MipsInstrInfo.td revision 04376ebe9f203213ef1eb4c69396fe280dc8c8b1
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_MipsDynAlloc    : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>,
37                                               SDTCisSameAs<0, 1>]>;
38def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
39
40def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
42def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
43                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
44                                   SDTCisSameAs<0, 4>]>;
45
46def SDTMipsLoadLR  : SDTypeProfile<1, 2,
47                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
48                                    SDTCisSameAs<0, 2>]>;
49
50// Call
51def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
52                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
53                          SDNPVariadic]>;
54
55// Hi and Lo nodes are used to handle global addresses. Used on
56// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
57// static model. (nothing to do with Mips Registers Hi and Lo)
58def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
59def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
60def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
61
62// TlsGd node is used to handle General Dynamic TLS
63def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
64
65// TprelHi and TprelLo nodes are used to handle Local Exec TLS
66def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
67def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
68
69// Thread pointer
70def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
71
72// Return
73def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
74
75// These are target-independent nodes, but have target-specific formats.
76def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
77                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
78def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
79                           [SDNPHasChain, SDNPSideEffect,
80                            SDNPOptInGlue, SDNPOutGlue]>;
81
82// MAdd*/MSub* nodes
83def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
84                           [SDNPOptInGlue, SDNPOutGlue]>;
85def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
86                           [SDNPOptInGlue, SDNPOutGlue]>;
87def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91
92// DivRem(u) nodes
93def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
94                           [SDNPOutGlue]>;
95def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
96                           [SDNPOutGlue]>;
97
98// Target constant nodes that are not part of any isel patterns and remain
99// unchanged can cause instructions with illegal operands to be emitted.
100// Wrapper node patterns give the instruction selector a chance to replace
101// target constant nodes that would otherwise remain unchanged with ADDiu
102// nodes. Without these wrapper node patterns, the following conditional move
103// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
104// compiled:
105//  movn  %got(d)($gp), %got(c)($gp), $4
106// This instruction is illegal since movn can take only register operands.
107
108def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
109
110// Pointer to dynamically allocated stack area.
111def MipsDynAlloc  : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
112                           [SDNPHasChain, SDNPInGlue]>;
113
114def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
115
116def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
117def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
118
119def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
120                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
121def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
122                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
123def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
124                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
125def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
126                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
127def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
128                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
129def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
130                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
131def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
132                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
133def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
134                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
135
136//===----------------------------------------------------------------------===//
137// Mips Instruction Predicate Definitions.
138//===----------------------------------------------------------------------===//
139def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
140                      AssemblerPredicate<"FeatureSEInReg">;
141def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
142                      AssemblerPredicate<"FeatureBitCount">;
143def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
144                      AssemblerPredicate<"FeatureSwap">;
145def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
146                      AssemblerPredicate<"FeatureCondMov">;
147def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
148                      AssemblerPredicate<"FeatureMips32">;
149def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
150                      AssemblerPredicate<"FeatureMips32r2">;
151def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
152                      AssemblerPredicate<"FeatureMips64">;
153def HasMips32r2Or64 : Predicate<"Subtarget.hasMips32r2Or64()">,
154                      AssemblerPredicate<"FeatureMips32r2,FeatureMips64">;
155def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
156                      AssemblerPredicate<"!FeatureMips64">;
157def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
158                      AssemblerPredicate<"FeatureMips64r2">;
159def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
160                      AssemblerPredicate<"FeatureN64">;
161def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
162                      AssemblerPredicate<"!FeatureN64">;
163def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
164                      AssemblerPredicate<"FeatureMips16">;
165def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
166                      AssemblerPredicate<"FeatureMips32">;
167def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
168                      AssemblerPredicate<"FeatureMips32">;
169def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
170                      AssemblerPredicate<"FeatureMips32">;
171def HasStandardEncoding : Predicate<"Subtarget.hasStandardEncoding()">,
172                          AssemblerPredicate<"!FeatureMips16">;
173
174class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
175  let Predicates = [HasStandardEncoding];
176}
177
178//===----------------------------------------------------------------------===//
179// Instruction format superclass
180//===----------------------------------------------------------------------===//
181
182include "MipsInstrFormats.td"
183
184//===----------------------------------------------------------------------===//
185// Mips Operand, Complex Patterns and Transformations Definitions.
