MipsInstrInfo.td revision 0301bc54ad23c9dff0370dffaf6eb3eabba42cc4
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_MipsDynAlloc    : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>,
37                                               SDTCisSameAs<0, 1>]>;
38def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
39
40def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
42def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
43                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
44                                   SDTCisSameAs<0, 4>]>;
45
46def SDTMipsLoadLR  : SDTypeProfile<1, 2,
47                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
48                                    SDTCisSameAs<0, 2>]>;
49
50// Call
51def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
52                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
53                          SDNPVariadic]>;
54
55// Tail call
56def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
57                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
58
59// Hi and Lo nodes are used to handle global addresses. Used on
60// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
61// static model. (nothing to do with Mips Registers Hi and Lo)
62def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
63def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
64def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
65
66// TlsGd node is used to handle General Dynamic TLS
67def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
68
69// TprelHi and TprelLo nodes are used to handle Local Exec TLS
70def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
71def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
72
73// Thread pointer
74def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
75
76// Return
77def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
78
79// These are target-independent nodes, but have target-specific formats.
80def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
81                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
82def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
83                           [SDNPHasChain, SDNPSideEffect,
84                            SDNPOptInGlue, SDNPOutGlue]>;
85
86// MAdd*/MSub* nodes
87def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
92                           [SDNPOptInGlue, SDNPOutGlue]>;
93def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
94                           [SDNPOptInGlue, SDNPOutGlue]>;
95
96// DivRem(u) nodes
97def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
98                           [SDNPOutGlue]>;
99def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
100                           [SDNPOutGlue]>;
101
102// Target constant nodes that are not part of any isel patterns and remain
103// unchanged can cause instructions with illegal operands to be emitted.
104// Wrapper node patterns give the instruction selector a chance to replace
105// target constant nodes that would otherwise remain unchanged with ADDiu
106// nodes. Without these wrapper node patterns, the following conditional move
107// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
108// compiled:
109//  movn  %got(d)($gp), %got(c)($gp), $4
110// This instruction is illegal since movn can take only register operands.
111
112def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
113
114// Pointer to dynamically allocated stack area.
115def MipsDynAlloc  : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
116                           [SDNPHasChain, SDNPInGlue]>;
117
118def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
119
120def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
121def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
122
123def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
124                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
125def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
126                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
127def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
128                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
129def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
130                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
131def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
132                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
133def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
134                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
135def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
136                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
137def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
138                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
139
140//===----------------------------------------------------------------------===//
141// Mips Instruction Predicate Definitions.
142//===----------------------------------------------------------------------===//
143def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
144                      AssemblerPredicate<"FeatureSEInReg">;
145def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
146                      AssemblerPredicate<"FeatureBitCount">;
147def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
148                      AssemblerPredicate<"FeatureSwap">;
149def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
150                      AssemblerPredicate<"FeatureCondMov">;
151def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
152                      AssemblerPredicate<"FeatureFPIdx">;
153def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
154                      AssemblerPredicate<"FeatureMips32">;
155def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
156                      AssemblerPredicate<"FeatureMips32r2">;
157def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
158                      AssemblerPredicate<"FeatureMips64">;
159def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
160                      AssemblerPredicate<"!FeatureMips64">;
161def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
162                      AssemblerPredicate<"FeatureMips64r2">;
163def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
164                      AssemblerPredicate<"FeatureN64">;
165def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
166                      AssemblerPredicate<"!FeatureN64">;
167def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
168                      AssemblerPredicate<"FeatureMips16">;
169def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
170                      AssemblerPredicate<"FeatureMips32">;
171def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
172                      AssemblerPredicate<"FeatureMips32">;
173def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
174                      AssemblerPredicate<"FeatureMips32">;
175def HasStandardEncoding : Predicate<"Subtarget.hasStandardEncoding()">,
176                          AssemblerPredicate<"!FeatureMips16">;
177
178class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
179  let Predicates = [HasStandardEncoding];
180}
181
182class IsBranch {
183  bit isBranch = 1;
184}
185
186class IsReturn {
187  bit isReturn = 1;
188}
189
190class IsCall {
191  bit isCall = 1;
192}
193
194class IsTailCall {
195  bit isCall = 1;
196  bit isTerminator = 1;
197  bit isReturn = 1;
198  bit isBarrier = 1;
199  bit hasExtraSrcRegAllocReq = 1;
200  bit isCodeGenOnly = 1;
201}
202
203class IsAsCheapAsAMove {
204  bit isAsCheapAsAMove = 1;
205}
206
207class NeverHasSideEffects {
208  bit neverHasSideEffects = 1;
209}
210
211//===----------------------------------------------------------------------===//
212// Instruction format superclass
213//===----------------------------------------------------------------------===//
214
215include "MipsInstrFormats.td"
216
217//===----------------------------------------------------------------------===//
218// Mips Operand, Complex Patterns and Transformations Definitions.
