MipsInstrInfo.td revision 175f0fd99aaa66fd4268d0f3ff73d6b76332c99f
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_ExtractLOHI : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVT<1, untyped>,
27                                           SDTCisVT<2, i32>]>;
28def SDT_InsertLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
29                                          SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
30def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>,
31                                    SDTCisSameAs<1, 2>]>;
32def SDT_MipsMAddMSub : SDTypeProfile<1, 3,
33                                     [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
34                                      SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
35def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
36
37def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
38
39def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
40
41def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
42                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
43def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
44                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
45                                   SDTCisSameAs<0, 4>]>;
46
47def SDTMipsLoadLR  : SDTypeProfile<1, 2,
48                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
49                                    SDTCisSameAs<0, 2>]>;
50
51// Call
52def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
53                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
54                          SDNPVariadic]>;
55
56// Tail call
57def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
58                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
59
60// Hi and Lo nodes are used to handle global addresses. Used on
61// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
62// static model. (nothing to do with Mips Registers Hi and Lo)
63def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
64def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
65def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
66
67// TlsGd node is used to handle General Dynamic TLS
68def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
69
70// TprelHi and TprelLo nodes are used to handle Local Exec TLS
71def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
72def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
73
74// Thread pointer
75def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
76
77// Return
78def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
79                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
80
81// These are target-independent nodes, but have target-specific formats.
82def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
83                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
84def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
85                           [SDNPHasChain, SDNPSideEffect,
86                            SDNPOptInGlue, SDNPOutGlue]>;
87
88// Node used to extract integer from LO/HI register.
89def ExtractLOHI : SDNode<"MipsISD::ExtractLOHI", SDT_ExtractLOHI>;
90
91// Node used to insert 32-bit integers to LOHI register pair.
92def InsertLOHI : SDNode<"MipsISD::InsertLOHI", SDT_InsertLOHI>;
93
94// Mult nodes.
95def MipsMult  : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>;
96def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>;
97
98// MAdd*/MSub* nodes
99def MipsMAdd  : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>;
100def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>;
101def MipsMSub  : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>;
102def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>;
103
104// DivRem(u) nodes
105def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>;
106def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>;
107def MipsDivRem16  : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16, [SDNPOutGlue]>;
108def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16,
109                           [SDNPOutGlue]>;
110
111// Target constant nodes that are not part of any isel patterns and remain
112// unchanged can cause instructions with illegal operands to be emitted.
113// Wrapper node patterns give the instruction selector a chance to replace
114// target constant nodes that would otherwise remain unchanged with ADDiu
115// nodes. Without these wrapper node patterns, the following conditional move
116// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
117// compiled:
118//  movn  %got(d)($gp), %got(c)($gp), $4
119// This instruction is illegal since movn can take only register operands.
120
121def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
122
123def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
124
125def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
126def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
127
128def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
129                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
130def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
131                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
132def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
133                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
134def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
135                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
136def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
137                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
138def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
139                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
140def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
141                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
142def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
143                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
144
145//===----------------------------------------------------------------------===//
146// Mips Instruction Predicate Definitions.
147//===----------------------------------------------------------------------===//
148def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
149                      AssemblerPredicate<"FeatureSEInReg">;
150def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
151                      AssemblerPredicate<"FeatureBitCount">;
152def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
153                      AssemblerPredicate<"FeatureSwap">;
154def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
155                      AssemblerPredicate<"FeatureCondMov">;
156def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
157                      AssemblerPredicate<"FeatureFPIdx">;
158def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
159                      AssemblerPredicate<"FeatureMips32">;
160def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
161                      AssemblerPredicate<"FeatureMips32r2">;
162def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
163                      AssemblerPredicate<"FeatureMips64">;
164def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
165                      AssemblerPredicate<"!FeatureMips64">;
166def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
167                      AssemblerPredicate<"FeatureMips64r2">;
168def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
169                      AssemblerPredicate<"FeatureN64">;
170def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
171                      AssemblerPredicate<"!FeatureN64">;
172def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
173                      AssemblerPredicate<"FeatureMips16">;
174def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
175                      AssemblerPredicate<"FeatureMips32">;
176def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
177                      AssemblerPredicate<"FeatureMips32">;
178def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
179                      AssemblerPredicate<"FeatureMips32">;
180def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
181                      AssemblerPredicate<"!FeatureMips16">;
182
183class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
184  let Predicates = [HasStdEnc];
185}
186
187class IsCommutable {
188  bit isCommutable = 1;
189}
190
191class IsBranch {
192  bit isBranch = 1;
193}
194
195class IsReturn {
196  bit isReturn = 1;
197}
198
199class IsCall {
200  bit isCall = 1;
201}
202
203class IsTailCall {
204  bit isCall = 1;
205  bit isTerminator = 1;
206  bit isReturn = 1;
207  bit isBarrier = 1;
208  bit hasExtraSrcRegAllocReq = 1;
209  bit isCodeGenOnly = 1;
210}
211
212class IsAsCheapAsAMove {
213  bit isAsCheapAsAMove = 1;
214}
215
216class NeverHasSideEffects {
217  bit neverHasSideEffects = 1;
218}
219
220//===----------------------------------------------------------------------===//
221// Instruction format superclass
222//===----------------------------------------------------------------------===//
223
224include "MipsInstrFormats.td"
225
226//===----------------------------------------------------------------------===//
227// Mips Operand, Complex Patterns and Transformations Definitions.