186//===----------------------------------------------------------------------===//
187
188// Instruction operand types
189def jmptarget   : Operand<OtherVT> {
190  let EncoderMethod = "getJumpTargetOpValue";
191}
192def brtarget    : Operand<OtherVT> {
193  let EncoderMethod = "getBranchTargetOpValue";
194  let OperandType = "OPERAND_PCREL";
195  let DecoderMethod = "DecodeBranchTarget";
196}
197def calltarget  : Operand<iPTR> {
198  let EncoderMethod = "getJumpTargetOpValue";
199}
200def calltarget64: Operand<i64>;
201def simm16      : Operand<i32> {
202  let DecoderMethod= "DecodeSimm16";
203}
204def simm16_64   : Operand<i64>;
205def shamt       : Operand<i32>;
206
207// Unsigned Operand
208def uimm16      : Operand<i32> {
209  let PrintMethod = "printUnsignedImm";
210}
211
212def MipsMemAsmOperand : AsmOperandClass {
213  let Name = "Mem";
214  let ParserMethod = "parseMemOperand";
215}
216
217// Address operand
218def mem : Operand<i32> {
219  let PrintMethod = "printMemOperand";
220  let MIOperandInfo = (ops CPURegs, simm16);
221  let EncoderMethod = "getMemEncoding";
222  let ParserMatchClass = MipsMemAsmOperand;
223}
224
225def mem64 : Operand<i64> {
226  let PrintMethod = "printMemOperand";
227  let MIOperandInfo = (ops CPU64Regs, simm16_64);
228  let EncoderMethod = "getMemEncoding";
229  let ParserMatchClass = MipsMemAsmOperand;
230}
231
232def mem_ea : Operand<i32> {
233  let PrintMethod = "printMemOperandEA";
234  let MIOperandInfo = (ops CPURegs, simm16);
235  let EncoderMethod = "getMemEncoding";
236}
237
238def mem_ea_64 : Operand<i64> {
239  let PrintMethod = "printMemOperandEA";
240  let MIOperandInfo = (ops CPU64Regs, simm16_64);
241  let EncoderMethod = "getMemEncoding";
242}
243
244// size operand of ext instruction
245def size_ext : Operand<i32> {
246  let EncoderMethod = "getSizeExtEncoding";
247  let DecoderMethod = "DecodeExtSize";
248}
249
250// size operand of ins instruction
251def size_ins : Operand<i32> {
252  let EncoderMethod = "getSizeInsEncoding";
253  let DecoderMethod = "DecodeInsSize";
254}
255
256// Transformation Function - get the lower 16 bits.
257def LO16 : SDNodeXForm<imm, [{
258  return getImm(N, N->getZExtValue() & 0xFFFF);
259}]>;
260
261// Transformation Function - get the higher 16 bits.
262def HI16 : SDNodeXForm<imm, [{
263  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
264}]>;
265
266// Node immediate fits as 16-bit sign extended on target immediate.
267// e.g. addi, andi
268def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
269
270// Node immediate fits as 16-bit zero extended on target immediate.
271// The LO16 param means that only the lower 16 bits of the node
272// immediate are caught.
273// e.g. addiu, sltiu
274def immZExt16  : PatLeaf<(imm), [{
275  if (N->getValueType(0) == MVT::i32)
276    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
277  else
278    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
279}], LO16>;
280
281// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
282def immLow16Zero : PatLeaf<(imm), [{
283  int64_t Val = N->getSExtValue();
284  return isInt<32>(Val) && !(Val & 0xffff);
285}]>;
286
287// shamt field must fit in 5 bits.
288def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
289
290// Mips Address Mode! SDNode frameindex could possibily be a match
291// since load and store instructions from stack used it.
292def addr :
293  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
294
295//===----------------------------------------------------------------------===//
296// Pattern fragment for load/store
297//===----------------------------------------------------------------------===//
298class UnalignedLoad<PatFrag Node> :
299  PatFrag<(ops node:$ptr), (Node node:$ptr), [{
300  LoadSDNode *LD = cast<LoadSDNode>(N);
301  return LD->getMemoryVT().getSizeInBits()/8 > LD->getAlignment();
302}]>;
303
304class AlignedLoad<PatFrag Node> :
305  PatFrag<(ops node:$ptr), (Node node:$ptr), [{
306  LoadSDNode *LD = cast<LoadSDNode>(N);
307  return LD->getMemoryVT().getSizeInBits()/8 <= LD->getAlignment();
308}]>;
309
310class UnalignedStore<PatFrag Node> :
311  PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr), [{
312  StoreSDNode *SD = cast<StoreSDNode>(N);
313  return SD->getMemoryVT().getSizeInBits()/8 > SD->getAlignment();
314}]>;
315
316class AlignedStore<PatFrag Node> :
317  PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr), [{
318  StoreSDNode *SD = cast<StoreSDNode>(N);
319  return SD->getMemoryVT().getSizeInBits()/8 <= SD->getAlignment();
320}]>;
321
322// Load/Store PatFrags.
