MipsInstrInfo.td revision 296c1534b4ad835c6d9280145b63ca2b25831228
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_ExtractLOHI : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVT<1, untyped>,
27                                           SDTCisVT<2, i32>]>;
28def SDT_InsertLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
29                                          SDTCisVT<1, i32>,
30                                          SDTCisSameAs<1, 2>]>;
31def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>,
32                                    SDTCisSameAs<1, 2>]>;
33def SDT_MipsMAddMSub : SDTypeProfile<1, 3,
34                                     [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
35                                      SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
36def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
37
38def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
39
40def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
41
42def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
43                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
44def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
45                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
46                                   SDTCisSameAs<0, 4>]>;
47
48def SDTMipsLoadLR  : SDTypeProfile<1, 2,
49                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
50                                    SDTCisSameAs<0, 2>]>;
51
52// Call
53def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
54                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
55                          SDNPVariadic]>;
56
57// Tail call
58def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
59                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
60
61// Hi and Lo nodes are used to handle global addresses. Used on
62// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
63// static model. (nothing to do with Mips Registers Hi and Lo)
64def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
65def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
66def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
67
68// TlsGd node is used to handle General Dynamic TLS
69def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
70
71// TprelHi and TprelLo nodes are used to handle Local Exec TLS
72def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
73def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
74
75// Thread pointer
76def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
77
78// Return
79def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
80                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
81
82// These are target-independent nodes, but have target-specific formats.
83def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
84                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
85def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
86                           [SDNPHasChain, SDNPSideEffect,
87                            SDNPOptInGlue, SDNPOutGlue]>;
88
89// Node used to extract integer from LO/HI register.
90def ExtractLOHI : SDNode<"MipsISD::ExtractLOHI", SDT_ExtractLOHI>;
91
92// Node used to insert 32-bit integers to LOHI register pair.
93def InsertLOHI : SDNode<"MipsISD::InsertLOHI", SDT_InsertLOHI>;
94
95// Mult nodes.
96def MipsMult  : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>;
97def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>;
98
99// MAdd*/MSub* nodes
100def MipsMAdd  : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>;
101def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>;
102def MipsMSub  : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>;
103def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>;
104
105// DivRem(u) nodes
106def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>;
107def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>;
108def MipsDivRem16  : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16,
109                           [SDNPOutGlue]>;
110def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16,
111                           [SDNPOutGlue]>;
112
113// Target constant nodes that are not part of any isel patterns and remain
114// unchanged can cause instructions with illegal operands to be emitted.
115// Wrapper node patterns give the instruction selector a chance to replace
116// target constant nodes that would otherwise remain unchanged with ADDiu
117// nodes. Without these wrapper node patterns, the following conditional move
118// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
119// compiled:
120//  movn  %got(d)($gp), %got(c)($gp), $4
121// This instruction is illegal since movn can take only register operands.
122
123def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
124
125def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
126
127def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
128def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
129
130def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
131                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
132def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
133                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
134def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
135                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
136def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
137                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
138def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
139                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
140def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
141                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
142def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
143                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
144def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
145                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
146
147//===----------------------------------------------------------------------===//
148// Mips Instruction Predicate Definitions.
149//===----------------------------------------------------------------------===//
150def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
151                      AssemblerPredicate<"FeatureSEInReg">;
152def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
153                      AssemblerPredicate<"FeatureBitCount">;
154def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
155                      AssemblerPredicate<"FeatureSwap">;
156def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
157                      AssemblerPredicate<"FeatureCondMov">;
158def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
159                      AssemblerPredicate<"FeatureFPIdx">;
160def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
161                      AssemblerPredicate<"FeatureMips32">;
162def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
163                      AssemblerPredicate<"FeatureMips32r2">;
164def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
165                      AssemblerPredicate<"FeatureMips64">;
166def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
167                      AssemblerPredicate<"!FeatureMips64">;
168def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
169                      AssemblerPredicate<"FeatureMips64r2">;
170def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
171                      AssemblerPredicate<"FeatureN64">;
172def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
173                      AssemblerPredicate<"!FeatureN64">;
174def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
175                      AssemblerPredicate<"FeatureMips16">;
176def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
177                      AssemblerPredicate<"FeatureMips32">;
178def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
179                      AssemblerPredicate<"FeatureMips32">;
180def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
181                      AssemblerPredicate<"FeatureMips32">;
182def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
183                      AssemblerPredicate<"!FeatureMips16">;
184def NotDSP :          Predicate<"!Subtarget.hasDSP()">;
185
186class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
187  let Predicates = [HasStdEnc];
188}
189
190class IsCommutable {
191  bit isCommutable = 1;
192}
193
194class IsBranch {
195  bit isBranch = 1;
196}
197
198class IsReturn {
199  bit isReturn = 1;
200}
201
202class IsCall {
203  bit isCall = 1;
204}
205
206class IsTailCall {
207  bit isCall = 1;
208  bit isTerminator = 1;
209  bit isReturn = 1;
210  bit isBarrier = 1;
211  bit hasExtraSrcRegAllocReq = 1;
212  bit isCodeGenOnly = 1;
213}
214
215class IsAsCheapAsAMove {
216  bit isAsCheapAsAMove = 1;
217}
218
219class NeverHasSideEffects {
220  bit neverHasSideEffects = 1;
221}
222
223//===----------------------------------------------------------------------===//
224// Instruction format superclass
225//===----------------------------------------------------------------------===//
226
227include "MipsInstrFormats.td"
228
229//===----------------------------------------------------------------------===//
230// Mips Operand, Complex Patterns and Transformations Definitions.