228//===----------------------------------------------------------------------===//
229
230// Instruction operand types
231def jmptarget   : Operand<OtherVT> {
232  let EncoderMethod = "getJumpTargetOpValue";
233}
234def brtarget    : Operand<OtherVT> {
235  let EncoderMethod = "getBranchTargetOpValue";
236  let OperandType = "OPERAND_PCREL";
237  let DecoderMethod = "DecodeBranchTarget";
238}
239def calltarget  : Operand<iPTR> {
240  let EncoderMethod = "getJumpTargetOpValue";
241}
242def calltarget64: Operand<i64>;
243def simm16      : Operand<i32> {
244  let DecoderMethod= "DecodeSimm16";
245}
246
247def simm20      : Operand<i32> {
248}
249
250def simm16_64   : Operand<i64>;
251def shamt       : Operand<i32>;
252
253// Unsigned Operand
254def uimm16      : Operand<i32> {
255  let PrintMethod = "printUnsignedImm";
256}
257
258def MipsMemAsmOperand : AsmOperandClass {
259  let Name = "Mem";
260  let ParserMethod = "parseMemOperand";
261}
262
263// Address operand
264def mem : Operand<i32> {
265  let PrintMethod = "printMemOperand";
266  let MIOperandInfo = (ops CPURegs, simm16);
267  let EncoderMethod = "getMemEncoding";
268  let ParserMatchClass = MipsMemAsmOperand;
269  let OperandType = "OPERAND_MEMORY";
270}
271
272def mem64 : Operand<i64> {
273  let PrintMethod = "printMemOperand";
274  let MIOperandInfo = (ops CPU64Regs, simm16_64);
275  let EncoderMethod = "getMemEncoding";
276  let ParserMatchClass = MipsMemAsmOperand;
277  let OperandType = "OPERAND_MEMORY";
278}
279
280def mem_ea : Operand<i32> {
281  let PrintMethod = "printMemOperandEA";
282  let MIOperandInfo = (ops CPURegs, simm16);
283  let EncoderMethod = "getMemEncoding";
284  let OperandType = "OPERAND_MEMORY";
285}
286
287def mem_ea_64 : Operand<i64> {
288  let PrintMethod = "printMemOperandEA";
289  let MIOperandInfo = (ops CPU64Regs, simm16_64);
290  let EncoderMethod = "getMemEncoding";
291  let OperandType = "OPERAND_MEMORY";
292}
293
294// size operand of ext instruction
295def size_ext : Operand<i32> {
296  let EncoderMethod = "getSizeExtEncoding";
297  let DecoderMethod = "DecodeExtSize";
298}
299
300// size operand of ins instruction
301def size_ins : Operand<i32> {
302  let EncoderMethod = "getSizeInsEncoding";
303  let DecoderMethod = "DecodeInsSize";
304}
305
306// Transformation Function - get the lower 16 bits.
307def LO16 : SDNodeXForm<imm, [{
308  return getImm(N, N->getZExtValue() & 0xFFFF);
309}]>;
310
311// Transformation Function - get the higher 16 bits.
312def HI16 : SDNodeXForm<imm, [{
313  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
314}]>;
315
316// Plus 1.
317def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>;
318
319// Node immediate fits as 16-bit sign extended on target immediate.
320// e.g. addi, andi
321def immSExt8  : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
322
323// Node immediate fits as 16-bit sign extended on target immediate.
324// e.g. addi, andi
325def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
326
327// Node immediate fits as 15-bit sign extended on target immediate.
328// e.g. addi, andi
329def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
330
331// Node immediate fits as 16-bit zero extended on target immediate.
332// The LO16 param means that only the lower 16 bits of the node
333// immediate are caught.
334// e.g. addiu, sltiu
335def immZExt16  : PatLeaf<(imm), [{
336  if (N->getValueType(0) == MVT::i32)
337    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
338  else
339    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
340}], LO16>;
341
342// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
343def immLow16Zero : PatLeaf<(imm), [{
344  int64_t Val = N->getSExtValue();
345  return isInt<32>(Val) && !(Val & 0xffff);
346}]>;
347
348// shamt field must fit in 5 bits.
349def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
350
351// True if (N + 1) fits in 16-bit field.
352def immSExt16Plus1 : PatLeaf<(imm), [{
353  return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1);
354}]>;
355
356// Mips Address Mode! SDNode frameindex could possibily be a match
357// since load and store instructions from stack used it.
358def addr :
359  ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>;
360
361def addrRegImm :
362  ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>;
363
364def addrDefault :
365  ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>;
366
367//===----------------------------------------------------------------------===//
368// Instructions specific format
369//===----------------------------------------------------------------------===//
370
371// Arithmetic and logical instructions with 3 register operands.
372class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
373                  InstrItinClass Itin = NoItinerary,
374                  SDPatternOperator OpNode = null_frag>:
375  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
376         !strconcat(opstr, "\t$rd, $rs, $rt"),
377         [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR> {
378  let isCommutable = isComm;
379  let isReMaterializable = 1;
380  string BaseOpcode;
381  string Arch;
382}
383
384// Arithmetic and logical instructions with 2 register operands.