323def sextloadi16_a   : AlignedLoad<sextloadi16>;
324def zextloadi16_a   : AlignedLoad<zextloadi16>;
325def extloadi16_a    : AlignedLoad<extloadi16>;
326def load_a          : AlignedLoad<load>;
327def sextloadi32_a   : AlignedLoad<sextloadi32>;
328def zextloadi32_a   : AlignedLoad<zextloadi32>;
329def extloadi32_a    : AlignedLoad<extloadi32>;
330def truncstorei16_a : AlignedStore<truncstorei16>;
331def store_a         : AlignedStore<store>;
332def truncstorei32_a : AlignedStore<truncstorei32>;
333def sextloadi16_u   : UnalignedLoad<sextloadi16>;
334def zextloadi16_u   : UnalignedLoad<zextloadi16>;
335def extloadi16_u    : UnalignedLoad<extloadi16>;
336def load_u          : UnalignedLoad<load>;
337def sextloadi32_u   : UnalignedLoad<sextloadi32>;
338def zextloadi32_u   : UnalignedLoad<zextloadi32>;
339def extloadi32_u    : UnalignedLoad<extloadi32>;
340def truncstorei16_u : UnalignedStore<truncstorei16>;
341def store_u         : UnalignedStore<store>;
342def truncstorei32_u : UnalignedStore<truncstorei32>;
343
344//===----------------------------------------------------------------------===//
345// Instructions specific format
346//===----------------------------------------------------------------------===//
347
348// Arithmetic and logical instructions with 3 register operands.
349class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
350                  InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
351  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
352     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
353     [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> {
354  let shamt = 0;
355  let isCommutable = isComm;
356  let isReMaterializable = 1;
357}
358
359class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
360                    InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
361  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
362     !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> {
363  let shamt = 0;
364  let isCommutable = isComm;
365}
366
367// Arithmetic and logical instructions with 2 register operands.
368class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode,
369                  Operand Od, PatLeaf imm_type, RegisterClass RC> :
370  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
371     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
372     [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu> {
373  let isReMaterializable = 1;
374}
375
376class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
377                     Operand Od, PatLeaf imm_type, RegisterClass RC> :
378  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
379     !strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>;
380
381// Arithmetic Multiply ADD/SUB
382let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
383class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
384  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
385     !strconcat(instr_asm, "\t$rs, $rt"),
386     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
387  let rd = 0;
388  let shamt = 0;
389  let isCommutable = isComm;
390}
391
392//  Logical
393class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
394  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
395     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
396     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
397  let shamt = 0;
398  let isCommutable = 1;
399}
400
401// Shifts
402class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm,
403                       SDNode OpNode, PatFrag PF, Operand ImmOpnd,
404                       RegisterClass RC>:
405  FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
406     !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
407     [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> {
408  let rs = isRotate;
409}
410
411// 32-bit shift instructions.
412class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm,
413                         SDNode OpNode>:
414  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>;
415
416class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
417                       SDNode OpNode, RegisterClass RC>:
418  FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
419     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
420     [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> {
421  let shamt = isRotate;
422}
423
424// Load Upper Imediate
425class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
426  FI<op, (outs RC:$rt), (ins Imm:$imm16),
427     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> {
428  let rs = 0;
429  let neverHasSideEffects = 1;
430  let isReMaterializable = 1;
431}
432
433class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
434          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
435  bits<21> addr;
436  let Inst{25-21} = addr{20-16};
437  let Inst{15-0}  = addr{15-0};
438  let DecoderMethod = "DecodeMem";
439}
440
441// Memory Load/Store
442let canFoldAsLoad = 1 in
443class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
444            Operand MemOpnd, bit Pseudo>:
445  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
446     !strconcat(instr_asm, "\t$rt, $addr"),
447     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
448  let isPseudo = Pseudo;
449}
450
451class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
452             Operand MemOpnd, bit Pseudo>:
453  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
454     !strconcat(instr_asm, "\t$rt, $addr"),
455     [(OpNode RC:$rt, addr:$addr)], IIStore> {
456  let isPseudo = Pseudo;
457}
458
459// 32-bit load.
460multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
461                   bit Pseudo = 0> {
462  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
463               Requires<[NotN64, HasStandardEncoding]>;
464  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
465               Requires<[IsN64, HasStandardEncoding]> {
466    let DecoderNamespace = "Mips64";
467    let isCodeGenOnly = 1;
468  }
469}
470
471// 64-bit load.
472multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
473                   bit Pseudo = 0> {
474  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
475               Requires<[NotN64, HasStandardEncoding]>;
476  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
477               Requires<[IsN64, HasStandardEncoding]> {
478    let DecoderNamespace = "Mips64";
479    let isCodeGenOnly = 1;
480  }
481}
482
483// 32-bit store.
484multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
485                    bit Pseudo = 0> {
486  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
487               Requires<[NotN64, HasStandardEncoding]>;
488  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
489               Requires<[IsN64, HasStandardEncoding]> {
490    let DecoderNamespace = "Mips64";
491    let isCodeGenOnly = 1;
492  }
493}
494
495// 64-bit store.
496multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
497                    bit Pseudo = 0> {
498  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
499               Requires<[NotN64, HasStandardEncoding]>;
500  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
501               Requires<[IsN64, HasStandardEncoding]> {
502    let DecoderNamespace = "Mips64";
503    let isCodeGenOnly = 1;
504  }
505}
506
507// Load/Store Left/Right
508let canFoldAsLoad = 1 in
509class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
510                    RegisterClass RC, Operand MemOpnd> :
511  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
512       !strconcat(instr_asm, "\t$rt, $addr"),
513       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
514  string Constraints = "$src = $rt";
515}
516
517class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
518                     RegisterClass RC, Operand MemOpnd>:
519  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
520       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
521       IIStore>;
522
523// 32-bit load left/right.
524multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
525  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
526               Requires<[NotN64, HasStandardEncoding]>;
527  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
528               Requires<[IsN64, HasStandardEncoding]> {
529    let DecoderNamespace = "Mips64";
530    let isCodeGenOnly = 1;
531  }
532}
533
534// 64-bit load left/right.
535multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
536  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
537               Requires<[NotN64, HasStandardEncoding]>;
538  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
539               Requires<[IsN64, HasStandardEncoding]> {
540    let DecoderNamespace = "Mips64";
541    let isCodeGenOnly = 1;
542  }
543}
544
545// 32-bit store left/right.
546multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
547  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
548               Requires<[NotN64, HasStandardEncoding]>;
549  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
550               Requires<[IsN64, HasStandardEncoding]> {
551    let DecoderNamespace = "Mips64";
552    let isCodeGenOnly = 1;
553  }
554}
555
556// 64-bit store left/right.
557multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
558  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
559               Requires<[NotN64, HasStandardEncoding]>;
560  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
561               Requires<[IsN64, HasStandardEncoding]> {
562    let DecoderNamespace = "Mips64";
563    let isCodeGenOnly = 1;
564  }
565}
566
567// Conditional Branch
568class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
569  BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
570             !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
571             [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
572  let isBranch = 1;
573  let isTerminator = 1;
574  let hasDelaySlot = 1;
575  let Defs = [AT];
576}
577
578class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
579                  RegisterClass RC>:
580  BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
581             !strconcat(instr_asm, "\t$rs, $imm16"),
582             [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
583  let rt = _rt;
584  let isBranch = 1;
585  let isTerminator = 1;
586  let hasDelaySlot = 1;
587  let Defs = [AT];
588}
589
590// SetCC
591class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
592              RegisterClass RC>:
593  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
594     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
595     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
596     IIAlu> {
597  let shamt = 0;
598}
599
600class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
601              PatLeaf imm_type, RegisterClass RC>:
602  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
603     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
604     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
605     IIAlu>;
606
607// Jump
608class JumpFJ<bits<6> op, string instr_asm>:
609  FJ<op, (outs), (ins jmptarget:$target),
610     !strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch> {
611  let isBranch=1;
612  let isTerminator=1;
613  let isBarrier=1;
614  let hasDelaySlot = 1;
615  let Predicates = [RelocStatic, HasStandardEncoding];
616  let DecoderMethod = "DecodeJumpTarget";
617  let Defs = [AT];
618}
619
620// Unconditional branch
621class UncondBranch<bits<6> op, string instr_asm>:
622  BranchBase<op, (outs), (ins brtarget:$imm16),
623             !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
624  let rs = 0;
625  let rt = 0;
626  let isBranch = 1;
627  let isTerminator = 1;
628  let isBarrier = 1;
629  let hasDelaySlot = 1;
630  let Predicates = [RelocPIC, HasStandardEncoding];
631  let Defs = [AT];
632}
633
634// Base class for indirect branch and return instruction classes.