231//===----------------------------------------------------------------------===//
232
233// Instruction operand types
234def jmptarget   : Operand<OtherVT> {
235  let EncoderMethod = "getJumpTargetOpValue";
236}
237def brtarget    : Operand<OtherVT> {
238  let EncoderMethod = "getBranchTargetOpValue";
239  let OperandType = "OPERAND_PCREL";
240  let DecoderMethod = "DecodeBranchTarget";
241}
242def calltarget  : Operand<iPTR> {
243  let EncoderMethod = "getJumpTargetOpValue";
244}
245def calltarget64: Operand<i64>;
246def simm16      : Operand<i32> {
247  let DecoderMethod= "DecodeSimm16";
248}
249
250def simm20      : Operand<i32> {
251}
252
253def simm16_64   : Operand<i64>;
254def shamt       : Operand<i32>;
255
256// Unsigned Operand
257def uimm16      : Operand<i32> {
258  let PrintMethod = "printUnsignedImm";
259}
260
261def MipsMemAsmOperand : AsmOperandClass {
262  let Name = "Mem";
263  let ParserMethod = "parseMemOperand";
264}
265
266// Address operand
267def mem : Operand<i32> {
268  let PrintMethod = "printMemOperand";
269  let MIOperandInfo = (ops CPURegs, simm16);
270  let EncoderMethod = "getMemEncoding";
271  let ParserMatchClass = MipsMemAsmOperand;
272  let OperandType = "OPERAND_MEMORY";
273}
274
275def mem64 : Operand<i64> {
276  let PrintMethod = "printMemOperand";
277  let MIOperandInfo = (ops CPU64Regs, simm16_64);
278  let EncoderMethod = "getMemEncoding";
279  let ParserMatchClass = MipsMemAsmOperand;
280  let OperandType = "OPERAND_MEMORY";
281}
282
283def mem_ea : Operand<i32> {
284  let PrintMethod = "printMemOperandEA";
285  let MIOperandInfo = (ops CPURegs, simm16);
286  let EncoderMethod = "getMemEncoding";
287  let OperandType = "OPERAND_MEMORY";
288}
289
290def mem_ea_64 : Operand<i64> {
291  let PrintMethod = "printMemOperandEA";
292  let MIOperandInfo = (ops CPU64Regs, simm16_64);
293  let EncoderMethod = "getMemEncoding";
294  let OperandType = "OPERAND_MEMORY";
295}
296
297// size operand of ext instruction
298def size_ext : Operand<i32> {
299  let EncoderMethod = "getSizeExtEncoding";
300  let DecoderMethod = "DecodeExtSize";
301}
302
303// size operand of ins instruction
304def size_ins : Operand<i32> {
305  let EncoderMethod = "getSizeInsEncoding";
306  let DecoderMethod = "DecodeInsSize";
307}
308
309// Transformation Function - get the lower 16 bits.
310def LO16 : SDNodeXForm<imm, [{
311  return getImm(N, N->getZExtValue() & 0xFFFF);
312}]>;
313
314// Transformation Function - get the higher 16 bits.
315def HI16 : SDNodeXForm<imm, [{
316  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
317}]>;
318
319// Plus 1.
320def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>;
321
322// Node immediate fits as 16-bit sign extended on target immediate.
323// e.g. addi, andi
324def immSExt8  : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
325
326// Node immediate fits as 16-bit sign extended on target immediate.
327// e.g. addi, andi
328def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
329
330// Node immediate fits as 15-bit sign extended on target immediate.
331// e.g. addi, andi
332def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
333
334// Node immediate fits as 16-bit zero extended on target immediate.
335// The LO16 param means that only the lower 16 bits of the node
336// immediate are caught.
337// e.g. addiu, sltiu
338def immZExt16  : PatLeaf<(imm), [{
339  if (N->getValueType(0) == MVT::i32)
340    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
341  else
342    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
343}], LO16>;
344
345// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
346def immLow16Zero : PatLeaf<(imm), [{
347  int64_t Val = N->getSExtValue();
348  return isInt<32>(Val) && !(Val & 0xffff);
349}]>;
350
351// shamt field must fit in 5 bits.
352def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
353
354// True if (N + 1) fits in 16-bit field.
355def immSExt16Plus1 : PatLeaf<(imm), [{
356  return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1);
357}]>;
358
359// Mips Address Mode! SDNode frameindex could possibily be a match
360// since load and store instructions from stack used it.
361def addr :
362  ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>;
363
364def addrRegImm :
365  ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>;
366
367def addrDefault :
368  ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>;
369
370//===----------------------------------------------------------------------===//
371// Instructions specific format
372//===----------------------------------------------------------------------===//
373
374// Arithmetic and logical instructions with 3 register operands.
375class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
376                  InstrItinClass Itin = NoItinerary,
377                  SDPatternOperator OpNode = null_frag>:
378  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
379         !strconcat(opstr, "\t$rd, $rs, $rt"),
380         [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> {
381  let isCommutable = isComm;
382  let isReMaterializable = 1;
383}
384
385// Arithmetic and logical instructions with 2 register operands.
386class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
387                  SDPatternOperator imm_type = null_frag,
388                  SDPatternOperator OpNode = null_frag> :
389  InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
390         !strconcat(opstr, "\t$rt, $rs, $imm16"),
391         [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))],
392         IIAlu, FrmI, opstr> {
393  let isReMaterializable = 1;
394  let TwoOperandAliasConstraint = "$rs = $rt";
395}
396
397// Arithmetic Multiply ADD/SUB
398class MArithR<string opstr, bit isComm = 0> :
399  InstSE<(outs), (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt),
400         !strconcat(opstr, "\t$rs, $rt"), [], IIImul, FrmR> {
401  let Defs = [HI, LO];
402  let Uses = [HI, LO];
403  let isCommutable = isComm;
404}
405
406//  Logical
407class LogicNOR<string opstr, RegisterOperand RC>:
408  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
409         !strconcat(opstr, "\t$rd, $rs, $rt"),
410         [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu, FrmR, opstr> {
411  let isCommutable = 1;
412}
413
414// Shifts
415class shift_rotate_imm<string opstr, Operand ImmOpnd,
416                       RegisterOperand RC, SDPatternOperator OpNode = null_frag,
417                       SDPatternOperator PF = null_frag> :
418  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
419         !strconcat(opstr, "\t$rd, $rt, $shamt"),
