MipsInstrInfo.td revision 6a8309e62afd88fbea4f1c39121de6dc4dc0d899
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
37
38def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
39                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
40def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
42                                   SDTCisSameAs<0, 4>]>;
43
44def SDTMipsLoadLR  : SDTypeProfile<1, 2,
45                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
46                                    SDTCisSameAs<0, 2>]>;
47
48// Call
49def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
50                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
51                          SDNPVariadic]>;
52
53// Tail call
54def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
55                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
56
57// Hi and Lo nodes are used to handle global addresses. Used on
58// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
59// static model. (nothing to do with Mips Registers Hi and Lo)
60def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
61def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
62def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
63
64// TlsGd node is used to handle General Dynamic TLS
65def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
66
67// TprelHi and TprelLo nodes are used to handle Local Exec TLS
68def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
69def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
70
71// Thread pointer
72def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
73
74// Return
75def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
76
77// These are target-independent nodes, but have target-specific formats.
78def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
79                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
80def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
81                           [SDNPHasChain, SDNPSideEffect,
82                            SDNPOptInGlue, SDNPOutGlue]>;
83
84// MAdd*/MSub* nodes
85def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
86                           [SDNPOptInGlue, SDNPOutGlue]>;
87def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
92                           [SDNPOptInGlue, SDNPOutGlue]>;
93
94// DivRem(u) nodes
95def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
96                           [SDNPOutGlue]>;
97def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
98                           [SDNPOutGlue]>;
99
100// Target constant nodes that are not part of any isel patterns and remain
101// unchanged can cause instructions with illegal operands to be emitted.
102// Wrapper node patterns give the instruction selector a chance to replace
103// target constant nodes that would otherwise remain unchanged with ADDiu
104// nodes. Without these wrapper node patterns, the following conditional move
105// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
106// compiled:
107//  movn  %got(d)($gp), %got(c)($gp), $4
108// This instruction is illegal since movn can take only register operands.
109
110def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
111
112def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
113
114def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
115def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
116
117def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
118                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
119def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
120                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
121def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
122                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
123def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
124                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
125def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
126                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
127def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
128                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
129def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
130                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
131def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
132                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
133
134//===----------------------------------------------------------------------===//
135// Mips Instruction Predicate Definitions.
136//===----------------------------------------------------------------------===//
137def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
138                      AssemblerPredicate<"FeatureSEInReg">;
139def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
140                      AssemblerPredicate<"FeatureBitCount">;
141def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
142                      AssemblerPredicate<"FeatureSwap">;
143def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
144                      AssemblerPredicate<"FeatureCondMov">;
145def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
146                      AssemblerPredicate<"FeatureFPIdx">;
147def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
148                      AssemblerPredicate<"FeatureMips32">;
149def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
150                      AssemblerPredicate<"FeatureMips32r2">;
151def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
152                      AssemblerPredicate<"FeatureMips64">;
153def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
154                      AssemblerPredicate<"!FeatureMips64">;
155def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
156                      AssemblerPredicate<"FeatureMips64r2">;
157def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
158                      AssemblerPredicate<"FeatureN64">;
159def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
160                      AssemblerPredicate<"!FeatureN64">;
161def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
162                      AssemblerPredicate<"FeatureMips16">;
163def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
164                      AssemblerPredicate<"FeatureMips32">;
165def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
166                      AssemblerPredicate<"FeatureMips32">;
167def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
168                      AssemblerPredicate<"FeatureMips32">;
169def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
170                      AssemblerPredicate<"!FeatureMips16">;
171
172class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
173  let Predicates = [HasStdEnc];
174}
175
176class IsCommutable {
177  bit isCommutable = 1;
178}
179
180class IsBranch {
181  bit isBranch = 1;
182}
183
184class IsReturn {
185  bit isReturn = 1;
186}
187
188class IsCall {
189  bit isCall = 1;
190}
191
192class IsTailCall {
193  bit isCall = 1;
194  bit isTerminator = 1;
195  bit isReturn = 1;
196  bit isBarrier = 1;
197  bit hasExtraSrcRegAllocReq = 1;
198  bit isCodeGenOnly = 1;
199}
200
201class IsAsCheapAsAMove {
202  bit isAsCheapAsAMove = 1;
203}
204
205class NeverHasSideEffects {
206  bit neverHasSideEffects = 1;
207}
208
209//===----------------------------------------------------------------------===//
210// Instruction format superclass
211//===----------------------------------------------------------------------===//
212
213include "MipsInstrFormats.td"
214
215//===----------------------------------------------------------------------===//
216// Mips Operand, Complex Patterns and Transformations Definitions.