385class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
386                  SDPatternOperator imm_type = null_frag,
387                  SDPatternOperator OpNode = null_frag> :
388  InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
389         !strconcat(opstr, "\t$rt, $rs, $imm16"),
390         [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))], IIAlu, FrmI> {
391  let isReMaterializable = 1;
392}
393
394// Arithmetic Multiply ADD/SUB
395class MArithR<string opstr, bit isComm = 0> :
396  InstSE<(outs), (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt),
397         !strconcat(opstr, "\t$rs, $rt"), [], IIImul, FrmR> {
398  let Defs = [HI, LO];
399  let Uses = [HI, LO];
400  let isCommutable = isComm;
401}
402
403//  Logical
404class LogicNOR<string opstr, RegisterOperand RC>:
405  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
406         !strconcat(opstr, "\t$rd, $rs, $rt"),
407         [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu, FrmR> {
408  let isCommutable = 1;
409}
410
411// Shifts
412class shift_rotate_imm<string opstr, Operand ImmOpnd,
413                       RegisterOperand RC, SDPatternOperator OpNode = null_frag,
414                       SDPatternOperator PF = null_frag> :
415  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
416         !strconcat(opstr, "\t$rd, $rt, $shamt"),
417         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR>;
418
419class shift_rotate_reg<string opstr, RegisterOperand RC,
420                       SDPatternOperator OpNode = null_frag>:
421  InstSE<(outs RC:$rd), (ins CPURegsOpnd:$rs, RC:$rt),
422         !strconcat(opstr, "\t$rd, $rt, $rs"),
423         [(set RC:$rd, (OpNode RC:$rt, CPURegsOpnd:$rs))], IIAlu, FrmR>;
424
425// Load Upper Imediate
426class LoadUpper<string opstr, RegisterClass RC, Operand Imm>:
427  InstSE<(outs RC:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
428         [], IIAlu, FrmI>, IsAsCheapAsAMove {
429  let neverHasSideEffects = 1;
430  let isReMaterializable = 1;
431}
432
433class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
434          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
435  bits<21> addr;
436  let Inst{25-21} = addr{20-16};
437  let Inst{15-0}  = addr{15-0};
438  let DecoderMethod = "DecodeMem";
439}
440
441// Memory Load/Store
442class Load<string opstr, SDPatternOperator OpNode, RegisterClass RC,
443           Operand MemOpnd> :
444  InstSE<(outs RC:$rt), (ins MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
445         [(set RC:$rt, (OpNode addr:$addr))], NoItinerary, FrmI> {
446  let DecoderMethod = "DecodeMem";
447  let canFoldAsLoad = 1;
448  let mayLoad = 1;
449}
450
451class Store<string opstr, SDPatternOperator OpNode, RegisterClass RC,
452            Operand MemOpnd> :
453  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
454         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
455  let DecoderMethod = "DecodeMem";
456  let mayStore = 1;
457}
458
459multiclass LoadM<string opstr, RegisterClass RC,
460                 SDPatternOperator OpNode = null_frag> {
461  def NAME : Load<opstr, OpNode, RC, mem>, Requires<[NotN64, HasStdEnc]>;
462  def _P8  : Load<opstr, OpNode, RC, mem64>, Requires<[IsN64, HasStdEnc]> {
463    let DecoderNamespace = "Mips64";
464    let isCodeGenOnly = 1;
465  }
466}
467
468multiclass StoreM<string opstr, RegisterClass RC,
469                  SDPatternOperator OpNode = null_frag> {
470  def NAME : Store<opstr, OpNode, RC, mem>, Requires<[NotN64, HasStdEnc]>;
471  def _P8  : Store<opstr, OpNode, RC, mem64>, Requires<[IsN64, HasStdEnc]> {
472    let DecoderNamespace = "Mips64";
473    let isCodeGenOnly = 1;
474  }
475}
476
477// Load/Store Left/Right
478let canFoldAsLoad = 1 in
479class LoadLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
480                    Operand MemOpnd> :
481  InstSE<(outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
482         !strconcat(opstr, "\t$rt, $addr"),
483         [(set RC:$rt, (OpNode addr:$addr, RC:$src))], NoItinerary, FrmI> {
484  let DecoderMethod = "DecodeMem";
485  string Constraints = "$src = $rt";
486}
487
488class StoreLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
489                     Operand MemOpnd>:
490  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
491         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
492  let DecoderMethod = "DecodeMem";
493}
494
495multiclass LoadLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
496  def NAME : LoadLeftRight<opstr, OpNode, RC, mem>,
497             Requires<[NotN64, HasStdEnc]>;
498  def _P8  : LoadLeftRight<opstr, OpNode, RC, mem64>,
499             Requires<[IsN64, HasStdEnc]> {
500    let DecoderNamespace = "Mips64";
501    let isCodeGenOnly = 1;
502  }
503}
504
505multiclass StoreLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
506  def NAME : StoreLeftRight<opstr, OpNode, RC, mem>,
507             Requires<[NotN64, HasStdEnc]>;
508  def _P8  : StoreLeftRight<opstr, OpNode, RC, mem64>,
509             Requires<[IsN64, HasStdEnc]> {
510    let DecoderNamespace = "Mips64";
511    let isCodeGenOnly = 1;
512  }
513}
514
515// Conditional Branch
516class CBranch<string opstr, PatFrag cond_op, RegisterClass RC> :
517  InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset),
518         !strconcat(opstr, "\t$rs, $rt, $offset"),
519         [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch,
520         FrmI> {
521  let isBranch = 1;
522  let isTerminator = 1;
523  let hasDelaySlot = 1;
524  let Defs = [AT];
525}
526
527class CBranchZero<string opstr, PatFrag cond_op, RegisterClass RC> :
528  InstSE<(outs), (ins RC:$rs, brtarget:$offset),
529         !strconcat(opstr, "\t$rs, $offset"),
530         [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
531  let isBranch = 1;
532  let isTerminator = 1;
533  let hasDelaySlot = 1;
534  let Defs = [AT];
535}
536
537// SetCC
538class SetCC_R<string opstr, PatFrag cond_op, RegisterClass RC> :
539  InstSE<(outs CPURegsOpnd:$rd), (ins RC:$rs, RC:$rt),
540         !strconcat(opstr, "\t$rd, $rs, $rt"),
541         [(set CPURegsOpnd:$rd, (cond_op RC:$rs, RC:$rt))], IIAlu, FrmR>;
542
543class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
544              RegisterClass RC>:
545  InstSE<(outs CPURegsOpnd:$rt), (ins RC:$rs, Od:$imm16),
546         !strconcat(opstr, "\t$rt, $rs, $imm16"),
547         [(set CPURegsOpnd:$rt, (cond_op RC:$rs, imm_type:$imm16))],
548         IIAlu, FrmI>;
549
550// Jump
551class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
552             SDPatternOperator targetoperator> :
553  InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
554         [(operator targetoperator:$target)], IIBranch, FrmJ> {
555  let isTerminator=1;
556  let isBarrier=1;
557  let hasDelaySlot = 1;
558  let DecoderMethod = "DecodeJumpTarget";
559  let Defs = [AT];
560}
561
562// Unconditional branch
563class UncondBranch<string opstr> :
564  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
565         [(br bb:$offset)], IIBranch, FrmI> {
566  let isBranch = 1;
567  let isTerminator = 1;
568  let isBarrier = 1;
569  let hasDelaySlot = 1;
570  let Predicates = [RelocPIC, HasStdEnc];
571  let Defs = [AT];
572}
573
574// Base class for indirect branch and return instruction classes.
