MipsInstrInfo.td revision 6c59c9f57c8428e477ed592ee3537323d287d96f
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
37
38def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
39                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
40def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
42                                   SDTCisSameAs<0, 4>]>;
43
44def SDTMipsLoadLR  : SDTypeProfile<1, 2,
45                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
46                                    SDTCisSameAs<0, 2>]>;
47
48// Call
49def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
50                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
51                          SDNPVariadic]>;
52
53// Tail call
54def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
55                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
56
57// Hi and Lo nodes are used to handle global addresses. Used on
58// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
59// static model. (nothing to do with Mips Registers Hi and Lo)
60def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
61def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
62def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
63
64// TlsGd node is used to handle General Dynamic TLS
65def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
66
67// TprelHi and TprelLo nodes are used to handle Local Exec TLS
68def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
69def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
70
71// Thread pointer
72def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
73
74// Return
75def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
76                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
77
78// These are target-independent nodes, but have target-specific formats.
79def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
80                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
81def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
82                           [SDNPHasChain, SDNPSideEffect,
83                            SDNPOptInGlue, SDNPOutGlue]>;
84
85// MAdd*/MSub* nodes
86def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
87                           [SDNPOptInGlue, SDNPOutGlue]>;
88def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
89                           [SDNPOptInGlue, SDNPOutGlue]>;
90def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
91                           [SDNPOptInGlue, SDNPOutGlue]>;
92def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
93                           [SDNPOptInGlue, SDNPOutGlue]>;
94
95// DivRem(u) nodes
96def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
97                           [SDNPOutGlue]>;
98def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
99                           [SDNPOutGlue]>;
100
101// Target constant nodes that are not part of any isel patterns and remain
102// unchanged can cause instructions with illegal operands to be emitted.
103// Wrapper node patterns give the instruction selector a chance to replace
104// target constant nodes that would otherwise remain unchanged with ADDiu
105// nodes. Without these wrapper node patterns, the following conditional move
106// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
107// compiled:
108//  movn  %got(d)($gp), %got(c)($gp), $4
109// This instruction is illegal since movn can take only register operands.
110
111def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
112
113def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
114
115def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
116def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
117
118def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
119                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
120def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
121                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
122def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
123                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
124def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
125                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
126def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
127                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
128def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
129                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
130def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
131                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
132def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
133                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
134
135//===----------------------------------------------------------------------===//
136// Mips Instruction Predicate Definitions.
137//===----------------------------------------------------------------------===//
138def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
139                      AssemblerPredicate<"FeatureSEInReg">;
140def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
141                      AssemblerPredicate<"FeatureBitCount">;
142def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
143                      AssemblerPredicate<"FeatureSwap">;
144def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
145                      AssemblerPredicate<"FeatureCondMov">;
146def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
147                      AssemblerPredicate<"FeatureFPIdx">;
148def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
149                      AssemblerPredicate<"FeatureMips32">;
150def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
151                      AssemblerPredicate<"FeatureMips32r2">;
152def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
153                      AssemblerPredicate<"FeatureMips64">;
154def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
155                      AssemblerPredicate<"!FeatureMips64">;
156def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
157                      AssemblerPredicate<"FeatureMips64r2">;
158def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
159                      AssemblerPredicate<"FeatureN64">;
160def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
161                      AssemblerPredicate<"!FeatureN64">;
162def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
163                      AssemblerPredicate<"FeatureMips16">;
164def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
165                      AssemblerPredicate<"FeatureMips32">;
166def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
167                      AssemblerPredicate<"FeatureMips32">;
168def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
169                      AssemblerPredicate<"FeatureMips32">;
170def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
171                      AssemblerPredicate<"!FeatureMips16">;
172
173class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
174  let Predicates = [HasStdEnc];
175}
176
177class IsCommutable {
178  bit isCommutable = 1;
179}
180
181class IsBranch {
182  bit isBranch = 1;
183}
184
185class IsReturn {
186  bit isReturn = 1;
187}
188
189class IsCall {
190  bit isCall = 1;
191}
192
193class IsTailCall {
194  bit isCall = 1;
195  bit isTerminator = 1;
196  bit isReturn = 1;
197  bit isBarrier = 1;
198  bit hasExtraSrcRegAllocReq = 1;
199  bit isCodeGenOnly = 1;
200}
201
202class IsAsCheapAsAMove {
203  bit isAsCheapAsAMove = 1;
204}
205
206class NeverHasSideEffects {
207  bit neverHasSideEffects = 1;
208}
209
210//===----------------------------------------------------------------------===//
211// Instruction format superclass
212//===----------------------------------------------------------------------===//
213
214include "MipsInstrFormats.td"
215
216//===----------------------------------------------------------------------===//
217// Mips Operand, Complex Patterns and Transformations Definitions.
