MipsInstrInfo.td revision 603f69dc2c69ac3f4040e125febd3925dec2bcb2
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_MipsDynAlloc    : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>,
37                                               SDTCisSameAs<0, 1>]>;
38def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
39
40def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
42def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
43                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
44                                   SDTCisSameAs<0, 4>]>;
45
46def SDTMipsLoadLR  : SDTypeProfile<1, 2,
47                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
48                                    SDTCisSameAs<0, 2>]>;
49
50// Call
51def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
52                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
53                          SDNPVariadic]>;
54
55// Hi and Lo nodes are used to handle global addresses. Used on
56// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
57// static model. (nothing to do with Mips Registers Hi and Lo)
58def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
59def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
60def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
61
62// TlsGd node is used to handle General Dynamic TLS
63def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
64
65// TprelHi and TprelLo nodes are used to handle Local Exec TLS
66def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
67def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
68
69// Thread pointer
70def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
71
72// Return
73def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
74
75// These are target-independent nodes, but have target-specific formats.
76def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
77                           [SDNPHasChain, SDNPOutGlue]>;
78def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
79                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
80
81// MAdd*/MSub* nodes
82def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
83                           [SDNPOptInGlue, SDNPOutGlue]>;
84def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
85                           [SDNPOptInGlue, SDNPOutGlue]>;
86def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
87                           [SDNPOptInGlue, SDNPOutGlue]>;
88def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
89                           [SDNPOptInGlue, SDNPOutGlue]>;
90
91// DivRem(u) nodes
92def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
93                           [SDNPOutGlue]>;
94def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
95                           [SDNPOutGlue]>;
96
97// Target constant nodes that are not part of any isel patterns and remain
98// unchanged can cause instructions with illegal operands to be emitted.
99// Wrapper node patterns give the instruction selector a chance to replace
100// target constant nodes that would otherwise remain unchanged with ADDiu
101// nodes. Without these wrapper node patterns, the following conditional move
102// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
103// compiled:
104//  movn  %got(d)($gp), %got(c)($gp), $4
105// This instruction is illegal since movn can take only register operands.
106
107def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
108
109// Pointer to dynamically allocated stack area.
110def MipsDynAlloc  : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
111                           [SDNPHasChain, SDNPInGlue]>;
112
113def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain]>;
114
115def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
116def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
117
118def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
119                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
120def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
121                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
122def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
123                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
124def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
125                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
126def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
127                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
128def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
129                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
130def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
131                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
132def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
133                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
134
135//===----------------------------------------------------------------------===//
136// Mips Instruction Predicate Definitions.
137//===----------------------------------------------------------------------===//
138def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
139                      AssemblerPredicate<"FeatureSEInReg">;
140def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
141                      AssemblerPredicate<"FeatureBitCount">;
142def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
143                      AssemblerPredicate<"FeatureSwap">;
144def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
145                      AssemblerPredicate<"FeatureCondMov">;
146def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
147                      AssemblerPredicate<"FeatureMips32">;
148def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
149                      AssemblerPredicate<"FeatureMips32r2">;
150def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
151                      AssemblerPredicate<"FeatureMips64">;
152def HasMips32r2Or64 : Predicate<"Subtarget.hasMips32r2Or64()">,
153                      AssemblerPredicate<"FeatureMips32r2,FeatureMips64">;
154def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
155                      AssemblerPredicate<"!FeatureMips64">;
156def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
157                      AssemblerPredicate<"FeatureMips64r2">;
158def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
159                      AssemblerPredicate<"FeatureN64">;
160def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
161                      AssemblerPredicate<"!FeatureN64">;
162def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
163                      AssemblerPredicate<"FeatureMips16">;
164def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
165                      AssemblerPredicate<"FeatureMips32">;
166def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
167                      AssemblerPredicate<"FeatureMips32">;
168def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
169                      AssemblerPredicate<"FeatureMips32">;
170def HasStandardEncoding : Predicate<"Subtarget.hasStandardEncoding()">,
171                          AssemblerPredicate<"!FeatureMips16">;
172
173class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
174  let Predicates = [HasStandardEncoding];
175}
176
177//===----------------------------------------------------------------------===//
178// Instruction format superclass
179//===----------------------------------------------------------------------===//
180
181include "MipsInstrFormats.td"
182
183//===----------------------------------------------------------------------===//
184// Mips Operand, Complex Patterns and Transformations Definitions.