575let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
576class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
577  InstSE<(outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch, FrmR>;
578
579// Indirect branch
580class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
581  let isBranch = 1;
582  let isIndirectBranch = 1;
583}
584
585// Return instruction
586class RetBase<RegisterClass RC>: JumpFR<RC> {
587  let isReturn = 1;
588  let isCodeGenOnly = 1;
589  let hasCtrlDep = 1;
590  let hasExtraSrcRegAllocReq = 1;
591}
592
593// Jump and Link (Call)
594let isCall=1, hasDelaySlot=1, Defs = [RA] in {
595  class JumpLink<string opstr> :
596    InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"),
597           [(MipsJmpLink imm:$target)], IIBranch, FrmJ> {
598    let DecoderMethod = "DecodeJumpTarget";
599  }
600
601  class JumpLinkRegPseudo<RegisterClass RC, Instruction JALRInst,
602                          Register RetReg>:
603    PseudoSE<(outs), (ins RC:$rs), [(MipsJmpLink RC:$rs)], IIBranch>,
604    PseudoInstExpansion<(JALRInst RetReg, RC:$rs)>;
605
606  class JumpLinkReg<string opstr, RegisterClass RC>:
607    InstSE<(outs RC:$rd), (ins RC:$rs), !strconcat(opstr, "\t$rd, $rs"),
608           [], IIBranch, FrmR>;
609
610  class BGEZAL_FT<string opstr, RegisterOperand RO> :
611    InstSE<(outs), (ins RO:$rs, brtarget:$offset),
612           !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI>;
613
614}
615
616class BAL_FT :
617  InstSE<(outs), (ins brtarget:$offset), "bal\t$offset", [], IIBranch, FrmI> {
618  let isBranch = 1;
619  let isTerminator = 1;
620  let isBarrier = 1;
621  let hasDelaySlot = 1;
622  let Defs = [RA];
623}
624
625// Sync
626let hasSideEffects = 1 in
627class SYNC_FT :
628  InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
629         NoItinerary, FrmOther>;
630
631// Mul, Div
632class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
633           list<Register> DefRegs> :
634  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
635         itin, FrmR> {
636  let isCommutable = 1;
637  let Defs = DefRegs;
638  let neverHasSideEffects = 1;
639}
640
641// Pseudo multiply/divide instruction with explicit accumulator register
642// operands.
643class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1,
644                    SDPatternOperator OpNode, InstrItinClass Itin,
645                    bit IsComm = 1, bit HasSideEffects = 0> :
646  PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt),
647           [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>,
648  PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> {
649  let isCommutable = IsComm;
650  let hasSideEffects = HasSideEffects;
651}
652
653// Pseudo multiply add/sub instruction with explicit accumulator register
654// operands.
655class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode>
656  : PseudoSE<(outs ACRegs:$ac),
657             (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin),
658             [(set ACRegs:$ac,
659              (OpNode CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin))],
660             IIImul>,
661    PseudoInstExpansion<(RealInst CPURegsOpnd:$rs, CPURegsOpnd:$rt)> {
662  string Constraints = "$acin = $ac";
663}
664
665class Div<string opstr, InstrItinClass itin, RegisterOperand RO,
666          list<Register> DefRegs> :
667  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"),
668         [], itin, FrmR> {
669  let Defs = DefRegs;
670}
671
672// Move from Hi/Lo
673class MoveFromLOHI<string opstr, RegisterClass RC, list<Register> UseRegs>:
674  InstSE<(outs RC:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> {
675  let Uses = UseRegs;
676  let neverHasSideEffects = 1;
677}
678
679class MoveToLOHI<string opstr, RegisterClass RC, list<Register> DefRegs>:
680  InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> {
681  let Defs = DefRegs;
682  let neverHasSideEffects = 1;
683}
684
685class EffectiveAddress<string opstr, RegisterClass RC, Operand Mem> :
686  InstSE<(outs RC:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
687         [(set RC:$rt, addr:$addr)], NoItinerary, FrmI> {
688  let isCodeGenOnly = 1;
689  let DecoderMethod = "DecodeMem";
690}
691
692// Count Leading Ones/Zeros in Word
693class CountLeading0<string opstr, RegisterOperand RO>:
694  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
695         [(set RO:$rd, (ctlz RO:$rs))], IIAlu, FrmR>,
696  Requires<[HasBitCount, HasStdEnc]>;
697
698class CountLeading1<string opstr, RegisterOperand RO>:
699  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
700         [(set RO:$rd, (ctlz (not RO:$rs)))], IIAlu, FrmR>,
701  Requires<[HasBitCount, HasStdEnc]>;
702
703
704// Sign Extend in Register.