420         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR, opstr>;
421
422class shift_rotate_reg<string opstr, RegisterOperand RC,
423                       SDPatternOperator OpNode = null_frag>:
424  InstSE<(outs RC:$rd), (ins RC:$rt, CPURegsOpnd:$rs),
425         !strconcat(opstr, "\t$rd, $rt, $rs"),
426         [(set RC:$rd, (OpNode RC:$rt, CPURegsOpnd:$rs))], IIAlu, FrmR, opstr>;
427
428// Load Upper Imediate
429class LoadUpper<string opstr, RegisterClass RC, Operand Imm>:
430  InstSE<(outs RC:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
431         [], IIAlu, FrmI>, IsAsCheapAsAMove {
432  let neverHasSideEffects = 1;
433  let isReMaterializable = 1;
434}
435
436class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
437          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
438  bits<21> addr;
439  let Inst{25-21} = addr{20-16};
440  let Inst{15-0}  = addr{15-0};
441  let DecoderMethod = "DecodeMem";
442}
443
444// Memory Load/Store
445class Load<string opstr, SDPatternOperator OpNode, RegisterClass RC,
446           InstrItinClass Itin, Operand MemOpnd, ComplexPattern Addr,
447           string ofsuffix> :
448  InstSE<(outs RC:$rt), (ins MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
449         [(set RC:$rt, (OpNode Addr:$addr))], NoItinerary, FrmI,
450         !strconcat(opstr, ofsuffix)> {
451  let DecoderMethod = "DecodeMem";
452  let canFoldAsLoad = 1;
453  let mayLoad = 1;
454}
455
456class Store<string opstr, SDPatternOperator OpNode, RegisterClass RC,
457            InstrItinClass Itin, Operand MemOpnd, ComplexPattern Addr,
458            string ofsuffix> :
459  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
460         [(OpNode RC:$rt, Addr:$addr)], NoItinerary, FrmI,
461         !strconcat(opstr, ofsuffix)> {
462  let DecoderMethod = "DecodeMem";
463  let mayStore = 1;
464}
465
466multiclass LoadM<string opstr, RegisterClass RC,
467                 SDPatternOperator OpNode = null_frag,
468                 InstrItinClass Itin = NoItinerary,
469                 ComplexPattern Addr = addr> {
470  def NAME : Load<opstr, OpNode, RC, Itin, mem, Addr, "">,
471             Requires<[NotN64, HasStdEnc]>;
472  def _P8  : Load<opstr, OpNode, RC, Itin, mem64, Addr, "_p8">,
473             Requires<[IsN64, HasStdEnc]> {
474    let DecoderNamespace = "Mips64";
475    let isCodeGenOnly = 1;
476  }
477}
478
479multiclass StoreM<string opstr, RegisterClass RC,
480                  SDPatternOperator OpNode = null_frag,
481                  InstrItinClass Itin = NoItinerary,
482                  ComplexPattern Addr = addr> {
483  def NAME : Store<opstr, OpNode, RC, Itin, mem, Addr, "">,
484             Requires<[NotN64, HasStdEnc]>;
485  def _P8  : Store<opstr, OpNode, RC, Itin, mem64, Addr, "_p8">,
486             Requires<[IsN64, HasStdEnc]> {
487    let DecoderNamespace = "Mips64";
488    let isCodeGenOnly = 1;
489  }
490}
491
492// Load/Store Left/Right
493let canFoldAsLoad = 1 in
494class LoadLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
495                    Operand MemOpnd> :
496  InstSE<(outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
497         !strconcat(opstr, "\t$rt, $addr"),
498         [(set RC:$rt, (OpNode addr:$addr, RC:$src))], NoItinerary, FrmI> {
499  let DecoderMethod = "DecodeMem";
500  string Constraints = "$src = $rt";
501}
502
503class StoreLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
504                     Operand MemOpnd>:
505  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
506         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
507  let DecoderMethod = "DecodeMem";
508}
509
510multiclass LoadLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
511  def NAME : LoadLeftRight<opstr, OpNode, RC, mem>,
512             Requires<[NotN64, HasStdEnc]>;
513  def _P8  : LoadLeftRight<opstr, OpNode, RC, mem64>,
514             Requires<[IsN64, HasStdEnc]> {
515    let DecoderNamespace = "Mips64";
516    let isCodeGenOnly = 1;
517  }
518}
519
520multiclass StoreLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
521  def NAME : StoreLeftRight<opstr, OpNode, RC, mem>,
522             Requires<[NotN64, HasStdEnc]>;
523  def _P8  : StoreLeftRight<opstr, OpNode, RC, mem64>,
524             Requires<[IsN64, HasStdEnc]> {
525    let DecoderNamespace = "Mips64";
526    let isCodeGenOnly = 1;
527  }
528}
529
530// Conditional Branch
531class CBranch<string opstr, PatFrag cond_op, RegisterOperand RC> :
532  InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset),
533         !strconcat(opstr, "\t$rs, $rt, $offset"),
534         [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch,
535         FrmI> {
536  let isBranch = 1;
537  let isTerminator = 1;
538  let hasDelaySlot = 1;
539  let Defs = [AT];
540}
541
542class CBranchZero<string opstr, PatFrag cond_op, RegisterOperand RC> :
543  InstSE<(outs), (ins RC:$rs, brtarget:$offset),
544         !strconcat(opstr, "\t$rs, $offset"),
545         [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
546  let isBranch = 1;
547  let isTerminator = 1;
548  let hasDelaySlot = 1;
549  let Defs = [AT];
550}
551
552// SetCC
553class SetCC_R<string opstr, PatFrag cond_op, RegisterClass RC> :
554  InstSE<(outs CPURegsOpnd:$rd), (ins RC:$rs, RC:$rt),
555         !strconcat(opstr, "\t$rd, $rs, $rt"),
556         [(set CPURegsOpnd:$rd, (cond_op RC:$rs, RC:$rt))],
557         IIAlu, FrmR, opstr>;
558
559class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
560              RegisterClass RC>:
561  InstSE<(outs CPURegsOpnd:$rt), (ins RC:$rs, Od:$imm16),
562         !strconcat(opstr, "\t$rt, $rs, $imm16"),
563         [(set CPURegsOpnd:$rt, (cond_op RC:$rs, imm_type:$imm16))],
564         IIAlu, FrmI, opstr>;
565
566// Jump
567class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
568             SDPatternOperator targetoperator> :
569  InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
570         [(operator targetoperator:$target)], IIBranch, FrmJ> {
571  let isTerminator=1;
572  let isBarrier=1;
573  let hasDelaySlot = 1;
574  let DecoderMethod = "DecodeJumpTarget";
575  let Defs = [AT];
576}
577
578// Unconditional branch
579class UncondBranch<string opstr> :
580  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
581         [(br bb:$offset)], IIBranch, FrmI> {
582  let isBranch = 1;
583  let isTerminator = 1;
584  let isBarrier = 1;
585  let hasDelaySlot = 1;
586  let Predicates = [RelocPIC, HasStdEnc];
587  let Defs = [AT];
588}
589
590// Base class for indirect branch and return instruction classes.