219//===----------------------------------------------------------------------===//
220
221// Instruction operand types
222def jmptarget   : Operand<OtherVT> {
223  let EncoderMethod = "getJumpTargetOpValue";
224}
225def brtarget    : Operand<OtherVT> {
226  let EncoderMethod = "getBranchTargetOpValue";
227  let OperandType = "OPERAND_PCREL";
228  let DecoderMethod = "DecodeBranchTarget";
229}
230def calltarget  : Operand<iPTR> {
231  let EncoderMethod = "getJumpTargetOpValue";
232}
233def calltarget64: Operand<i64>;
234def simm16      : Operand<i32> {
235  let DecoderMethod= "DecodeSimm16";
236}
237def simm16_64   : Operand<i64>;
238def shamt       : Operand<i32>;
239
240// Unsigned Operand
241def uimm16      : Operand<i32> {
242  let PrintMethod = "printUnsignedImm";
243}
244
245def MipsMemAsmOperand : AsmOperandClass {
246  let Name = "Mem";
247  let ParserMethod = "parseMemOperand";
248}
249
250// Address operand
251def mem : Operand<i32> {
252  let PrintMethod = "printMemOperand";
253  let MIOperandInfo = (ops CPURegs, simm16);
254  let EncoderMethod = "getMemEncoding";
255  let ParserMatchClass = MipsMemAsmOperand;
256}
257
258def mem64 : Operand<i64> {
259  let PrintMethod = "printMemOperand";
260  let MIOperandInfo = (ops CPU64Regs, simm16_64);
261  let EncoderMethod = "getMemEncoding";
262  let ParserMatchClass = MipsMemAsmOperand;
263}
264
265def mem_ea : Operand<i32> {
266  let PrintMethod = "printMemOperandEA";
267  let MIOperandInfo = (ops CPURegs, simm16);
268  let EncoderMethod = "getMemEncoding";
269}
270
271def mem_ea_64 : Operand<i64> {
272  let PrintMethod = "printMemOperandEA";
273  let MIOperandInfo = (ops CPU64Regs, simm16_64);
274  let EncoderMethod = "getMemEncoding";
275}
276
277// size operand of ext instruction
278def size_ext : Operand<i32> {
279  let EncoderMethod = "getSizeExtEncoding";
280  let DecoderMethod = "DecodeExtSize";
281}
282
283// size operand of ins instruction
284def size_ins : Operand<i32> {
285  let EncoderMethod = "getSizeInsEncoding";
286  let DecoderMethod = "DecodeInsSize";
287}
288
289// Transformation Function - get the lower 16 bits.
290def LO16 : SDNodeXForm<imm, [{
291  return getImm(N, N->getZExtValue() & 0xFFFF);
292}]>;
293
294// Transformation Function - get the higher 16 bits.
295def HI16 : SDNodeXForm<imm, [{
296  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
297}]>;
298
299// Node immediate fits as 16-bit sign extended on target immediate.
300// e.g. addi, andi
301def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
302
303// Node immediate fits as 16-bit zero extended on target immediate.
304// The LO16 param means that only the lower 16 bits of the node
305// immediate are caught.
306// e.g. addiu, sltiu
307def immZExt16  : PatLeaf<(imm), [{
308  if (N->getValueType(0) == MVT::i32)
309    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
310  else
311    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
312}], LO16>;
313
314// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
315def immLow16Zero : PatLeaf<(imm), [{
316  int64_t Val = N->getSExtValue();
317  return isInt<32>(Val) && !(Val & 0xffff);
318}]>;
319
320// shamt field must fit in 5 bits.
321def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
322
323// Mips Address Mode! SDNode frameindex could possibily be a match
324// since load and store instructions from stack used it.