705class SignExtInReg<string opstr, ValueType vt, RegisterClass RC> :
706  InstSE<(outs RC:$rd), (ins RC:$rt), !strconcat(opstr, "\t$rd, $rt"),
707         [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary, FrmR> {
708  let Predicates = [HasSEInReg, HasStdEnc];
709}
710
711// Subword Swap
712class SubwordSwap<string opstr, RegisterOperand RO>:
713  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
714         NoItinerary, FrmR> {
715  let Predicates = [HasSwap, HasStdEnc];
716  let neverHasSideEffects = 1;
717}
718
719// Read Hardware
720class ReadHardware<RegisterClass CPURegClass, RegisterOperand RO> :
721  InstSE<(outs CPURegClass:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
722         IIAlu, FrmR>;
723
724// Ext and Ins
725class ExtBase<string opstr, RegisterOperand RO>:
726  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ext:$size),
727         !strconcat(opstr, " $rt, $rs, $pos, $size"),
728         [(set RO:$rt, (MipsExt RO:$rs, imm:$pos, imm:$size))], NoItinerary,
729         FrmR> {
730  let Predicates = [HasMips32r2, HasStdEnc];
731}
732
733class InsBase<string opstr, RegisterOperand RO>:
734  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ins:$size, RO:$src),
735         !strconcat(opstr, " $rt, $rs, $pos, $size"),
736         [(set RO:$rt, (MipsIns RO:$rs, imm:$pos, imm:$size, RO:$src))],
737         NoItinerary, FrmR> {
738  let Predicates = [HasMips32r2, HasStdEnc];
739  let Constraints = "$src = $rt";
740}
741
742// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
743class Atomic2Ops<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
744  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
745           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
746
747multiclass Atomic2Ops32<PatFrag Op> {
748  def NAME : Atomic2Ops<Op, CPURegs, CPURegs>, Requires<[NotN64, HasStdEnc]>;
749  def _P8  : Atomic2Ops<Op, CPURegs, CPU64Regs>,
750             Requires<[IsN64, HasStdEnc]> {
751    let DecoderNamespace = "Mips64";
752  }
753}
754
755// Atomic Compare & Swap.
756class AtomicCmpSwap<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
757  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
758           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
759
760multiclass AtomicCmpSwap32<PatFrag Op>  {
761  def NAME : AtomicCmpSwap<Op, CPURegs, CPURegs>,
762             Requires<[NotN64, HasStdEnc]>;
763  def _P8  : AtomicCmpSwap<Op, CPURegs, CPU64Regs>,
764             Requires<[IsN64, HasStdEnc]> {
765    let DecoderNamespace = "Mips64";
766  }
767}
768
769class LLBase<string opstr, RegisterOperand RO, Operand Mem> :
770  InstSE<(outs RO:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
771         [], NoItinerary, FrmI> {
772  let DecoderMethod = "DecodeMem";
773  let mayLoad = 1;
774}
775
776class SCBase<string opstr, RegisterOperand RO, Operand Mem> :
777  InstSE<(outs RO:$dst), (ins RO:$rt, Mem:$addr),
778         !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
779  let DecoderMethod = "DecodeMem";
780  let mayStore = 1;
781  let Constraints = "$rt = $dst";
782}
783
784class MFC3OP<dag outs, dag ins, string asmstr> :
785  InstSE<outs, ins, asmstr, [], NoItinerary, FrmFR>;
786
787//===----------------------------------------------------------------------===//
788// Pseudo instructions
789//===----------------------------------------------------------------------===//
790
791// Return RA.
792let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
793def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
794
795let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
796def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
797                                  [(callseq_start timm:$amt)]>;
798def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
799                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
800}
801
802let usesCustomInserter = 1 in {
803  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8>;
804  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16>;
805  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32>;
806  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8>;
807  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16>;
808  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32>;
809  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8>;
810  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16>;
811  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32>;
812  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8>;
813  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16>;
814  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32>;
815  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8>;
816  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16>;
817  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32>;
818  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8>;
819  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16>;
820  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32>;
821
822  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8>;
823  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16>;
824  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32>;
825
826  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8>;
827  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16>;
828  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32>;
829}
830
831/// Pseudo instructions for loading, storing and copying accumulator registers.
832let isPseudo = 1 in {
833  defm LOAD_AC64  : LoadM<"load_ac64", ACRegs>;
834  defm STORE_AC64 : StoreM<"store_ac64", ACRegs>;
835}
836
837def COPY_AC64 : PseudoSE<(outs ACRegs:$dst), (ins ACRegs:$src), []>;
838