218//===----------------------------------------------------------------------===//
219
220// Instruction operand types
221def jmptarget   : Operand<OtherVT> {
222  let EncoderMethod = "getJumpTargetOpValue";
223}
224def brtarget    : Operand<OtherVT> {
225  let EncoderMethod = "getBranchTargetOpValue";
226  let OperandType = "OPERAND_PCREL";
227  let DecoderMethod = "DecodeBranchTarget";
228}
229def calltarget  : Operand<iPTR> {
230  let EncoderMethod = "getJumpTargetOpValue";
231}
232def calltarget64: Operand<i64>;
233def simm16      : Operand<i32> {
234  let DecoderMethod= "DecodeSimm16";
235}
236
237def simm20      : Operand<i32> {
238}
239
240def simm16_64   : Operand<i64>;
241def shamt       : Operand<i32>;
242
243// Unsigned Operand
244def uimm16      : Operand<i32> {
245  let PrintMethod = "printUnsignedImm";
246}
247
248def MipsMemAsmOperand : AsmOperandClass {
249  let Name = "Mem";
250  let ParserMethod = "parseMemOperand";
251}
252
253// Address operand
254def mem : Operand<i32> {
255  let PrintMethod = "printMemOperand";
256  let MIOperandInfo = (ops CPURegs, simm16);
257  let EncoderMethod = "getMemEncoding";
258  let ParserMatchClass = MipsMemAsmOperand;
259}
260
261def mem64 : Operand<i64> {
262  let PrintMethod = "printMemOperand";
263  let MIOperandInfo = (ops CPU64Regs, simm16_64);
264  let EncoderMethod = "getMemEncoding";
265  let ParserMatchClass = MipsMemAsmOperand;
266}
267
268def mem_ea : Operand<i32> {
269  let PrintMethod = "printMemOperandEA";
270  let MIOperandInfo = (ops CPURegs, simm16);
271  let EncoderMethod = "getMemEncoding";
272}
273
274def mem_ea_64 : Operand<i64> {
275  let PrintMethod = "printMemOperandEA";
276  let MIOperandInfo = (ops CPU64Regs, simm16_64);
277  let EncoderMethod = "getMemEncoding";
278}
279
280// size operand of ext instruction
281def size_ext : Operand<i32> {
282  let EncoderMethod = "getSizeExtEncoding";
283  let DecoderMethod = "DecodeExtSize";
284}
285
286// size operand of ins instruction
287def size_ins : Operand<i32> {
288  let EncoderMethod = "getSizeInsEncoding";
289  let DecoderMethod = "DecodeInsSize";
290}
291
292// Transformation Function - get the lower 16 bits.
293def LO16 : SDNodeXForm<imm, [{
294  return getImm(N, N->getZExtValue() & 0xFFFF);
295}]>;
296
297// Transformation Function - get the higher 16 bits.
298def HI16 : SDNodeXForm<imm, [{
299  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
300}]>;
301
302// Node immediate fits as 16-bit sign extended on target immediate.
303// e.g. addi, andi
304def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
305
306// Node immediate fits as 15-bit sign extended on target immediate.
307// e.g. addi, andi
308def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
309
310// Node immediate fits as 16-bit zero extended on target immediate.
311// The LO16 param means that only the lower 16 bits of the node
312// immediate are caught.
313// e.g. addiu, sltiu
314def immZExt16  : PatLeaf<(imm), [{
315  if (N->getValueType(0) == MVT::i32)
316    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
317  else
318    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
319}], LO16>;
320
321// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
322def immLow16Zero : PatLeaf<(imm), [{
323  int64_t Val = N->getSExtValue();
324  return isInt<32>(Val) && !(Val & 0xffff);
325}]>;
326
327// shamt field must fit in 5 bits.