185//===----------------------------------------------------------------------===//
186
187// Instruction operand types
188def jmptarget   : Operand<OtherVT> {
189  let EncoderMethod = "getJumpTargetOpValue";
190}
191def brtarget    : Operand<OtherVT> {
192  let EncoderMethod = "getBranchTargetOpValue";
193  let OperandType = "OPERAND_PCREL";
194  let DecoderMethod = "DecodeBranchTarget";
195}
196def calltarget  : Operand<iPTR> {
197  let EncoderMethod = "getJumpTargetOpValue";
198}
199def calltarget64: Operand<i64>;
200def simm16      : Operand<i32> {
201  let DecoderMethod= "DecodeSimm16";
202}
203def simm16_64   : Operand<i64>;
204def shamt       : Operand<i32>;
205
206// Unsigned Operand
207def uimm16      : Operand<i32> {
208  let PrintMethod = "printUnsignedImm";
209}
210
211// Address operand
212def mem : Operand<i32> {
213  let PrintMethod = "printMemOperand";
214  let MIOperandInfo = (ops CPURegs, simm16);
215  let EncoderMethod = "getMemEncoding";
216}
217
218def mem64 : Operand<i64> {
219  let PrintMethod = "printMemOperand";
220  let MIOperandInfo = (ops CPU64Regs, simm16_64);
221  let EncoderMethod = "getMemEncoding";
222}
223
224def mem_ea : Operand<i32> {
225  let PrintMethod = "printMemOperandEA";
226  let MIOperandInfo = (ops CPURegs, simm16);
227  let EncoderMethod = "getMemEncoding";
228}
229
230def mem_ea_64 : Operand<i64> {
231  let PrintMethod = "printMemOperandEA";
232  let MIOperandInfo = (ops CPU64Regs, simm16_64);
233  let EncoderMethod = "getMemEncoding";
234}
235
236// size operand of ext instruction
237def size_ext : Operand<i32> {
238  let EncoderMethod = "getSizeExtEncoding";
239  let DecoderMethod = "DecodeExtSize";
240}
241
242// size operand of ins instruction
243def size_ins : Operand<i32> {
244  let EncoderMethod = "getSizeInsEncoding";
245  let DecoderMethod = "DecodeInsSize";
246}
247
248// Transformation Function - get the lower 16 bits.
249def LO16 : SDNodeXForm<imm, [{
250  return getImm(N, N->getZExtValue() & 0xFFFF);
251}]>;
252
253// Transformation Function - get the higher 16 bits.
254def HI16 : SDNodeXForm<imm, [{
255  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
256}]>;
257
258// Node immediate fits as 16-bit sign extended on target immediate.
259// e.g. addi, andi
260def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
261
262// Node immediate fits as 16-bit zero extended on target immediate.
263// The LO16 param means that only the lower 16 bits of the node
264// immediate are caught.
265// e.g. addiu, sltiu
266def immZExt16  : PatLeaf<(imm), [{
267  if (N->getValueType(0) == MVT::i32)
268    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
269  else
270    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
271}], LO16>;
272
273// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
274def immLow16Zero : PatLeaf<(imm), [{
275  int64_t Val = N->getSExtValue();
276  return isInt<32>(Val) && !(Val & 0xffff);
277}]>;
278
279// shamt field must fit in 5 bits.
280def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
281
282// Mips Address Mode! SDNode frameindex could possibily be a match
283// since load and store instructions from stack used it.
284def addr :
285  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
286
287//===----------------------------------------------------------------------===//
288// Pattern fragment for load/store
289//===----------------------------------------------------------------------===//
290class UnalignedLoad<PatFrag Node> :
291  PatFrag<(ops node:$ptr), (Node node:$ptr), [{
292  LoadSDNode *LD = cast<LoadSDNode>(N);
293  return LD->getMemoryVT().getSizeInBits()/8 > LD->getAlignment();
294}]>;
295
296class AlignedLoad<PatFrag Node> :
297  PatFrag<(ops node:$ptr), (Node node:$ptr), [{
298  LoadSDNode *LD = cast<LoadSDNode>(N);
299  return LD->getMemoryVT().getSizeInBits()/8 <= LD->getAlignment();
300}]>;
301
302class UnalignedStore<PatFrag Node> :
303  PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr), [{
304  StoreSDNode *SD = cast<StoreSDNode>(N);
305  return SD->getMemoryVT().getSizeInBits()/8 > SD->getAlignment();
306}]>;
307
308class AlignedStore<PatFrag Node> :
309  PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr), [{
310  StoreSDNode *SD = cast<StoreSDNode>(N);
311  return SD->getMemoryVT().getSizeInBits()/8 <= SD->getAlignment();
312}]>;
313
314// Load/Store PatFrags.