839//===----------------------------------------------------------------------===//
840// Instruction definition
841//===----------------------------------------------------------------------===//
842//===----------------------------------------------------------------------===//
843// MipsI Instructions
844//===----------------------------------------------------------------------===//
845
846/// Arithmetic Instructions (ALU Immediate)
847def ADDiu : ArithLogicI<"addiu", simm16, CPURegsOpnd, immSExt16, add>,
848            ADDI_FM<0x9>, IsAsCheapAsAMove;
849def ADDi  : ArithLogicI<"addi", simm16, CPURegsOpnd>, ADDI_FM<0x8>;
850def SLTi  : SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>, SLTI_FM<0xa>;
851def SLTiu : SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>, SLTI_FM<0xb>;
852def ANDi  : ArithLogicI<"andi", uimm16, CPURegsOpnd, immZExt16, and>,
853            ADDI_FM<0xc>;
854def ORi   : ArithLogicI<"ori", uimm16, CPURegsOpnd, immZExt16, or>,
855            ADDI_FM<0xd>;
856def XORi  : ArithLogicI<"xori", uimm16, CPURegsOpnd, immZExt16, xor>,
857            ADDI_FM<0xe>;
858def LUi   : LoadUpper<"lui", CPURegs, uimm16>, LUI_FM;
859
860/// Arithmetic Instructions (3-Operand, R-Type)
861def ADDu : ArithLogicR<"addu", CPURegsOpnd, 1, IIAlu, add>, ADD_FM<0, 0x21>;
862def SUBu : ArithLogicR<"subu", CPURegsOpnd, 0, IIAlu, sub>, ADD_FM<0, 0x23>;
863def MUL  : ArithLogicR<"mul", CPURegsOpnd, 1, IIImul, mul>, ADD_FM<0x1c, 2>;
864def ADD  : ArithLogicR<"add", CPURegsOpnd>, ADD_FM<0, 0x20>;
865def SUB  : ArithLogicR<"sub", CPURegsOpnd>, ADD_FM<0, 0x22>;
866def SLT  : SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>;
867def SLTu : SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>;
868def AND  : ArithLogicR<"and", CPURegsOpnd, 1, IIAlu, and>, ADD_FM<0, 0x24>;
869def OR   : ArithLogicR<"or", CPURegsOpnd, 1, IIAlu, or>, ADD_FM<0, 0x25>;
870def XOR  : ArithLogicR<"xor", CPURegsOpnd, 1, IIAlu, xor>, ADD_FM<0, 0x26>;
871def NOR  : LogicNOR<"nor", CPURegsOpnd>, ADD_FM<0, 0x27>;
872
873/// Shift Instructions
874def SLL  : shift_rotate_imm<"sll", shamt, CPURegsOpnd, shl, immZExt5>,
875           SRA_FM<0, 0>;
876def SRL  : shift_rotate_imm<"srl", shamt, CPURegsOpnd, srl, immZExt5>,
877           SRA_FM<2, 0>;
878def SRA  : shift_rotate_imm<"sra", shamt, CPURegsOpnd, sra, immZExt5>,
879           SRA_FM<3, 0>;
880def SLLV : shift_rotate_reg<"sllv", CPURegsOpnd, shl>, SRLV_FM<4, 0>;
881def SRLV : shift_rotate_reg<"srlv", CPURegsOpnd, srl>, SRLV_FM<6, 0>;
882def SRAV : shift_rotate_reg<"srav", CPURegsOpnd, sra>, SRLV_FM<7, 0>;
883
884// Rotate Instructions
885let Predicates = [HasMips32r2, HasStdEnc] in {
886  def ROTR  : shift_rotate_imm<"rotr", shamt, CPURegsOpnd, rotr, immZExt5>,
887              SRA_FM<2, 1>;
888  def ROTRV : shift_rotate_reg<"rotrv", CPURegsOpnd, rotr>, SRLV_FM<6, 1>;
889}
890
891/// Load and Store Instructions
892///  aligned
893defm LB  : LoadM<"lb", CPURegs, sextloadi8>, LW_FM<0x20>;
894defm LBu : LoadM<"lbu", CPURegs, zextloadi8>, LW_FM<0x24>;
895defm LH  : LoadM<"lh", CPURegs, sextloadi16>, LW_FM<0x21>;
896defm LHu : LoadM<"lhu", CPURegs, zextloadi16>, LW_FM<0x25>;
897defm LW  : LoadM<"lw", CPURegs, load>, LW_FM<0x23>;
898defm SB  : StoreM<"sb", CPURegs, truncstorei8>, LW_FM<0x28>;
899defm SH  : StoreM<"sh", CPURegs, truncstorei16>, LW_FM<0x29>;
900defm SW  : StoreM<"sw", CPURegs, store>, LW_FM<0x2b>;
901
902/// load/store left/right
903defm LWL : LoadLeftRightM<"lwl", MipsLWL, CPURegs>, LW_FM<0x22>;
904defm LWR : LoadLeftRightM<"lwr", MipsLWR, CPURegs>, LW_FM<0x26>;
905defm SWL : StoreLeftRightM<"swl", MipsSWL, CPURegs>, LW_FM<0x2a>;
906defm SWR : StoreLeftRightM<"swr", MipsSWR, CPURegs>, LW_FM<0x2e>;
907
908def SYNC : SYNC_FT, SYNC_FM;
909
910/// Load-linked, Store-conditional
911let Predicates = [NotN64, HasStdEnc] in {
912  def LL : LLBase<"ll", CPURegsOpnd, mem>, LW_FM<0x30>;
913  def SC : SCBase<"sc", CPURegsOpnd, mem>, LW_FM<0x38>;
914}
915
916let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
917  def LL_P8 : LLBase<"ll", CPURegsOpnd, mem64>, LW_FM<0x30>;
918  def SC_P8 : SCBase<"sc", CPURegsOpnd, mem64>, LW_FM<0x38>;
919}
920
921/// Jump and Branch Instructions
922def J       : JumpFJ<jmptarget, "j", br, bb>, FJ<2>,
923              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
924def JR      : IndirectBranch<CPURegs>, MTLO_FM<8>;
925def B       : UncondBranch<"b">, B_FM;
926def BEQ     : CBranch<"beq", seteq, CPURegs>, BEQ_FM<4>;
927def BNE     : CBranch<"bne", setne, CPURegs>, BEQ_FM<5>;
928def BGEZ    : CBranchZero<"bgez", setge, CPURegs>, BGEZ_FM<1, 1>;
929def BGTZ    : CBranchZero<"bgtz", setgt, CPURegs>, BGEZ_FM<7, 0>;
930def BLEZ    : CBranchZero<"blez", setle, CPURegs>, BGEZ_FM<6, 0>;
931def BLTZ    : CBranchZero<"bltz", setlt, CPURegs>, BGEZ_FM<1, 0>;
932
933def BAL_BR: BAL_FT, BAL_FM;
934
935def JAL  : JumpLink<"jal">, FJ<3>;
936def JALR : JumpLinkReg<"jalr", CPURegs>, JALR_FM;
937def JALRPseudo : JumpLinkRegPseudo<CPURegs, JALR, RA>;
938def BGEZAL : BGEZAL_FT<"bgezal", CPURegsOpnd>, BGEZAL_FM<0x11>;
939def BLTZAL : BGEZAL_FT<"bltzal", CPURegsOpnd>, BGEZAL_FM<0x10>;
940def TAILCALL : JumpFJ<calltarget, "j", MipsTailCall, imm>, FJ<2>, IsTailCall;
941def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, MTLO_FM<8>, IsTailCall;
942
943def RET : RetBase<CPURegs>, MTLO_FM<8>;
944
945// Exception handling related node and instructions.
946// The conversion sequence is:
947// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
948// MIPSeh_return -> (stack change + indirect branch)
949//
950// MIPSeh_return takes the place of regular return instruction
951// but takes two arguments (V1, V0) which are used for storing
952// the offset and return address respectively.
