MipsInstrInfo.td revision 2ef99c5dff1ab9612f2d65e38f725d809672d2fd
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MFLOHI : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVT<1, untyped>]>;
27def SDT_MTLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
28                                      SDTCisInt<1>, SDTCisSameAs<1, 2>]>;
29def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>,
30                                    SDTCisSameAs<1, 2>]>;
31def SDT_MipsMAddMSub : SDTypeProfile<1, 3,
32                                     [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
33                                      SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
34def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
35
36def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
37
38def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
39
40def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
42def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
43                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
44                                   SDTCisSameAs<0, 4>]>;
45
46def SDTMipsLoadLR  : SDTypeProfile<1, 2,
47                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
48                                    SDTCisSameAs<0, 2>]>;
49
50// Call
51def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
52                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
53                          SDNPVariadic]>;
54
55// Tail call
56def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
57                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
58
59// Hi and Lo nodes are used to handle global addresses. Used on
60// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
61// static model. (nothing to do with Mips Registers Hi and Lo)
62def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
63def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
64def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
65
66// TlsGd node is used to handle General Dynamic TLS
67def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
68
69// TprelHi and TprelLo nodes are used to handle Local Exec TLS
70def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
71def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
72
73// Thread pointer
74def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
75
76// Return
77def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
78                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
79
80// These are target-independent nodes, but have target-specific formats.
81def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
82                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
83def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
84                           [SDNPHasChain, SDNPSideEffect,
85                            SDNPOptInGlue, SDNPOutGlue]>;
86
87// Nodes used to extract LO/HI registers.
88def MipsMFHI : SDNode<"MipsISD::MFHI", SDT_MFLOHI>;
89def MipsMFLO : SDNode<"MipsISD::MFLO", SDT_MFLOHI>;
90
91// Node used to insert 32-bit integers to LOHI register pair.
92def MipsMTLOHI : SDNode<"MipsISD::MTLOHI", SDT_MTLOHI>;
93
94// Mult nodes.
95def MipsMult  : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>;
96def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>;
97
98// MAdd*/MSub* nodes
99def MipsMAdd  : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>;
100def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>;
101def MipsMSub  : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>;
102def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>;
103
104// DivRem(u) nodes
105def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>;
106def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>;
107def MipsDivRem16  : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16,
108                           [SDNPOutGlue]>;
109def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16,
110                           [SDNPOutGlue]>;
111
112// Target constant nodes that are not part of any isel patterns and remain
113// unchanged can cause instructions with illegal operands to be emitted.
114// Wrapper node patterns give the instruction selector a chance to replace
115// target constant nodes that would otherwise remain unchanged with ADDiu
116// nodes. Without these wrapper node patterns, the following conditional move
117// instruction is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
118// compiled:
119//  movn  %got(d)($gp), %got(c)($gp), $4
120// This instruction is illegal since movn can take only register operands.
121
122def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
123
124def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
125
126def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
127def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
128
129def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
130                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
131def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
132                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
133def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
134                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
135def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
136                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
137def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
138                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
139def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
140                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
141def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
142                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
143def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
144                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
145
146//===----------------------------------------------------------------------===//
147// Mips Instruction Predicate Definitions.
148//===----------------------------------------------------------------------===//
149def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
150                      AssemblerPredicate<"FeatureSEInReg">;
151def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
152                      AssemblerPredicate<"FeatureBitCount">;
153def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
154                      AssemblerPredicate<"FeatureSwap">;
155def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
156                      AssemblerPredicate<"FeatureCondMov">;
157def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
158                      AssemblerPredicate<"FeatureFPIdx">;
159def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
160                      AssemblerPredicate<"FeatureMips32">;
161def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
162                      AssemblerPredicate<"FeatureMips32r2">;
163def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
164                      AssemblerPredicate<"FeatureMips64">;
165def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
166                      AssemblerPredicate<"!FeatureMips64">;
167def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
168                      AssemblerPredicate<"FeatureMips64r2">;
169def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
170                      AssemblerPredicate<"FeatureN64">;
171def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
172                      AssemblerPredicate<"!FeatureN64">;
173def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
174                      AssemblerPredicate<"FeatureMips16">;
175def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
176                      AssemblerPredicate<"FeatureMips32">;
177def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
178                      AssemblerPredicate<"FeatureMips32">;
179def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
180                      AssemblerPredicate<"FeatureMips32">;
181def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
182                      AssemblerPredicate<"!FeatureMips16,!FeatureMicroMips">;
183def NotDSP :          Predicate<"!Subtarget.hasDSP()">;
184def InMicroMips    :  Predicate<"Subtarget.inMicroMipsMode()">,
185                      AssemblerPredicate<"FeatureMicroMips">;
186def NotInMicroMips :  Predicate<"!Subtarget.inMicroMipsMode()">,
187                      AssemblerPredicate<"!FeatureMicroMips">;
188def IsLE           :  Predicate<"Subtarget.isLittle()">;
189def IsBE           :  Predicate<"!Subtarget.isLittle()">;
190
191class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
192  let Predicates = [HasStdEnc];
193}
194
195class IsCommutable {
196  bit isCommutable = 1;
197}
198
199class IsBranch {
200  bit isBranch = 1;
201}
202
203class IsReturn {
204  bit isReturn = 1;
205}
206
207class IsCall {
208  bit isCall = 1;
209}
210
211class IsTailCall {
212  bit isCall = 1;
213  bit isTerminator = 1;
214  bit isReturn = 1;
215  bit isBarrier = 1;
216  bit hasExtraSrcRegAllocReq = 1;
217  bit isCodeGenOnly = 1;
218}
219
220class IsAsCheapAsAMove {
221  bit isAsCheapAsAMove = 1;
222}
223
224class NeverHasSideEffects {
225  bit neverHasSideEffects = 1;
226}
227
228//===----------------------------------------------------------------------===//
229// Instruction format superclass
230//===----------------------------------------------------------------------===//
231
232include "MipsInstrFormats.td"
233
234//===----------------------------------------------------------------------===//
235// Mips Operand, Complex Patterns and Transformations Definitions.