325def addr :
326  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
327
328//===----------------------------------------------------------------------===//
329// Instructions specific format
330//===----------------------------------------------------------------------===//
331
332/// Move Control Registers From/To CPU Registers
333def MFC0_3OP  : MFC3OP<0x10, 0, (outs CPURegs:$rt),
334                       (ins CPURegs:$rd, uimm16:$sel),"mfc0\t$rt, $rd, $sel">;
335def : InstAlias<"mfc0 $rt, $rd", (MFC0_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
336
337def MTC0_3OP  : MFC3OP<0x10, 4, (outs CPURegs:$rd, uimm16:$sel),
338                       (ins CPURegs:$rt),"mtc0\t$rt, $rd, $sel">;
339def : InstAlias<"mtc0 $rt, $rd", (MTC0_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
340
341def MFC2_3OP  : MFC3OP<0x12, 0, (outs CPURegs:$rt),
342                       (ins CPURegs:$rd, uimm16:$sel),"mfc2\t$rt, $rd, $sel">;
343def : InstAlias<"mfc2 $rt, $rd", (MFC2_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
344
345def MTC2_3OP  : MFC3OP<0x12, 4, (outs CPURegs:$rd, uimm16:$sel),
346                       (ins CPURegs:$rt),"mtc2\t$rt, $rd, $sel">;
347def : InstAlias<"mtc2 $rt, $rd", (MTC2_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
348
349// Arithmetic and logical instructions with 3 register operands.
350class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
351                  InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
352  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
353     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
354     [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> {
355  let shamt = 0;
356  let isCommutable = isComm;
357  let isReMaterializable = 1;
358}
359
360class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
361                    InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
362  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
363     !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> {
364  let shamt = 0;
365  let isCommutable = isComm;
366}
367
368// Arithmetic and logical instructions with 2 register operands.
369class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode,
370                  Operand Od, PatLeaf imm_type, RegisterClass RC> :
371  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
372     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
373     [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu> {
374  let isReMaterializable = 1;
375}
376
377class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
378                     Operand Od, PatLeaf imm_type, RegisterClass RC> :
379  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
380     !strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>;
381
382// Arithmetic Multiply ADD/SUB
383let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
384class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
385  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
386     !strconcat(instr_asm, "\t$rs, $rt"),
387     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
388  let rd = 0;
389  let shamt = 0;
390  let isCommutable = isComm;
391}
392
393//  Logical
394class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
395  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
396     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
397     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
398  let shamt = 0;
399  let isCommutable = 1;
400}
401
402// Shifts
403class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm,
404                       SDNode OpNode, PatFrag PF, Operand ImmOpnd,
405                       RegisterClass RC>:
406  FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
407     !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
408     [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> {
409  let rs = isRotate;
410}
411
412// 32-bit shift instructions.
413class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm,
414                         SDNode OpNode>:
415  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>;
416
417class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
418                       SDNode OpNode, RegisterClass RC>:
419  FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
420     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
421     [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> {
422  let shamt = isRotate;
423}
424
425// Load Upper Imediate
426class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
427  FI<op, (outs RC:$rt), (ins Imm:$imm16),
428     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu>, IsAsCheapAsAMove {
429  let rs = 0;
430  let neverHasSideEffects = 1;
431  let isReMaterializable = 1;
432}
433
434class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
435          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
436  bits<21> addr;
437  let Inst{25-21} = addr{20-16};
438  let Inst{15-0}  = addr{15-0};
439  let DecoderMethod = "DecodeMem";
440}
441
442// Memory Load/Store
443let canFoldAsLoad = 1 in
444class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
445            Operand MemOpnd, bit Pseudo>:
446  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
447     !strconcat(instr_asm, "\t$rt, $addr"),
448     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
449  let isPseudo = Pseudo;
450}
451
452class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
453             Operand MemOpnd, bit Pseudo>:
454  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
455     !strconcat(instr_asm, "\t$rt, $addr"),
456     [(OpNode RC:$rt, addr:$addr)], IIStore> {
457  let isPseudo = Pseudo;
458}
459
460// 32-bit load.
461multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
462                   bit Pseudo = 0> {
463  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
464               Requires<[NotN64, HasStandardEncoding]>;
465  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
466               Requires<[IsN64, HasStandardEncoding]> {
467    let DecoderNamespace = "Mips64";
468    let isCodeGenOnly = 1;
469  }
470}
471
472// 64-bit load.
473multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
474                   bit Pseudo = 0> {
475  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
476               Requires<[NotN64, HasStandardEncoding]>;
477  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
478               Requires<[IsN64, HasStandardEncoding]> {
479    let DecoderNamespace = "Mips64";
480    let isCodeGenOnly = 1;
481  }
482}
483
484// 32-bit store.
485multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
486                    bit Pseudo = 0> {
487  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
488               Requires<[NotN64, HasStandardEncoding]>;
489  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
490               Requires<[IsN64, HasStandardEncoding]> {
491    let DecoderNamespace = "Mips64";
492    let isCodeGenOnly = 1;
493  }
494}
495
496// 64-bit store.
497multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
498                    bit Pseudo = 0> {
499  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
500               Requires<[NotN64, HasStandardEncoding]>;
501  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
502               Requires<[IsN64, HasStandardEncoding]> {
503    let DecoderNamespace = "Mips64";
504    let isCodeGenOnly = 1;
505  }
506}
507
508// Load/Store Left/Right
509let canFoldAsLoad = 1 in
510class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
511                    RegisterClass RC, Operand MemOpnd> :
512  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
513       !strconcat(instr_asm, "\t$rt, $addr"),
514       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
515  string Constraints = "$src = $rt";
516}
517
518class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
519                     RegisterClass RC, Operand MemOpnd>:
520  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
521       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
522       IIStore>;
523
524// 32-bit load left/right.
525multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
526  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
527               Requires<[NotN64, HasStandardEncoding]>;
528  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
529               Requires<[IsN64, HasStandardEncoding]> {
530    let DecoderNamespace = "Mips64";
531    let isCodeGenOnly = 1;
532  }
533}
534
535// 64-bit load left/right.
536multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
537  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
538               Requires<[NotN64, HasStandardEncoding]>;
539  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
540               Requires<[IsN64, HasStandardEncoding]> {
541    let DecoderNamespace = "Mips64";
542    let isCodeGenOnly = 1;
543  }
544}
545
546// 32-bit store left/right.
547multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
548  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
549               Requires<[NotN64, HasStandardEncoding]>;
550  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
551               Requires<[IsN64, HasStandardEncoding]> {
552    let DecoderNamespace = "Mips64";
553    let isCodeGenOnly = 1;
554  }
555}
556
557// 64-bit store left/right.
558multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
559  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
560               Requires<[NotN64, HasStandardEncoding]>;
561  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
562               Requires<[IsN64, HasStandardEncoding]> {
563    let DecoderNamespace = "Mips64";
564    let isCodeGenOnly = 1;
565  }
566}
567
568// Conditional Branch
569class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
570  BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
571             !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
572             [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
573  let isBranch = 1;
574  let isTerminator = 1;
575  let hasDelaySlot = 1;
576  let Defs = [AT];
577}
578
579class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
580                  RegisterClass RC>:
581  BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
582             !strconcat(instr_asm, "\t$rs, $imm16"),
583             [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
584  let rt = _rt;
585  let isBranch = 1;
586  let isTerminator = 1;
587  let hasDelaySlot = 1;
588  let Defs = [AT];
589}
590
591// SetCC
592class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
593              RegisterClass RC>:
594  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
595     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
596     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
597     IIAlu> {
598  let shamt = 0;
599}
600
601class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
602              PatLeaf imm_type, RegisterClass RC>:
603  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
604     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
605     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
606     IIAlu>;
607
608// Jump
609class JumpFJ<bits<6> op, DAGOperand opnd, string instr_asm,
610             SDPatternOperator operator, SDPatternOperator targetoperator>:
611  FJ<op, (outs), (ins opnd:$target), !strconcat(instr_asm, "\t$target"),
612     [(operator targetoperator:$target)], IIBranch> {
613  let isTerminator=1;
614  let isBarrier=1;
615  let hasDelaySlot = 1;
616  let DecoderMethod = "DecodeJumpTarget";
617  let Defs = [AT];
618}
619
620// Unconditional branch
621class UncondBranch<bits<6> op, string instr_asm>:
622  BranchBase<op, (outs), (ins brtarget:$imm16),
623             !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
624  let rs = 0;
625  let rt = 0;
626  let isBranch = 1;
627  let isTerminator = 1;
628  let isBarrier = 1;
629  let hasDelaySlot = 1;
630  let Predicates = [RelocPIC, HasStandardEncoding];
631  let Defs = [AT];
632}
633
634// Base class for indirect branch and return instruction classes.