217//===----------------------------------------------------------------------===//
218
219// Instruction operand types
220def jmptarget   : Operand<OtherVT> {
221  let EncoderMethod = "getJumpTargetOpValue";
222}
223def brtarget    : Operand<OtherVT> {
224  let EncoderMethod = "getBranchTargetOpValue";
225  let OperandType = "OPERAND_PCREL";
226  let DecoderMethod = "DecodeBranchTarget";
227}
228def calltarget  : Operand<iPTR> {
229  let EncoderMethod = "getJumpTargetOpValue";
230}
231def calltarget64: Operand<i64>;
232def simm16      : Operand<i32> {
233  let DecoderMethod= "DecodeSimm16";
234}
235def simm16_64   : Operand<i64>;
236def shamt       : Operand<i32>;
237
238// Unsigned Operand
239def uimm16      : Operand<i32> {
240  let PrintMethod = "printUnsignedImm";
241}
242
243def MipsMemAsmOperand : AsmOperandClass {
244  let Name = "Mem";
245  let ParserMethod = "parseMemOperand";
246}
247
248// Address operand
249def mem : Operand<i32> {
250  let PrintMethod = "printMemOperand";
251  let MIOperandInfo = (ops CPURegs, simm16);
252  let EncoderMethod = "getMemEncoding";
253  let ParserMatchClass = MipsMemAsmOperand;
254}
255
256def mem64 : Operand<i64> {
257  let PrintMethod = "printMemOperand";
258  let MIOperandInfo = (ops CPU64Regs, simm16_64);
259  let EncoderMethod = "getMemEncoding";
260  let ParserMatchClass = MipsMemAsmOperand;
261}
262
263def mem_ea : Operand<i32> {
264  let PrintMethod = "printMemOperandEA";
265  let MIOperandInfo = (ops CPURegs, simm16);
266  let EncoderMethod = "getMemEncoding";
267}
268
269def mem_ea_64 : Operand<i64> {
270  let PrintMethod = "printMemOperandEA";
271  let MIOperandInfo = (ops CPU64Regs, simm16_64);
272  let EncoderMethod = "getMemEncoding";
273}
274
275// size operand of ext instruction
276def size_ext : Operand<i32> {
277  let EncoderMethod = "getSizeExtEncoding";
278  let DecoderMethod = "DecodeExtSize";
279}
280
281// size operand of ins instruction
282def size_ins : Operand<i32> {
283  let EncoderMethod = "getSizeInsEncoding";
284  let DecoderMethod = "DecodeInsSize";
285}
286
287// Transformation Function - get the lower 16 bits.
288def LO16 : SDNodeXForm<imm, [{
289  return getImm(N, N->getZExtValue() & 0xFFFF);
290}]>;
291
292// Transformation Function - get the higher 16 bits.
293def HI16 : SDNodeXForm<imm, [{
294  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
295}]>;
296
297// Node immediate fits as 16-bit sign extended on target immediate.
298// e.g. addi, andi
299def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
300
301// Node immediate fits as 15-bit sign extended on target immediate.
302// e.g. addi, andi
303def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
304
305// Node immediate fits as 16-bit zero extended on target immediate.
306// The LO16 param means that only the lower 16 bits of the node
307// immediate are caught.
308// e.g. addiu, sltiu
309def immZExt16  : PatLeaf<(imm), [{
310  if (N->getValueType(0) == MVT::i32)
311    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
312  else
313    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
314}], LO16>;
315
316// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
317def immLow16Zero : PatLeaf<(imm), [{
318  int64_t Val = N->getSExtValue();
319  return isInt<32>(Val) && !(Val & 0xffff);
320}]>;
321
322// shamt field must fit in 5 bits.
323def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
324
325// Mips Address Mode! SDNode frameindex could possibily be a match
326// since load and store instructions from stack used it.
327def addr :
328  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
329
330//===----------------------------------------------------------------------===//
331// Instructions specific format
332//===----------------------------------------------------------------------===//
333
334// Arithmetic and logical instructions with 3 register operands.
335class ArithLogicR<string opstr, RegisterClass RC, bit isComm = 0,
336                  InstrItinClass Itin = NoItinerary,
337                  SDPatternOperator OpNode = null_frag>:
338  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
339         !strconcat(opstr, "\t$rd, $rs, $rt"),
340         [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], Itin, FrmR> {
341  let isCommutable = isComm;
342  let isReMaterializable = 1;
343}
344
345// Arithmetic and logical instructions with 2 register operands.
346class ArithLogicI<string opstr, Operand Od, RegisterClass RC,
347                  SDPatternOperator imm_type = null_frag,
348                  SDPatternOperator OpNode = null_frag> :
349  InstSE<(outs RC:$rt), (ins RC:$rs, Od:$imm16),
350         !strconcat(opstr, "\t$rt, $rs, $imm16"),
351         [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu, FrmI> {
352  let isReMaterializable = 1;
353}
354
355// Arithmetic Multiply ADD/SUB
356let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
357class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
358  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
359     !strconcat(instr_asm, "\t$rs, $rt"),
360     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
361  let rd = 0;
362  let shamt = 0;
363  let isCommutable = isComm;
364}
365
366//  Logical
367class LogicNOR<string opstr, RegisterClass RC>:
368  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
369         !strconcat(opstr, "\t$rd, $rs, $rt"),
370         [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu, FrmR> {
371  let isCommutable = 1;
372}
373
374// Shifts
375class shift_rotate_imm<string opstr, PatFrag PF, Operand ImmOpnd,
376                       RegisterClass RC, SDPatternOperator OpNode> :
377  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
378         !strconcat(opstr, "\t$rd, $rt, $shamt"),
379         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR>;
380
381// 32-bit shift instructions.
