MipsInstrInfo.td revision 0dad34a9bf850132e9ec84397f13604143c3aeff
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
37
38def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
39                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
40def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
42                                   SDTCisSameAs<0, 4>]>;
43
44def SDTMipsLoadLR  : SDTypeProfile<1, 2,
45                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
46                                    SDTCisSameAs<0, 2>]>;
47
48// Call
49def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
50                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
51                          SDNPVariadic]>;
52
53// Tail call
54def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
55                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
56
57// Hi and Lo nodes are used to handle global addresses. Used on
58// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
59// static model. (nothing to do with Mips Registers Hi and Lo)
60def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
61def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
62def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
63
64// TlsGd node is used to handle General Dynamic TLS
65def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
66
67// TprelHi and TprelLo nodes are used to handle Local Exec TLS
68def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
69def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
70
71// Thread pointer
72def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
73
74// Return
75def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
76
77// These are target-independent nodes, but have target-specific formats.
78def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
79                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
80def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
81                           [SDNPHasChain, SDNPSideEffect,
82                            SDNPOptInGlue, SDNPOutGlue]>;
83
84// MAdd*/MSub* nodes
85def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
86                           [SDNPOptInGlue, SDNPOutGlue]>;
87def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
92                           [SDNPOptInGlue, SDNPOutGlue]>;
93
94// DivRem(u) nodes
95def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
96                           [SDNPOutGlue]>;
97def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
98                           [SDNPOutGlue]>;
99
100// Target constant nodes that are not part of any isel patterns and remain
101// unchanged can cause instructions with illegal operands to be emitted.
102// Wrapper node patterns give the instruction selector a chance to replace
103// target constant nodes that would otherwise remain unchanged with ADDiu
104// nodes. Without these wrapper node patterns, the following conditional move
105// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
106// compiled:
107//  movn  %got(d)($gp), %got(c)($gp), $4
108// This instruction is illegal since movn can take only register operands.
109
110def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
111
112def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
113
114def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
115def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
116
117def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
118                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
119def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
120                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
121def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
122                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
123def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
124                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
125def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
126                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
127def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
128                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
129def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
130                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
131def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
132                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
133
134//===----------------------------------------------------------------------===//
135// Mips Instruction Predicate Definitions.
136//===----------------------------------------------------------------------===//
137def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
138                      AssemblerPredicate<"FeatureSEInReg">;
139def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
140                      AssemblerPredicate<"FeatureBitCount">;
141def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
142                      AssemblerPredicate<"FeatureSwap">;
143def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
144                      AssemblerPredicate<"FeatureCondMov">;
145def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
146                      AssemblerPredicate<"FeatureFPIdx">;
147def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
148                      AssemblerPredicate<"FeatureMips32">;
149def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
150                      AssemblerPredicate<"FeatureMips32r2">;
151def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
152                      AssemblerPredicate<"FeatureMips64">;
153def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
154                      AssemblerPredicate<"!FeatureMips64">;
155def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
156                      AssemblerPredicate<"FeatureMips64r2">;
157def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
158                      AssemblerPredicate<"FeatureN64">;
159def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
160                      AssemblerPredicate<"!FeatureN64">;
161def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
162                      AssemblerPredicate<"FeatureMips16">;
163def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
164                      AssemblerPredicate<"FeatureMips32">;
165def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
166                      AssemblerPredicate<"FeatureMips32">;
167def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
168                      AssemblerPredicate<"FeatureMips32">;
169def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
170                      AssemblerPredicate<"!FeatureMips16">;
171
172class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
173  let Predicates = [HasStdEnc];
174}
175
176class IsCommutable {
177  bit isCommutable = 1;
178}
179
180class IsBranch {
181  bit isBranch = 1;
182}
183
184class IsReturn {
185  bit isReturn = 1;
186}
187
188class IsCall {
189  bit isCall = 1;
190}
191
192class IsTailCall {
193  bit isCall = 1;
194  bit isTerminator = 1;
195  bit isReturn = 1;
196  bit isBarrier = 1;
197  bit hasExtraSrcRegAllocReq = 1;
198  bit isCodeGenOnly = 1;
199}
200
201class IsAsCheapAsAMove {
202  bit isAsCheapAsAMove = 1;
203}
204
205class NeverHasSideEffects {
206  bit neverHasSideEffects = 1;
207}
208
209//===----------------------------------------------------------------------===//
210// Instruction format superclass
211//===----------------------------------------------------------------------===//
212
213include "MipsInstrFormats.td"
214
215//===----------------------------------------------------------------------===//
216// Mips Operand, Complex Patterns and Transformations Definitions.