315def sextloadi16_a   : AlignedLoad<sextloadi16>;
316def zextloadi16_a   : AlignedLoad<zextloadi16>;
317def extloadi16_a    : AlignedLoad<extloadi16>;
318def load_a          : AlignedLoad<load>;
319def sextloadi32_a   : AlignedLoad<sextloadi32>;
320def zextloadi32_a   : AlignedLoad<zextloadi32>;
321def extloadi32_a    : AlignedLoad<extloadi32>;
322def truncstorei16_a : AlignedStore<truncstorei16>;
323def store_a         : AlignedStore<store>;
324def truncstorei32_a : AlignedStore<truncstorei32>;
325def sextloadi16_u   : UnalignedLoad<sextloadi16>;
326def zextloadi16_u   : UnalignedLoad<zextloadi16>;
327def extloadi16_u    : UnalignedLoad<extloadi16>;
328def load_u          : UnalignedLoad<load>;
329def sextloadi32_u   : UnalignedLoad<sextloadi32>;
330def zextloadi32_u   : UnalignedLoad<zextloadi32>;
331def extloadi32_u    : UnalignedLoad<extloadi32>;
332def truncstorei16_u : UnalignedStore<truncstorei16>;
333def store_u         : UnalignedStore<store>;
334def truncstorei32_u : UnalignedStore<truncstorei32>;
335
336//===----------------------------------------------------------------------===//
337// Instructions specific format
338//===----------------------------------------------------------------------===//
339
340// Arithmetic and logical instructions with 3 register operands.
341class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
342                  InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
343  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
344     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
345     [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> {
346  let shamt = 0;
347  let isCommutable = isComm;
348  let isReMaterializable = 1;
349}
350
351class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
352                    InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
353  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
354     !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> {
355  let shamt = 0;
356  let isCommutable = isComm;
357}
358
359// Arithmetic and logical instructions with 2 register operands.
360class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode,
361                  Operand Od, PatLeaf imm_type, RegisterClass RC> :
362  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
363     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
364     [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu> {
365  let isReMaterializable = 1;
366}
367
368class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
369                     Operand Od, PatLeaf imm_type, RegisterClass RC> :
370  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
371     !strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>;
372
373// Arithmetic Multiply ADD/SUB
374let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
375class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
376  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
377     !strconcat(instr_asm, "\t$rs, $rt"),
378     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
379  let rd = 0;
380  let shamt = 0;
381  let isCommutable = isComm;
382}
383
384//  Logical
385class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
386  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
387     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
388     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
389  let shamt = 0;
390  let isCommutable = 1;
391}
392
393// Shifts
394class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm,
395                       SDNode OpNode, PatFrag PF, Operand ImmOpnd,
396                       RegisterClass RC>:
397  FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
398     !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
399     [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> {
400  let rs = isRotate;
401}
402
403// 32-bit shift instructions.
404class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm,
405                         SDNode OpNode>:
406  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>;
407
408class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
409                       SDNode OpNode, RegisterClass RC>:
410  FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
411     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
412     [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> {
413  let shamt = isRotate;
414}
415
416// Load Upper Imediate
417class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
418  FI<op, (outs RC:$rt), (ins Imm:$imm16),
419     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> {
420  let rs = 0;
421  let neverHasSideEffects = 1;
422  let isReMaterializable = 1;
423}
424
425class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
426          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
427  bits<21> addr;
428  let Inst{25-21} = addr{20-16};
429  let Inst{15-0}  = addr{15-0};
430  let DecoderMethod = "DecodeMem";
431}
432
433// Memory Load/Store
434let canFoldAsLoad = 1 in
435class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
436            Operand MemOpnd, bit Pseudo>:
437  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
438     !strconcat(instr_asm, "\t$rt, $addr"),
439     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
440  let isPseudo = Pseudo;
441}
442
443class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
444             Operand MemOpnd, bit Pseudo>:
445  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
446     !strconcat(instr_asm, "\t$rt, $addr"),
447     [(OpNode RC:$rt, addr:$addr)], IIStore> {
448  let isPseudo = Pseudo;
449}
450
451// 32-bit load.
452multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
453                   bit Pseudo = 0> {
454  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
455               Requires<[NotN64, HasStandardEncoding]>;
456  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
457               Requires<[IsN64, HasStandardEncoding]> {
458    let DecoderNamespace = "Mips64";
459    let isCodeGenOnly = 1;
460  }
461}
462
463// 64-bit load.
464multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
465                   bit Pseudo = 0> {
466  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
467               Requires<[NotN64, HasStandardEncoding]>;
468  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
469               Requires<[IsN64, HasStandardEncoding]> {
470    let DecoderNamespace = "Mips64";
471    let isCodeGenOnly = 1;
472  }
473}
474
475// 32-bit store.
476multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
477                    bit Pseudo = 0> {
478  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
479               Requires<[NotN64, HasStandardEncoding]>;
480  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
481               Requires<[IsN64, HasStandardEncoding]> {
482    let DecoderNamespace = "Mips64";
483    let isCodeGenOnly = 1;
484  }
485}
486
487// 64-bit store.
488multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
489                    bit Pseudo = 0> {
490  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
491               Requires<[NotN64, HasStandardEncoding]>;
492  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
493               Requires<[IsN64, HasStandardEncoding]> {
494    let DecoderNamespace = "Mips64";
495    let isCodeGenOnly = 1;
496  }
497}
498
499// Load/Store Left/Right
500let canFoldAsLoad = 1 in
501class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
502                    RegisterClass RC, Operand MemOpnd> :
503  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
504       !strconcat(instr_asm, "\t$rt, $addr"),
505       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
506  string Constraints = "$src = $rt";
507}
508
509class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
510                     RegisterClass RC, Operand MemOpnd>:
511  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
512       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
513       IIStore>;
514
515// 32-bit load left/right.
516multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
517  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
518               Requires<[NotN64, HasStandardEncoding]>;
519  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
520               Requires<[IsN64, HasStandardEncoding]> {
521    let DecoderNamespace = "Mips64";
522    let isCodeGenOnly = 1;
523  }
524}
525
526// 64-bit load left/right.
527multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
528  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
529               Requires<[NotN64, HasStandardEncoding]>;
530  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
531               Requires<[IsN64, HasStandardEncoding]> {
532    let DecoderNamespace = "Mips64";
533    let isCodeGenOnly = 1;
534  }
535}
536
537// 32-bit store left/right.
538multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
539  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
540               Requires<[NotN64, HasStandardEncoding]>;
541  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
542               Requires<[IsN64, HasStandardEncoding]> {
543    let DecoderNamespace = "Mips64";
544    let isCodeGenOnly = 1;
545  }
546}
547
548// 64-bit store left/right.
549multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
550  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
551               Requires<[NotN64, HasStandardEncoding]>;
552  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
553               Requires<[IsN64, HasStandardEncoding]> {
554    let DecoderNamespace = "Mips64";
555    let isCodeGenOnly = 1;
556  }
557}
558
559// Conditional Branch
560class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
561  BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
562             !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
563             [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
564  let isBranch = 1;
565  let isTerminator = 1;
566  let hasDelaySlot = 1;
567  let Defs = [AT];
568}
569
570class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
571                  RegisterClass RC>:
572  BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
573             !strconcat(instr_asm, "\t$rs, $imm16"),
574             [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
575  let rt = _rt;
576  let isBranch = 1;
577  let isTerminator = 1;
578  let hasDelaySlot = 1;
579  let Defs = [AT];
580}
581
582// SetCC
583class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
584              RegisterClass RC>:
585  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
586     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
587     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
588     IIAlu> {
589  let shamt = 0;
590}
591
592class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
593              PatLeaf imm_type, RegisterClass RC>:
594  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
595     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
596     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
597     IIAlu>;
598
599// Jump
600class JumpFJ<bits<6> op, string instr_asm>:
601  FJ<op, (outs), (ins jmptarget:$target),
602     !strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch> {
603  let isBranch=1;
604  let isTerminator=1;
605  let isBarrier=1;
606  let hasDelaySlot = 1;
607  let Predicates = [RelocStatic, HasStandardEncoding];
608  let DecoderMethod = "DecodeJumpTarget";
609  let Defs = [AT];
610}
611
612// Unconditional branch
613class UncondBranch<bits<6> op, string instr_asm>:
614  BranchBase<op, (outs), (ins brtarget:$imm16),
615             !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
616  let rs = 0;
617  let rt = 0;
618  let isBranch = 1;
619  let isTerminator = 1;
620  let isBarrier = 1;
621  let hasDelaySlot = 1;
622  let Predicates = [RelocPIC, HasStandardEncoding];
623  let Defs = [AT];
624}
625
626// Base class for indirect branch and return instruction classes.