382class shift_rotate_imm32<string opstr, SDPatternOperator OpNode = null_frag> :
383  shift_rotate_imm<opstr, immZExt5, shamt, CPURegs, OpNode>;
384
385class shift_rotate_reg<string opstr, SDNode OpNode, RegisterClass RC>:
386  InstSE<(outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
387         !strconcat(opstr, "\t$rd, $rt, $rs"),
388         [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu, FrmR>;
389
390// Load Upper Imediate
391class LoadUpper<string opstr, RegisterClass RC, Operand Imm>:
392  InstSE<(outs RC:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
393         [], IIAlu, FrmI>, IsAsCheapAsAMove {
394  let neverHasSideEffects = 1;
395  let isReMaterializable = 1;
396}
397
398class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
399          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
400  bits<21> addr;
401  let Inst{25-21} = addr{20-16};
402  let Inst{15-0}  = addr{15-0};
403  let DecoderMethod = "DecodeMem";
404}
405
406// Memory Load/Store
407class Load<string opstr, PatFrag OpNode, RegisterClass RC, Operand MemOpnd> :
408  InstSE<(outs RC:$rt), (ins MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
409         [(set RC:$rt, (OpNode addr:$addr))], NoItinerary, FrmI> {
410  let DecoderMethod = "DecodeMem";
411  let canFoldAsLoad = 1;
412}
413
414class Store<string opstr, PatFrag OpNode, RegisterClass RC, Operand MemOpnd> :
415  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
416         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
417  let DecoderMethod = "DecodeMem";
418}
419
420multiclass LoadM<string opstr, PatFrag OpNode, RegisterClass RC> {
421  def #NAME# : Load<opstr, OpNode, RC, mem>, Requires<[NotN64, HasStdEnc]>;
422  def _P8    : Load<opstr, OpNode, RC, mem64>, Requires<[IsN64, HasStdEnc]> {
423    let DecoderNamespace = "Mips64";
424    let isCodeGenOnly = 1;
425  }
426}
427
428multiclass StoreM<string opstr, PatFrag OpNode, RegisterClass RC> {
429  def #NAME# : Store<opstr, OpNode, RC, mem>, Requires<[NotN64, HasStdEnc]>;
430  def _P8    : Store<opstr, OpNode, RC, mem64>, Requires<[IsN64, HasStdEnc]> {
431    let DecoderNamespace = "Mips64";
432    let isCodeGenOnly = 1;
433  }
434}
435
436// Load/Store Left/Right
437let canFoldAsLoad = 1 in
438class LoadLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
439                    Operand MemOpnd> :
440  InstSE<(outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
441         !strconcat(opstr, "\t$rt, $addr"),
442         [(set RC:$rt, (OpNode addr:$addr, RC:$src))], NoItinerary, FrmI> {
443  let DecoderMethod = "DecodeMem";
444  string Constraints = "$src = $rt";
445}
446
447class StoreLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
448                     Operand MemOpnd>:
449  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
450         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
451  let DecoderMethod = "DecodeMem";
452}
453
454multiclass LoadLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
455  def #NAME# : LoadLeftRight<opstr, OpNode, RC, mem>,
456               Requires<[NotN64, HasStdEnc]>;
457  def _P8    : LoadLeftRight<opstr, OpNode, RC, mem64>,
458               Requires<[IsN64, HasStdEnc]> {
459    let DecoderNamespace = "Mips64";
460    let isCodeGenOnly = 1;
461  }
462}
463
464multiclass StoreLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
465  def #NAME# : StoreLeftRight<opstr, OpNode, RC, mem>,
466               Requires<[NotN64, HasStdEnc]>;
467  def _P8    : StoreLeftRight<opstr, OpNode, RC, mem64>,
468               Requires<[IsN64, HasStdEnc]> {
469    let DecoderNamespace = "Mips64";
470    let isCodeGenOnly = 1;
471  }
472}
473
474// Conditional Branch
475class CBranch<string opstr, PatFrag cond_op, RegisterClass RC> :
476  InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset),
477         !strconcat(opstr, "\t$rs, $rt, $offset"),
478         [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch,
479         FrmI> {
480  let isBranch = 1;
481  let isTerminator = 1;
482  let hasDelaySlot = 1;
483  let Defs = [AT];
484}
485
486class CBranchZero<string opstr, PatFrag cond_op, RegisterClass RC> :
487  InstSE<(outs), (ins RC:$rs, brtarget:$offset),
488         !strconcat(opstr, "\t$rs, $offset"),
489         [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
490  let isBranch = 1;
491  let isTerminator = 1;
492  let hasDelaySlot = 1;
493  let Defs = [AT];
494}
495
496// SetCC
497class SetCC_R<string opstr, PatFrag cond_op, RegisterClass RC> :
498  InstSE<(outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
499         !strconcat(opstr, "\t$rd, $rs, $rt"),