217//===----------------------------------------------------------------------===//
218
219// Instruction operand types
220def jmptarget   : Operand<OtherVT> {
221  let EncoderMethod = "getJumpTargetOpValue";
222}
223def brtarget    : Operand<OtherVT> {
224  let EncoderMethod = "getBranchTargetOpValue";
225  let OperandType = "OPERAND_PCREL";
226  let DecoderMethod = "DecodeBranchTarget";
227}
228def calltarget  : Operand<iPTR> {
229  let EncoderMethod = "getJumpTargetOpValue";
230}
231def calltarget64: Operand<i64>;
232def simm16      : Operand<i32> {
233  let DecoderMethod= "DecodeSimm16";
234}
235def simm16_64   : Operand<i64>;
236def shamt       : Operand<i32>;
237
238// Unsigned Operand
239def uimm16      : Operand<i32> {
240  let PrintMethod = "printUnsignedImm";
241}
242
243def MipsMemAsmOperand : AsmOperandClass {
244  let Name = "Mem";
245  let ParserMethod = "parseMemOperand";
246}
247
248// Address operand
249def mem : Operand<i32> {
250  let PrintMethod = "printMemOperand";
251  let MIOperandInfo = (ops CPURegs, simm16);
252  let EncoderMethod = "getMemEncoding";
253  let ParserMatchClass = MipsMemAsmOperand;
254}
255
256def mem64 : Operand<i64> {
257  let PrintMethod = "printMemOperand";
258  let MIOperandInfo = (ops CPU64Regs, simm16_64);
259  let EncoderMethod = "getMemEncoding";
260  let ParserMatchClass = MipsMemAsmOperand;
261}
262
263def mem_ea : Operand<i32> {
264  let PrintMethod = "printMemOperandEA";
265  let MIOperandInfo = (ops CPURegs, simm16);
266  let EncoderMethod = "getMemEncoding";
267}
268
269def mem_ea_64 : Operand<i64> {
270  let PrintMethod = "printMemOperandEA";
271  let MIOperandInfo = (ops CPU64Regs, simm16_64);
272  let EncoderMethod = "getMemEncoding";
273}
274
275// size operand of ext instruction
276def size_ext : Operand<i32> {
277  let EncoderMethod = "getSizeExtEncoding";
278  let DecoderMethod = "DecodeExtSize";
279}
280
281// size operand of ins instruction
282def size_ins : Operand<i32> {
283  let EncoderMethod = "getSizeInsEncoding";
284  let DecoderMethod = "DecodeInsSize";
285}
286
287// Transformation Function - get the lower 16 bits.
288def LO16 : SDNodeXForm<imm, [{
289  return getImm(N, N->getZExtValue() & 0xFFFF);
290}]>;
291
292// Transformation Function - get the higher 16 bits.
293def HI16 : SDNodeXForm<imm, [{
294  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
295}]>;
296
297// Node immediate fits as 16-bit sign extended on target immediate.
298// e.g. addi, andi
299def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
300
301// Node immediate fits as 16-bit zero extended on target immediate.
302// The LO16 param means that only the lower 16 bits of the node
303// immediate are caught.
304// e.g. addiu, sltiu
305def immZExt16  : PatLeaf<(imm), [{
306  if (N->getValueType(0) == MVT::i32)
307    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
308  else
309    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
310}], LO16>;
311
312// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
313def immLow16Zero : PatLeaf<(imm), [{
314  int64_t Val = N->getSExtValue();
315  return isInt<32>(Val) && !(Val & 0xffff);
316}]>;
317
318// shamt field must fit in 5 bits.
319def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
320
321// Mips Address Mode! SDNode frameindex could possibily be a match
322// since load and store instructions from stack used it.
