NoItinerary> {
796  bits<5> pos;
797  bits<5> sz;
798  let rd = sz;
799  let shamt = pos;
800  let Predicates = [HasMips32r2, HasStandardEncoding];
801  let Constraints = "$src = $rt";
802}
803
804// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
805class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
806                 RegisterClass PRC> :
807  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
808           !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
809           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
810
811multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
812  def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>,
813                          Requires<[NotN64, HasStandardEncoding]>;
814  def _P8    : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>,
815                          Requires<[IsN64, HasStandardEncoding]> {
816    let DecoderNamespace = "Mips64";
817  }
818}
819
820// Atomic Compare & Swap.
821class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
822                    RegisterClass PRC> :
823  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
824           !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
825           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
826
827multiclass AtomicCmpSwap32<PatFrag Op, string Width>  {
828  def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>,
829                             Requires<[NotN64, HasStandardEncoding]>;
830  def _P8    : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>,
831                             Requires<[IsN64, HasStandardEncoding]> {
832    let DecoderNamespace = "Mips64";
833  }
834}
835
836class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
837  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
838       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
839  let mayLoad = 1;
840}
841
842class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
843  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
844       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
845  let mayStore = 1;
846  let Constraints = "$rt = $dst";
847}
848
849//===----------------------------------------------------------------------===//
850// Pseudo instructions
851//===----------------------------------------------------------------------===//
852
853// Return RA.
854let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
855def RetRA : PseudoSE<(outs), (ins), "", [(MipsRet)]>;
856
857let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
858def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
859                                  "!ADJCALLSTACKDOWN $amt",
860                                  [(callseq_start timm:$amt)]>;
861def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
862                                  "!ADJCALLSTACKUP $amt1",
863                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
864}
865
866// When handling PIC code the assembler needs .cpload and .cprestore
867// directives. If the real instructions corresponding these directives
868// are used, we have the same behavior, but get also a bunch of warnings
869// from the assembler.
870let neverHasSideEffects = 1 in
871def CPRESTORE : PseudoSE<(outs), (ins i32imm:$loc, CPURegs:$gp),
872                         ".cprestore\t$loc", []>;
873
874let usesCustomInserter = 1 in {
875  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
876  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
877  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
878  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
879  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
880  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
881  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
882  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
883  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
884  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
885  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
886  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
887  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
888  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
889  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
890  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
891  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
892  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
893
894  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8, "swap_8">;
895  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16, "swap_16">;
896  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32, "swap_32">;
897
898  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
899  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
900  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
901}
902
903//===----------------------------------------------------------------------===//
904// Instruction definition
905//===----------------------------------------------------------------------===//
906
907class LoadImm32< string instr_asm, Operand Od, RegisterClass RC> :
908  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
909                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
910def LoadImm32Reg : LoadImm32<"li", shamt,CPURegs>;
911
912class LoadAddress<string instr_asm, Operand MemOpnd, RegisterClass RC> :
913  MipsAsmPseudoInst<(outs RC:$rt), (ins MemOpnd:$addr),
914                     !strconcat(instr_asm, "\t$rt, $addr")> ;
915def LoadAddr32Reg : LoadAddress<"la", mem, CPURegs>;
916
917class LoadAddressImm<string instr_asm, Operand Od, RegisterClass RC> :
918  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
919                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
920def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegs>;
921
922//===----------------------------------------------------------------------===//
923// MipsI Instructions
924//===----------------------------------------------------------------------===//
925
926/// Arithmetic Instructions (ALU Immediate)
927def ADDiu   : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>;
928def ADDi    : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>;
929def SLTi    : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
930def SLTiu   : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
931def ANDi    : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>;