500         [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))], IIAlu, FrmR>;
501
502class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
503              RegisterClass RC>:
504  InstSE<(outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
505         !strconcat(opstr, "\t$rt, $rs, $imm16"),
506         [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))], IIAlu, FrmI>;
507
508// Jump
509class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
510             SDPatternOperator targetoperator> :
511  InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
512         [(operator targetoperator:$target)], IIBranch, FrmJ> {
513  let isTerminator=1;
514  let isBarrier=1;
515  let hasDelaySlot = 1;
516  let DecoderMethod = "DecodeJumpTarget";
517  let Defs = [AT];
518}
519
520// Unconditional branch
521class UncondBranch<string opstr> :
522  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
523         [(br bb:$offset)], IIBranch, FrmI> {
524  let isBranch = 1;
525  let isTerminator = 1;
526  let isBarrier = 1;
527  let hasDelaySlot = 1;
528  let Predicates = [RelocPIC, HasStdEnc];
529  let Defs = [AT];
530}
531
532// Base class for indirect branch and return instruction classes.
533let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
534class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
535  InstSE<(outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch, FrmR>;
536
537// Indirect branch
538class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
539  let isBranch = 1;
540  let isIndirectBranch = 1;
541}
542
543// Return instruction
544class RetBase<RegisterClass RC>: JumpFR<RC> {
545  let isReturn = 1;
546  let isCodeGenOnly = 1;
547  let hasCtrlDep = 1;
548  let hasExtraSrcRegAllocReq = 1;
549}
550
551// Jump and Link (Call)
552let isCall=1, hasDelaySlot=1, Defs = [RA] in {
553  class JumpLink<string opstr> :
554    InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"),
555           [(MipsJmpLink imm:$target)], IIBranch, FrmJ> {
556    let DecoderMethod = "DecodeJumpTarget";
557  }
558
559  class JumpLinkReg<string opstr, RegisterClass RC>:
560    InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"),
561           [(MipsJmpLink RC:$rs)], IIBranch, FrmR>;
562
563  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
564    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
565       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
566    let rt = _rt;
567  }
568}
569
570// Mul, Div
571class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
572           RegisterClass RC, list<Register> DefRegs>:
573  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
574     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
575  let rd = 0;
576  let shamt = 0;
577  let isCommutable = 1;
578  let Defs = DefRegs;
579  let neverHasSideEffects = 1;
580}
581
582class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
583  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
584
585class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
586          RegisterClass RC, list<Register> DefRegs>:
587  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
588     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
589     [(op RC:$rs, RC:$rt)], itin> {
590  let rd = 0;
591  let shamt = 0;
592  let Defs = DefRegs;
593}
594
595class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
596  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
597
598// Move from Hi/Lo
599class MoveFromLOHI<string opstr, RegisterClass RC, list<Register> UseRegs>:
600  InstSE<(outs RC:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> {
601  let Uses = UseRegs;
602  let neverHasSideEffects = 1;
603}
604
605class MoveToLOHI<string opstr, RegisterClass RC, list<Register> DefRegs>:
606  InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> {
607  let Defs = DefRegs;
608  let neverHasSideEffects = 1;
609}
610
611class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
612  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
613     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
614 let isCodeGenOnly = 1;
615}
616
617// Count Leading Ones/Zeros in Word
618class CountLeading0<string opstr, RegisterClass RC>:
619  InstSE<(outs RC:$rd), (ins RC:$rs), !strconcat(opstr, "\t$rd, $rs"),
620         [(set RC:$rd, (ctlz RC:$rs))], IIAlu, FrmR>,
621  Requires<[HasBitCount, HasStdEnc]>;
622
623class CountLeading1<string opstr, RegisterClass RC>:
624  InstSE<(outs RC:$rd), (ins RC:$rs), !strconcat(opstr, "\t$rd, $rs"),
625         [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu, FrmR>,
626  Requires<[HasBitCount, HasStdEnc]>;
627
628
629// Sign Extend in Register.