323def addr :
324  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
325
326//===----------------------------------------------------------------------===//
327// Instructions specific format
328//===----------------------------------------------------------------------===//
329
330/// Move Control Registers From/To CPU Registers
331def MFC0_3OP  : MFC3OP<0x10, 0, (outs CPURegs:$rt),
332                       (ins CPURegs:$rd, uimm16:$sel),"mfc0\t$rt, $rd, $sel">;
333def : InstAlias<"mfc0 $rt, $rd", (MFC0_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
334
335def MTC0_3OP  : MFC3OP<0x10, 4, (outs CPURegs:$rd, uimm16:$sel),
336                       (ins CPURegs:$rt),"mtc0\t$rt, $rd, $sel">;
337def : InstAlias<"mtc0 $rt, $rd", (MTC0_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
338
339def MFC2_3OP  : MFC3OP<0x12, 0, (outs CPURegs:$rt),
340                       (ins CPURegs:$rd, uimm16:$sel),"mfc2\t$rt, $rd, $sel">;
341def : InstAlias<"mfc2 $rt, $rd", (MFC2_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
342
343def MTC2_3OP  : MFC3OP<0x12, 4, (outs CPURegs:$rd, uimm16:$sel),
344                       (ins CPURegs:$rt),"mtc2\t$rt, $rd, $sel">;
345def : InstAlias<"mtc2 $rt, $rd", (MTC2_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
346
347// Arithmetic and logical instructions with 3 register operands.
348class ArithLogicR<string opstr, InstrItinClass Itin, RegisterClass RC,
349                  bit isComm = 0, SDPatternOperator OpNode = null_frag>:
350  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
351         !strconcat(opstr, "\t$rd, $rs, $rt"),
352         [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], Itin, FrmR> {
353  let isCommutable = isComm;
354  let isReMaterializable = 1;
355}
356
357// Arithmetic and logical instructions with 2 register operands.
358class ArithLogicI<string opstr, Operand Od, PatLeaf imm_type,
359                  RegisterClass RC, SDPatternOperator OpNode = null_frag> :
360  InstSE<(outs RC:$rt), (ins RC:$rs, Od:$imm16),
361         !strconcat(opstr, "\t$rt, $rs, $imm16"),
362         [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu, FrmI> {
363  let isReMaterializable = 1;
364}
365
366// Arithmetic Multiply ADD/SUB
367let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
368class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
369  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
370     !strconcat(instr_asm, "\t$rs, $rt"),
371     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
372  let rd = 0;
373  let shamt = 0;
374  let isCommutable = isComm;
375}
376
377//  Logical
378class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
379  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
380     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
381     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
382  let shamt = 0;
383  let isCommutable = 1;
384}
385
386// Shifts
387class shift_rotate_imm<string opstr, PatFrag PF, Operand ImmOpnd,
388                       RegisterClass RC, SDPatternOperator OpNode> :
389  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
390         !strconcat(opstr, "\t$rd, $rt, $shamt"),
391         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR>;
392
393// 32-bit shift instructions.
394class shift_rotate_imm32<string opstr, SDPatternOperator OpNode = null_frag> :
395  shift_rotate_imm<opstr, immZExt5, shamt, CPURegs, OpNode>;
396
397class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
398                       SDNode OpNode, RegisterClass RC>:
399  FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
400     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
401     [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> {
402  let shamt = isRotate;
403}
404
405// Load Upper Imediate
406class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
407  FI<op, (outs RC:$rt), (ins Imm:$imm16),
408     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu>, IsAsCheapAsAMove {
409  let rs = 0;
410  let neverHasSideEffects = 1;
411  let isReMaterializable = 1;
412}
413
414class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
415          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
416  bits<21> addr;
417  let Inst{25-21} = addr{20-16};
418  let Inst{15-0}  = addr{15-0};
419  let DecoderMethod = "DecodeMem";
420}
421
422// Memory Load/Store
423let canFoldAsLoad = 1 in
424class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
425            Operand MemOpnd, bit Pseudo>:
426  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
427     !strconcat(instr_asm, "\t$rt, $addr"),
428     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
429  let isPseudo = Pseudo;
430}
431
432class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
433             Operand MemOpnd, bit Pseudo>:
434  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
435     !strconcat(instr_asm, "\t$rt, $addr"),
436     [(OpNode RC:$rt, addr:$addr)], IIStore> {
437  let isPseudo = Pseudo;
438}
439
440// 32-bit load.
441multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
442                   bit Pseudo = 0> {
443  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
444               Requires<[NotN64, HasStdEnc]>;
445  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
446               Requires<[IsN64, HasStdEnc]> {
447    let DecoderNamespace = "Mips64";
448    let isCodeGenOnly = 1;
449  }
450}
451
452// 64-bit load.
453multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
454                   bit Pseudo = 0> {
455  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
456               Requires<[NotN64, HasStdEnc]>;
457  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
458               Requires<[IsN64, HasStdEnc]> {
459    let DecoderNamespace = "Mips64";
460    let isCodeGenOnly = 1;
461  }
462}
463
464// 32-bit store.
465multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
466                    bit Pseudo = 0> {
467  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
468               Requires<[NotN64, HasStdEnc]>;
469  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
470               Requires<[IsN64, HasStdEnc]> {
471    let DecoderNamespace = "Mips64";
472    let isCodeGenOnly = 1;
473  }
474}
475
476// 64-bit store.
477multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
478                    bit Pseudo = 0> {
479  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
480               Requires<[NotN64, HasStdEnc]>;
481  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
482               Requires<[IsN64, HasStdEnc]> {
483    let DecoderNamespace = "Mips64";
484    let isCodeGenOnly = 1;
485  }
486}
487
488// Load/Store Left/Right
489let canFoldAsLoad = 1 in
490class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
491                    RegisterClass RC, Operand MemOpnd> :
492  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
493       !strconcat(instr_asm, "\t$rt, $addr"),
494       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
495  string Constraints = "$src = $rt";
496}
497
498class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
499                     RegisterClass RC, Operand MemOpnd>:
500  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
501       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
502       IIStore>;
503
504// 32-bit load left/right.
505multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
506  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
507               Requires<[NotN64, HasStdEnc]>;
508  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
509               Requires<[IsN64, HasStdEnc]> {
510    let DecoderNamespace = "Mips64";
511    let isCodeGenOnly = 1;
512  }
513}
514
515// 64-bit load left/right.
516multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
517  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
518               Requires<[NotN64, HasStdEnc]>;
519  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
520               Requires<[IsN64, HasStdEnc]> {
521    let DecoderNamespace = "Mips64";
522    let isCodeGenOnly = 1;
523  }
524}
525
526// 32-bit store left/right.
527multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
528  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
529               Requires<[NotN64, HasStdEnc]>;
530  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
531               Requires<[IsN64, HasStdEnc]> {
532    let DecoderNamespace = "Mips64";
533    let isCodeGenOnly = 1;
534  }
535}
536
537// 64-bit store left/right.
538multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
539  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
540               Requires<[NotN64, HasStdEnc]>;
541  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
542               Requires<[IsN64, HasStdEnc]> {
543    let DecoderNamespace = "Mips64";
544    let isCodeGenOnly = 1;
545  }
546}
547
548// Conditional Branch
549class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
550  BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
551             !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
552             [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
553  let isBranch = 1;
554  let isTerminator = 1;
555  let hasDelaySlot = 1;
556  let Defs = [AT];
557}
558
559class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
560                  RegisterClass RC>:
561  BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
562             !strconcat(instr_asm, "\t$rs, $imm16"),
563             [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
564  let rt = _rt;
565  let isBranch = 1;
566  let isTerminator = 1;
567  let hasDelaySlot = 1;
568  let Defs = [AT];
569}
570
571// SetCC
572class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
573              RegisterClass RC>:
574  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
575     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
576     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
577     IIAlu> {
578  let shamt = 0;
579}
580
581class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
582              PatLeaf imm_type, RegisterClass RC>:
583  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
584     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
585     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
586     IIAlu>;
587
588// Jump
589class JumpFJ<bits<6> op, DAGOperand opnd, string instr_asm,
590             SDPatternOperator operator, SDPatternOperator targetoperator>:
591  FJ<op, (outs), (ins opnd:$target), !strconcat(instr_asm, "\t$target"),
592     [(operator targetoperator:$target)], IIBranch> {
593  let isTerminator=1;
594  let isBarrier=1;
595  let hasDelaySlot = 1;
596  let DecoderMethod = "DecodeJumpTarget";
597  let Defs = [AT];
598}
599
600// Unconditional branch
601class UncondBranch<bits<6> op, string instr_asm>:
602  BranchBase<op, (outs), (ins brtarget:$imm16),
603             !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
604  let rs = 0;
605  let rt = 0;
606  let isBranch = 1;
607  let isTerminator = 1;
608  let isBarrier = 1;
609  let hasDelaySlot = 1;
610  let Predicates = [RelocPIC, HasStdEnc];
611  let Defs = [AT];
612}
613
614// Base class for indirect branch and return instruction classes.