236//===----------------------------------------------------------------------===//
237
238// Instruction operand types
239def jmptarget   : Operand<OtherVT> {
240  let EncoderMethod = "getJumpTargetOpValue";
241}
242def brtarget    : Operand<OtherVT> {
243  let EncoderMethod = "getBranchTargetOpValue";
244  let OperandType = "OPERAND_PCREL";
245  let DecoderMethod = "DecodeBranchTarget";
246}
247def calltarget  : Operand<iPTR> {
248  let EncoderMethod = "getJumpTargetOpValue";
249}
250
251def simm16      : Operand<i32> {
252  let DecoderMethod= "DecodeSimm16";
253}
254
255def simm20      : Operand<i32> {
256}
257
258def uimm20      : Operand<i32> {
259}
260
261def uimm10      : Operand<i32> {
262}
263
264def simm16_64   : Operand<i64> {
265  let DecoderMethod = "DecodeSimm16";
266}
267
268// Unsigned Operand
269def uimm5       : Operand<i32> {
270  let PrintMethod = "printUnsignedImm";
271}
272
273def uimm6 : Operand<i32> {
274  let PrintMethod = "printUnsignedImm";
275}
276
277def uimm16      : Operand<i32> {
278  let PrintMethod = "printUnsignedImm";
279}
280
281def MipsMemAsmOperand : AsmOperandClass {
282  let Name = "Mem";
283  let ParserMethod = "parseMemOperand";
284}
285
286def MipsInvertedImmoperand : AsmOperandClass {
287  let Name = "InvNum";
288  let RenderMethod = "addImmOperands";
289  let ParserMethod = "parseInvNum";
290}
291
292def PtrRegAsmOperand : AsmOperandClass {
293  let Name = "PtrReg";
294  let ParserMethod = "parsePtrReg";
295}
296
297
298def InvertedImOperand : Operand<i32> {
299  let ParserMatchClass = MipsInvertedImmoperand;
300}
301
302// Address operand
303def mem : Operand<iPTR> {
304  let PrintMethod = "printMemOperand";
305  let MIOperandInfo = (ops ptr_rc, simm16);
306  let EncoderMethod = "getMemEncoding";
307  let ParserMatchClass = MipsMemAsmOperand;
308  let OperandType = "OPERAND_MEMORY";
309}
310
311def mem_ea : Operand<iPTR> {
312  let PrintMethod = "printMemOperandEA";
313  let MIOperandInfo = (ops ptr_rc, simm16);
314  let EncoderMethod = "getMemEncoding";
315  let OperandType = "OPERAND_MEMORY";
316}
317
318def PtrRC : Operand<iPTR> {
319  let MIOperandInfo = (ops ptr_rc);
320  let DecoderMethod = "DecodePtrRegisterClass";
321  let ParserMatchClass = PtrRegAsmOperand;
322}
323
324// size operand of ext instruction
325def size_ext : Operand<i32> {
326  let EncoderMethod = "getSizeExtEncoding";
327  let DecoderMethod = "DecodeExtSize";
328}
329
330// size operand of ins instruction
331def size_ins : Operand<i32> {
332  let EncoderMethod = "getSizeInsEncoding";
333  let DecoderMethod = "DecodeInsSize";
334}
335
336// Transformation Function - get the lower 16 bits.
337def LO16 : SDNodeXForm<imm, [{
338  return getImm(N, N->getZExtValue() & 0xFFFF);
339}]>;
340
341// Transformation Function - get the higher 16 bits.
342def HI16 : SDNodeXForm<imm, [{
343  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
344}]>;
345
346// Plus 1.
347def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>;
348
349// Node immediate fits as 16-bit sign extended on target immediate.
350// e.g. addi, andi
351def immSExt8  : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
352
353// Node immediate fits as 16-bit sign extended on target immediate.
354// e.g. addi, andi
355def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
356
357// Node immediate fits as 15-bit sign extended on target immediate.
358// e.g. addi, andi
359def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
360
361// Node immediate fits as 16-bit zero extended on target immediate.
362// The LO16 param means that only the lower 16 bits of the node
363// immediate are caught.
364// e.g. addiu, sltiu
365def immZExt16  : PatLeaf<(imm), [{
366  if (N->getValueType(0) == MVT::i32)
367    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
368  else
369    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
370}], LO16>;
371
372// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
373def immLow16Zero : PatLeaf<(imm), [{
374  int64_t Val = N->getSExtValue();
375  return isInt<32>(Val) && !(Val & 0xffff);
376}]>;
377
378// shamt field must fit in 5 bits.
379def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
380
381// True if (N + 1) fits in 16-bit field.
382def immSExt16Plus1 : PatLeaf<(imm), [{
383  return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1);
384}]>;
385
386// Mips Address Mode! SDNode frameindex could possibily be a match
387// since load and store instructions from stack used it.
388def addr :
389  ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>;
390
391def addrRegImm :
392  ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>;
393
394def addrRegReg :
395  ComplexPattern<iPTR, 2, "selectAddrRegReg", [frameindex]>;
396
397def addrDefault :
398  ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>;
399
400//===----------------------------------------------------------------------===//
401// Instructions specific format
402//===----------------------------------------------------------------------===//
403
404// Arithmetic and logical instructions with 3 register operands.
405class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
406                  InstrItinClass Itin = NoItinerary,
407                  SDPatternOperator OpNode = null_frag>:
408  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
409         !strconcat(opstr, "\t$rd, $rs, $rt"),
410         [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> {
411  let isCommutable = isComm;
412  let isReMaterializable = 1;
413}
414
415// Arithmetic and logical instructions with 2 register operands.
416class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
417                  InstrItinClass Itin = NoItinerary,
418                  SDPatternOperator imm_type = null_frag,
419                  SDPatternOperator OpNode = null_frag> :
420  InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
421         !strconcat(opstr, "\t$rt, $rs, $imm16"),
422         [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))],
423         Itin, FrmI, opstr> {
424  let isReMaterializable = 1;
425  let TwoOperandAliasConstraint = "$rs = $rt";
426}
427
428// Arithmetic Multiply ADD/SUB
429class MArithR<string opstr, bit isComm = 0> :
430  InstSE<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt),
431         !strconcat(opstr, "\t$rs, $rt"), [], IIImult, FrmR, opstr> {
432  let Defs = [HI0, LO0];
433  let Uses = [HI0, LO0];
434  let isCommutable = isComm;
435}
436
437//  Logical
438class LogicNOR<string opstr, RegisterOperand RO>:
439  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
440         !strconcat(opstr, "\t$rd, $rs, $rt"),
441         [(set RO:$rd, (not (or RO:$rs, RO:$rt)))], IIArith, FrmR, opstr> {
442  let isCommutable = 1;
443}
444
445// Shifts
446class shift_rotate_imm<string opstr, Operand ImmOpnd,
447                       RegisterOperand RO, SDPatternOperator OpNode = null_frag,
448                       SDPatternOperator PF = null_frag> :
449  InstSE<(outs RO:$rd), (ins RO:$rt, ImmOpnd:$shamt),
450         !strconcat(opstr, "\t$rd, $rt, $shamt"),
451         [(set RO:$rd, (OpNode RO:$rt, PF:$shamt))], IIArith, FrmR, opstr>;
452
453class shift_rotate_reg<string opstr, RegisterOperand RO,
454                       SDPatternOperator OpNode = null_frag>:
455  InstSE<(outs RO:$rd), (ins RO:$rt, GPR32Opnd:$rs),
456         !strconcat(opstr, "\t$rd, $rt, $rs"),
457         [(set RO:$rd, (OpNode RO:$rt, GPR32Opnd:$rs))], IIArith, FrmR, opstr>;
458
459// Load Upper Imediate
460class LoadUpper<string opstr, RegisterOperand RO, Operand Imm>:
461  InstSE<(outs RO:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
462         [], IIArith, FrmI, opstr>, IsAsCheapAsAMove {
463  let neverHasSideEffects = 1;
464  let isReMaterializable = 1;
465}
466
467// Memory Load/Store
468class Load<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