635let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
636class JumpFR<RegisterClass RC, list<dag> pattern>:
637  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", pattern, IIBranch> {
638  let rt = 0;
639  let rd = 0;
640  let shamt = 0;
641}
642
643// Indirect branch
644class IndirectBranch<RegisterClass RC>: JumpFR<RC, [(brind RC:$rs)]> {
645  let isBranch = 1;
646  let isIndirectBranch = 1;
647}
648
649// Return instruction
650class RetBase<RegisterClass RC>: JumpFR<RC, []> {
651  let isReturn = 1;
652  let isCodeGenOnly = 1;
653  let hasCtrlDep = 1;
654  let hasExtraSrcRegAllocReq = 1;
655}
656
657// Jump and Link (Call)
658let isCall=1, hasDelaySlot=1, Defs = [RA] in {
659  class JumpLink<bits<6> op, string instr_asm>:
660    FJ<op, (outs), (ins calltarget:$target),
661       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
662       IIBranch> {
663       let DecoderMethod = "DecodeJumpTarget";
664       }
665
666  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
667                    RegisterClass RC>:
668    FR<op, func, (outs), (ins RC:$rs),
669       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
670    let rt = 0;
671    let rd = 31;
672    let shamt = 0;
673  }
674
675  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
676    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
677       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
678    let rt = _rt;
679  }
680}
681
682// Mul, Div
683class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
684           RegisterClass RC, list<Register> DefRegs>:
685  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
686     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
687  let rd = 0;
688  let shamt = 0;
689  let isCommutable = 1;
690  let Defs = DefRegs;
691  let neverHasSideEffects = 1;
692}
693
694class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
695  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
696
697class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
698          RegisterClass RC, list<Register> DefRegs>:
699  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
700     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
701     [(op RC:$rs, RC:$rt)], itin> {
702  let rd = 0;
703  let shamt = 0;
704  let Defs = DefRegs;
705}
706
707class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
708  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
709
710// Move from Hi/Lo
711class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
712                   list<Register> UseRegs>:
713  FR<0x00, func, (outs RC:$rd), (ins),
714     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
715  let rs = 0;
716  let rt = 0;
717  let shamt = 0;
718  let Uses = UseRegs;
719  let neverHasSideEffects = 1;
720}
721
722class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
723                 list<Register> DefRegs>:
724  FR<0x00, func, (outs), (ins RC:$rs),
725     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
726  let rt = 0;
727  let rd = 0;
728  let shamt = 0;
729  let Defs = DefRegs;
730  let neverHasSideEffects = 1;
731}
732
733class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
734  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
735     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
736 let isCodeGenOnly = 1;
737}
738
739// Count Leading Ones/Zeros in Word
740class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
741  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
742     !strconcat(instr_asm, "\t$rd, $rs"),
743     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
744     Requires<[HasBitCount, HasStandardEncoding]> {
745  let shamt = 0;
746  let rt = rd;
747}
748
749class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
750  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
751     !strconcat(instr_asm, "\t$rd, $rs"),
752     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
753     Requires<[HasBitCount, HasStandardEncoding]> {
754  let shamt = 0;
755  let rt = rd;
756}
757
758// Sign Extend in Register.
759class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
760                   RegisterClass RC>:
761  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
762     !strconcat(instr_asm, "\t$rd, $rt"),
763     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
764  let rs = 0;
765  let shamt = sa;
766  let Predicates = [HasSEInReg, HasStandardEncoding];
767}
768
769// Subword Swap
770class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
771  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
772     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
773  let rs = 0;
774  let shamt = sa;
775  let Predicates = [HasSwap, HasStandardEncoding];
776  let neverHasSideEffects = 1;
777}
778
779// Read Hardware
780class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
781  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
782       "rdhwr\t$rt, $rd", [], IIAlu> {
783  let rs = 0;
784  let shamt = 0;
785}
786
787// Ext and Ins
788class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
789  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
790     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
791     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
792  bits<5> pos;
793  bits<5> sz;
794  let rd = sz;
795  let shamt = pos;
796  let Predicates = [HasMips32r2, HasStandardEncoding];
797}
798
799class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
800  FR<0x1f, _funct, (outs RC:$rt),
801     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
802     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
803     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
804     NoItinerary> {
805  bits<5> pos;
806  bits<5> sz;
807  let rd = sz;
808  let shamt = pos;
809  let Predicates = [HasMips32r2, HasStandardEncoding];
810  let Constraints = "$src = $rt";
811}
812
813// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
814class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
815                 RegisterClass PRC> :
816  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
817           !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
818           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
819
820multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
821  def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>,
822                          Requires<[NotN64, HasStandardEncoding]>;
823  def _P8    : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>,
824                          Requires<[IsN64, HasStandardEncoding]> {
825    let DecoderNamespace = "Mips64";
826  }
827}
828
829// Atomic Compare & Swap.