932def ORi     : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>;
933def XORi    : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>;
934def LUi     : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
935
936/// Arithmetic Instructions (3-Operand, R-Type)
937def ADDu    : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>;
938def SUBu    : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>;
939def ADD     : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>;
940def SUB     : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>;
941def SLT     : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
942def SLTu    : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
943def AND     : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>;
944def OR      : ArithLogicR<0x00, 0x25, "or",  or, IIAlu, CPURegs, 1>;
945def XOR     : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>;
946def NOR     : LogicNOR<0x00, 0x27, "nor", CPURegs>;
947
948/// Shift Instructions
949def SLL     : shift_rotate_imm32<0x00, 0x00, "sll", shl>;
950def SRL     : shift_rotate_imm32<0x02, 0x00, "srl", srl>;
951def SRA     : shift_rotate_imm32<0x03, 0x00, "sra", sra>;
952def SLLV    : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
953def SRLV    : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
954def SRAV    : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
955
956// Rotate Instructions
957let Predicates = [HasMips32r2, HasStandardEncoding] in {
958    def ROTR    : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>;
959    def ROTRV   : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
960}
961
962/// Load and Store Instructions
963///  aligned
964defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
965defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
966defm LH      : LoadM32<0x21, "lh",  sextloadi16>;
967defm LHu     : LoadM32<0x25, "lhu", zextloadi16>;
968defm LW      : LoadM32<0x23, "lw",  load>;
969defm SB      : StoreM32<0x28, "sb", truncstorei8>;
970defm SH      : StoreM32<0x29, "sh", truncstorei16>;
971defm SW      : StoreM32<0x2b, "sw", store>;
972
973/// load/store left/right
974defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
975defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
976defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
977defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
978
979let hasSideEffects = 1 in
980def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
981                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
982{
983  bits<5> stype;
984  let Opcode = 0;
985  let Inst{25-11} = 0;
986  let Inst{10-6} = stype;
987  let Inst{5-0} = 15;
988}
989
990/// Load-linked, Store-conditional
991def LL    : LLBase<0x30, "ll", CPURegs, mem>,
992            Requires<[NotN64, HasStandardEncoding]>;
993def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
994            Requires<[IsN64, HasStandardEncoding]> {
995  let DecoderNamespace = "Mips64";
996}
997
998def SC    : SCBase<0x38, "sc", CPURegs, mem>,
999            Requires<[NotN64, HasStandardEncoding]>;
1000def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
1001            Requires<[IsN64, HasStandardEncoding]> {
1002  let DecoderNamespace = "Mips64";
1003}
1004
1005/// Jump and Branch Instructions
1006def J       : JumpFJ<0x02, "j", br>,
1007              Requires<[RelocStatic, HasStandardEncoding]>, IsBranch;
1008def JR      : IndirectBranch<CPURegs>;
1009def B       : UncondBranch<0x04, "b">;
1010def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
1011def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
1012def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
1013def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
1014def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
1015def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
1016
1017let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
1018    hasDelaySlot = 1, Defs = [RA] in
1019def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
1020
1021def JAL  : JumpLink<0x03, "jal">;
1022def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
1023def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
1024def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
1025def TAILCALL : JumpFJ<0x02, "j", br>, IsTailCall;
1026def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, IsTailCall;
1027
1028def RET : RetBase<CPURegs>;
1029
1030/// Multiply and Divide Instructions.
1031def MULT    : Mult32<0x18, "mult", IIImul>;
1032def MULTu   : Mult32<0x19, "multu", IIImul>;
1033def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
1034def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
1035
1036def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
1037def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
1038def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
1039def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
1040
1041/// Sign Ext In Register Instructions.
1042def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
1043def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
1044
1045/// Count Leading
1046def CLZ : CountLeading0<0x20, "clz", CPURegs>;
1047def CLO : CountLeading1<0x21, "clo", CPURegs>;
1048
1049/// Word Swap Bytes Within Halfwords
1050def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
1051
1052/// No operation
1053let addr=0 in
1054  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1055
1056// FrameIndexes are legalized when they are operands from load/store
1057// instructions. The same not happens for stack address copies, so an
1058// add op with mem ComplexPattern is used and the stack address copy
1059// can be matched. It's similar to Sparc LEA_ADDRi
1060def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1061
1062// DynAlloc node points to dynamically allocated stack space.
1063// $sp is added to the list of implicitly used registers to prevent dead code
1064// elimination from removing instructions that modify $sp.
1065let Uses = [SP] in
1066def DynAlloc : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1067
1068// MADD*/MSUB*
1069def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1070def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1071def MSUB  : MArithR<4, "msub", MipsMSub>;
1072def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1073
1074// MUL is a assembly macro in the current used ISAs. In recent ISA's
1075// it is a real instruction.