615let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
616class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
617  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch> {
618  let rt = 0;
619  let rd = 0;
620  let shamt = 0;
621}
622
623// Indirect branch
624class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
625  let isBranch = 1;
626  let isIndirectBranch = 1;
627}
628
629// Return instruction
630class RetBase<RegisterClass RC>: JumpFR<RC> {
631  let isReturn = 1;
632  let isCodeGenOnly = 1;
633  let hasCtrlDep = 1;
634  let hasExtraSrcRegAllocReq = 1;
635}
636
637// Jump and Link (Call)
638let isCall=1, hasDelaySlot=1, Defs = [RA] in {
639  class JumpLink<bits<6> op, string instr_asm>:
640    FJ<op, (outs), (ins calltarget:$target),
641       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
642       IIBranch> {
643       let DecoderMethod = "DecodeJumpTarget";
644       }
645
646  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
647                    RegisterClass RC>:
648    FR<op, func, (outs), (ins RC:$rs),
649       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
650    let rt = 0;
651    let rd = 31;
652    let shamt = 0;
653  }
654
655  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
656    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
657       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
658    let rt = _rt;
659  }
660}
661
662// Mul, Div
663class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
664           RegisterClass RC, list<Register> DefRegs>:
665  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
666     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
667  let rd = 0;
668  let shamt = 0;
669  let isCommutable = 1;
670  let Defs = DefRegs;
671  let neverHasSideEffects = 1;
672}
673
674class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
675  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
676
677class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
678          RegisterClass RC, list<Register> DefRegs>:
679  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
680     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
681     [(op RC:$rs, RC:$rt)], itin> {
682  let rd = 0;
683  let shamt = 0;
684  let Defs = DefRegs;
685}
686
687class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
688  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
689
690// Move from Hi/Lo
691class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
692                   list<Register> UseRegs>:
693  FR<0x00, func, (outs RC:$rd), (ins),
694     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
695  let rs = 0;
696  let rt = 0;
697  let shamt = 0;
698  let Uses = UseRegs;
699  let neverHasSideEffects = 1;
700}
701
702class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
703                 list<Register> DefRegs>:
704  FR<0x00, func, (outs), (ins RC:$rs),
705     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
706  let rt = 0;
707  let rd = 0;
708  let shamt = 0;
709  let Defs = DefRegs;
710  let neverHasSideEffects = 1;
711}
712
713class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
714  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
715     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
716 let isCodeGenOnly = 1;
717}
718
719// Count Leading Ones/Zeros in Word
720class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
721  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
722     !strconcat(instr_asm, "\t$rd, $rs"),
723     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
724     Requires<[HasBitCount, HasStdEnc]> {
725  let shamt = 0;
726  let rt = rd;
727}
728
729class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
730  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
731     !strconcat(instr_asm, "\t$rd, $rs"),
732     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
733     Requires<[HasBitCount, HasStdEnc]> {
734  let shamt = 0;
735  let rt = rd;
736}
737
738// Sign Extend in Register.
739class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
740                   RegisterClass RC>:
741  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
742     !strconcat(instr_asm, "\t$rd, $rt"),
743     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
744  let rs = 0;
745  let shamt = sa;
746  let Predicates = [HasSEInReg, HasStdEnc];
747}
748
749// Subword Swap
750class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
751  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
752     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
753  let rs = 0;
754  let shamt = sa;
755  let Predicates = [HasSwap, HasStdEnc];
756  let neverHasSideEffects = 1;
757}
758
759// Read Hardware
760class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
761  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
762       "rdhwr\t$rt, $rd", [], IIAlu> {
763  let rs = 0;
764  let shamt = 0;
765}
766
767// Ext and Ins
768class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
769  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
770     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
771     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
772  bits<5> pos;
773  bits<5> sz;
774  let rd = sz;
775  let shamt = pos;
776  let Predicates = [HasMips32r2, HasStdEnc];
777}
778
779class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
780  FR<0x1f, _funct, (outs RC:$rt),
781     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
782     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
783     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
784     NoItinerary> {
785  bits<5> pos;
786  bits<5> sz;
787  let rd = sz;
788  let shamt = pos;
789  let Predicates = [HasMips32r2, HasStdEnc];
790  let Constraints = "$src = $rt";
791}
792
793// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
794class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
795                 RegisterClass PRC> :
796  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
797           !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
798           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
799
800multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
801  def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>,
802                          Requires<[NotN64, HasStdEnc]>;
803  def _P8    : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>,
804                          Requires<[IsN64, HasStdEnc]> {
805    let DecoderNamespace = "Mips64";
806  }
807}
808
809// Atomic Compare & Swap.
810class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
811                    RegisterClass PRC> :
812  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
813           !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
814           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
815
816multiclass AtomicCmpSwap32<PatFrag Op, string Width>  {
817  def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>,
818                             Requires<[NotN64, HasStdEnc]>;
819  def _P8    : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>,
820                             Requires<[IsN64, HasStdEnc]> {
821    let DecoderNamespace = "Mips64";
822  }
823}
824
825class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
826  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
827       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
828  let mayLoad = 1;
829}
830
831class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
832  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
833       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
834  let mayStore = 1;
835  let Constraints = "$rt = $dst";
836}
837
838//===----------------------------------------------------------------------===//
839// Pseudo instructions
840//===----------------------------------------------------------------------===//
841
842// Return RA.