630class SignExtInReg<string opstr, ValueType vt, RegisterClass RC> :
631  InstSE<(outs RC:$rd), (ins RC:$rt), !strconcat(opstr, "\t$rd, $rt"),
632         [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary, FrmR> {
633  let Predicates = [HasSEInReg, HasStdEnc];
634}
635
636// Subword Swap
637class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
638  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
639     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
640  let rs = 0;
641  let shamt = sa;
642  let Predicates = [HasSwap, HasStdEnc];
643  let neverHasSideEffects = 1;
644}
645
646// Read Hardware
647class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
648  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
649       "rdhwr\t$rt, $rd", [], IIAlu> {
650  let rs = 0;
651  let shamt = 0;
652}
653
654// Ext and Ins
655class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
656  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
657     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
658     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
659  bits<5> pos;
660  bits<5> sz;
661  let rd = sz;
662  let shamt = pos;
663  let Predicates = [HasMips32r2, HasStdEnc];
664}
665
666class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
667  FR<0x1f, _funct, (outs RC:$rt),
668     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
669     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
670     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
671     NoItinerary> {
672  bits<5> pos;
673  bits<5> sz;
674  let rd = sz;
675  let shamt = pos;
676  let Predicates = [HasMips32r2, HasStdEnc];
677  let Constraints = "$src = $rt";
678}
679
680// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
681class Atomic2Ops<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
682  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
683           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
684
685multiclass Atomic2Ops32<PatFrag Op> {
686  def #NAME# : Atomic2Ops<Op, CPURegs, CPURegs>, Requires<[NotN64, HasStdEnc]>;
687  def _P8    : Atomic2Ops<Op, CPURegs, CPU64Regs>,
688               Requires<[IsN64, HasStdEnc]> {
689    let DecoderNamespace = "Mips64";
690  }
691}
692
693// Atomic Compare & Swap.
694class AtomicCmpSwap<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
695  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
696           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
697
698multiclass AtomicCmpSwap32<PatFrag Op>  {
699  def #NAME# : AtomicCmpSwap<Op, CPURegs, CPURegs>,
700               Requires<[NotN64, HasStdEnc]>;
701  def _P8    : AtomicCmpSwap<Op, CPURegs, CPU64Regs>,
702                             Requires<[IsN64, HasStdEnc]> {
703    let DecoderNamespace = "Mips64";
704  }
705}
706
707class LLBase<string opstr, RegisterClass RC, Operand Mem> :
708  InstSE<(outs RC:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
709         [], NoItinerary, FrmI> {
710  let DecoderMethod = "DecodeMem";
711  let mayLoad = 1;
712}
713
714class SCBase<string opstr, RegisterClass RC, Operand Mem> :
715  InstSE<(outs RC:$dst), (ins RC:$rt, Mem:$addr),
716         !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
717  let DecoderMethod = "DecodeMem";
718  let mayStore = 1;
719  let Constraints = "$rt = $dst";
720}
721
722//===----------------------------------------------------------------------===//
723// Pseudo instructions
724//===----------------------------------------------------------------------===//
725
726// Return RA.
727let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
728def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
729
730let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
731def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
732                                  [(callseq_start timm:$amt)]>;
733def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
734                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
735}
736
737let usesCustomInserter = 1 in {
738  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8>;
739  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16>;
740  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32>;
741  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8>;
742  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16>;
743  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32>;
744  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8>;
745  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16>;
746  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32>;
747  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8>;
748  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16>;
749  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32>;
750  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8>;
751  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16>;
752  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32>;
753  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8>;
754  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16>;
755  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32>;
756
757  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8>;
758  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16>;
759  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32>;
760
761  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8>;
762  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16>;