591let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
592class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
593  InstSE<(outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch, FrmR>;
594
595// Indirect branch
596class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
597  let isBranch = 1;
598  let isIndirectBranch = 1;
599}
600
601// Return instruction
602class RetBase<RegisterClass RC>: JumpFR<RC> {
603  let isReturn = 1;
604  let isCodeGenOnly = 1;
605  let hasCtrlDep = 1;
606  let hasExtraSrcRegAllocReq = 1;
607}
608
609// Jump and Link (Call)
610let isCall=1, hasDelaySlot=1, Defs = [RA] in {
611  class JumpLink<string opstr> :
612    InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"),
613           [(MipsJmpLink imm:$target)], IIBranch, FrmJ> {
614    let DecoderMethod = "DecodeJumpTarget";
615  }
616
617  class JumpLinkRegPseudo<RegisterClass RC, Instruction JALRInst,
618                          Register RetReg>:
619    PseudoSE<(outs), (ins RC:$rs), [(MipsJmpLink RC:$rs)], IIBranch>,
620    PseudoInstExpansion<(JALRInst RetReg, RC:$rs)>;
621
622  class JumpLinkReg<string opstr, RegisterClass RC>:
623    InstSE<(outs RC:$rd), (ins RC:$rs), !strconcat(opstr, "\t$rd, $rs"),
624           [], IIBranch, FrmR>;
625
626  class BGEZAL_FT<string opstr, RegisterOperand RO> :
627    InstSE<(outs), (ins RO:$rs, brtarget:$offset),
628           !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI>;
629
630}
631
632class BAL_FT :
633  InstSE<(outs), (ins brtarget:$offset), "bal\t$offset", [], IIBranch, FrmI> {
634  let isBranch = 1;
635  let isTerminator = 1;
636  let isBarrier = 1;
637  let hasDelaySlot = 1;
638  let Defs = [RA];
639}
640
641// Sync
642let hasSideEffects = 1 in
643class SYNC_FT :
644  InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
645         NoItinerary, FrmOther>;
646
647let hasSideEffects = 1 in
648class TEQ_FT<string opstr, RegisterOperand RO> :
649  InstSE<(outs), (ins RO:$rs, RO:$rt, uimm16:$code_),
650         !strconcat(opstr, "\t$rs, $rt, $code_"), [], NoItinerary, FrmI>;
651
652// Mul, Div
653class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
654           list<Register> DefRegs> :
655  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
656         itin, FrmR, opstr> {
657  let isCommutable = 1;
658  let Defs = DefRegs;
659  let neverHasSideEffects = 1;
660}
661
662// Pseudo multiply/divide instruction with explicit accumulator register
663// operands.
664class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1,
665                    SDPatternOperator OpNode, InstrItinClass Itin,
666                    bit IsComm = 1, bit HasSideEffects = 0,
667                    bit UsesCustomInserter = 0> :
668  PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt),
669           [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>,
670  PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> {
671  let isCommutable = IsComm;
672  let hasSideEffects = HasSideEffects;
673  let usesCustomInserter = UsesCustomInserter;
674}
675
676// Pseudo multiply add/sub instruction with explicit accumulator register
677// operands.
678class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode>
679  : PseudoSE<(outs ACRegs:$ac),
680             (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin),
681             [(set ACRegs:$ac,
682              (OpNode CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin))],
683             IIImul>,
684    PseudoInstExpansion<(RealInst CPURegsOpnd:$rs, CPURegsOpnd:$rt)> {
685  string Constraints = "$acin = $ac";
686}
687
688class Div<string opstr, InstrItinClass itin, RegisterOperand RO,
689          list<Register> DefRegs> :
690  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"),
691         [], itin, FrmR> {
692  let Defs = DefRegs;
693}
694
695// Move from Hi/Lo
696class MoveFromLOHI<string opstr, RegisterClass RC, list<Register> UseRegs>:
697  InstSE<(outs RC:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> {
698  let Uses = UseRegs;
699  let neverHasSideEffects = 1;
700}
701
702class MoveToLOHI<string opstr, RegisterClass RC, list<Register> DefRegs>:
703  InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> {
704  let Defs = DefRegs;
705  let neverHasSideEffects = 1;
706}
707
708class EffectiveAddress<string opstr, RegisterClass RC, Operand Mem> :
709  InstSE<(outs RC:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
710         [(set RC:$rt, addr:$addr)], NoItinerary, FrmI> {
711  let isCodeGenOnly = 1;
712  let DecoderMethod = "DecodeMem";
713}
714
715// Count Leading Ones/Zeros in Word
716class CountLeading0<string opstr, RegisterOperand RO>:
717  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
718         [(set RO:$rd, (ctlz RO:$rs))], IIAlu, FrmR>,
719  Requires<[HasBitCount, HasStdEnc]>;
720
721class CountLeading1<string opstr, RegisterOperand RO>:
722  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
723         [(set RO:$rd, (ctlz (not RO:$rs)))], IIAlu, FrmR>,
724  Requires<[HasBitCount, HasStdEnc]>;
725
726
727// Sign Extend in Register.
728class SignExtInReg<string opstr, ValueType vt, RegisterClass RC> :
729  InstSE<(outs RC:$rd), (ins RC:$rt), !strconcat(opstr, "\t$rd, $rt"),
730         [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary, FrmR> {
731  let Predicates = [HasSEInReg, HasStdEnc];
732}
733
734// Subword Swap
735class SubwordSwap<string opstr, RegisterOperand RO>:
736  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
737         NoItinerary, FrmR> {
738  let Predicates = [HasSwap, HasStdEnc];
739  let neverHasSideEffects = 1;
740}
741
742// Read Hardware
743class ReadHardware<RegisterClass CPURegClass, RegisterOperand RO> :
744  InstSE<(outs CPURegClass:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
745         IIAlu, FrmR>;
746
747// Ext and Ins
748class ExtBase<string opstr, RegisterOperand RO>:
749  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ext:$size),
750         !strconcat(opstr, " $rt, $rs, $pos, $size"),
751         [(set RO:$rt, (MipsExt RO:$rs, imm:$pos, imm:$size))], NoItinerary,
752         FrmR> {
753  let Predicates = [HasMips32r2, HasStdEnc];
754}
755
756class InsBase<string opstr, RegisterOperand RO>:
757  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ins:$size, RO:$src),
758         !strconcat(opstr, " $rt, $rs, $pos, $size"),
759         [(set RO:$rt, (MipsIns RO:$rs, imm:$pos, imm:$size, RO:$src))],
760         NoItinerary, FrmR> {
761  let Predicates = [HasMips32r2, HasStdEnc];
762  let Constraints = "$src = $rt";
763}
764
765// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
766class Atomic2Ops<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
767  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
768           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
769
770multiclass Atomic2Ops32<PatFrag Op> {
771  def NAME : Atomic2Ops<Op, CPURegs, CPURegs>, Requires<[NotN64, HasStdEnc]>;
772  def _P8  : Atomic2Ops<Op, CPURegs, CPU64Regs>,
773             Requires<[IsN64, HasStdEnc]> {
774    let DecoderNamespace = "Mips64";
775  }
776}
777
778// Atomic Compare & Swap.