843let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
844def RetRA : PseudoSE<(outs), (ins), "", [(MipsRet)]>;
845
846let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
847def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
848                                  "!ADJCALLSTACKDOWN $amt",
849                                  [(callseq_start timm:$amt)]>;
850def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
851                                  "!ADJCALLSTACKUP $amt1",
852                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
853}
854
855// When handling PIC code the assembler needs .cpload and .cprestore
856// directives. If the real instructions corresponding these directives
857// are used, we have the same behavior, but get also a bunch of warnings
858// from the assembler.
859let neverHasSideEffects = 1 in
860def CPRESTORE : PseudoSE<(outs), (ins i32imm:$loc, CPURegs:$gp),
861                         ".cprestore\t$loc", []>;
862
863let usesCustomInserter = 1 in {
864  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
865  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
866  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
867  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
868  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
869  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
870  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
871  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
872  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
873  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
874  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
875  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
876  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
877  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
878  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
879  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
880  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
881  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
882
883  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8, "swap_8">;
884  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16, "swap_16">;
885  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32, "swap_32">;
886
887  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
888  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
889  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
890}
891
892//===----------------------------------------------------------------------===//
893// Instruction definition
894//===----------------------------------------------------------------------===//
895
896class LoadImm32< string instr_asm, Operand Od, RegisterClass RC> :
897  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
898                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
899def LoadImm32Reg : LoadImm32<"li", shamt,CPURegs>;
900
901class LoadAddress<string instr_asm, Operand MemOpnd, RegisterClass RC> :
902  MipsAsmPseudoInst<(outs RC:$rt), (ins MemOpnd:$addr),
903                     !strconcat(instr_asm, "\t$rt, $addr")> ;
904def LoadAddr32Reg : LoadAddress<"la", mem, CPURegs>;
905
906class LoadAddressImm<string instr_asm, Operand Od, RegisterClass RC> :
907  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
908                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
909def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegs>;
910
911//===----------------------------------------------------------------------===//
912// MipsI Instructions
913//===----------------------------------------------------------------------===//
914
915/// Arithmetic Instructions (ALU Immediate)
916def ADDiu : ArithLogicI<"addiu", simm16, immSExt16, CPURegs, add>,
917            ADDI_FM<0x9>, IsAsCheapAsAMove;
918def ADDi  : ArithLogicI<"addi", simm16, immSExt16, CPURegs>, ADDI_FM<0x8>;
919def SLTi  : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
920def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
921def ANDi  : ArithLogicI<"andi", uimm16, immZExt16, CPURegs, and>, ADDI_FM<0xc>;
922def ORi   : ArithLogicI<"ori", uimm16, immZExt16, CPURegs, or>, ADDI_FM<0xd>;
923def XORi  : ArithLogicI<"xori", uimm16, immZExt16, CPURegs, xor>, ADDI_FM<0xe>;
924def LUi   : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
925
926/// Arithmetic Instructions (3-Operand, R-Type)
927def ADDu : ArithLogicR<"addu", IIAlu, CPURegs, 1, add>, ADD_FM<0, 0x21>;
928def SUBu : ArithLogicR<"subu", IIAlu, CPURegs, 0, sub>, ADD_FM<0, 0x23>;
929def ADD  : ArithLogicR<"add", IIAlu, CPURegs, 1>, ADD_FM<0, 0x20>;
930def SUB  : ArithLogicR<"sub", IIAlu, CPURegs, 0>, ADD_FM<0, 0x22>;
931def SLT  : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
932def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
933def AND  : ArithLogicR<"and", IIAlu, CPURegs, 1, and>, ADD_FM<0, 0x24>;
934def OR   : ArithLogicR<"or", IIAlu, CPURegs, 1, or>, ADD_FM<0, 0x25>;
935def XOR  : ArithLogicR<"xor", IIAlu, CPURegs, 1, xor>, ADD_FM<0, 0x26>;
936def NOR  : LogicNOR<0x00, 0x27, "nor", CPURegs>;
937