830class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
831                    RegisterClass PRC> :
832  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
833           !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
834           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
835
836multiclass AtomicCmpSwap32<PatFrag Op, string Width>  {
837  def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>,
838                             Requires<[NotN64, HasStandardEncoding]>;
839  def _P8    : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>,
840                             Requires<[IsN64, HasStandardEncoding]> {
841    let DecoderNamespace = "Mips64";
842  }
843}
844
845class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
846  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
847       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
848  let mayLoad = 1;
849}
850
851class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
852  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
853       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
854  let mayStore = 1;
855  let Constraints = "$rt = $dst";
856}
857
858//===----------------------------------------------------------------------===//
859// Pseudo instructions
860//===----------------------------------------------------------------------===//
861
862// Return RA.
863let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
864def RetRA : PseudoSE<(outs), (ins), "", [(MipsRet)]>;
865
866let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
867def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
868                                  "!ADJCALLSTACKDOWN $amt",
869                                  [(callseq_start timm:$amt)]>;
870def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
871                                  "!ADJCALLSTACKUP $amt1",
872                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
873}
874
875// When handling PIC code the assembler needs .cpload and .cprestore
876// directives. If the real instructions corresponding these directives
877// are used, we have the same behavior, but get also a bunch of warnings
878// from the assembler.
879let neverHasSideEffects = 1 in
880def CPRESTORE : PseudoSE<(outs), (ins i32imm:$loc, CPURegs:$gp),
881                         ".cprestore\t$loc", []>;
882
883let usesCustomInserter = 1 in {
884  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
885  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
886  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
887  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
888  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
889  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
890  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
891  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
892  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
893  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
894  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
895  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
896  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
897  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
898  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
899  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
900  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
901  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
902
903  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8, "swap_8">;
904  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16, "swap_16">;
905  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32, "swap_32">;
906
907  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
908  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
909  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
910}
911
912//===----------------------------------------------------------------------===//
913// Instruction definition
914//===----------------------------------------------------------------------===//
915
916//===----------------------------------------------------------------------===//
917// MipsI Instructions
918//===----------------------------------------------------------------------===//
919
920/// Arithmetic Instructions (ALU Immediate)
921def ADDiu   : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>;
922def ADDi    : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>;
923def SLTi    : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
924def SLTiu   : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
925def ANDi    : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>;
926def ORi     : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>;
927def XORi    : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>;
928def LUi     : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
929
930/// Arithmetic Instructions (3-Operand, R-Type)
931def ADDu    : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>;
932def SUBu    : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>;
933def ADD     : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>;
934def SUB     : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>;
935def SLT     : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
936def SLTu    : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
937def AND     : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>;
938def OR      : ArithLogicR<0x00, 0x25, "or",  or, IIAlu, CPURegs, 1>;
939def XOR     : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>;
940def NOR     : LogicNOR<0x00, 0x27, "nor", CPURegs>;