779class AtomicCmpSwap<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
780  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
781           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
782
783multiclass AtomicCmpSwap32<PatFrag Op>  {
784  def NAME : AtomicCmpSwap<Op, CPURegs, CPURegs>,
785             Requires<[NotN64, HasStdEnc]>;
786  def _P8  : AtomicCmpSwap<Op, CPURegs, CPU64Regs>,
787             Requires<[IsN64, HasStdEnc]> {
788    let DecoderNamespace = "Mips64";
789  }
790}
791
792class LLBase<string opstr, RegisterOperand RO, Operand Mem> :
793  InstSE<(outs RO:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
794         [], NoItinerary, FrmI> {
795  let DecoderMethod = "DecodeMem";
796  let mayLoad = 1;
797}
798
799class SCBase<string opstr, RegisterOperand RO, Operand Mem> :
800  InstSE<(outs RO:$dst), (ins RO:$rt, Mem:$addr),
801         !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
802  let DecoderMethod = "DecodeMem";
803  let mayStore = 1;
804  let Constraints = "$rt = $dst";
805}
806
807class MFC3OP<dag outs, dag ins, string asmstr> :
808  InstSE<outs, ins, asmstr, [], NoItinerary, FrmFR>;
809
810//===----------------------------------------------------------------------===//
811// Pseudo instructions
812//===----------------------------------------------------------------------===//
813
814// Return RA.
815let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
816def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
817
818let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
819def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
820                                  [(callseq_start timm:$amt)]>;
821def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
822                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
823}
824
825let usesCustomInserter = 1 in {
826  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8>;
827  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16>;
828  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32>;
829  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8>;
830  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16>;
831  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32>;
832  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8>;
833  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16>;
834  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32>;
835  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8>;
836  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16>;
837  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32>;
838  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8>;
839  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16>;
840  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32>;
841  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8>;
842  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16>;
843  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32>;
844
845  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8>;
846  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16>;
847  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32>;
848
849  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8>;
850  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16>;
851  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32>;
852}
853
854/// Pseudo instructions for loading and storing accumulator registers.
855let isPseudo = 1 in {
856  defm LOAD_AC64  : LoadM<"load_ac64", ACRegs>;
857  defm STORE_AC64 : StoreM<"store_ac64", ACRegs>;
858}
859
860//===----------------------------------------------------------------------===//
861// Instruction definition
862//===----------------------------------------------------------------------===//
863//===----------------------------------------------------------------------===//
864// MipsI Instructions
865//===----------------------------------------------------------------------===//
866
867/// Arithmetic Instructions (ALU Immediate)
868def ADDiu : MMRel, ArithLogicI<"addiu", simm16, CPURegsOpnd, immSExt16, add>,
869            ADDI_FM<0x9>, IsAsCheapAsAMove;
870def ADDi  : MMRel, ArithLogicI<"addi", simm16, CPURegsOpnd>, ADDI_FM<0x8>;
871def SLTi  : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>,
872            SLTI_FM<0xa>;
873def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>,
874            SLTI_FM<0xb>;
875def ANDi  : MMRel, ArithLogicI<"andi", uimm16, CPURegsOpnd, immZExt16, and>,
876            ADDI_FM<0xc>;
877def ORi   : MMRel, ArithLogicI<"ori", uimm16, CPURegsOpnd, immZExt16, or>,
878            ADDI_FM<0xd>;
879def XORi  : MMRel, ArithLogicI<"xori", uimm16, CPURegsOpnd, immZExt16, xor>,
880            ADDI_FM<0xe>;
881def LUi   : MMRel, LoadUpper<"lui", CPURegs, uimm16>, LUI_FM;
882
883/// Arithmetic Instructions (3-Operand, R-Type)
884def ADDu  : MMRel, ArithLogicR<"addu", CPURegsOpnd, 1, IIAlu, add>,
885            ADD_FM<0, 0x21>;
886def SUBu  : MMRel, ArithLogicR<"subu", CPURegsOpnd, 0, IIAlu, sub>,
887            ADD_FM<0, 0x23>;
888def MUL   : MMRel, ArithLogicR<"mul", CPURegsOpnd, 1, IIImul, mul>,
889            ADD_FM<0x1c, 2>;
890def ADD   : MMRel, ArithLogicR<"add", CPURegsOpnd>, ADD_FM<0, 0x20>;
891def SUB   : MMRel, ArithLogicR<"sub", CPURegsOpnd>, ADD_FM<0, 0x22>;
892def SLT   : MMRel, SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>;
893def SLTu  : MMRel, SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>;
894def AND   : MMRel, ArithLogicR<"and", CPURegsOpnd, 1, IIAlu, and>,
895            ADD_FM<0, 0x24>;
896def OR    : MMRel, ArithLogicR<"or", CPURegsOpnd, 1, IIAlu, or>,
897            ADD_FM<0, 0x25>;
898def XOR   : MMRel, ArithLogicR<"xor", CPURegsOpnd, 1, IIAlu, xor>,
899            ADD_FM<0, 0x26>;
900def NOR   : MMRel, LogicNOR<"nor", CPURegsOpnd>, ADD_FM<0, 0x27>;
901
902/// Shift Instructions