938/// Shift Instructions
939def SLL  : shift_rotate_imm32<"sll", shl>, SRA_FM<0, 0>;
940def SRL  : shift_rotate_imm32<"srl", srl>, SRA_FM<2, 0>;
941def SRA  : shift_rotate_imm32<"sra", sra>, SRA_FM<3, 0>;
942def SLLV : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
943def SRLV : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
944def SRAV : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
945
946// Rotate Instructions
947let Predicates = [HasMips32r2, HasStdEnc] in {
948  def ROTR  : shift_rotate_imm32<"rotr", rotr>, SRA_FM<2, 1>;
949  def ROTRV : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
950}
951
952/// Load and Store Instructions
953///  aligned
954defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
955defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
956defm LH      : LoadM32<0x21, "lh",  sextloadi16>;
957defm LHu     : LoadM32<0x25, "lhu", zextloadi16>;
958defm LW      : LoadM32<0x23, "lw",  load>;
959defm SB      : StoreM32<0x28, "sb", truncstorei8>;
960defm SH      : StoreM32<0x29, "sh", truncstorei16>;
961defm SW      : StoreM32<0x2b, "sw", store>;
962
963/// load/store left/right
964defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
965defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
966defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
967defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
968
969let hasSideEffects = 1 in
970def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
971                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
972{
973  bits<5> stype;
974  let Opcode = 0;
975  let Inst{25-11} = 0;
976  let Inst{10-6} = stype;
977  let Inst{5-0} = 15;
978}
979
980/// Load-linked, Store-conditional
981def LL    : LLBase<0x30, "ll", CPURegs, mem>,
982            Requires<[NotN64, HasStdEnc]>;
983def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
984            Requires<[IsN64, HasStdEnc]> {
985  let DecoderNamespace = "Mips64";
986}
987
988def SC    : SCBase<0x38, "sc", CPURegs, mem>,
989            Requires<[NotN64, HasStdEnc]>;
990def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
991            Requires<[IsN64, HasStdEnc]> {
992  let DecoderNamespace = "Mips64";
993}
994
995/// Jump and Branch Instructions
996def J       : JumpFJ<0x02, jmptarget, "j", br, bb>,
997              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
998def JR      : IndirectBranch<CPURegs>;
999def B       : UncondBranch<0x04, "b">;
1000def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
1001def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
1002def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
1003def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
1004def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
1005def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
1006
1007let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
1008    hasDelaySlot = 1, Defs = [RA] in
1009def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
1010
1011def JAL  : JumpLink<0x03, "jal">;
1012def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
1013def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
1014def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
1015def TAILCALL : JumpFJ<0x02, calltarget, "j", MipsTailCall, imm>, IsTailCall;
1016def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, IsTailCall;
1017
1018def RET : RetBase<CPURegs>;
1019
1020/// Multiply and Divide Instructions.
1021def MULT    : Mult32<0x18, "mult", IIImul>;
1022def MULTu   : Mult32<0x19, "multu", IIImul>;
1023def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
1024def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
1025
1026def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
1027def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
1028def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
1029def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
1030
1031/// Sign Ext In Register Instructions.
1032def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
1033def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
1034
1035/// Count Leading
1036def CLZ : CountLeading0<0x20, "clz", CPURegs>;
1037def CLO : CountLeading1<0x21, "clo", CPURegs>;
1038
1039/// Word Swap Bytes Within Halfwords
1040def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
1041
1042/// No operation
1043let addr=0 in
1044  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1045
1046// FrameIndexes are legalized when they are operands from load/store
1047// instructions. The same not happens for stack address copies, so an
1048// add op with mem ComplexPattern is used and the stack address copy
1049// can be matched. It's similar to Sparc LEA_ADDRi
1050def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1051
1052// MADD*/MSUB*
1053def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1054def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1055def MSUB  : MArithR<4, "msub", MipsMSub>;
1056def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1057
1058// MUL is a assembly macro in the current used ISAs. In recent ISA's
1059// it is a real instruction.