941
942/// Shift Instructions
943def SLL     : shift_rotate_imm32<0x00, 0x00, "sll", shl>;
944def SRL     : shift_rotate_imm32<0x02, 0x00, "srl", srl>;
945def SRA     : shift_rotate_imm32<0x03, 0x00, "sra", sra>;
946def SLLV    : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
947def SRLV    : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
948def SRAV    : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
949
950// Rotate Instructions
951let Predicates = [HasMips32r2, HasStandardEncoding] in {
952    def ROTR    : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>;
953    def ROTRV   : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
954}
955
956/// Load and Store Instructions
957///  aligned
958defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
959defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
960defm LH      : LoadM32<0x21, "lh",  sextloadi16_a>;
961defm LHu     : LoadM32<0x25, "lhu", zextloadi16_a>;
962defm LW      : LoadM32<0x23, "lw",  load_a>;
963defm SB      : StoreM32<0x28, "sb", truncstorei8>;
964defm SH      : StoreM32<0x29, "sh", truncstorei16_a>;
965defm SW      : StoreM32<0x2b, "sw", store_a>;
966
967///  unaligned
968defm ULH     : LoadM32<0x21, "ulh",  sextloadi16_u, 1>;
969defm ULHu    : LoadM32<0x25, "ulhu", zextloadi16_u, 1>;
970defm ULW     : LoadM32<0x23, "ulw",  load_u, 1>;
971defm USH     : StoreM32<0x29, "ush", truncstorei16_u, 1>;
972defm USW     : StoreM32<0x2b, "usw", store_u, 1>;
973
974/// load/store left/right
975defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
976defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
977defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
978defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
979
980let hasSideEffects = 1 in
981def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
982                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
983{
984  bits<5> stype;
985  let Opcode = 0;
986  let Inst{25-11} = 0;
987  let Inst{10-6} = stype;
988  let Inst{5-0} = 15;
989}
990
991/// Load-linked, Store-conditional
992def LL    : LLBase<0x30, "ll", CPURegs, mem>,
993            Requires<[NotN64, HasStandardEncoding]>;
994def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
995            Requires<[IsN64, HasStandardEncoding]> {
996  let DecoderNamespace = "Mips64";
997}
998
999def SC    : SCBase<0x38, "sc", CPURegs, mem>,
1000            Requires<[NotN64, HasStandardEncoding]>;
1001def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
1002            Requires<[IsN64, HasStandardEncoding]> {
1003  let DecoderNamespace = "Mips64";
1004}
1005
1006/// Jump and Branch Instructions
1007def J       : JumpFJ<0x02, "j">;
1008def JR      : IndirectBranch<CPURegs>;
1009def B       : UncondBranch<0x04, "b">;
1010def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
1011def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
1012def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
1013def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
1014def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
1015def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
1016
1017let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
1018    hasDelaySlot = 1, Defs = [RA] in
1019def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
1020
1021def JAL  : JumpLink<0x03, "jal">;
1022def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
1023def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
1024def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
1025
1026def RET : RetBase<CPURegs>;
1027
1028/// Multiply and Divide Instructions.
1029def MULT    : Mult32<0x18, "mult", IIImul>;
1030def MULTu   : Mult32<0x19, "multu", IIImul>;
1031def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
1032def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
1033
1034def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
1035def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
1036def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
1037def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
1038
1039/// Sign Ext In Register Instructions.
1040def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
1041def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
1042
1043/// Count Leading
1044def CLZ : CountLeading0<0x20, "clz", CPURegs>;
1045def CLO : CountLeading1<0x21, "clo", CPURegs>;
1046
1047/// Word Swap Bytes Within Halfwords
1048def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
1049
1050/// No operation
1051let addr=0 in
1052  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1053
1054// FrameIndexes are legalized when they are operands from load/store
1055// instructions. The same not happens for stack address copies, so an
1056// add op with mem ComplexPattern is used and the stack address copy
1057// can be matched. It's similar to Sparc LEA_ADDRi
1058def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1059
1060// DynAlloc node points to dynamically allocated stack space.
1061// $sp is added to the list of implicitly used registers to prevent dead code
1062// elimination from removing instructions that modify $sp.
1063let Uses = [SP] in
1064def DynAlloc : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1065
1066// MADD*/MSUB*
1067def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1068def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1069def MSUB  : MArithR<4, "msub", MipsMSub>;
1070def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1071
1072// MUL is a assembly macro in the current used ISAs. In recent ISA's
1073// it is a real instruction.