903def SLL  : MMRel, shift_rotate_imm<"sll", shamt, CPURegsOpnd, shl, immZExt5>,
904           SRA_FM<0, 0>;
905def SRL  : MMRel, shift_rotate_imm<"srl", shamt, CPURegsOpnd, srl, immZExt5>,
906           SRA_FM<2, 0>;
907def SRA  : MMRel, shift_rotate_imm<"sra", shamt, CPURegsOpnd, sra, immZExt5>,
908           SRA_FM<3, 0>;
909def SLLV : MMRel, shift_rotate_reg<"sllv", CPURegsOpnd, shl>, SRLV_FM<4, 0>;
910def SRLV : MMRel, shift_rotate_reg<"srlv", CPURegsOpnd, srl>, SRLV_FM<6, 0>;
911def SRAV : MMRel, shift_rotate_reg<"srav", CPURegsOpnd, sra>, SRLV_FM<7, 0>;
912
913// Rotate Instructions
914let Predicates = [HasMips32r2, HasStdEnc] in {
915  def ROTR  : MMRel, shift_rotate_imm<"rotr", shamt, CPURegsOpnd, rotr,
916                                      immZExt5>,
917              SRA_FM<2, 1>;
918  def ROTRV : MMRel, shift_rotate_reg<"rotrv", CPURegsOpnd, rotr>,
919              SRLV_FM<6, 1>;
920}
921
922/// Load and Store Instructions
923///  aligned
924defm LB  : LoadM<"lb", CPURegs, sextloadi8, IILoad>, MMRel, LW_FM<0x20>;
925defm LBu : LoadM<"lbu", CPURegs, zextloadi8, IILoad, addrDefault>, MMRel,
926           LW_FM<0x24>;
927defm LH  : LoadM<"lh", CPURegs, sextloadi16, IILoad, addrDefault>, MMRel,
928           LW_FM<0x21>;
929defm LHu : LoadM<"lhu", CPURegs, zextloadi16, IILoad>, MMRel, LW_FM<0x25>;
930defm LW  : LoadM<"lw", CPURegs, load, IILoad, addrDefault>, MMRel, LW_FM<0x23>;
931defm SB  : StoreM<"sb", CPURegs, truncstorei8, IIStore>, MMRel, LW_FM<0x28>;
932defm SH  : StoreM<"sh", CPURegs, truncstorei16, IIStore>, MMRel, LW_FM<0x29>;
933defm SW  : StoreM<"sw", CPURegs, store, IIStore>, MMRel, LW_FM<0x2b>;
934
935/// load/store left/right
936defm LWL : LoadLeftRightM<"lwl", MipsLWL, CPURegs>, LW_FM<0x22>;
937defm LWR : LoadLeftRightM<"lwr", MipsLWR, CPURegs>, LW_FM<0x26>;
938defm SWL : StoreLeftRightM<"swl", MipsSWL, CPURegs>, LW_FM<0x2a>;
939defm SWR : StoreLeftRightM<"swr", MipsSWR, CPURegs>, LW_FM<0x2e>;
940
941def SYNC : SYNC_FT, SYNC_FM;
942def TEQ : TEQ_FT<"teq", CPURegsOpnd>, TEQ_FM<0x34>;
943
944/// Load-linked, Store-conditional
945let Predicates = [NotN64, HasStdEnc] in {
946  def LL : LLBase<"ll", CPURegsOpnd, mem>, LW_FM<0x30>;
947  def SC : SCBase<"sc", CPURegsOpnd, mem>, LW_FM<0x38>;
948}
949
950let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
951  def LL_P8 : LLBase<"ll", CPURegsOpnd, mem64>, LW_FM<0x30>;
952  def SC_P8 : SCBase<"sc", CPURegsOpnd, mem64>, LW_FM<0x38>;
953}
954
955/// Jump and Branch Instructions
956def J       : JumpFJ<jmptarget, "j", br, bb>, FJ<2>,
957              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
958def JR      : IndirectBranch<CPURegs>, MTLO_FM<8>;
959def B       : UncondBranch<"b">, B_FM;
960def BEQ     : CBranch<"beq", seteq, CPURegsOpnd>, BEQ_FM<4>;
961def BNE     : CBranch<"bne", setne, CPURegsOpnd>, BEQ_FM<5>;
962def BGEZ    : CBranchZero<"bgez", setge, CPURegsOpnd>, BGEZ_FM<1, 1>;
963def BGTZ    : CBranchZero<"bgtz", setgt, CPURegsOpnd>, BGEZ_FM<7, 0>;
964def BLEZ    : CBranchZero<"blez", setle, CPURegsOpnd>, BGEZ_FM<6, 0>;
965def BLTZ    : CBranchZero<"bltz", setlt, CPURegsOpnd>, BGEZ_FM<1, 0>;
966
967def BAL_BR: BAL_FT, BAL_FM;
968
969def JAL  : JumpLink<"jal">, FJ<3>;
970def JALR : JumpLinkReg<"jalr", CPURegs>, JALR_FM;
971def JALRPseudo : JumpLinkRegPseudo<CPURegs, JALR, RA>;
972def BGEZAL : BGEZAL_FT<"bgezal", CPURegsOpnd>, BGEZAL_FM<0x11>;
973def BLTZAL : BGEZAL_FT<"bltzal", CPURegsOpnd>, BGEZAL_FM<0x10>;
974def TAILCALL : JumpFJ<calltarget, "j", MipsTailCall, imm>, FJ<2>, IsTailCall;
975def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, MTLO_FM<8>, IsTailCall;
976
977def RET : RetBase<CPURegs>, MTLO_FM<8>;
978
979// Exception handling related node and instructions.
980// The conversion sequence is:
981// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
982// MIPSeh_return -> (stack change + indirect branch)
983//
984// MIPSeh_return takes the place of regular return instruction
985// but takes two arguments (V1, V0) which are used for storing
986// the offset and return address respectively.
987def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
988
989def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
990                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
991
992let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
993  def MIPSeh_return32 : MipsPseudo<(outs), (ins CPURegs:$spoff, CPURegs:$dst),
994                                [(MIPSehret CPURegs:$spoff, CPURegs:$dst)]>;
995  def MIPSeh_return64 : MipsPseudo<(outs), (ins CPU64Regs:$spoff,
996                                                CPU64Regs:$dst),
997                                [(MIPSehret CPU64Regs:$spoff, CPU64Regs:$dst)]>;
998}
999
1000/// Multiply and Divide Instructions.
1001def MULT  : MMRel, Mult<"mult", IIImul, CPURegsOpnd, [HI, LO]>,
1002            MULT_FM<0, 0x18>;
1003def MULTu : MMRel, Mult<"multu", IIImul, CPURegsOpnd, [HI, LO]>,
1004            MULT_FM<0, 0x19>;
1005def PseudoMULT  : MultDivPseudo<MULT, ACRegs, CPURegsOpnd, MipsMult, IIImul>;
1006def PseudoMULTu : MultDivPseudo<MULTu, ACRegs, CPURegsOpnd, MipsMultu, IIImul>;
1007def SDIV  : Div<"div", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1a>;
1008def UDIV  : Div<"divu", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1b>;
1009def PseudoSDIV : MultDivPseudo<SDIV, ACRegs, CPURegsOpnd, MipsDivRem, IIIdiv,
1010                               0, 1, 1>;
1011def PseudoUDIV : MultDivPseudo<UDIV, ACRegs, CPURegsOpnd, MipsDivRemU, IIIdiv,
1012                               0, 1, 1>;
1013
1014def MTHI : MoveToLOHI<"mthi", CPURegs, [HI]>, MTLO_FM<0x11>;
1015def MTLO : MoveToLOHI<"mtlo", CPURegs, [LO]>, MTLO_FM<0x13>;
1016def MFHI : MoveFromLOHI<"mfhi", CPURegs, [HI]>, MFLO_FM<0x10>;
1017def MFLO : MoveFromLOHI<"mflo", CPURegs, [LO]>, MFLO_FM<0x12>;
1018
1019/// Sign Ext In Register Instructions.