635let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
636class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
637  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch> {
638  let rt = 0;
639  let rd = 0;
640  let shamt = 0;
641}
642
643// Indirect branch
644class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
645  let isBranch = 1;
646  let isIndirectBranch = 1;
647}
648
649// Return instruction
650class RetBase<RegisterClass RC>: JumpFR<RC> {
651  let isReturn = 1;
652  let isCodeGenOnly = 1;
653  let hasCtrlDep = 1;
654  let hasExtraSrcRegAllocReq = 1;
655}
656
657// Jump and Link (Call)
658let isCall=1, hasDelaySlot=1, Defs = [RA] in {
659  class JumpLink<bits<6> op, string instr_asm>:
660    FJ<op, (outs), (ins calltarget:$target),
661       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
662       IIBranch> {
663       let DecoderMethod = "DecodeJumpTarget";
664       }
665
666  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
667                    RegisterClass RC>:
668    FR<op, func, (outs), (ins RC:$rs),
669       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
670    let rt = 0;
671    let rd = 31;
672    let shamt = 0;
673  }
674
675  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
676    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
677       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
678    let rt = _rt;
679  }
680}
681
682// Mul, Div
683class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
684           RegisterClass RC, list<Register> DefRegs>:
685  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
686     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
687  let rd = 0;
688  let shamt = 0;
689  let isCommutable = 1;
690  let Defs = DefRegs;
691  let neverHasSideEffects = 1;
692}
693
694class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
695  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
696
697class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
698          RegisterClass RC, list<Register> DefRegs>:
699  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
700     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
701     [(op RC:$rs, RC:$rt)], itin> {
702  let rd = 0;
703  let shamt = 0;
704  let Defs = DefRegs;
705}
706
707class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
708  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
709
710// Move from Hi/Lo
711class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
712                   list<Register> UseRegs>:
713  FR<0x00, func, (outs RC:$rd), (ins),
714     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
715  let rs = 0;
716  let rt = 0;
717  let shamt = 0;
718  let Uses = UseRegs;
719  let neverHasSideEffects = 1;
720}
721
722class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
723                 list<Register> DefRegs>:
724  FR<0x00, func, (outs), (ins RC:$rs),
725     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
726  let rt = 0;
727  let rd = 0;
728  let shamt = 0;
729  let Defs = DefRegs;
730  let neverHasSideEffects = 1;
731}
732
733class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
734  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
735     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
736 let isCodeGenOnly = 1;
737}
738
739// Count Leading Ones/Zeros in Word
740class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
741  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
742     !strconcat(instr_asm, "\t$rd, $rs"),
743     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
744     Requires<[HasBitCount, HasStandardEncoding]> {
745  let shamt = 0;
746  let rt = rd;
747}
748
749class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
750  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
751     !strconcat(instr_asm, "\t$rd, $rs"),
752     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
753     Requires<[HasBitCount, HasStandardEncoding]> {
754  let shamt = 0;
755  let rt = rd;
756}
757
758// Sign Extend in Register.
759class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
760                   RegisterClass RC>:
761  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
762     !strconcat(instr_asm, "\t$rd, $rt"),
763     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
764  let rs = 0;
765  let shamt = sa;
766  let Predicates = [HasSEInReg, HasStandardEncoding];
767}
768
769// Subword Swap
770class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
771  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
772     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
773  let rs = 0;
774  let shamt = sa;
775  let Predicates = [HasSwap, HasStandardEncoding];
776  let neverHasSideEffects = 1;
777}
778
779// Read Hardware
780class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
781  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
782       "rdhwr\t$rt, $rd", [], IIAlu> {
783  let rs = 0;
784  let shamt = 0;
785}
786
787// Ext and Ins
788class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
789  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
790     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
791     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
792  bits<5> pos;
793  bits<5> sz;
794  let rd = sz;
795  let shamt = pos;
796  let Predicates = [HasMips32r2, HasStandardEncoding];
797}
798
799class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
800  FR<0x1f, _funct, (outs RC:$rt),
801     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
802     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
803     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
804     NoItinerary> {
805  bits<5> pos;
806  bits<5> sz;
807  let rd = sz;
808  let shamt = pos;
809  let Predicates = [HasMips32r2, HasStandardEncoding];
810  let Constraints = "$src = $rt";
811}
812
813// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
814class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
815                 RegisterClass PRC> :
816  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
817           !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
818           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
819
820multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
821  def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>,
822                          Requires<[NotN64, HasStandardEncoding]>;
823  def _P8    : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>,
824                          Requires<[IsN64, HasStandardEncoding]> {
825    let DecoderNamespace = "Mips64";
826  }
827}
828
829// Atomic Compare & Swap.