1074def MUL   : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>,
1075            Requires<[HasMips32, HasStandardEncoding]>;
1076
1077def RDHWR : ReadHardware<CPURegs, HWRegs>;
1078
1079def EXT : ExtBase<0, "ext", CPURegs>;
1080def INS : InsBase<4, "ins", CPURegs>;
1081
1082//===----------------------------------------------------------------------===//
1083// Instruction aliases
1084//===----------------------------------------------------------------------===//
1085def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
1086def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
1087def : InstAlias<"addu $rs,$rt,$imm",
1088                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1089def : InstAlias<"add $rs,$rt,$imm",
1090                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1091def : InstAlias<"and $rs,$rt,$imm",
1092                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1093def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
1094def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
1095def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
1096def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
1097def : InstAlias<"slt $rs,$rt,$imm",
1098                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1099def : InstAlias<"xor $rs,$rt,$imm",
1100                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1101
1102//===----------------------------------------------------------------------===//
1103//  Arbitrary patterns that map to one or more instructions
1104//===----------------------------------------------------------------------===//
1105
1106// Small immediates
1107def : MipsPat<(i32 immSExt16:$in),
1108              (ADDiu ZERO, imm:$in)>;
1109def : MipsPat<(i32 immZExt16:$in),
1110              (ORi ZERO, imm:$in)>;
1111def : MipsPat<(i32 immLow16Zero:$in),
1112              (LUi (HI16 imm:$in))>;
1113
1114// Arbitrary immediates
1115def : MipsPat<(i32 imm:$imm),
1116          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1117
1118// Carry MipsPatterns
1119def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1120              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1121def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1122              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1123def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1124              (ADDiu CPURegs:$src, imm:$imm)>;
1125
1126// Call
1127def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1128              (JAL tglobaladdr:$dst)>;
1129def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1130              (JAL texternalsym:$dst)>;
1131//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1132//              (JALR CPURegs:$dst)>;
1133
1134// hi/lo relocs
1135def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1136def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1137def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1138def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1139def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1140
1141def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1142def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1143def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1144def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1145def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1146
1147def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1148              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1149def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1150              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1151def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1152              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1153def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1154              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1155def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1156              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1157
1158// gp_rel relocs
1159def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1160              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1161def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1162              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1163
1164// wrapper_pic
1165class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1166      MipsPat<(MipsWrapper RC:$gp, node:$in),
1167              (ADDiuOp RC:$gp, node:$in)>;
1168
1169def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1170def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1171def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1172def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1173def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1174def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1175
1176// Mips does not have "not", so we expand our way
1177def : MipsPat<(not CPURegs:$in),
1178              (NOR CPURegs:$in, ZERO)>;
1179
1180// extended loads
1181let Predicates = [NotN64, HasStandardEncoding] in {
1182  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1183  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1184  def : MipsPat<(i32 (extloadi16_a addr:$src)), (LHu addr:$src)>;
1185  def : MipsPat<(i32 (extloadi16_u addr:$src)), (ULHu addr:$src)>;
1186}
1187let Predicates = [IsN64, HasStandardEncoding] in {
1188  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1189  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1190  def : MipsPat<(i32 (extloadi16_a addr:$src)), (LHu_P8 addr:$src)>;
1191  def : MipsPat<(i32 (extloadi16_u addr:$src)), (ULHu_P8 addr:$src)>;
1192}
1193
1194// peepholes
1195let Predicates = [NotN64, HasStandardEncoding] in {
1196  def : MipsPat<(store_a (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1197  def : MipsPat<(store_u (i32 0), addr:$dst), (USW ZERO, addr:$dst)>;
1198}
1199let Predicates = [IsN64, HasStandardEncoding] in {
1200  def : MipsPat<(store_a (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1201  def : MipsPat<(store_u (i32 0), addr:$dst), (USW_P8 ZERO, addr:$dst)>;
1202}
1203
1204// brcond patterns
1205multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1206                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1207                      Instruction SLTiuOp, Register ZEROReg> {
1208def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1209              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1210def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1211              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1212
1213def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1214              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1215def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1216              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1217def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1218              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1219def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1220              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1221
1222def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1223              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1224def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1225              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1226
1227def : MipsPat<(brcond RC:$cond, bb:$dst),
1228              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1229}
1230
1231defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1232
1233// setcc patterns
1234multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1235                     Instruction SLTuOp, Register ZEROReg> {
1236  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1237                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1238  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1239                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1240}
1241
1242multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1243  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1244                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1245  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1246                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1247}
1248
1249multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1250  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1251                (SLTOp RC:$rhs, RC:$lhs)>;
1252  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1253                (SLTuOp RC:$rhs, RC:$lhs)>;
1254}
1255
1256multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1257  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1258                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1259  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1260                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1261}
1262
1263multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1264                        Instruction SLTiuOp> {
1265  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1266                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1267  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1268                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1269}
1270
1271defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1272defm : SetlePats<CPURegs, SLT, SLTu>;
1273defm : SetgtPats<CPURegs, SLT, SLTu>;
1274defm : SetgePats<CPURegs, SLT, SLTu>;
1275defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1276
1277// select MipsDynAlloc
1278def : MipsPat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
1279
1280// bswap pattern
1281def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1282
1283//===----------------------------------------------------------------------===//
1284// Floating Point Support
1285//===----------------------------------------------------------------------===//
1286
1287include "MipsInstrFPU.td"
1288include "Mips64InstrInfo.td"
1289include "MipsCondMov.td"
1290
1291//
1292// Mips16
1293
1294include "Mips16InstrFormats.td"
1295include "Mips16InstrInfo.td"
1296