1020def SEB : SignExtInReg<"seb", i8, CPURegs>, SEB_FM<0x10, 0x20>;
1021def SEH : SignExtInReg<"seh", i16, CPURegs>, SEB_FM<0x18, 0x20>;
1022
1023/// Count Leading
1024def CLZ : CountLeading0<"clz", CPURegsOpnd>, CLO_FM<0x20>;
1025def CLO : CountLeading1<"clo", CPURegsOpnd>, CLO_FM<0x21>;
1026
1027/// Word Swap Bytes Within Halfwords
1028def WSBH : SubwordSwap<"wsbh", CPURegsOpnd>, SEB_FM<2, 0x20>;
1029
1030/// No operation.
1031def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
1032
1033// FrameIndexes are legalized when they are operands from load/store
1034// instructions. The same not happens for stack address copies, so an
1035// add op with mem ComplexPattern is used and the stack address copy
1036// can be matched. It's similar to Sparc LEA_ADDRi
1037def LEA_ADDiu : EffectiveAddress<"addiu", CPURegs, mem_ea>, LW_FM<9>;
1038
1039// MADD*/MSUB*
1040def MADD  : MArithR<"madd", 1>, MULT_FM<0x1c, 0>;
1041def MADDU : MArithR<"maddu", 1>, MULT_FM<0x1c, 1>;
1042def MSUB  : MArithR<"msub">, MULT_FM<0x1c, 4>;
1043def MSUBU : MArithR<"msubu">, MULT_FM<0x1c, 5>;
1044def PseudoMADD  : MAddSubPseudo<MADD, MipsMAdd>;
1045def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu>;
1046def PseudoMSUB  : MAddSubPseudo<MSUB, MipsMSub>;
1047def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu>;
1048
1049def RDHWR : ReadHardware<CPURegs, HWRegsOpnd>, RDHWR_FM;
1050
1051def EXT : ExtBase<"ext", CPURegsOpnd>, EXT_FM<0>;
1052def INS : InsBase<"ins", CPURegsOpnd>, EXT_FM<4>;
1053
1054/// Move Control Registers From/To CPU Registers
1055def MFC0_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
1056                      (ins CPURegsOpnd:$rd, uimm16:$sel),
1057                      "mfc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 0>;
1058
1059def MTC0_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
1060                      (ins CPURegsOpnd:$rt),
1061                      "mtc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 4>;
1062
1063def MFC2_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
1064                      (ins CPURegsOpnd:$rd, uimm16:$sel),
1065                      "mfc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 0>;
1066
1067def MTC2_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
1068                      (ins CPURegsOpnd:$rt),
1069                      "mtc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 4>;
1070
1071//===----------------------------------------------------------------------===//
1072// Instruction aliases
1073//===----------------------------------------------------------------------===//
1074def : InstAlias<"move $dst, $src",
1075                (ADDu CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
1076      Requires<[NotMips64]>;
1077def : InstAlias<"move $dst, $src",
1078                (OR CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
1079      Requires<[NotMips64]>;
1080def : InstAlias<"bal $offset", (BGEZAL RA, brtarget:$offset), 1>;
1081def : InstAlias<"addu $rs, $rt, $imm",
1082                (ADDiu CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1083def : InstAlias<"add $rs, $rt, $imm",
1084                (ADDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1085def : InstAlias<"and $rs, $rt, $imm",
1086                (ANDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1087def : InstAlias<"j $rs", (JR CPURegs:$rs), 0>,
1088      Requires<[NotMips64]>;
1089def : InstAlias<"jalr $rs", (JALR RA, CPURegs:$rs)>, Requires<[NotMips64]>;
1090def : InstAlias<"jal $rs", (JALR RA, CPURegs:$rs), 0>, Requires<[NotMips64]>;
1091def : InstAlias<"jal $rd,$rs", (JALR CPURegs:$rd, CPURegs:$rs), 0>,
1092                 Requires<[NotMips64]>;
1093def : InstAlias<"not $rt, $rs",
1094                (NOR CPURegsOpnd:$rt, CPURegsOpnd:$rs, ZERO), 1>;
1095def : InstAlias<"neg $rt, $rs",
1096                (SUB CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
1097def : InstAlias<"negu $rt, $rs",
1098                (SUBu CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
1099def : InstAlias<"slt $rs, $rt, $imm",
1100                (SLTi CPURegsOpnd:$rs, CPURegs:$rt, simm16:$imm), 0>;
1101def : InstAlias<"xor $rs, $rt, $imm",
1102                (XORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, uimm16:$imm), 1>,
1103      Requires<[NotMips64]>;
1104def : InstAlias<"or $rs, $rt, $imm",
1105                (ORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, uimm16:$imm), 1>,
1106                 Requires<[NotMips64]>;
1107def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
1108def : InstAlias<"mfc0 $rt, $rd",
1109                (MFC0_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
1110def : InstAlias<"mtc0 $rt, $rd",
1111                (MTC0_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
1112def : InstAlias<"mfc2 $rt, $rd",
1113                (MFC2_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
1114def : InstAlias<"mtc2 $rt, $rd",
1115                (MTC2_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
1116def : InstAlias<"bnez $rs,$offset",
1117                 (BNE CPURegsOpnd:$rs, ZERO, brtarget:$offset), 1>,
1118                 Requires<[NotMips64]>;
1119def : InstAlias<"beqz $rs,$offset",
1120                 (BEQ CPURegsOpnd:$rs, ZERO, brtarget:$offset), 1>,
1121                 Requires<[NotMips64]>;
1122//===----------------------------------------------------------------------===//
1123// Assembler Pseudo Instructions
1124//===----------------------------------------------------------------------===//
1125
1126class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
1127  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1128                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1129def LoadImm32Reg : LoadImm32<"li", shamt,CPURegsOpnd>;
1130
1131class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
1132  MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
1133                     !strconcat(instr_asm, "\t$rt, $addr")> ;
1134def LoadAddr32Reg : LoadAddress<"la", mem, CPURegsOpnd>;
1135
1136class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
1137  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1138                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1139def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegsOpnd>;
1140
1141
1142
1143//===----------------------------------------------------------------------===//
1144//  Arbitrary patterns that map to one or more instructions
1145//===----------------------------------------------------------------------===//
1146
1147// Load/store pattern templates.