953def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
954
955def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
956                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
957
958let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
959  def MIPSeh_return32 : MipsPseudo<(outs), (ins CPURegs:$spoff, CPURegs:$dst),
960                                [(MIPSehret CPURegs:$spoff, CPURegs:$dst)]>;
961  def MIPSeh_return64 : MipsPseudo<(outs), (ins CPU64Regs:$spoff,
962                                                CPU64Regs:$dst),
963                                [(MIPSehret CPU64Regs:$spoff, CPU64Regs:$dst)]>;
964}
965
966/// Multiply and Divide Instructions.
967def MULT  : Mult<"mult", IIImul, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x18>;
968def MULTu : Mult<"multu", IIImul, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x19>;
969def PseudoMULT  : MultDivPseudo<MULT, ACRegs, CPURegsOpnd, MipsMult, IIImul>;
970def PseudoMULTu : MultDivPseudo<MULTu, ACRegs, CPURegsOpnd, MipsMultu, IIImul>;
971def SDIV  : Div<"div", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1a>;
972def UDIV  : Div<"divu", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1b>;
973def PseudoSDIV : MultDivPseudo<SDIV, ACRegs, CPURegsOpnd, MipsDivRem, IIIdiv, 0>;
974def PseudoUDIV : MultDivPseudo<UDIV, ACRegs, CPURegsOpnd, MipsDivRemU, IIIdiv,
975                               0>;
976
977def MTHI : MoveToLOHI<"mthi", CPURegs, [HI]>, MTLO_FM<0x11>;
978def MTLO : MoveToLOHI<"mtlo", CPURegs, [LO]>, MTLO_FM<0x13>;
979def MFHI : MoveFromLOHI<"mfhi", CPURegs, [HI]>, MFLO_FM<0x10>;
980def MFLO : MoveFromLOHI<"mflo", CPURegs, [LO]>, MFLO_FM<0x12>;
981
982/// Sign Ext In Register Instructions.
983def SEB : SignExtInReg<"seb", i8, CPURegs>, SEB_FM<0x10, 0x20>;
984def SEH : SignExtInReg<"seh", i16, CPURegs>, SEB_FM<0x18, 0x20>;
985
986/// Count Leading
987def CLZ : CountLeading0<"clz", CPURegsOpnd>, CLO_FM<0x20>;
988def CLO : CountLeading1<"clo", CPURegsOpnd>, CLO_FM<0x21>;
989
990/// Word Swap Bytes Within Halfwords
991def WSBH : SubwordSwap<"wsbh", CPURegsOpnd>, SEB_FM<2, 0x20>;
992
993/// No operation.
994def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
995
996// FrameIndexes are legalized when they are operands from load/store
997// instructions. The same not happens for stack address copies, so an
998// add op with mem ComplexPattern is used and the stack address copy
999// can be matched. It's similar to Sparc LEA_ADDRi
1000def LEA_ADDiu : EffectiveAddress<"addiu", CPURegs, mem_ea>, LW_FM<9>;
1001
1002// MADD*/MSUB*
1003def MADD  : MArithR<"madd", 1>, MULT_FM<0x1c, 0>;
1004def MADDU : MArithR<"maddu", 1>, MULT_FM<0x1c, 1>;
1005def MSUB  : MArithR<"msub">, MULT_FM<0x1c, 4>;
1006def MSUBU : MArithR<"msubu">, MULT_FM<0x1c, 5>;
1007def PseudoMADD  : MAddSubPseudo<MADD, MipsMAdd>;
1008def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu>;
1009def PseudoMSUB  : MAddSubPseudo<MSUB, MipsMSub>;
1010def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu>;
1011
1012def RDHWR : ReadHardware<CPURegs, HWRegsOpnd>, RDHWR_FM;
1013
1014def EXT : ExtBase<"ext", CPURegsOpnd>, EXT_FM<0>;
1015def INS : InsBase<"ins", CPURegsOpnd>, EXT_FM<4>;
1016
1017/// Move Control Registers From/To CPU Registers
1018def MFC0_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
1019                      (ins CPURegsOpnd:$rd, uimm16:$sel),
1020                      "mfc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 0>;
1021
1022def MTC0_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
1023                      (ins CPURegsOpnd:$rt),
1024                      "mtc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 4>;
1025
1026def MFC2_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
1027                      (ins CPURegsOpnd:$rd, uimm16:$sel),
1028                      "mfc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 0>;
1029
1030def MTC2_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
1031                      (ins CPURegsOpnd:$rt),
1032                      "mtc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 4>;
1033
1034//===----------------------------------------------------------------------===//
1035// Instruction aliases
1036//===----------------------------------------------------------------------===//
1037def : InstAlias<"move $dst, $src",
1038                (ADDu CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
1039      Requires<[NotMips64]>;
1040def : InstAlias<"move $dst, $src",
1041                (OR CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
1042      Requires<[NotMips64]>;
1043def : InstAlias<"bal $offset", (BGEZAL RA, brtarget:$offset), 1>;
1044def : InstAlias<"addu $rs, $rt, $imm",
1045                (ADDiu CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1046def : InstAlias<"add $rs, $rt, $imm",
1047                (ADDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1048def : InstAlias<"and $rs, $rt, $imm",
1049                (ANDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1050def : InstAlias<"j $rs", (JR CPURegs:$rs), 0>,
1051      Requires<[NotMips64]>;
1052def : InstAlias<"jalr $rs", (JALR RA, CPURegs:$rs)>, Requires<[NotMips64]>;
1053def : InstAlias<"jal $rs", (JALR RA, CPURegs:$rs), 0>, Requires<[NotMips64]>;
1054def : InstAlias<"jal $rd,$rs", (JALR CPURegs:$rd, CPURegs:$rs), 0>,
1055                 Requires<[NotMips64]>;
1056def : InstAlias<"not $rt, $rs",
1057                (NOR CPURegsOpnd:$rt, CPURegsOpnd:$rs, ZERO), 1>;
1058def : InstAlias<"neg $rt, $rs",
1059                (SUB CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
1060def : InstAlias<"negu $rt, $rs",
1061                (SUBu CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
1062def : InstAlias<"slt $rs, $rt, $imm",
1063                (SLTi CPURegsOpnd:$rs, CPURegs:$rt, simm16:$imm), 0>;
1064def : InstAlias<"xor $rs, $rt, $imm",
1065                (XORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>,
1066      Requires<[NotMips64]>;
1067def : InstAlias<"or $rs, $rt, $imm",
1068                (ORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>,
1069                 Requires<[NotMips64]>;
1070def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
1071def : InstAlias<"mfc0 $rt, $rd",
1072                (MFC0_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
1073def : InstAlias<"mtc0 $rt, $rd",
1074                (MTC0_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
1075def : InstAlias<"mfc2 $rt, $rd",
1076                (MFC2_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
1077def : InstAlias<"mtc2 $rt, $rd",
1078                (MTC2_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
1079
1080//===----------------------------------------------------------------------===//
1081// Assembler Pseudo Instructions
1082//===----------------------------------------------------------------------===//
1083
1084class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
1085  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1086                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1087def LoadImm32Reg : LoadImm32<"li", shamt,CPURegsOpnd>;
1088
1089class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
1090  MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
1091                     !strconcat(instr_asm, "\t$rt, $addr")> ;
1092def LoadAddr32Reg : LoadAddress<"la", mem, CPURegsOpnd>;
1093
1094class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
1095  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1096                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1097def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegsOpnd>;
1098
1099
1100
1101//===----------------------------------------------------------------------===//
1102//  Arbitrary patterns that map to one or more instructions
1103//===----------------------------------------------------------------------===//
1104
1105// Load/store pattern templates.