763  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32>;
764}
765
766//===----------------------------------------------------------------------===//
767// Instruction definition
768//===----------------------------------------------------------------------===//
769//===----------------------------------------------------------------------===//
770// MipsI Instructions
771//===----------------------------------------------------------------------===//
772
773/// Arithmetic Instructions (ALU Immediate)
774def ADDiu : ArithLogicI<"addiu", simm16, CPURegs, immSExt16, add>,
775            ADDI_FM<0x9>, IsAsCheapAsAMove;
776def ADDi  : ArithLogicI<"addi", simm16, CPURegs>, ADDI_FM<0x8>;
777def SLTi  : SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>, SLTI_FM<0xa>;
778def SLTiu : SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>, SLTI_FM<0xb>;
779def ANDi  : ArithLogicI<"andi", uimm16, CPURegs, immZExt16, and>, ADDI_FM<0xc>;
780def ORi   : ArithLogicI<"ori", uimm16, CPURegs, immZExt16, or>, ADDI_FM<0xd>;
781def XORi  : ArithLogicI<"xori", uimm16, CPURegs, immZExt16, xor>, ADDI_FM<0xe>;
782def LUi   : LoadUpper<"lui", CPURegs, uimm16>, LUI_FM;
783
784/// Arithmetic Instructions (3-Operand, R-Type)
785def ADDu : ArithLogicR<"addu", CPURegs, 1, IIAlu, add>, ADD_FM<0, 0x21>;
786def SUBu : ArithLogicR<"subu", CPURegs, 0, IIAlu, sub>, ADD_FM<0, 0x23>;
787def MUL  : ArithLogicR<"mul", CPURegs, 1, IIImul, mul>, ADD_FM<0x1c, 2>;
788def ADD  : ArithLogicR<"add", CPURegs>, ADD_FM<0, 0x20>;
789def SUB  : ArithLogicR<"sub", CPURegs>, ADD_FM<0, 0x22>;
790def SLT  : SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>;
791def SLTu : SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>;
792def AND  : ArithLogicR<"and", CPURegs, 1, IIAlu, and>, ADD_FM<0, 0x24>;
793def OR   : ArithLogicR<"or", CPURegs, 1, IIAlu, or>, ADD_FM<0, 0x25>;
794def XOR  : ArithLogicR<"xor", CPURegs, 1, IIAlu, xor>, ADD_FM<0, 0x26>;
795def NOR  : LogicNOR<"nor", CPURegs>, ADD_FM<0, 0x27>;
796
797/// Shift Instructions
798def SLL  : shift_rotate_imm32<"sll", shl>, SRA_FM<0, 0>;
799def SRL  : shift_rotate_imm32<"srl", srl>, SRA_FM<2, 0>;
800def SRA  : shift_rotate_imm32<"sra", sra>, SRA_FM<3, 0>;
801def SLLV : shift_rotate_reg<"sllv", shl, CPURegs>, SRLV_FM<4, 0>;
802def SRLV : shift_rotate_reg<"srlv", srl, CPURegs>, SRLV_FM<6, 0>;
803def SRAV : shift_rotate_reg<"srav", sra, CPURegs>, SRLV_FM<7, 0>;
804
805// Rotate Instructions
806let Predicates = [HasMips32r2, HasStdEnc] in {
807  def ROTR  : shift_rotate_imm32<"rotr", rotr>, SRA_FM<2, 1>;
808  def ROTRV : shift_rotate_reg<"rotrv", rotr, CPURegs>, SRLV_FM<6, 1>;
809}
810
811/// Load and Store Instructions
812///  aligned
813defm LB  : LoadM<"lb", sextloadi8, CPURegs>, LW_FM<0x20>;
814defm LBu : LoadM<"lbu", zextloadi8, CPURegs>, LW_FM<0x24>;
815defm LH  : LoadM<"lh", sextloadi16, CPURegs>, LW_FM<0x21>;
816defm LHu : LoadM<"lhu", zextloadi16, CPURegs>, LW_FM<0x25>;
817defm LW  : LoadM<"lw", load, CPURegs>, LW_FM<0x23>;
818defm SB  : StoreM<"sb", truncstorei8, CPURegs>, LW_FM<0x28>;
819defm SH  : StoreM<"sh", truncstorei16, CPURegs>, LW_FM<0x29>;
820defm SW  : StoreM<"sw", store, CPURegs>, LW_FM<0x2b>;
821
822/// load/store left/right
823defm LWL : LoadLeftRightM<"lwl", MipsLWL, CPURegs>, LW_FM<0x22>;
824defm LWR : LoadLeftRightM<"lwr", MipsLWR, CPURegs>, LW_FM<0x26>;
825defm SWL : StoreLeftRightM<"swl", MipsSWL, CPURegs>, LW_FM<0x2a>;
826defm SWR : StoreLeftRightM<"swr", MipsSWR, CPURegs>, LW_FM<0x2e>;
827
828let hasSideEffects = 1 in
829def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
830                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
831{
832  bits<5> stype;
833  let Opcode = 0;
834  let Inst{25-11} = 0;
835  let Inst{10-6} = stype;
836  let Inst{5-0} = 15;
837}
838
839/// Load-linked, Store-conditional
840let Predicates = [NotN64, HasStdEnc] in {
841  def LL : LLBase<"ll", CPURegs, mem>, LW_FM<0x30>;
842  def SC : SCBase<"sc", CPURegs, mem>, LW_FM<0x38>;
843}
844
845let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
846  def LL_P8 : LLBase<"ll", CPURegs, mem64>, LW_FM<0x30>;
847  def SC_P8 : SCBase<"sc", CPURegs, mem64>, LW_FM<0x38>;
848}
849
850/// Jump and Branch Instructions
851def J       : JumpFJ<jmptarget, "j", br, bb>, FJ<2>,
852              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
853def JR      : IndirectBranch<CPURegs>, MTLO_FM<8>;
854def B       : UncondBranch<"b">, B_FM;
855def BEQ     : CBranch<"beq", seteq, CPURegs>, BEQ_FM<4>;
856def BNE     : CBranch<"bne", setne, CPURegs>, BEQ_FM<5>;
857def BGEZ    : CBranchZero<"bgez", setge, CPURegs>, BGEZ_FM<1, 1>;
858def BGTZ    : CBranchZero<"bgtz", setgt, CPURegs>, BGEZ_FM<7, 0>;
859def BLEZ    : CBranchZero<"blez", setle, CPURegs>, BGEZ_FM<6, 0>;
860def BLTZ    : CBranchZero<"bltz", setlt, CPURegs>, BGEZ_FM<1, 0>;
861
862let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
863    hasDelaySlot = 1, Defs = [RA] in
864def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
865
866def JAL  : JumpLink<"jal">, FJ<3>;
867def JALR : JumpLinkReg<"jalr", CPURegs>, JALR_FM;
868def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
869def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
870def TAILCALL : JumpFJ<calltarget, "j", MipsTailCall, imm>, FJ<2>, IsTailCall;
871def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, MTLO_FM<8>, IsTailCall;
872
873def RET : RetBase<CPURegs>, MTLO_FM<8>;
874
875/// Multiply and Divide Instructions.