627let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
628class JumpFR<RegisterClass RC, list<dag> pattern>:
629  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", pattern, IIBranch> {
630  let rt = 0;
631  let rd = 0;
632  let shamt = 0;
633}
634
635// Indirect branch
636class IndirectBranch<RegisterClass RC>: JumpFR<RC, [(brind RC:$rs)]> {
637  let isBranch = 1;
638  let isIndirectBranch = 1;
639}
640
641// Return instruction
642class RetBase<RegisterClass RC>: JumpFR<RC, []> {
643  let isReturn = 1;
644  let isCodeGenOnly = 1;
645  let hasCtrlDep = 1;
646  let hasExtraSrcRegAllocReq = 1;
647}
648
649// Jump and Link (Call)
650let isCall=1, hasDelaySlot=1, Defs = [RA] in {
651  class JumpLink<bits<6> op, string instr_asm>:
652    FJ<op, (outs), (ins calltarget:$target),
653       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
654       IIBranch> {
655       let DecoderMethod = "DecodeJumpTarget";
656       }
657
658  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
659                    RegisterClass RC>:
660    FR<op, func, (outs), (ins RC:$rs),
661       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
662    let rt = 0;
663    let rd = 31;
664    let shamt = 0;
665  }
666
667  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
668    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
669       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
670    let rt = _rt;
671  }
672}
673
674// Mul, Div
675class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
676           RegisterClass RC, list<Register> DefRegs>:
677  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
678     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
679  let rd = 0;
680  let shamt = 0;
681  let isCommutable = 1;
682  let Defs = DefRegs;
683  let neverHasSideEffects = 1;
684}
685
686class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
687  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
688
689class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
690          RegisterClass RC, list<Register> DefRegs>:
691  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
692     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
693     [(op RC:$rs, RC:$rt)], itin> {
694  let rd = 0;
695  let shamt = 0;
696  let Defs = DefRegs;
697}
698
699class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
700  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
701
702// Move from Hi/Lo
703class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
704                   list<Register> UseRegs>:
705  FR<0x00, func, (outs RC:$rd), (ins),
706     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
707  let rs = 0;
708  let rt = 0;
709  let shamt = 0;
710  let Uses = UseRegs;
711  let neverHasSideEffects = 1;
712}
713
714class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
715                 list<Register> DefRegs>:
716  FR<0x00, func, (outs), (ins RC:$rs),
717     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
718  let rt = 0;
719  let rd = 0;
720  let shamt = 0;
721  let Defs = DefRegs;
722  let neverHasSideEffects = 1;
723}
724
725class EffectiveAddress<string instr_asm, RegisterClass RC, Operand Mem> :
726  FMem<0x09, (outs RC:$rt), (ins Mem:$addr),
727     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu>;
728
729// Count Leading Ones/Zeros in Word
730class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
731  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
732     !strconcat(instr_asm, "\t$rd, $rs"),
733     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
734     Requires<[HasBitCount, HasStandardEncoding]> {
735  let shamt = 0;
736  let rt = rd;
737}
738
739class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
740  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
741     !strconcat(instr_asm, "\t$rd, $rs"),
742     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
743     Requires<[HasBitCount, HasStandardEncoding]> {
744  let shamt = 0;
745  let rt = rd;
746}
747
748// Sign Extend in Register.
749class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
750                   RegisterClass RC>:
751  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
752     !strconcat(instr_asm, "\t$rd, $rt"),
753     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
754  let rs = 0;
755  let shamt = sa;
756  let Predicates = [HasSEInReg, HasStandardEncoding];
757}
758
759// Subword Swap
760class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
761  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
762     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
763  let rs = 0;
764  let shamt = sa;
765  let Predicates = [HasSwap, HasStandardEncoding];
766  let neverHasSideEffects = 1;
767}
768
769// Read Hardware
770class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
771  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
772       "rdhwr\t$rt, $rd", [], IIAlu> {
773  let rs = 0;
774  let shamt = 0;
775}
776
777// Ext and Ins
778class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
779  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
780     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
781     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
782  bits<5> pos;
783  bits<5> sz;
784  let rd = sz;
785  let shamt = pos;
786  let Predicates = [HasMips32r2, HasStandardEncoding];
787}
788
789class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
790  FR<0x1f, _funct, (outs RC:$rt),
791     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
792     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
793     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
794     NoItinerary> {
795  bits<5> pos;
796  bits<5> sz;
797  let rd = sz;
798  let shamt = pos;
799  let Predicates = [HasMips32r2, HasStandardEncoding];
800  let Constraints = "$src = $rt";
801}
802
803// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
804class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
805                 RegisterClass PRC> :
806  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
807           !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
808           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
809
810multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
811  def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>,
812                          Requires<[NotN64, HasStandardEncoding]>;
813  def _P8    : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>,
814                          Requires<[IsN64, HasStandardEncoding]> {
815    let DecoderNamespace = "Mips64";
816  }
817}
818
819// Atomic Compare & Swap.