469           InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
470  InstSE<(outs RO:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
471         [(set RO:$rt, (OpNode Addr:$addr))], Itin, FrmI, opstr> {
472  let DecoderMethod = "DecodeMem";
473  let canFoldAsLoad = 1;
474  let mayLoad = 1;
475}
476
477class Store<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
478            InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
479  InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
480         [(OpNode RO:$rt, Addr:$addr)], Itin, FrmI, opstr> {
481  let DecoderMethod = "DecodeMem";
482  let mayStore = 1;
483}
484
485// Load/Store Left/Right
486let canFoldAsLoad = 1 in
487class LoadLeftRight<string opstr, SDNode OpNode, RegisterOperand RO,
488                    InstrItinClass Itin> :
489  InstSE<(outs RO:$rt), (ins mem:$addr, RO:$src),
490         !strconcat(opstr, "\t$rt, $addr"),
491         [(set RO:$rt, (OpNode addr:$addr, RO:$src))], Itin, FrmI> {
492  let DecoderMethod = "DecodeMem";
493  string Constraints = "$src = $rt";
494}
495
496class StoreLeftRight<string opstr, SDNode OpNode, RegisterOperand RO,
497                     InstrItinClass Itin> :
498  InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
499         [(OpNode RO:$rt, addr:$addr)], Itin, FrmI> {
500  let DecoderMethod = "DecodeMem";
501}
502
503// Conditional Branch
504class CBranch<string opstr, PatFrag cond_op, RegisterOperand RO> :
505  InstSE<(outs), (ins RO:$rs, RO:$rt, brtarget:$offset),
506         !strconcat(opstr, "\t$rs, $rt, $offset"),
507         [(brcond (i32 (cond_op RO:$rs, RO:$rt)), bb:$offset)], IIBranch,
508         FrmI> {
509  let isBranch = 1;
510  let isTerminator = 1;
511  let hasDelaySlot = 1;
512  let Defs = [AT];
513}
514
515class CBranchZero<string opstr, PatFrag cond_op, RegisterOperand RO> :
516  InstSE<(outs), (ins RO:$rs, brtarget:$offset),
517         !strconcat(opstr, "\t$rs, $offset"),
518         [(brcond (i32 (cond_op RO:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
519  let isBranch = 1;
520  let isTerminator = 1;
521  let hasDelaySlot = 1;
522  let Defs = [AT];
523}
524
525// SetCC
526class SetCC_R<string opstr, PatFrag cond_op, RegisterOperand RO> :
527  InstSE<(outs GPR32Opnd:$rd), (ins RO:$rs, RO:$rt),
528         !strconcat(opstr, "\t$rd, $rs, $rt"),
529         [(set GPR32Opnd:$rd, (cond_op RO:$rs, RO:$rt))],
530         IIslt, FrmR, opstr>;
531
532class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
533              RegisterOperand RO>:
534  InstSE<(outs GPR32Opnd:$rt), (ins RO:$rs, Od:$imm16),
535         !strconcat(opstr, "\t$rt, $rs, $imm16"),
536         [(set GPR32Opnd:$rt, (cond_op RO:$rs, imm_type:$imm16))],
537         IIslt, FrmI, opstr>;
538
539// Jump
540class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
541             SDPatternOperator targetoperator> :
542  InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
543         [(operator targetoperator:$target)], IIBranch, FrmJ> {
544  let isTerminator=1;
545  let isBarrier=1;
546  let hasDelaySlot = 1;
547  let DecoderMethod = "DecodeJumpTarget";
548  let Defs = [AT];
549}
550
551// Unconditional branch
552class UncondBranch<Instruction BEQInst> :
553  PseudoSE<(outs), (ins brtarget:$offset), [(br bb:$offset)], IIBranch>,
554  PseudoInstExpansion<(BEQInst ZERO, ZERO, brtarget:$offset)> {
555  let isBranch = 1;
556  let isTerminator = 1;
557  let isBarrier = 1;
558  let hasDelaySlot = 1;
559  let Predicates = [RelocPIC, HasStdEnc];
560  let Defs = [AT];
561}
562
563// Base class for indirect branch and return instruction classes.
564let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
565class JumpFR<RegisterOperand RO, SDPatternOperator operator = null_frag>:
566  InstSE<(outs), (ins RO:$rs), "jr\t$rs", [(operator RO:$rs)], IIBranch, FrmR>;
567
568// Indirect branch
569class IndirectBranch<RegisterOperand RO>: JumpFR<RO, brind> {
570  let isBranch = 1;
571  let isIndirectBranch = 1;
572}
573
574// Return instruction
575class RetBase<RegisterOperand RO>: JumpFR<RO> {
576  let isReturn = 1;
577  let isCodeGenOnly = 1;
578  let hasCtrlDep = 1;
579  let hasExtraSrcRegAllocReq = 1;
580}
581
582// Jump and Link (Call)
583let isCall=1, hasDelaySlot=1, Defs = [RA] in {
584  class JumpLink<string opstr> :
585    InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"),
586           [(MipsJmpLink imm:$target)], IIBranch, FrmJ> {
587    let DecoderMethod = "DecodeJumpTarget";
588  }
589
590  class JumpLinkRegPseudo<RegisterOperand RO, Instruction JALRInst,
591                          Register RetReg, RegisterOperand ResRO = RO>:
592    PseudoSE<(outs), (ins RO:$rs), [(MipsJmpLink RO:$rs)], IIBranch>,
593    PseudoInstExpansion<(JALRInst RetReg, ResRO:$rs)>;
594
595  class JumpLinkReg<string opstr, RegisterOperand RO>:
596    InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
597           [], IIBranch, FrmR>;
598
599  class BGEZAL_FT<string opstr, RegisterOperand RO> :
600    InstSE<(outs), (ins RO:$rs, brtarget:$offset),
601           !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI>;
602
603}
604
605class BAL_BR_Pseudo<Instruction RealInst> :
606  PseudoSE<(outs), (ins brtarget:$offset), [], IIBranch>,
607  PseudoInstExpansion<(RealInst ZERO, brtarget:$offset)> {
608  let isBranch = 1;
609  let isTerminator = 1;
610  let isBarrier = 1;
611  let hasDelaySlot = 1;
612  let Defs = [RA];
613}
614
615// Syscall
616class SYS_FT<string opstr> :
617  InstSE<(outs), (ins uimm20:$code_),
618         !strconcat(opstr, "\t$code_"), [], NoItinerary, FrmI>;
619// Break
620class BRK_FT<string opstr> :
621  InstSE<(outs), (ins uimm10:$code_1, uimm10:$code_2),
622         !strconcat(opstr, "\t$code_1, $code_2"), [], NoItinerary, FrmOther>;
623
624// (D)Eret
625class ER_FT<string opstr> :
626  InstSE<(outs), (ins),
627         opstr, [], NoItinerary, FrmOther>;
628
629// Interrupts
630class DEI_FT<string opstr, RegisterOperand RO> :
631  InstSE<(outs RO:$rt), (ins),
632         !strconcat(opstr, "\t$rt"), [], NoItinerary, FrmOther>;
633
634// Wait
635class WAIT_FT<string opstr> :
636  InstSE<(outs), (ins), opstr, [], NoItinerary, FrmOther> {
637  let Inst{31-26} = 0x10;
638  let Inst{25}    = 1;
639  let Inst{24-6}  = 0;
640  let Inst{5-0}   = 0x20;
641}
642
643// Sync
644let hasSideEffects = 1 in
645class SYNC_FT :
646  InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
647         NoItinerary, FrmOther>;
648
649let hasSideEffects = 1 in
650class TEQ_FT<string opstr, RegisterOperand RO> :
651  InstSE<(outs), (ins RO:$rs, RO:$rt, uimm16:$code_),
652         !strconcat(opstr, "\t$rs, $rt, $code_"), [], NoItinerary, FrmI>;
653
654class TEQI_FT<string opstr, RegisterOperand RO> :
655  InstSE<(outs), (ins RO:$rs, uimm16:$imm16),
656         !strconcat(opstr, "\t$rs, $imm16"), [], NoItinerary, FrmOther>;
657// Mul, Div
658class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
659           list<Register> DefRegs> :
660  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
661         itin, FrmR, opstr> {
662  let isCommutable = 1;
663  let Defs = DefRegs;
664  let neverHasSideEffects = 1;
665}
666
667// Pseudo multiply/divide instruction with explicit accumulator register
668// operands.
669class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1,
670                    SDPatternOperator OpNode, InstrItinClass Itin,
671                    bit IsComm = 1, bit HasSideEffects = 0,
672                    bit UsesCustomInserter = 0> :
673  PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt),
674           [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>,
675  PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> {
676  let isCommutable = IsComm;
677  let hasSideEffects = HasSideEffects;
678  let usesCustomInserter = UsesCustomInserter;
679}
680
681// Pseudo multiply add/sub instruction with explicit accumulator register
682// operands.