1076def MUL   : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>,
1077            Requires<[HasMips32, HasStandardEncoding]>;
1078
1079def RDHWR : ReadHardware<CPURegs, HWRegs>;
1080
1081def EXT : ExtBase<0, "ext", CPURegs>;
1082def INS : InsBase<4, "ins", CPURegs>;
1083
1084//===----------------------------------------------------------------------===//
1085// Instruction aliases
1086//===----------------------------------------------------------------------===//
1087def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
1088def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
1089def : InstAlias<"addu $rs,$rt,$imm",
1090                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1091def : InstAlias<"add $rs,$rt,$imm",
1092                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1093def : InstAlias<"and $rs,$rt,$imm",
1094                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1095def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
1096def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
1097def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
1098def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
1099def : InstAlias<"slt $rs,$rt,$imm",
1100                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1101def : InstAlias<"xor $rs,$rt,$imm",
1102                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1103
1104//===----------------------------------------------------------------------===//
1105//  Arbitrary patterns that map to one or more instructions
1106//===----------------------------------------------------------------------===//
1107
1108// Small immediates
1109def : MipsPat<(i32 immSExt16:$in),
1110              (ADDiu ZERO, imm:$in)>;
1111def : MipsPat<(i32 immZExt16:$in),
1112              (ORi ZERO, imm:$in)>;
1113def : MipsPat<(i32 immLow16Zero:$in),
1114              (LUi (HI16 imm:$in))>;
1115
1116// Arbitrary immediates
1117def : MipsPat<(i32 imm:$imm),
1118          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1119
1120// Carry MipsPatterns
1121def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1122              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1123def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1124              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1125def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1126              (ADDiu CPURegs:$src, imm:$imm)>;
1127
1128// Call
1129def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1130              (JAL tglobaladdr:$dst)>;
1131def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1132              (JAL texternalsym:$dst)>;
1133//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1134//              (JALR CPURegs:$dst)>;
1135
1136// hi/lo relocs
1137def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1138def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1139def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1140def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1141def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1142
1143def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1144def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1145def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1146def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1147def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1148
1149def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1150              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1151def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1152              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1153def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1154              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1155def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1156              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1157def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1158              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1159
1160// gp_rel relocs
1161def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1162              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1163def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1164              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1165
1166// wrapper_pic
1167class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1168      MipsPat<(MipsWrapper RC:$gp, node:$in),
1169              (ADDiuOp RC:$gp, node:$in)>;
1170
1171def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1172def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1173def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1174def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1175def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1176def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1177
1178// Mips does not have "not", so we expand our way
1179def : MipsPat<(not CPURegs:$in),
1180              (NOR CPURegs:$in, ZERO)>;
1181
1182// extended loads
1183let Predicates = [NotN64, HasStandardEncoding] in {
1184  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1185  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1186  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1187}
1188let Predicates = [IsN64, HasStandardEncoding] in {
1189  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1190  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1191  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1192}
1193
1194// peepholes
1195let Predicates = [NotN64, HasStandardEncoding] in {
1196  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1197}
1198let Predicates = [IsN64, HasStandardEncoding] in {
1199  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1200}
1201
1202// brcond patterns
1203multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1204                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1205                      Instruction SLTiuOp, Register ZEROReg> {
1206def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1207              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1208def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1209              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1210
1211def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1212              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1213def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1214              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1215def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1216              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1217def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1218              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1219
1220def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1221              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1222def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1223              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1224
1225def : MipsPat<(brcond RC:$cond, bb:$dst),
1226              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1227}
1228
1229defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1230
1231// setcc patterns
1232multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1233                     Instruction SLTuOp, Register ZEROReg> {
1234  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1235                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1236  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1237                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1238}
1239
1240multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1241  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1242                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1243  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1244                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1245}
1246
1247multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1248  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1249                (SLTOp RC:$rhs, RC:$lhs)>;
1250  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1251                (SLTuOp RC:$rhs, RC:$lhs)>;
1252}
1253
1254multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1255  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1256                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1257  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1258                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1259}
1260
1261multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1262                        Instruction SLTiuOp> {
1263  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1264                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1265  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1266                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1267}
1268
1269defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1270defm : SetlePats<CPURegs, SLT, SLTu>;
1271defm : SetgtPats<CPURegs, SLT, SLTu>;
1272defm : SetgePats<CPURegs, SLT, SLTu>;
1273defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1274
1275// select MipsDynAlloc
1276def : MipsPat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
1277
1278// bswap pattern
1279def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1280
1281//===----------------------------------------------------------------------===//
1282// Floating Point Support
1283//===----------------------------------------------------------------------===//
1284
1285include "MipsInstrFPU.td"
1286include "Mips64InstrInfo.td"
1287include "MipsCondMov.td"
1288
1289//
1290// Mips16
1291
1292include "Mips16InstrFormats.td"
1293include "Mips16InstrInfo.td"
1294
1295// DSP
1296include "MipsDSPInstrFormats.td"
1297include "MipsDSPInstrInfo.td"
1298
1299