820class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
821                    RegisterClass PRC> :
822  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
823           !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
824           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
825
826multiclass AtomicCmpSwap32<PatFrag Op, string Width>  {
827  def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>,
828                             Requires<[NotN64, HasStandardEncoding]>;
829  def _P8    : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>,
830                             Requires<[IsN64, HasStandardEncoding]> {
831    let DecoderNamespace = "Mips64";
832  }
833}
834
835class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
836  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
837       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
838  let mayLoad = 1;
839}
840
841class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
842  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
843       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
844  let mayStore = 1;
845  let Constraints = "$rt = $dst";
846}
847
848//===----------------------------------------------------------------------===//
849// Pseudo instructions
850//===----------------------------------------------------------------------===//
851
852// Return RA.
853let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
854def RetRA : PseudoSE<(outs), (ins), "", [(MipsRet)]>;
855
856let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
857def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
858                                  "!ADJCALLSTACKDOWN $amt",
859                                  [(callseq_start timm:$amt)]>;
860def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
861                                  "!ADJCALLSTACKUP $amt1",
862                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
863}
864
865// When handling PIC code the assembler needs .cpload and .cprestore
866// directives. If the real instructions corresponding these directives
867// are used, we have the same behavior, but get also a bunch of warnings
868// from the assembler.
869let neverHasSideEffects = 1 in
870def CPRESTORE : PseudoSE<(outs), (ins i32imm:$loc, CPURegs:$gp),
871                         ".cprestore\t$loc", []>;
872
873let usesCustomInserter = 1 in {
874  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
875  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
876  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
877  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
878  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
879  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
880  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
881  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
882  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
883  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
884  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
885  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
886  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
887  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
888  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
889  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
890  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
891  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
892
893  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8, "swap_8">;
894  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16, "swap_16">;
895  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32, "swap_32">;
896
897  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
898  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
899  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
900}
901
902//===----------------------------------------------------------------------===//
903// Instruction definition
904//===----------------------------------------------------------------------===//
905
906//===----------------------------------------------------------------------===//
907// MipsI Instructions
908//===----------------------------------------------------------------------===//
909
910/// Arithmetic Instructions (ALU Immediate)
911def ADDiu   : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>;
912def ADDi    : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>;
913def SLTi    : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
914def SLTiu   : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
915def ANDi    : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>;
916def ORi     : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>;
917def XORi    : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>;
918def LUi     : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
919
920/// Arithmetic Instructions (3-Operand, R-Type)
921def ADDu    : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>;
922def SUBu    : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>;
923def ADD     : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>;
924def SUB     : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>;
925def SLT     : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
926def SLTu    : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
927def AND     : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>;
928def OR      : ArithLogicR<0x00, 0x25, "or",  or, IIAlu, CPURegs, 1>;
929def XOR     : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>;
930def NOR     : LogicNOR<0x00, 0x27, "nor", CPURegs>;
931
932/// Shift Instructions