683class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode>
684  : PseudoSE<(outs ACC64:$ac),
685             (ins GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin),
686             [(set ACC64:$ac,
687              (OpNode GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin))],
688             IIImult>,
689    PseudoInstExpansion<(RealInst GPR32Opnd:$rs, GPR32Opnd:$rt)> {
690  string Constraints = "$acin = $ac";
691}
692
693class Div<string opstr, InstrItinClass itin, RegisterOperand RO,
694          list<Register> DefRegs> :
695  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"),
696         [], itin, FrmR, opstr> {
697  let Defs = DefRegs;
698}
699
700// Move from Hi/Lo
701class PseudoMFLOHI<RegisterClass DstRC, RegisterClass SrcRC, SDNode OpNode>
702  : PseudoSE<(outs DstRC:$rd), (ins SrcRC:$hilo),
703             [(set DstRC:$rd, (OpNode SrcRC:$hilo))], IIHiLo>;
704
705class MoveFromLOHI<string opstr, RegisterOperand RO, Register UseReg>:
706  InstSE<(outs RO:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR,
707         opstr> {
708  let Uses = [UseReg];
709  let neverHasSideEffects = 1;
710}
711
712class PseudoMTLOHI<RegisterClass DstRC, RegisterClass SrcRC>
713  : PseudoSE<(outs DstRC:$lohi), (ins SrcRC:$lo, SrcRC:$hi),
714             [(set DstRC:$lohi, (MipsMTLOHI SrcRC:$lo, SrcRC:$hi))], IIHiLo>;
715
716class MoveToLOHI<string opstr, RegisterOperand RO, list<Register> DefRegs>:
717  InstSE<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo,
718  FrmR, opstr> {
719  let Defs = DefRegs;
720  let neverHasSideEffects = 1;
721}
722
723class EffectiveAddress<string opstr, RegisterOperand RO> :
724  InstSE<(outs RO:$rt), (ins mem_ea:$addr), !strconcat(opstr, "\t$rt, $addr"),
725         [(set RO:$rt, addr:$addr)], NoItinerary, FrmI> {
726  let isCodeGenOnly = 1;
727  let DecoderMethod = "DecodeMem";
728}
729
730// Count Leading Ones/Zeros in Word
731class CountLeading0<string opstr, RegisterOperand RO>:
732  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
733         [(set RO:$rd, (ctlz RO:$rs))], IIArith, FrmR, opstr>,
734  Requires<[HasBitCount, HasStdEnc]>;
735
736class CountLeading1<string opstr, RegisterOperand RO>:
737  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
738         [(set RO:$rd, (ctlz (not RO:$rs)))], IIArith, FrmR, opstr>,
739  Requires<[HasBitCount, HasStdEnc]>;
740
741
742// Sign Extend in Register.
743class SignExtInReg<string opstr, ValueType vt, RegisterOperand RO> :
744  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"),
745         [(set RO:$rd, (sext_inreg RO:$rt, vt))], IIseb, FrmR, opstr> {
746  let Predicates = [HasSEInReg, HasStdEnc];
747}
748
749// Subword Swap
750class SubwordSwap<string opstr, RegisterOperand RO>:
751  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
752         NoItinerary, FrmR, opstr> {
753  let Predicates = [HasSwap, HasStdEnc];
754  let neverHasSideEffects = 1;
755}
756
757// Read Hardware
758class ReadHardware<RegisterOperand CPURegOperand, RegisterOperand RO> :
759  InstSE<(outs CPURegOperand:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
760         IIArith, FrmR>;
761
762// Ext and Ins
763class ExtBase<string opstr, RegisterOperand RO, Operand PosOpnd,
764              SDPatternOperator Op = null_frag>:
765  InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, size_ext:$size),
766         !strconcat(opstr, " $rt, $rs, $pos, $size"),
767         [(set RO:$rt, (Op RO:$rs, imm:$pos, imm:$size))], NoItinerary,
768         FrmR, opstr> {
769  let Predicates = [HasMips32r2, HasStdEnc];
770}
771
772class InsBase<string opstr, RegisterOperand RO, Operand PosOpnd,
773              SDPatternOperator Op = null_frag>:
774  InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, size_ins:$size, RO:$src),
775         !strconcat(opstr, " $rt, $rs, $pos, $size"),
776         [(set RO:$rt, (Op RO:$rs, imm:$pos, imm:$size, RO:$src))],
777         NoItinerary, FrmR, opstr> {
778  let Predicates = [HasMips32r2, HasStdEnc];
779  let Constraints = "$src = $rt";
780}
781
782// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
783class Atomic2Ops<PatFrag Op, RegisterClass DRC> :
784  PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$incr),
785           [(set DRC:$dst, (Op iPTR:$ptr, DRC:$incr))]>;
786
787// Atomic Compare & Swap.
788class AtomicCmpSwap<PatFrag Op, RegisterClass DRC> :
789  PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$cmp, DRC:$swap),
790           [(set DRC:$dst, (Op iPTR:$ptr, DRC:$cmp, DRC:$swap))]>;
791
792class LLBase<string opstr, RegisterOperand RO> :
793  InstSE<(outs RO:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
794         [], NoItinerary, FrmI> {
795  let DecoderMethod = "DecodeMem";
796  let mayLoad = 1;
797}
798
799class SCBase<string opstr, RegisterOperand RO> :
800  InstSE<(outs RO:$dst), (ins RO:$rt, mem:$addr),
801         !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
802  let DecoderMethod = "DecodeMem";
803  let mayStore = 1;
804  let Constraints = "$rt = $dst";
805}
806
807class MFC3OP<string asmstr, RegisterOperand RO> :
808  InstSE<(outs RO:$rt, RO:$rd, uimm16:$sel), (ins),
809         !strconcat(asmstr, "\t$rt, $rd, $sel"), [], NoItinerary, FrmFR>;
810
811class TrapBase<Instruction RealInst>
812  : PseudoSE<(outs), (ins), [(trap)], NoItinerary>,
813    PseudoInstExpansion<(RealInst 0, 0)> {
814  let isBarrier = 1;
815  let isTerminator = 1;
816  let isCodeGenOnly = 1;
817}
818
819//===----------------------------------------------------------------------===//
820// Pseudo instructions
821//===----------------------------------------------------------------------===//
822
823// Return RA.