876def MULT    : Mult32<0x18, "mult", IIImul>;
877def MULTu   : Mult32<0x19, "multu", IIImul>;
878def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
879def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
880
881def MTHI : MoveToLOHI<"mthi", CPURegs, [HI]>, MTLO_FM<0x11>;
882def MTLO : MoveToLOHI<"mtlo", CPURegs, [LO]>, MTLO_FM<0x13>;
883def MFHI : MoveFromLOHI<"mfhi", CPURegs, [HI]>, MFLO_FM<0x10>;
884def MFLO : MoveFromLOHI<"mflo", CPURegs, [LO]>, MFLO_FM<0x12>;
885
886/// Sign Ext In Register Instructions.
887def SEB : SignExtInReg<"seb", i8, CPURegs>, SEB_FM<0x10>;
888def SEH : SignExtInReg<"seh", i16, CPURegs>, SEB_FM<0x18>;
889
890/// Count Leading
891def CLZ : CountLeading0<"clz", CPURegs>, CLO_FM<0x20>;
892def CLO : CountLeading1<"clo", CPURegs>, CLO_FM<0x21>;
893
894/// Word Swap Bytes Within Halfwords
895def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
896
897/// No operation.
898/// FIXME: NOP should be an alias of "sll $0, $0, 0".
899def NOP : InstSE<(outs), (ins), "nop", [], IIAlu, FrmJ>, NOP_FM;
900
901// FrameIndexes are legalized when they are operands from load/store
902// instructions. The same not happens for stack address copies, so an
903// add op with mem ComplexPattern is used and the stack address copy
904// can be matched. It's similar to Sparc LEA_ADDRi
905def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
906
907// MADD*/MSUB*
908def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
909def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
910def MSUB  : MArithR<4, "msub", MipsMSub>;
911def MSUBU : MArithR<5, "msubu", MipsMSubu>;
912
913def RDHWR : ReadHardware<CPURegs, HWRegs>;
914
915def EXT : ExtBase<0, "ext", CPURegs>;
916def INS : InsBase<4, "ins", CPURegs>;
917
918/// Move Control Registers From/To CPU Registers
919def MFC0_3OP  : MFC3OP<0x10, 0, (outs CPURegs:$rt),
920                       (ins CPURegs:$rd, uimm16:$sel),"mfc0\t$rt, $rd, $sel">;
921def : InstAlias<"mfc0 $rt, $rd", (MFC0_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
922
923def MTC0_3OP  : MFC3OP<0x10, 4, (outs CPURegs:$rd, uimm16:$sel),
924                       (ins CPURegs:$rt),"mtc0\t$rt, $rd, $sel">;
925def : InstAlias<"mtc0 $rt, $rd", (MTC0_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
926
927def MFC2_3OP  : MFC3OP<0x12, 0, (outs CPURegs:$rt),
928                       (ins CPURegs:$rd, uimm16:$sel),"mfc2\t$rt, $rd, $sel">;
929def : InstAlias<"mfc2 $rt, $rd", (MFC2_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
930
931def MTC2_3OP  : MFC3OP<0x12, 4, (outs CPURegs:$rd, uimm16:$sel),
932                       (ins CPURegs:$rt),"mtc2\t$rt, $rd, $sel">;
933def : InstAlias<"mtc2 $rt, $rd", (MTC2_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
934
935//===----------------------------------------------------------------------===//
936// Instruction aliases
937//===----------------------------------------------------------------------===//
938def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
939def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
940def : InstAlias<"addu $rs,$rt,$imm",
941                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
942def : InstAlias<"add $rs,$rt,$imm",
943                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
944def : InstAlias<"and $rs,$rt,$imm",
945                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
946def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
947def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
948def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
949def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
950def : InstAlias<"slt $rs,$rt,$imm",
951                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
952def : InstAlias<"xor $rs,$rt,$imm",
953                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
954
955//===----------------------------------------------------------------------===//
956// Assembler Pseudo Instructions
957//===----------------------------------------------------------------------===//
958
959class LoadImm32< string instr_asm, Operand Od, RegisterClass RC> :
960  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
961                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
962def LoadImm32Reg : LoadImm32<"li", shamt,CPURegs>;
963
964class LoadAddress<string instr_asm, Operand MemOpnd, RegisterClass RC> :
965  MipsAsmPseudoInst<(outs RC:$rt), (ins MemOpnd:$addr),
966                     !strconcat(instr_asm, "\t$rt, $addr")> ;
967def LoadAddr32Reg : LoadAddress<"la", mem, CPURegs>;
968
969class LoadAddressImm<string instr_asm, Operand Od, RegisterClass RC> :
970  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
971                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
972def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegs>;
973
974
975
976//===----------------------------------------------------------------------===//
977//  Arbitrary patterns that map to one or more instructions
978//===----------------------------------------------------------------------===//
979
980// Small immediates
981def : MipsPat<(i32 immSExt16:$in),
982              (ADDiu ZERO, imm:$in)>;
983def : MipsPat<(i32 immZExt16:$in),
984              (ORi ZERO, imm:$in)>;
985def : MipsPat<(i32 immLow16Zero:$in),
986              (LUi (HI16 imm:$in))>;
987
988// Arbitrary immediates
989def : MipsPat<(i32 imm:$imm),
990          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
991
992// Carry MipsPatterns
993def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
994              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
995def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
996              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
997def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
998              (ADDiu CPURegs:$src, imm:$imm)>;
999
1000// Call
1001def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1002              (JAL tglobaladdr:$dst)>;
1003def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1004              (JAL texternalsym:$dst)>;
1005//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1006//              (JALR CPURegs:$dst)>;
1007
1008// Tail call
1009def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1010              (TAILCALL tglobaladdr:$dst)>;
1011def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1012              (TAILCALL texternalsym:$dst)>;
1013// hi/lo relocs
1014def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1015def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1016def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1017def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1018def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1019def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1020