933def SLL     : shift_rotate_imm32<0x00, 0x00, "sll", shl>;
934def SRL     : shift_rotate_imm32<0x02, 0x00, "srl", srl>;
935def SRA     : shift_rotate_imm32<0x03, 0x00, "sra", sra>;
936def SLLV    : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
937def SRLV    : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
938def SRAV    : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
939
940// Rotate Instructions
941let Predicates = [HasMips32r2, HasStandardEncoding] in {
942    def ROTR    : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>;
943    def ROTRV   : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
944}
945
946/// Load and Store Instructions
947///  aligned
948defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
949defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
950defm LH      : LoadM32<0x21, "lh",  sextloadi16_a>;
951defm LHu     : LoadM32<0x25, "lhu", zextloadi16_a>;
952defm LW      : LoadM32<0x23, "lw",  load_a>;
953defm SB      : StoreM32<0x28, "sb", truncstorei8>;
954defm SH      : StoreM32<0x29, "sh", truncstorei16_a>;
955defm SW      : StoreM32<0x2b, "sw", store_a>;
956
957///  unaligned
958defm ULH     : LoadM32<0x21, "ulh",  sextloadi16_u, 1>;
959defm ULHu    : LoadM32<0x25, "ulhu", zextloadi16_u, 1>;
960defm ULW     : LoadM32<0x23, "ulw",  load_u, 1>;
961defm USH     : StoreM32<0x29, "ush", truncstorei16_u, 1>;
962defm USW     : StoreM32<0x2b, "usw", store_u, 1>;
963
964/// load/store left/right
965defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
966defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
967defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
968defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
969
970let hasSideEffects = 1 in
971def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
972                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
973{
974  bits<5> stype;
975  let Opcode = 0;
976  let Inst{25-11} = 0;
977  let Inst{10-6} = stype;
978  let Inst{5-0} = 15;
979}
980
981/// Load-linked, Store-conditional
982def LL    : LLBase<0x30, "ll", CPURegs, mem>,
983            Requires<[NotN64, HasStandardEncoding]>;
984def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
985            Requires<[IsN64, HasStandardEncoding]> {
986  let DecoderNamespace = "Mips64";
987}
988
989def SC    : SCBase<0x38, "sc", CPURegs, mem>,
990            Requires<[NotN64, HasStandardEncoding]>;
991def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
992            Requires<[IsN64, HasStandardEncoding]> {
993  let DecoderNamespace = "Mips64";
994}
995
996/// Jump and Branch Instructions
997def J       : JumpFJ<0x02, "j">;
998def JR      : IndirectBranch<CPURegs>;
999def B       : UncondBranch<0x04, "b">;
1000def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
1001def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
1002def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
1003def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
1004def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
1005def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
1006
1007let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
1008    hasDelaySlot = 1, Defs = [RA] in
1009def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
1010
1011def JAL  : JumpLink<0x03, "jal">;
1012def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
1013def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
1014def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
1015
1016def RET : RetBase<CPURegs>;
1017
1018/// Multiply and Divide Instructions.
1019def MULT    : Mult32<0x18, "mult", IIImul>;
1020def MULTu   : Mult32<0x19, "multu", IIImul>;
1021def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
1022def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
1023
1024def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
1025def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
1026def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
1027def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
1028
1029/// Sign Ext In Register Instructions.
1030def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
1031def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
1032
1033/// Count Leading
1034def CLZ : CountLeading0<0x20, "clz", CPURegs>;
1035def CLO : CountLeading1<0x21, "clo", CPURegs>;
1036
1037/// Word Swap Bytes Within Halfwords
1038def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
1039
1040/// No operation
1041let addr=0 in
1042  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1043
1044// FrameIndexes are legalized when they are operands from load/store
1045// instructions. The same not happens for stack address copies, so an
1046// add op with mem ComplexPattern is used and the stack address copy
1047// can be matched. It's similar to Sparc LEA_ADDRi
1048def LEA_ADDiu : EffectiveAddress<"addiu\t$rt, $addr", CPURegs, mem_ea> {
1049  let isCodeGenOnly = 1;
1050}
1051
1052// DynAlloc node points to dynamically allocated stack space.
1053// $sp is added to the list of implicitly used registers to prevent dead code
1054// elimination from removing instructions that modify $sp.
1055let Uses = [SP] in
1056def DynAlloc : EffectiveAddress<"addiu\t$rt, $addr", CPURegs, mem_ea> {
1057  let isCodeGenOnly = 1;
1058}
1059
1060// MADD*/MSUB*
1061def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1062def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1063def MSUB  : MArithR<4, "msub", MipsMSub>;
1064def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1065
1066// MUL is a assembly macro in the current used ISAs. In recent ISA's
1067// it is a real instruction.