830class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
831                    RegisterClass PRC> :
832  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
833           !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
834           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
835
836multiclass AtomicCmpSwap32<PatFrag Op, string Width>  {
837  def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>,
838                             Requires<[NotN64, HasStandardEncoding]>;
839  def _P8    : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>,
840                             Requires<[IsN64, HasStandardEncoding]> {
841    let DecoderNamespace = "Mips64";
842  }
843}
844
845class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
846  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
847       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
848  let mayLoad = 1;
849}
850
851class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
852  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
853       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
854  let mayStore = 1;
855  let Constraints = "$rt = $dst";
856}
857
858//===----------------------------------------------------------------------===//
859// Pseudo instructions
860//===----------------------------------------------------------------------===//
861
862// Return RA.
863let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
864def RetRA : PseudoSE<(outs), (ins), "", [(MipsRet)]>;
865
866let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
867def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
868                                  "!ADJCALLSTACKDOWN $amt",
869                                  [(callseq_start timm:$amt)]>;
870def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
871                                  "!ADJCALLSTACKUP $amt1",
872                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
873}
874
875// When handling PIC code the assembler needs .cpload and .cprestore
876// directives. If the real instructions corresponding these directives
877// are used, we have the same behavior, but get also a bunch of warnings
878// from the assembler.
879let neverHasSideEffects = 1 in
880def CPRESTORE : PseudoSE<(outs), (ins i32imm:$loc, CPURegs:$gp),
881                         ".cprestore\t$loc", []>;
882
883let usesCustomInserter = 1 in {
884  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
885  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
886  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
887  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
888  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
889  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
890  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
891  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
892  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
893  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
894  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
895  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
896  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
897  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
898  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
899  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
900  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
901  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
902
903  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8, "swap_8">;
904  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16, "swap_16">;
905  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32, "swap_32">;
906
907  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
908  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
909  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
910}
911
912//===----------------------------------------------------------------------===//
913// Instruction definition
914//===----------------------------------------------------------------------===//
915
916class LoadImm32< string instr_asm, Operand Od, RegisterClass RC> :
917  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
918                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
919def LoadImm32Reg : LoadImm32<"li", shamt,CPURegs>;
920
921class LoadAddress<string instr_asm, Operand MemOpnd, RegisterClass RC> :
922  MipsAsmPseudoInst<(outs RC:$rt), (ins MemOpnd:$addr),
923                     !strconcat(instr_asm, "\t$rt, $addr")> ;
924def LoadAddr32Reg : LoadAddress<"la", mem, CPURegs>;
925
926class LoadAddressImm<string instr_asm, Operand Od, RegisterClass RC> :
927  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
928                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
929def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegs>;
930
931//===----------------------------------------------------------------------===//
932// MipsI Instructions
933//===----------------------------------------------------------------------===//
934
935/// Arithmetic Instructions (ALU Immediate)
936def ADDiu   : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>,
937              IsAsCheapAsAMove;
938def ADDi    : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>;
939def SLTi    : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
940def SLTiu   : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
941def ANDi    : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>;
942def ORi     : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>;
943def XORi    : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>;
944def LUi     : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
945
946/// Arithmetic Instructions (3-Operand, R-Type)
947def ADDu    : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>;
948def SUBu    : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>;
949def ADD     : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>;