824let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
825def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
826
827let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
828def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
829                                  [(callseq_start timm:$amt)]>;
830def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
831                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
832}
833
834let usesCustomInserter = 1 in {
835  def ATOMIC_LOAD_ADD_I8   : Atomic2Ops<atomic_load_add_8, GPR32>;
836  def ATOMIC_LOAD_ADD_I16  : Atomic2Ops<atomic_load_add_16, GPR32>;
837  def ATOMIC_LOAD_ADD_I32  : Atomic2Ops<atomic_load_add_32, GPR32>;
838  def ATOMIC_LOAD_SUB_I8   : Atomic2Ops<atomic_load_sub_8, GPR32>;
839  def ATOMIC_LOAD_SUB_I16  : Atomic2Ops<atomic_load_sub_16, GPR32>;
840  def ATOMIC_LOAD_SUB_I32  : Atomic2Ops<atomic_load_sub_32, GPR32>;
841  def ATOMIC_LOAD_AND_I8   : Atomic2Ops<atomic_load_and_8, GPR32>;
842  def ATOMIC_LOAD_AND_I16  : Atomic2Ops<atomic_load_and_16, GPR32>;
843  def ATOMIC_LOAD_AND_I32  : Atomic2Ops<atomic_load_and_32, GPR32>;
844  def ATOMIC_LOAD_OR_I8    : Atomic2Ops<atomic_load_or_8, GPR32>;
845  def ATOMIC_LOAD_OR_I16   : Atomic2Ops<atomic_load_or_16, GPR32>;
846  def ATOMIC_LOAD_OR_I32   : Atomic2Ops<atomic_load_or_32, GPR32>;
847  def ATOMIC_LOAD_XOR_I8   : Atomic2Ops<atomic_load_xor_8, GPR32>;
848  def ATOMIC_LOAD_XOR_I16  : Atomic2Ops<atomic_load_xor_16, GPR32>;
849  def ATOMIC_LOAD_XOR_I32  : Atomic2Ops<atomic_load_xor_32, GPR32>;
850  def ATOMIC_LOAD_NAND_I8  : Atomic2Ops<atomic_load_nand_8, GPR32>;
851  def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, GPR32>;
852  def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, GPR32>;
853
854  def ATOMIC_SWAP_I8       : Atomic2Ops<atomic_swap_8, GPR32>;
855  def ATOMIC_SWAP_I16      : Atomic2Ops<atomic_swap_16, GPR32>;
856  def ATOMIC_SWAP_I32      : Atomic2Ops<atomic_swap_32, GPR32>;
857
858  def ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap<atomic_cmp_swap_8, GPR32>;
859  def ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap<atomic_cmp_swap_16, GPR32>;
860  def ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap<atomic_cmp_swap_32, GPR32>;
861}
862
863/// Pseudo instructions for loading and storing accumulator registers.
864let isPseudo = 1, isCodeGenOnly = 1 in {
865  def LOAD_ACC64  : Load<"", ACC64>;
866  def STORE_ACC64 : Store<"", ACC64>;
867}
868
869//===----------------------------------------------------------------------===//
870// Instruction definition
871//===----------------------------------------------------------------------===//
872//===----------------------------------------------------------------------===//
873// MipsI Instructions
874//===----------------------------------------------------------------------===//
875
876/// Arithmetic Instructions (ALU Immediate)
877def ADDiu : MMRel, ArithLogicI<"addiu", simm16, GPR32Opnd, IIArith, immSExt16,
878                               add>,
879            ADDI_FM<0x9>, IsAsCheapAsAMove;
880def ADDi  : MMRel, ArithLogicI<"addi", simm16, GPR32Opnd>, ADDI_FM<0x8>;
881def SLTi  : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, GPR32Opnd>,
882            SLTI_FM<0xa>;
883def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, GPR32Opnd>,
884            SLTI_FM<0xb>;
885def ANDi  : MMRel, ArithLogicI<"andi", uimm16, GPR32Opnd, IILogic, immZExt16,
886                               and>,
887            ADDI_FM<0xc>;
888def ORi   : MMRel, ArithLogicI<"ori", uimm16, GPR32Opnd, IILogic, immZExt16,
889                               or>,
890            ADDI_FM<0xd>;
891def XORi  : MMRel, ArithLogicI<"xori", uimm16, GPR32Opnd, IILogic, immZExt16,
892                               xor>,
893            ADDI_FM<0xe>;
894def LUi   : MMRel, LoadUpper<"lui", GPR32Opnd, uimm16>, LUI_FM;
895
896/// Arithmetic Instructions (3-Operand, R-Type)
897def ADDu  : MMRel, ArithLogicR<"addu", GPR32Opnd, 1, IIArith, add>,
898            ADD_FM<0, 0x21>;
899def SUBu  : MMRel, ArithLogicR<"subu", GPR32Opnd, 0, IIArith, sub>,
900            ADD_FM<0, 0x23>;
901let Defs = [HI0, LO0] in
902def MUL   : MMRel, ArithLogicR<"mul", GPR32Opnd, 1, IIImul, mul>,
903            ADD_FM<0x1c, 2>;
904def ADD   : MMRel, ArithLogicR<"add", GPR32Opnd>, ADD_FM<0, 0x20>;
905def SUB   : MMRel, ArithLogicR<"sub", GPR32Opnd>, ADD_FM<0, 0x22>;
906def SLT   : MMRel, SetCC_R<"slt", setlt, GPR32Opnd>, ADD_FM<0, 0x2a>;
907def SLTu  : MMRel, SetCC_R<"sltu", setult, GPR32Opnd>, ADD_FM<0, 0x2b>;
908def AND   : MMRel, ArithLogicR<"and", GPR32Opnd, 1, IILogic, and>,
909            ADD_FM<0, 0x24>;
910def OR    : MMRel, ArithLogicR<"or", GPR32Opnd, 1, IILogic, or>,
911            ADD_FM<0, 0x25>;
912def XOR   : MMRel, ArithLogicR<"xor", GPR32Opnd, 1, IILogic, xor>,
913            ADD_FM<0, 0x26>;
914def NOR   : MMRel, LogicNOR<"nor", GPR32Opnd>, ADD_FM<0, 0x27>;
915
916/// Shift Instructions
917def SLL  : MMRel, shift_rotate_imm<"sll", uimm5, GPR32Opnd, shl, immZExt5>,
918           SRA_FM<0, 0>;
919def SRL  : MMRel, shift_rotate_imm<"srl", uimm5, GPR32Opnd, srl, immZExt5>,
920           SRA_FM<2, 0>;
921def SRA  : MMRel, shift_rotate_imm<"sra", uimm5, GPR32Opnd, sra, immZExt5>,
922           SRA_FM<3, 0>;
923def SLLV : MMRel, shift_rotate_reg<"sllv", GPR32Opnd, shl>, SRLV_FM<4, 0>;
924def SRLV : MMRel, shift_rotate_reg<"srlv", GPR32Opnd, srl>, SRLV_FM<6, 0>;
925def SRAV : MMRel, shift_rotate_reg<"srav", GPR32Opnd, sra>, SRLV_FM<7, 0>;
926
927// Rotate Instructions
928let Predicates = [HasMips32r2, HasStdEnc] in {
929  def ROTR  : MMRel, shift_rotate_imm<"rotr", uimm5, GPR32Opnd, rotr,
930                                      immZExt5>,
931              SRA_FM<2, 1>;
932  def ROTRV : MMRel, shift_rotate_reg<"rotrv", GPR32Opnd, rotr>,