1068def MUL   : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>,
1069            Requires<[HasMips32, HasStandardEncoding]>;
1070
1071def RDHWR : ReadHardware<CPURegs, HWRegs>;
1072
1073def EXT : ExtBase<0, "ext", CPURegs>;
1074def INS : InsBase<4, "ins", CPURegs>;
1075
1076//===----------------------------------------------------------------------===//
1077//  Arbitrary patterns that map to one or more instructions
1078//===----------------------------------------------------------------------===//
1079
1080// Small immediates
1081def : MipsPat<(i32 immSExt16:$in),
1082              (ADDiu ZERO, imm:$in)>;
1083def : MipsPat<(i32 immZExt16:$in),
1084              (ORi ZERO, imm:$in)>;
1085def : MipsPat<(i32 immLow16Zero:$in),
1086              (LUi (HI16 imm:$in))>;
1087
1088// Arbitrary immediates
1089def : MipsPat<(i32 imm:$imm),
1090          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1091
1092// Carry MipsPatterns
1093def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1094              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1095def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1096              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1097def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1098              (ADDiu CPURegs:$src, imm:$imm)>;
1099
1100// Call
1101def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1102              (JAL tglobaladdr:$dst)>;
1103def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1104              (JAL texternalsym:$dst)>;
1105//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1106//              (JALR CPURegs:$dst)>;
1107
1108// hi/lo relocs
1109def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1110def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1111def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1112def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1113def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1114
1115def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1116def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1117def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1118def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1119def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1120
1121def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1122              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1123def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1124              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1125def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1126              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1127def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1128              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1129def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1130              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1131
1132// gp_rel relocs
1133def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1134              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1135def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1136              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1137
1138// wrapper_pic
1139class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1140      MipsPat<(MipsWrapper RC:$gp, node:$in),
1141              (ADDiuOp RC:$gp, node:$in)>;
1142
1143def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1144def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1145def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1146def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1147def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1148def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1149
1150// Mips does not have "not", so we expand our way
1151def : MipsPat<(not CPURegs:$in),
1152              (NOR CPURegs:$in, ZERO)>;
1153
1154// extended loads
1155let Predicates = [NotN64, HasStandardEncoding] in {
1156  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1157  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1158  def : MipsPat<(i32 (extloadi16_a addr:$src)), (LHu addr:$src)>;
1159  def : MipsPat<(i32 (extloadi16_u addr:$src)), (ULHu addr:$src)>;
1160}
1161let Predicates = [IsN64, HasStandardEncoding] in {
1162  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1163  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1164  def : MipsPat<(i32 (extloadi16_a addr:$src)), (LHu_P8 addr:$src)>;
1165  def : MipsPat<(i32 (extloadi16_u addr:$src)), (ULHu_P8 addr:$src)>;
1166}
1167
1168// peepholes
1169let Predicates = [NotN64, HasStandardEncoding] in {
1170  def : MipsPat<(store_a (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1171  def : MipsPat<(store_u (i32 0), addr:$dst), (USW ZERO, addr:$dst)>;
1172}
1173let Predicates = [IsN64, HasStandardEncoding] in {
1174  def : MipsPat<(store_a (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1175  def : MipsPat<(store_u (i32 0), addr:$dst), (USW_P8 ZERO, addr:$dst)>;
1176}
1177
1178// brcond patterns
1179multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1180                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1181                      Instruction SLTiuOp, Register ZEROReg> {
1182def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1183              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1184def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1185              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1186
1187def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1188              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1189def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1190              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1191def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1192              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1193def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1194              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1195
1196def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1197              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1198def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1199              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1200
1201def : MipsPat<(brcond RC:$cond, bb:$dst),
1202              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1203}
1204
1205defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1206
1207// setcc patterns
1208multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1209                     Instruction SLTuOp, Register ZEROReg> {
1210  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1211                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1212  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1213                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1214}
1215
1216multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1217  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1218                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1219  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1220                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1221}
1222
1223multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1224  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1225                (SLTOp RC:$rhs, RC:$lhs)>;
1226  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1227                (SLTuOp RC:$rhs, RC:$lhs)>;
1228}
1229
1230multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1231  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1232                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1233  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1234                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1235}
1236
1237multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1238                        Instruction SLTiuOp> {
1239  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1240                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1241  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1242                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1243}
1244
1245defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1246defm : SetlePats<CPURegs, SLT, SLTu>;
1247defm : SetgtPats<CPURegs, SLT, SLTu>;
1248defm : SetgePats<CPURegs, SLT, SLTu>;
1249defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1250
1251// select MipsDynAlloc
1252def : MipsPat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
1253
1254// bswap pattern
1255def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1256
1257//===----------------------------------------------------------------------===//
1258// Floating Point Support
1259//===----------------------------------------------------------------------===//
1260
1261include "MipsInstrFPU.td"
1262include "Mips64InstrInfo.td"
1263include "MipsCondMov.td"
1264
1265//
1266// Mips16
1267
1268include "Mips16InstrFormats.td"
1269include "Mips16InstrInfo.td"
1270