1021def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1022def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1023def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1024def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1025def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1026def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1027
1028def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1029              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1030def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1031              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1032def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1033              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1034def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1035              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1036def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1037              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1038
1039// gp_rel relocs
1040def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1041              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1042def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1043              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1044
1045// wrapper_pic
1046class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1047      MipsPat<(MipsWrapper RC:$gp, node:$in),
1048              (ADDiuOp RC:$gp, node:$in)>;
1049
1050def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1051def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1052def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1053def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1054def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1055def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1056
1057// Mips does not have "not", so we expand our way
1058def : MipsPat<(not CPURegs:$in),
1059              (NOR CPURegs:$in, ZERO)>;
1060
1061// extended loads
1062let Predicates = [NotN64, HasStdEnc] in {
1063  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1064  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1065  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1066}
1067let Predicates = [IsN64, HasStdEnc] in {
1068  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1069  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1070  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1071}
1072
1073// peepholes
1074let Predicates = [NotN64, HasStdEnc] in {
1075  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1076}
1077let Predicates = [IsN64, HasStdEnc] in {
1078  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1079}
1080
1081// brcond patterns
1082multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1083                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1084                      Instruction SLTiuOp, Register ZEROReg> {
1085def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1086              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1087def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1088              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1089
1090def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1091              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1092def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1093              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1094def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1095              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1096def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1097              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1098
1099def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1100              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1101def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1102              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1103
1104def : MipsPat<(brcond RC:$cond, bb:$dst),
1105              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1106}
1107
1108defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1109
1110// setcc patterns
1111multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1112                     Instruction SLTuOp, Register ZEROReg> {
1113  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1114                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1115  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1116                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1117}
1118
1119multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1120  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1121                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1122  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1123                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1124}
1125
1126multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1127  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1128                (SLTOp RC:$rhs, RC:$lhs)>;
1129  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1130                (SLTuOp RC:$rhs, RC:$lhs)>;
1131}
1132
1133multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1134  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1135                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1136  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1137                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1138}
1139
1140multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1141                        Instruction SLTiuOp> {
1142  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1143                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1144  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1145                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1146}
1147
1148defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1149defm : SetlePats<CPURegs, SLT, SLTu>;
1150defm : SetgtPats<CPURegs, SLT, SLTu>;
1151defm : SetgePats<CPURegs, SLT, SLTu>;
1152defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1153
1154// bswap pattern
1155def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1156
1157//===----------------------------------------------------------------------===//
1158// Floating Point Support
1159//===----------------------------------------------------------------------===//
1160
1161include "MipsInstrFPU.td"
1162include "Mips64InstrInfo.td"
1163include "MipsCondMov.td"
1164
1165//
1166// Mips16
1167
1168include "Mips16InstrFormats.td"
1169include "Mips16InstrInfo.td"
1170
1171// DSP
1172include "MipsDSPInstrFormats.td"
1173include "MipsDSPInstrInfo.td"
1174
1175