933              SRLV_FM<6, 1>;
934}
935
936/// Load and Store Instructions
937///  aligned
938def LB  : Load<"lb", GPR32Opnd, sextloadi8, IILoad>, MMRel, LW_FM<0x20>;
939def LBu : Load<"lbu", GPR32Opnd, zextloadi8, IILoad, addrDefault>, MMRel,
940          LW_FM<0x24>;
941def LH  : Load<"lh", GPR32Opnd, sextloadi16, IILoad, addrDefault>, MMRel,
942          LW_FM<0x21>;
943def LHu : Load<"lhu", GPR32Opnd, zextloadi16, IILoad>, MMRel, LW_FM<0x25>;
944def LW  : Load<"lw", GPR32Opnd, load, IILoad, addrDefault>, MMRel,
945          LW_FM<0x23>;
946def SB  : Store<"sb", GPR32Opnd, truncstorei8, IIStore>, MMRel, LW_FM<0x28>;
947def SH  : Store<"sh", GPR32Opnd, truncstorei16, IIStore>, MMRel, LW_FM<0x29>;
948def SW  : Store<"sw", GPR32Opnd, store, IIStore>, MMRel, LW_FM<0x2b>;
949
950/// load/store left/right
951def LWL : LoadLeftRight<"lwl", MipsLWL, GPR32Opnd, IILoad>, LW_FM<0x22>;
952def LWR : LoadLeftRight<"lwr", MipsLWR, GPR32Opnd, IILoad>, LW_FM<0x26>;
953def SWL : StoreLeftRight<"swl", MipsSWL, GPR32Opnd, IIStore>, LW_FM<0x2a>;
954def SWR : StoreLeftRight<"swr", MipsSWR, GPR32Opnd, IIStore>, LW_FM<0x2e>;
955
956def SYNC : SYNC_FT, SYNC_FM;
957def TEQ : TEQ_FT<"teq", GPR32Opnd>, TEQ_FM<0x34>;
958def TGE : TEQ_FT<"tge", GPR32Opnd>, TEQ_FM<0x30>;
959def TGEU : TEQ_FT<"tgeu", GPR32Opnd>, TEQ_FM<0x31>;
960def TLT : TEQ_FT<"tlt", GPR32Opnd>, TEQ_FM<0x32>;
961def TLTU : TEQ_FT<"tltu", GPR32Opnd>, TEQ_FM<0x33>;
962def TNE : TEQ_FT<"tne", GPR32Opnd>, TEQ_FM<0x36>;
963
964def TEQI : TEQI_FT<"teqi", GPR32Opnd>, TEQI_FM<0xc>;
965def TGEI : TEQI_FT<"tgei", GPR32Opnd>, TEQI_FM<0x8>;
966def TGEIU : TEQI_FT<"tgeiu", GPR32Opnd>, TEQI_FM<0x9>;
967def TLTI : TEQI_FT<"tlti", GPR32Opnd>, TEQI_FM<0xa>;
968def TTLTIU : TEQI_FT<"tltiu", GPR32Opnd>, TEQI_FM<0xb>;
969def TNEI : TEQI_FT<"tnei", GPR32Opnd>, TEQI_FM<0xe>;
970
971def BREAK : BRK_FT<"break">, BRK_FM<0xd>;
972def SYSCALL : SYS_FT<"syscall">, SYS_FM<0xc>;
973def TRAP : TrapBase<BREAK>;
974
975def ERET : ER_FT<"eret">, ER_FM<0x18>;
976def DERET : ER_FT<"deret">, ER_FM<0x1f>;
977
978def EI : DEI_FT<"ei", GPR32Opnd>, EI_FM<1>;
979def DI : DEI_FT<"di", GPR32Opnd>, EI_FM<0>;
980
981def WAIT : WAIT_FT<"wait">;
982
983/// Load-linked, Store-conditional
984def LL : LLBase<"ll", GPR32Opnd>, LW_FM<0x30>;
985def SC : SCBase<"sc", GPR32Opnd>, LW_FM<0x38>;
986
987/// Jump and Branch Instructions
988def J       : JumpFJ<jmptarget, "j", br, bb>, FJ<2>,
989              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
990def JR      : IndirectBranch<GPR32Opnd>, MTLO_FM<8>;
991def BEQ     : CBranch<"beq", seteq, GPR32Opnd>, BEQ_FM<4>;
992def BNE     : CBranch<"bne", setne, GPR32Opnd>, BEQ_FM<5>;
993def BGEZ    : CBranchZero<"bgez", setge, GPR32Opnd>, BGEZ_FM<1, 1>;
994def BGTZ    : CBranchZero<"bgtz", setgt, GPR32Opnd>, BGEZ_FM<7, 0>;
995def BLEZ    : CBranchZero<"blez", setle, GPR32Opnd>, BGEZ_FM<6, 0>;
996def BLTZ    : CBranchZero<"bltz", setlt, GPR32Opnd>, BGEZ_FM<1, 0>;
997def B       : UncondBranch<BEQ>;
998
999def JAL  : JumpLink<"jal">, FJ<3>;
1000def JALR : JumpLinkReg<"jalr", GPR32Opnd>, JALR_FM;
1001def JALRPseudo : JumpLinkRegPseudo<GPR32Opnd, JALR, RA>;
1002def BGEZAL : BGEZAL_FT<"bgezal", GPR32Opnd>, BGEZAL_FM<0x11>;
1003def BLTZAL : BGEZAL_FT<"bltzal", GPR32Opnd>, BGEZAL_FM<0x10>;
1004def BAL_BR : BAL_BR_Pseudo<BGEZAL>;
1005def TAILCALL : JumpFJ<calltarget, "j", MipsTailCall, imm>, FJ<2>, IsTailCall;
1006def TAILCALL_R : JumpFR<GPR32Opnd, MipsTailCall>, MTLO_FM<8>, IsTailCall;
1007
1008def RET : RetBase<GPR32Opnd>, MTLO_FM<8>;
1009
1010// Exception handling related node and instructions.
1011// The conversion sequence is:
1012// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
1013// MIPSeh_return -> (stack change + indirect branch)
1014//
1015// MIPSeh_return takes the place of regular return instruction
1016// but takes two arguments (V1, V0) which are used for storing
1017// the offset and return address respectively.
1018def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
1019
1020def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
1021                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
1022
1023let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
1024  def MIPSeh_return32 : MipsPseudo<(outs), (ins GPR32:$spoff, GPR32:$dst),
1025                                [(MIPSehret GPR32:$spoff, GPR32:$dst)]>;
1026  def MIPSeh_return64 : MipsPseudo<(outs), (ins GPR64:$spoff,
1027                                                GPR64:$dst),
1028                                [(MIPSehret GPR64:$spoff, GPR64:$dst)]>;
1029}
1030
1031/// Multiply and Divide Instructions.
1032def MULT  : MMRel, Mult<"mult", IIImult, GPR32Opnd, [HI0, LO0]>,
1033            MULT_FM<0, 0x18>;
1034def MULTu : MMRel, Mult<"multu", IIImult, GPR32Opnd, [HI0, LO0]>,
1035            MULT_FM<0, 0x19>;
1036def SDIV  : Div<"div", IIIdiv, GPR32Opnd, [HI0, LO0]>, MULT_FM<0, 0x1a>;
1037def UDIV  : Div<"divu", IIIdiv, GPR32Opnd, [HI0, LO0]>, MULT_FM<0, 0x1b>;
1038
1039def MTHI : MMRel, MoveToLOHI<"mthi", GPR32Opnd, [HI0]>, MTLO_FM<0x11>;
1040def MTLO : MMRel, MoveToLOHI<"mtlo", GPR32Opnd, [LO0]>, MTLO_FM<0x13>;
1041def MFHI : MMRel, MoveFromLOHI<"mfhi", GPR32Opnd, AC0>, MFLO_FM<0x10>;
1042def MFLO : MMRel, MoveFromLOHI<"mflo", GPR32Opnd, AC0>, MFLO_FM<0x12>;
1043
1044/// Sign Ext In Register Instructions.
1045def SEB : MMRel, SignExtInReg<"seb", i8, GPR32Opnd>, SEB_FM<0x10, 0x20>;
1046def SEH : MMRel, SignExtInReg<"seh", i16, GPR32Opnd>, SEB_FM<0x18, 0x20>;
1047
1048/// Count Leading
1049def CLZ : MMRel, CountLeading0<"clz", GPR32Opnd>, CLO_FM<0x20>;
1050def CLO : MMRel, CountLeading1<"clo", GPR32Opnd>, CLO_FM<0x21>;
1051
1052/// Word Swap Bytes Within Halfwords
1053def WSBH : MMRel, SubwordSwap<"wsbh", GPR32Opnd>, SEB_FM<2, 0x20>;
1054
1055/// No operation.