1106class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> :
1107  MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>;
1108
1109class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
1110  MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;
1111
1112// Small immediates
1113def : MipsPat<(i32 immSExt16:$in),
1114              (ADDiu ZERO, imm:$in)>;
1115def : MipsPat<(i32 immZExt16:$in),
1116              (ORi ZERO, imm:$in)>;
1117def : MipsPat<(i32 immLow16Zero:$in),
1118              (LUi (HI16 imm:$in))>;
1119
1120// Arbitrary immediates
1121def : MipsPat<(i32 imm:$imm),
1122          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1123
1124// Carry MipsPatterns
1125def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1126              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1127def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1128              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1129def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1130              (ADDiu CPURegs:$src, imm:$imm)>;
1131
1132// Call
1133def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1134              (JAL tglobaladdr:$dst)>;
1135def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1136              (JAL texternalsym:$dst)>;
1137//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1138//              (JALR CPURegs:$dst)>;
1139
1140// Tail call
1141def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1142              (TAILCALL tglobaladdr:$dst)>;
1143def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1144              (TAILCALL texternalsym:$dst)>;
1145// hi/lo relocs
1146def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1147def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1148def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1149def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1150def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1151def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1152
1153def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1154def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1155def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1156def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1157def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1158def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1159
1160def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1161              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1162def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1163              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1164def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1165              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1166def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1167              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1168def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1169              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1170
1171// gp_rel relocs
1172def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1173              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1174def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1175              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1176
1177// wrapper_pic
1178class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1179      MipsPat<(MipsWrapper RC:$gp, node:$in),
1180              (ADDiuOp RC:$gp, node:$in)>;
1181
1182def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1183def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1184def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1185def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1186def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1187def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1188
1189// Mips does not have "not", so we expand our way
1190def : MipsPat<(not CPURegs:$in),
1191              (NOR CPURegsOpnd:$in, ZERO)>;
1192
1193// extended loads
1194let Predicates = [NotN64, HasStdEnc] in {
1195  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1196  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1197  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1198}
1199let Predicates = [IsN64, HasStdEnc] in {
1200  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1201  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1202  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1203}
1204
1205// peepholes
1206let Predicates = [NotN64, HasStdEnc] in {
1207  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1208}
1209let Predicates = [IsN64, HasStdEnc] in {
1210  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1211}
1212
1213// brcond patterns
1214multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1215                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1216                      Instruction SLTiuOp, Register ZEROReg> {
1217def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1218              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1219def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1220              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1221
1222def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1223              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1224def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1225              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1226def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1227              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1228def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1229              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1230
1231def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1232              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1233def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1234              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1235
1236def : MipsPat<(brcond RC:$cond, bb:$dst),
1237              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1238}
1239
1240defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1241
1242// setcc patterns
1243multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1244                     Instruction SLTuOp, Register ZEROReg> {
1245  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1246                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1247  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1248                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1249}
1250
1251multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1252  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1253                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1254  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1255                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1256}
1257
1258multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1259  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1260                (SLTOp RC:$rhs, RC:$lhs)>;
1261  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1262                (SLTuOp RC:$rhs, RC:$lhs)>;
1263}
1264
1265multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1266  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1267                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1268  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1269                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1270}
1271
1272multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1273                        Instruction SLTiuOp> {
1274  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1275                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1276  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1277                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1278}
1279
1280defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1281defm : SetlePats<CPURegs, SLT, SLTu>;
1282defm : SetgtPats<CPURegs, SLT, SLTu>;
1283defm : SetgePats<CPURegs, SLT, SLTu>;
1284defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1285
1286// bswap pattern
1287def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1288
1289// mflo/hi patterns.
1290def : MipsPat<(i32 (ExtractLOHI ACRegs:$ac, imm:$lohi_idx)),
1291              (EXTRACT_SUBREG ACRegs:$ac, imm:$lohi_idx)>;
1292
1293//===----------------------------------------------------------------------===//
1294// Floating Point Support
1295//===----------------------------------------------------------------------===//
1296
1297include "MipsInstrFPU.td"
1298include "Mips64InstrInfo.td"
1299include "MipsCondMov.td"
1300
1301//
1302// Mips16
1303
1304include "Mips16InstrFormats.td"
1305include "Mips16InstrInfo.td"
1306
1307// DSP
1308include "MipsDSPInstrFormats.td"
1309include "MipsDSPInstrInfo.td"
1310
1311