950def SUB     : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>;
951def SLT     : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
952def SLTu    : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
953def AND     : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>;
954def OR      : ArithLogicR<0x00, 0x25, "or",  or, IIAlu, CPURegs, 1>;
955def XOR     : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>;
956def NOR     : LogicNOR<0x00, 0x27, "nor", CPURegs>;
957
958/// Shift Instructions
959def SLL     : shift_rotate_imm32<0x00, 0x00, "sll", shl>;
960def SRL     : shift_rotate_imm32<0x02, 0x00, "srl", srl>;
961def SRA     : shift_rotate_imm32<0x03, 0x00, "sra", sra>;
962def SLLV    : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
963def SRLV    : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
964def SRAV    : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
965
966// Rotate Instructions
967let Predicates = [HasMips32r2, HasStandardEncoding] in {
968    def ROTR    : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>;
969    def ROTRV   : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
970}
971
972/// Load and Store Instructions
973///  aligned
974defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
975defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
976defm LH      : LoadM32<0x21, "lh",  sextloadi16>;
977defm LHu     : LoadM32<0x25, "lhu", zextloadi16>;
978defm LW      : LoadM32<0x23, "lw",  load>;
979defm SB      : StoreM32<0x28, "sb", truncstorei8>;
980defm SH      : StoreM32<0x29, "sh", truncstorei16>;
981defm SW      : StoreM32<0x2b, "sw", store>;
982
983/// load/store left/right
984defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
985defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
986defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
987defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
988
989let hasSideEffects = 1 in
990def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
991                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
992{
993  bits<5> stype;
994  let Opcode = 0;
995  let Inst{25-11} = 0;
996  let Inst{10-6} = stype;
997  let Inst{5-0} = 15;
998}
999
1000/// Load-linked, Store-conditional
1001def LL    : LLBase<0x30, "ll", CPURegs, mem>,
1002            Requires<[NotN64, HasStandardEncoding]>;
1003def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
1004            Requires<[IsN64, HasStandardEncoding]> {
1005  let DecoderNamespace = "Mips64";
1006}
1007
1008def SC    : SCBase<0x38, "sc", CPURegs, mem>,
1009            Requires<[NotN64, HasStandardEncoding]>;
1010def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
1011            Requires<[IsN64, HasStandardEncoding]> {
1012  let DecoderNamespace = "Mips64";
1013}
1014
1015/// Jump and Branch Instructions
1016def J       : JumpFJ<0x02, jmptarget, "j", br, bb>,
1017              Requires<[RelocStatic, HasStandardEncoding]>, IsBranch;
1018def JR      : IndirectBranch<CPURegs>;
1019def B       : UncondBranch<0x04, "b">;
1020def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
1021def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
1022def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
1023def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
1024def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
1025def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
1026
1027let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
1028    hasDelaySlot = 1, Defs = [RA] in
1029def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
1030
1031def JAL  : JumpLink<0x03, "jal">;
1032def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
1033def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
1034def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
1035def TAILCALL : JumpFJ<0x02, calltarget, "j", MipsTailCall, imm>, IsTailCall;
1036def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, IsTailCall;
1037
1038def RET : RetBase<CPURegs>;
1039
1040/// Multiply and Divide Instructions.
1041def MULT    : Mult32<0x18, "mult", IIImul>;
1042def MULTu   : Mult32<0x19, "multu", IIImul>;
1043def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
1044def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
1045
1046def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
1047def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
1048def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
1049def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
1050
1051/// Sign Ext In Register Instructions.
1052def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
1053def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
1054
1055/// Count Leading
1056def CLZ : CountLeading0<0x20, "clz", CPURegs>;
1057def CLO : CountLeading1<0x21, "clo", CPURegs>;
1058
1059/// Word Swap Bytes Within Halfwords
1060def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
1061
1062/// No operation
1063let addr=0 in
1064  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1065
1066// FrameIndexes are legalized when they are operands from load/store
1067// instructions. The same not happens for stack address copies, so an
1068// add op with mem ComplexPattern is used and the stack address copy
1069// can be matched. It's similar to Sparc LEA_ADDRi
1070def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1071
1072// DynAlloc node points to dynamically allocated stack space.
1073// $sp is added to the list of implicitly used registers to prevent dead code
1074// elimination from removing instructions that modify $sp.
1075let Uses = [SP] in
1076def DynAlloc : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1077
1078// MADD*/MSUB*
1079def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1080def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1081def MSUB  : MArithR<4, "msub", MipsMSub>;
1082def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1083
1084// MUL is a assembly macro in the current used ISAs. In recent ISA's
1085// it is a real instruction.