1148class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> :
1149  MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>;
1150
1151class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
1152  MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;
1153
1154// Small immediates
1155def : MipsPat<(i32 immSExt16:$in),
1156              (ADDiu ZERO, imm:$in)>;
1157def : MipsPat<(i32 immZExt16:$in),
1158              (ORi ZERO, imm:$in)>;
1159def : MipsPat<(i32 immLow16Zero:$in),
1160              (LUi (HI16 imm:$in))>;
1161
1162// Arbitrary immediates
1163def : MipsPat<(i32 imm:$imm),
1164          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1165
1166// Carry MipsPatterns
1167def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1168              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1169let Predicates = [HasStdEnc, NotDSP] in {
1170  def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1171                (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1172  def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1173                (ADDiu CPURegs:$src, imm:$imm)>;
1174}
1175
1176// Call
1177def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1178              (JAL tglobaladdr:$dst)>;
1179def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1180              (JAL texternalsym:$dst)>;
1181//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1182//              (JALR CPURegs:$dst)>;
1183
1184// Tail call
1185def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1186              (TAILCALL tglobaladdr:$dst)>;
1187def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1188              (TAILCALL texternalsym:$dst)>;
1189// hi/lo relocs
1190def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1191def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1192def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1193def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1194def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1195def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1196
1197def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1198def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1199def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1200def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1201def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1202def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1203
1204def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1205              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1206def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1207              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1208def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1209              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1210def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1211              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1212def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1213              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1214
1215// gp_rel relocs
1216def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1217              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1218def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1219              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1220
1221// wrapper_pic
1222class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1223      MipsPat<(MipsWrapper RC:$gp, node:$in),
1224              (ADDiuOp RC:$gp, node:$in)>;
1225
1226def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1227def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1228def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1229def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1230def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1231def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1232
1233// Mips does not have "not", so we expand our way
1234def : MipsPat<(not CPURegs:$in),
1235              (NOR CPURegsOpnd:$in, ZERO)>;
1236
1237// extended loads
1238let Predicates = [NotN64, HasStdEnc] in {
1239  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1240  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1241  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1242}
1243let Predicates = [IsN64, HasStdEnc] in {
1244  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1245  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1246  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1247}
1248
1249// peepholes
1250let Predicates = [NotN64, HasStdEnc] in {
1251  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1252}
1253let Predicates = [IsN64, HasStdEnc] in {
1254  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1255}
1256
1257// brcond patterns
1258multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1259                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1260                      Instruction SLTiuOp, Register ZEROReg> {
1261def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1262              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1263def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1264              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1265
1266def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1267              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1268def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1269              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1270def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1271              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1272def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1273              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1274def : MipsPat<(brcond (i32 (setgt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
1275              (BEQ (SLTiOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
1276def : MipsPat<(brcond (i32 (setugt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
1277              (BEQ (SLTiuOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
1278
1279def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1280              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1281def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1282              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1283
1284def : MipsPat<(brcond RC:$cond, bb:$dst),
1285              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1286}
1287
1288defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1289
1290def : MipsPat<(brcond (i32 (setlt i32:$lhs, 1)), bb:$dst),
1291              (BLEZ i32:$lhs, bb:$dst)>;
1292def : MipsPat<(brcond (i32 (setgt i32:$lhs, -1)), bb:$dst),
1293              (BGEZ i32:$lhs, bb:$dst)>;
1294
1295// setcc patterns
1296multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1297                     Instruction SLTuOp, Register ZEROReg> {
1298  def : MipsPat<(seteq RC:$lhs, 0),
1299                (SLTiuOp RC:$lhs, 1)>;
1300  def : MipsPat<(setne RC:$lhs, 0),
1301                (SLTuOp ZEROReg, RC:$lhs)>;
1302  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1303                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1304  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1305                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1306}
1307
1308multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1309  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1310                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1311  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1312                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1313}
1314
1315multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1316  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1317                (SLTOp RC:$rhs, RC:$lhs)>;
1318  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1319                (SLTuOp RC:$rhs, RC:$lhs)>;
1320}
1321
1322multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1323  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1324                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1325  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1326                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1327}
1328
1329multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1330                        Instruction SLTiuOp> {
1331  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1332                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1333  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1334                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1335}
1336
1337defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1338defm : SetlePats<CPURegs, SLT, SLTu>;
1339defm : SetgtPats<CPURegs, SLT, SLTu>;
1340defm : SetgePats<CPURegs, SLT, SLTu>;
1341defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1342
1343// bswap pattern
1344def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1345
1346// mflo/hi patterns.
1347def : MipsPat<(i32 (ExtractLOHI ACRegs:$ac, imm:$lohi_idx)),
1348              (EXTRACT_SUBREG ACRegs:$ac, imm:$lohi_idx)>;
1349
1350// Load halfword/word patterns.
1351let AddedComplexity = 40 in {
1352  let Predicates = [NotN64, HasStdEnc] in {
1353    def : LoadRegImmPat<LBu, i32, zextloadi8>;
1354    def : LoadRegImmPat<LH, i32, sextloadi16>;
1355    def : LoadRegImmPat<LW, i32, load>;
1356  }
1357  let Predicates = [IsN64, HasStdEnc] in {
1358    def : LoadRegImmPat<LBu_P8, i32, zextloadi8>;
1359    def : LoadRegImmPat<LH_P8, i32, sextloadi16>;
1360    def : LoadRegImmPat<LW_P8, i32, load>;
1361  }
1362}
1363
1364//===----------------------------------------------------------------------===//
1365// Floating Point Support
1366//===----------------------------------------------------------------------===//
1367
1368include "MipsInstrFPU.td"
1369include "Mips64InstrInfo.td"
1370include "MipsCondMov.td"
1371
1372//
1373// Mips16
1374
1375include "Mips16InstrFormats.td"
1376include "Mips16InstrInfo.td"
1377
1378// DSP
1379include "MipsDSPInstrFormats.td"
1380include "MipsDSPInstrInfo.td"
1381
1382// Micromips
1383include "MicroMipsInstrFormats.td"
1384include "MicroMipsInstrInfo.td"
1385