1056def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
1057
1058// FrameIndexes are legalized when they are operands from load/store
1059// instructions. The same not happens for stack address copies, so an
1060// add op with mem ComplexPattern is used and the stack address copy
1061// can be matched. It's similar to Sparc LEA_ADDRi
1062def LEA_ADDiu : EffectiveAddress<"addiu", GPR32Opnd>, LW_FM<9>;
1063
1064// MADD*/MSUB*
1065def MADD  : MMRel, MArithR<"madd", 1>, MULT_FM<0x1c, 0>;
1066def MADDU : MMRel, MArithR<"maddu", 1>, MULT_FM<0x1c, 1>;
1067def MSUB  : MMRel, MArithR<"msub">, MULT_FM<0x1c, 4>;
1068def MSUBU : MMRel, MArithR<"msubu">, MULT_FM<0x1c, 5>;
1069
1070let Predicates = [HasStdEnc, NotDSP] in {
1071def PseudoMULT  : MultDivPseudo<MULT, ACC64, GPR32Opnd, MipsMult, IIImult>;
1072def PseudoMULTu : MultDivPseudo<MULTu, ACC64, GPR32Opnd, MipsMultu, IIImult>;
1073def PseudoMFHI : PseudoMFLOHI<GPR32, ACC64, MipsMFHI>;
1074def PseudoMFLO : PseudoMFLOHI<GPR32, ACC64, MipsMFLO>;
1075def PseudoMTLOHI : PseudoMTLOHI<ACC64, GPR32>;
1076def PseudoMADD  : MAddSubPseudo<MADD, MipsMAdd>;
1077def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu>;
1078def PseudoMSUB  : MAddSubPseudo<MSUB, MipsMSub>;
1079def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu>;
1080}
1081
1082def PseudoSDIV : MultDivPseudo<SDIV, ACC64, GPR32Opnd, MipsDivRem, IIIdiv,
1083                               0, 1, 1>;
1084def PseudoUDIV : MultDivPseudo<UDIV, ACC64, GPR32Opnd, MipsDivRemU, IIIdiv,
1085                               0, 1, 1>;
1086
1087def RDHWR : ReadHardware<GPR32Opnd, HWRegsOpnd>, RDHWR_FM;
1088
1089def EXT : MMRel, ExtBase<"ext", GPR32Opnd, uimm5, MipsExt>, EXT_FM<0>;
1090def INS : MMRel, InsBase<"ins", GPR32Opnd, uimm5, MipsIns>, EXT_FM<4>;
1091
1092/// Move Control Registers From/To CPU Registers
1093def MFC0 : MFC3OP<"mfc0", GPR32Opnd>, MFC3OP_FM<0x10, 0>;
1094def MTC0 : MFC3OP<"mtc0", GPR32Opnd>, MFC3OP_FM<0x10, 4>;
1095def MFC2 : MFC3OP<"mfc2", GPR32Opnd>, MFC3OP_FM<0x12, 0>;
1096def MTC2 : MFC3OP<"mtc2", GPR32Opnd>, MFC3OP_FM<0x12, 4>;
1097
1098//===----------------------------------------------------------------------===//
1099// Instruction aliases
1100//===----------------------------------------------------------------------===//
1101def : InstAlias<"move $dst, $src",
1102                (ADDu GPR32Opnd:$dst, GPR32Opnd:$src,ZERO), 1>,
1103      Requires<[NotMips64]>;
1104def : InstAlias<"bal $offset", (BGEZAL ZERO, brtarget:$offset), 0>;
1105def : InstAlias<"addu $rs, $rt, $imm",
1106                (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
1107def : InstAlias<"add $rs, $rt, $imm",
1108                (ADDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
1109def : InstAlias<"and $rs, $rt, $imm",
1110                (ANDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
1111def : InstAlias<"j $rs", (JR GPR32Opnd:$rs), 0>;
1112def : InstAlias<"jalr $rs", (JALR RA, GPR32Opnd:$rs), 0>;
1113def : InstAlias<"jal $rs", (JALR RA, GPR32Opnd:$rs), 0>;
1114def : InstAlias<"jal $rd,$rs", (JALR GPR32Opnd:$rd, GPR32Opnd:$rs), 0>;
1115def : InstAlias<"not $rt, $rs",
1116                (NOR GPR32Opnd:$rt, GPR32Opnd:$rs, ZERO), 0>;
1117def : InstAlias<"neg $rt, $rs",
1118                (SUB GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>;
1119def : InstAlias<"negu $rt, $rs",
1120                (SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>;
1121def : InstAlias<"slt $rs, $rt, $imm",
1122                (SLTi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
1123def : InstAlias<"xor $rs, $rt, $imm",
1124                (XORi GPR32Opnd:$rs, GPR32Opnd:$rt, uimm16:$imm), 0>;
1125def : InstAlias<"or $rs, $rt, $imm",
1126                (ORi GPR32Opnd:$rs, GPR32Opnd:$rt, uimm16:$imm), 0>;
1127def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
1128def : InstAlias<"mfc0 $rt, $rd", (MFC0 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
1129def : InstAlias<"mtc0 $rt, $rd", (MTC0 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
1130def : InstAlias<"mfc2 $rt, $rd", (MFC2 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
1131def : InstAlias<"mtc2 $rt, $rd", (MTC2 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
1132def : InstAlias<"b $offset", (BEQ ZERO, ZERO, brtarget:$offset), 0>;
1133def : InstAlias<"bnez $rs,$offset",
1134                (BNE GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
1135def : InstAlias<"beqz $rs,$offset",
1136                (BEQ GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
1137def : InstAlias<"syscall", (SYSCALL 0), 1>;
1138
1139def : InstAlias<"break $imm", (BREAK uimm10:$imm, 0), 1>;
1140def : InstAlias<"break", (BREAK 0, 0), 1>;
1141def : InstAlias<"ei", (EI ZERO), 1>;
1142def : InstAlias<"di", (DI ZERO), 1>;
1143
1144def  : InstAlias<"teq $rs, $rt", (TEQ GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1145def  : InstAlias<"tge $rs, $rt", (TGE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1146def  : InstAlias<"tgeu $rs, $rt", (TGEU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1147def  : InstAlias<"tlt $rs, $rt", (TLT GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1148def  : InstAlias<"tltu $rs, $rt", (TLTU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1149def  : InstAlias<"tne $rs, $rt", (TNE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1150def : InstAlias<"sub, $rd, $rs, $imm",
1151                (ADDi GPR32Opnd:$rd, GPR32Opnd:$rs, InvertedImOperand:$imm)>;
1152def : InstAlias<"subu, $rd, $rs, $imm",
1153                (ADDiu GPR32Opnd:$rd, GPR32Opnd:$rs, InvertedImOperand:$imm)>;
1154
1155//===----------------------------------------------------------------------===//
1156// Assembler Pseudo Instructions
1157//===----------------------------------------------------------------------===//
1158
1159class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
1160  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1161                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1162def LoadImm32Reg : LoadImm32<"li", uimm5, GPR32Opnd>;
1163
1164class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
1165  MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
1166                     !strconcat(instr_asm, "\t$rt, $addr")> ;
1167def LoadAddr32Reg : LoadAddress<"la", mem, GPR32Opnd>;
1168
1169class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
1170  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1171                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1172def LoadAddr32Imm : LoadAddressImm<"la", uimm5, GPR32Opnd>;
1173
1174//===----------------------------------------------------------------------===//
1175//  Arbitrary patterns that map to one or more instructions
1176//===----------------------------------------------------------------------===//
1177
1178// Load/store pattern templates.