1060def MUL   : ArithLogicR<"mul", IIImul, CPURegs, 1, mul>, ADD_FM<0x1c, 0x02>;
1061
1062def RDHWR : ReadHardware<CPURegs, HWRegs>;
1063
1064def EXT : ExtBase<0, "ext", CPURegs>;
1065def INS : InsBase<4, "ins", CPURegs>;
1066
1067//===----------------------------------------------------------------------===//
1068// Instruction aliases
1069//===----------------------------------------------------------------------===//
1070def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
1071def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
1072def : InstAlias<"addu $rs,$rt,$imm",
1073                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1074def : InstAlias<"add $rs,$rt,$imm",
1075                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1076def : InstAlias<"and $rs,$rt,$imm",
1077                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1078def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
1079def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
1080def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
1081def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
1082def : InstAlias<"slt $rs,$rt,$imm",
1083                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1084def : InstAlias<"xor $rs,$rt,$imm",
1085                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1086
1087//===----------------------------------------------------------------------===//
1088//  Arbitrary patterns that map to one or more instructions
1089//===----------------------------------------------------------------------===//
1090
1091// Small immediates
1092def : MipsPat<(i32 immSExt16:$in),
1093              (ADDiu ZERO, imm:$in)>;
1094def : MipsPat<(i32 immZExt16:$in),
1095              (ORi ZERO, imm:$in)>;
1096def : MipsPat<(i32 immLow16Zero:$in),
1097              (LUi (HI16 imm:$in))>;
1098
1099// Arbitrary immediates
1100def : MipsPat<(i32 imm:$imm),
1101          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1102
1103// Carry MipsPatterns
1104def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1105              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1106def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1107              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1108def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1109              (ADDiu CPURegs:$src, imm:$imm)>;
1110
1111// Call
1112def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1113              (JAL tglobaladdr:$dst)>;
1114def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1115              (JAL texternalsym:$dst)>;
1116//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1117//              (JALR CPURegs:$dst)>;
1118
1119// Tail call
1120def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1121              (TAILCALL tglobaladdr:$dst)>;
1122def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1123              (TAILCALL texternalsym:$dst)>;
1124// hi/lo relocs
1125def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1126def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1127def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1128def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1129def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1130def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1131
1132def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1133def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1134def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1135def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1136def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1137def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1138
1139def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1140              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1141def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1142              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1143def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1144              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1145def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1146              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1147def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1148              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1149
1150// gp_rel relocs
1151def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1152              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1153def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1154              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1155
1156// wrapper_pic
1157class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1158      MipsPat<(MipsWrapper RC:$gp, node:$in),
1159              (ADDiuOp RC:$gp, node:$in)>;
1160
1161def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1162def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1163def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1164def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1165def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1166def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1167
1168// Mips does not have "not", so we expand our way
1169def : MipsPat<(not CPURegs:$in),
1170              (NOR CPURegs:$in, ZERO)>;
1171
1172// extended loads
1173let Predicates = [NotN64, HasStdEnc] in {
1174  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1175  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1176  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1177}
1178let Predicates = [IsN64, HasStdEnc] in {
1179  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1180  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1181  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1182}
1183
1184// peepholes
1185let Predicates = [NotN64, HasStdEnc] in {
1186  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1187}
1188let Predicates = [IsN64, HasStdEnc] in {
1189  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1190}
1191
1192// brcond patterns
1193multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1194                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1195                      Instruction SLTiuOp, Register ZEROReg> {
1196def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1197              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1198def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1199              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1200
1201def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1202              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1203def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1204              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1205def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1206              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1207def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1208              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1209
1210def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1211              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1212def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1213              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1214
1215def : MipsPat<(brcond RC:$cond, bb:$dst),
1216              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1217}
1218
1219defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1220
1221// setcc patterns
1222multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1223                     Instruction SLTuOp, Register ZEROReg> {
1224  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1225                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1226  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1227                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1228}
1229
1230multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1231  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1232                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1233  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1234                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1235}
1236
1237multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1238  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1239                (SLTOp RC:$rhs, RC:$lhs)>;
1240  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1241                (SLTuOp RC:$rhs, RC:$lhs)>;
1242}
1243
1244multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1245  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1246                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1247  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1248                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1249}
1250
1251multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1252                        Instruction SLTiuOp> {
1253  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1254                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1255  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1256                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1257}
1258
1259defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1260defm : SetlePats<CPURegs, SLT, SLTu>;
1261defm : SetgtPats<CPURegs, SLT, SLTu>;
1262defm : SetgePats<CPURegs, SLT, SLTu>;
1263defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1264
1265// bswap pattern
1266def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1267
1268//===----------------------------------------------------------------------===//
1269// Floating Point Support
1270//===----------------------------------------------------------------------===//
1271
1272include "MipsInstrFPU.td"
1273include "Mips64InstrInfo.td"
1274include "MipsCondMov.td"
1275
1276//
1277// Mips16
1278
1279include "Mips16InstrFormats.td"
1280include "Mips16InstrInfo.td"
1281
1282// DSP
1283include "MipsDSPInstrFormats.td"
1284include "MipsDSPInstrInfo.td"
1285
1286