1086def MUL   : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>,
1087            Requires<[HasMips32, HasStandardEncoding]>;
1088
1089def RDHWR : ReadHardware<CPURegs, HWRegs>;
1090
1091def EXT : ExtBase<0, "ext", CPURegs>;
1092def INS : InsBase<4, "ins", CPURegs>;
1093
1094//===----------------------------------------------------------------------===//
1095// Instruction aliases
1096//===----------------------------------------------------------------------===//
1097def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
1098def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
1099def : InstAlias<"addu $rs,$rt,$imm",
1100                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1101def : InstAlias<"add $rs,$rt,$imm",
1102                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1103def : InstAlias<"and $rs,$rt,$imm",
1104                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1105def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
1106def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
1107def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
1108def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
1109def : InstAlias<"slt $rs,$rt,$imm",
1110                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1111def : InstAlias<"xor $rs,$rt,$imm",
1112                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1113
1114//===----------------------------------------------------------------------===//
1115//  Arbitrary patterns that map to one or more instructions
1116//===----------------------------------------------------------------------===//
1117
1118// Small immediates
1119def : MipsPat<(i32 immSExt16:$in),
1120              (ADDiu ZERO, imm:$in)>;
1121def : MipsPat<(i32 immZExt16:$in),
1122              (ORi ZERO, imm:$in)>;
1123def : MipsPat<(i32 immLow16Zero:$in),
1124              (LUi (HI16 imm:$in))>;
1125
1126// Arbitrary immediates
1127def : MipsPat<(i32 imm:$imm),
1128          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1129
1130// Carry MipsPatterns
1131def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1132              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1133def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1134              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1135def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1136              (ADDiu CPURegs:$src, imm:$imm)>;
1137
1138// Call
1139def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1140              (JAL tglobaladdr:$dst)>;
1141def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1142              (JAL texternalsym:$dst)>;
1143//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1144//              (JALR CPURegs:$dst)>;
1145
1146// Tail call
1147def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1148              (TAILCALL tglobaladdr:$dst)>;
1149def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1150              (TAILCALL texternalsym:$dst)>;
1151// hi/lo relocs
1152def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1153def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1154def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1155def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1156def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1157
1158def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1159def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1160def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1161def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1162def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1163
1164def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1165              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1166def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1167              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1168def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1169              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1170def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1171              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1172def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1173              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1174
1175// gp_rel relocs
1176def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1177              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1178def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1179              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1180
1181// wrapper_pic
1182class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1183      MipsPat<(MipsWrapper RC:$gp, node:$in),
1184              (ADDiuOp RC:$gp, node:$in)>;
1185
1186def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1187def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1188def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1189def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1190def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1191def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1192
1193// Mips does not have "not", so we expand our way
1194def : MipsPat<(not CPURegs:$in),
1195              (NOR CPURegs:$in, ZERO)>;
1196
1197// extended loads
1198let Predicates = [NotN64, HasStandardEncoding] in {
1199  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1200  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1201  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1202}
1203let Predicates = [IsN64, HasStandardEncoding] in {
1204  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1205  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1206  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1207}
1208
1209// peepholes
1210let Predicates = [NotN64, HasStandardEncoding] in {
1211  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1212}
1213let Predicates = [IsN64, HasStandardEncoding] in {
1214  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1215}
1216
1217// brcond patterns
1218multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1219                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1220                      Instruction SLTiuOp, Register ZEROReg> {
1221def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1222              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1223def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1224              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1225
1226def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1227              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1228def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1229              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1230def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1231              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1232def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1233              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1234
1235def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1236              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1237def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1238              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1239
1240def : MipsPat<(brcond RC:$cond, bb:$dst),
1241              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1242}
1243
1244defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1245
1246// setcc patterns
1247multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1248                     Instruction SLTuOp, Register ZEROReg> {
1249  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1250                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1251  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1252                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1253}
1254
1255multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1256  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1257                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1258  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1259                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1260}
1261
1262multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1263  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1264                (SLTOp RC:$rhs, RC:$lhs)>;
1265  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1266                (SLTuOp RC:$rhs, RC:$lhs)>;
1267}
1268
1269multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1270  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1271                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1272  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1273                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1274}
1275
1276multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1277                        Instruction SLTiuOp> {
1278  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1279                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1280  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1281                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1282}
1283
1284defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1285defm : SetlePats<CPURegs, SLT, SLTu>;
1286defm : SetgtPats<CPURegs, SLT, SLTu>;
1287defm : SetgePats<CPURegs, SLT, SLTu>;
1288defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1289
1290// select MipsDynAlloc
1291def : MipsPat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
1292
1293// bswap pattern
1294def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1295
1296//===----------------------------------------------------------------------===//
1297// Floating Point Support
1298//===----------------------------------------------------------------------===//
1299
1300include "MipsInstrFPU.td"
1301include "Mips64InstrInfo.td"
1302include "MipsCondMov.td"
1303
1304//
1305// Mips16
1306
1307include "Mips16InstrFormats.td"
1308include "Mips16InstrInfo.td"
1309
1310// DSP
1311include "MipsDSPInstrFormats.td"
1312include "MipsDSPInstrInfo.td"
1313
1314