1179class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> :
1180  MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>;
1181
1182class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
1183  MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;
1184
1185// Small immediates
1186def : MipsPat<(i32 immSExt16:$in),
1187              (ADDiu ZERO, imm:$in)>;
1188def : MipsPat<(i32 immZExt16:$in),
1189              (ORi ZERO, imm:$in)>;
1190def : MipsPat<(i32 immLow16Zero:$in),
1191              (LUi (HI16 imm:$in))>;
1192
1193// Arbitrary immediates
1194def : MipsPat<(i32 imm:$imm),
1195          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1196
1197// Carry MipsPatterns
1198def : MipsPat<(subc GPR32:$lhs, GPR32:$rhs),
1199              (SUBu GPR32:$lhs, GPR32:$rhs)>;
1200let Predicates = [HasStdEnc, NotDSP] in {
1201  def : MipsPat<(addc GPR32:$lhs, GPR32:$rhs),
1202                (ADDu GPR32:$lhs, GPR32:$rhs)>;
1203  def : MipsPat<(addc  GPR32:$src, immSExt16:$imm),
1204                (ADDiu GPR32:$src, imm:$imm)>;
1205}
1206
1207// Call
1208def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1209              (JAL tglobaladdr:$dst)>;
1210def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1211              (JAL texternalsym:$dst)>;
1212//def : MipsPat<(MipsJmpLink GPR32:$dst),
1213//              (JALR GPR32:$dst)>;
1214
1215// Tail call
1216def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1217              (TAILCALL tglobaladdr:$dst)>;
1218def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1219              (TAILCALL texternalsym:$dst)>;
1220// hi/lo relocs
1221def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1222def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1223def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1224def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1225def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1226def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1227
1228def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1229def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1230def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1231def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1232def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1233def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1234
1235def : MipsPat<(add GPR32:$hi, (MipsLo tglobaladdr:$lo)),
1236              (ADDiu GPR32:$hi, tglobaladdr:$lo)>;
1237def : MipsPat<(add GPR32:$hi, (MipsLo tblockaddress:$lo)),
1238              (ADDiu GPR32:$hi, tblockaddress:$lo)>;
1239def : MipsPat<(add GPR32:$hi, (MipsLo tjumptable:$lo)),
1240              (ADDiu GPR32:$hi, tjumptable:$lo)>;
1241def : MipsPat<(add GPR32:$hi, (MipsLo tconstpool:$lo)),
1242              (ADDiu GPR32:$hi, tconstpool:$lo)>;
1243def : MipsPat<(add GPR32:$hi, (MipsLo tglobaltlsaddr:$lo)),
1244              (ADDiu GPR32:$hi, tglobaltlsaddr:$lo)>;
1245
1246// gp_rel relocs
1247def : MipsPat<(add GPR32:$gp, (MipsGPRel tglobaladdr:$in)),
1248              (ADDiu GPR32:$gp, tglobaladdr:$in)>;
1249def : MipsPat<(add GPR32:$gp, (MipsGPRel tconstpool:$in)),
1250              (ADDiu GPR32:$gp, tconstpool:$in)>;
1251
1252// wrapper_pic
1253class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1254      MipsPat<(MipsWrapper RC:$gp, node:$in),
1255              (ADDiuOp RC:$gp, node:$in)>;
1256
1257def : WrapperPat<tglobaladdr, ADDiu, GPR32>;
1258def : WrapperPat<tconstpool, ADDiu, GPR32>;
1259def : WrapperPat<texternalsym, ADDiu, GPR32>;
1260def : WrapperPat<tblockaddress, ADDiu, GPR32>;
1261def : WrapperPat<tjumptable, ADDiu, GPR32>;
1262def : WrapperPat<tglobaltlsaddr, ADDiu, GPR32>;
1263
1264// Mips does not have "not", so we expand our way
1265def : MipsPat<(not GPR32:$in),
1266              (NOR GPR32Opnd:$in, ZERO)>;
1267
1268// extended loads
1269let Predicates = [HasStdEnc] in {
1270  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1271  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1272  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1273}
1274
1275// peepholes
1276let Predicates = [HasStdEnc] in
1277def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1278
1279// brcond patterns
1280multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1281                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1282                      Instruction SLTiuOp, Register ZEROReg> {
1283def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1284              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1285def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1286              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1287
1288def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1289              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1290def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1291              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1292def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1293              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1294def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1295              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1296def : MipsPat<(brcond (i32 (setgt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
1297              (BEQ (SLTiOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
1298def : MipsPat<(brcond (i32 (setugt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
1299              (BEQ (SLTiuOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
1300
1301def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1302              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1303def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1304              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1305
1306def : MipsPat<(brcond RC:$cond, bb:$dst),
1307              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1308}
1309
1310defm : BrcondPats<GPR32, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1311
1312def : MipsPat<(brcond (i32 (setlt i32:$lhs, 1)), bb:$dst),
1313              (BLEZ i32:$lhs, bb:$dst)>;
1314def : MipsPat<(brcond (i32 (setgt i32:$lhs, -1)), bb:$dst),
1315              (BGEZ i32:$lhs, bb:$dst)>;
1316
1317// setcc patterns
1318multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1319                     Instruction SLTuOp, Register ZEROReg> {
1320  def : MipsPat<(seteq RC:$lhs, 0),
1321                (SLTiuOp RC:$lhs, 1)>;
1322  def : MipsPat<(setne RC:$lhs, 0),
1323                (SLTuOp ZEROReg, RC:$lhs)>;
1324  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1325                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1326  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1327                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1328}
1329
1330multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1331  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1332                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1333  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1334                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1335}
1336
1337multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1338  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1339                (SLTOp RC:$rhs, RC:$lhs)>;
1340  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1341                (SLTuOp RC:$rhs, RC:$lhs)>;
1342}
1343
1344multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1345  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1346                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1347  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1348                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1349}
1350
1351multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1352                        Instruction SLTiuOp> {
1353  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1354                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1355  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1356                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1357}
1358
1359defm : SeteqPats<GPR32, SLTiu, XOR, SLTu, ZERO>;
1360defm : SetlePats<GPR32, SLT, SLTu>;
1361defm : SetgtPats<GPR32, SLT, SLTu>;
1362defm : SetgePats<GPR32, SLT, SLTu>;
1363defm : SetgeImmPats<GPR32, SLTi, SLTiu>;
1364
1365// bswap pattern
1366def : MipsPat<(bswap GPR32:$rt), (ROTR (WSBH GPR32:$rt), 16)>;
1367
1368// Load halfword/word patterns.
1369let AddedComplexity = 40 in {
1370  let Predicates = [HasStdEnc] in {
1371    def : LoadRegImmPat<LBu, i32, zextloadi8>;
1372    def : LoadRegImmPat<LH, i32, sextloadi16>;
1373    def : LoadRegImmPat<LW, i32, load>;
1374  }
1375}
1376
1377//===----------------------------------------------------------------------===//
1378// Floating Point Support
1379//===----------------------------------------------------------------------===//
1380
1381include "MipsInstrFPU.td"
1382include "Mips64InstrInfo.td"
1383include "MipsCondMov.td"
1384
1385//
1386// Mips16
1387
1388include "Mips16InstrFormats.td"
1389include "Mips16InstrInfo.td"
1390
1391// DSP
1392include "MipsDSPInstrFormats.td"
1393include "MipsDSPInstrInfo.td"
1394
1395// MSA
1396include "MipsMSAInstrFormats.td"
1397include "MipsMSAInstrInfo.td"
1398
1399// Micromips
1400include "MicroMipsInstrFormats.td"
1401include "MicroMipsInstrInfo.td"
1402