328def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
329
330// Mips Address Mode! SDNode frameindex could possibily be a match
331// since load and store instructions from stack used it.
332def addr :
333  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
334
335//===----------------------------------------------------------------------===//
336// Instructions specific format
337//===----------------------------------------------------------------------===//
338
339// Arithmetic and logical instructions with 3 register operands.
340class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
341                  InstrItinClass Itin = NoItinerary,
342                  SDPatternOperator OpNode = null_frag>:
343  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
344         !strconcat(opstr, "\t$rd, $rs, $rt"),
345         [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR> {
346  let isCommutable = isComm;
347  let isReMaterializable = 1;
348  string BaseOpcode;
349  string Arch;
350}
351
352// Arithmetic and logical instructions with 2 register operands.
353class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
354                  SDPatternOperator imm_type = null_frag,
355                  SDPatternOperator OpNode = null_frag> :
356  InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
357         !strconcat(opstr, "\t$rt, $rs, $imm16"),
358         [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))], IIAlu, FrmI> {
359  let isReMaterializable = 1;
360}
361
362// Arithmetic Multiply ADD/SUB
363class MArithR<string opstr, SDPatternOperator op = null_frag, bit isComm = 0> :
364  InstSE<(outs), (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt),
365         !strconcat(opstr, "\t$rs, $rt"),
366         [(op CPURegsOpnd:$rs, CPURegsOpnd:$rt, LO, HI)], IIImul, FrmR> {
367  let Defs = [HI, LO];
368  let Uses = [HI, LO];
369  let isCommutable = isComm;
370}
371
372//  Logical
373class LogicNOR<string opstr, RegisterOperand RC>:
374  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
375         !strconcat(opstr, "\t$rd, $rs, $rt"),
376         [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu, FrmR> {
377  let isCommutable = 1;
378}
379
380// Shifts
381class shift_rotate_imm<string opstr, Operand ImmOpnd,
382                       RegisterOperand RC, SDPatternOperator OpNode = null_frag,
383                       SDPatternOperator PF = null_frag> :
384  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
385         !strconcat(opstr, "\t$rd, $rt, $shamt"),
386         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR>;
387
388class shift_rotate_reg<string opstr, RegisterOperand RC,
389                       SDPatternOperator OpNode = null_frag>:
390  InstSE<(outs RC:$rd), (ins CPURegsOpnd:$rs, RC:$rt),
391         !strconcat(opstr, "\t$rd, $rt, $rs"),
392         [(set RC:$rd, (OpNode RC:$rt, CPURegsOpnd:$rs))], IIAlu, FrmR>;
393
394// Load Upper Imediate
395class LoadUpper<string opstr, RegisterClass RC, Operand Imm>:
396  InstSE<(outs RC:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
397         [], IIAlu, FrmI>, IsAsCheapAsAMove {
398  let neverHasSideEffects = 1;
399  let isReMaterializable = 1;
400}
401
402class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
403          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
404  bits<21> addr;
405  let Inst{25-21} = addr{20-16};
406  let Inst{15-0}  = addr{15-0};
407  let DecoderMethod = "DecodeMem";
408}
409
410// Memory Load/Store
411class Load<string opstr, SDPatternOperator OpNode, RegisterClass RC,
412           Operand MemOpnd> :
413  InstSE<(outs RC:$rt), (ins MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
414         [(set RC:$rt, (OpNode addr:$addr))], NoItinerary, FrmI> {
415  let DecoderMethod = "DecodeMem";
416  let canFoldAsLoad = 1;
417}
418
419class Store<string opstr, SDPatternOperator OpNode, RegisterClass RC,
420            Operand MemOpnd> :
421  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
422         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
423  let DecoderMethod = "DecodeMem";
424}
425
426multiclass LoadM<string opstr, RegisterClass RC,
427                 SDPatternOperator OpNode = null_frag> {
428  def NAME : Load<opstr, OpNode, RC, mem>, Requires<[NotN64, HasStdEnc]>;
429  def _P8  : Load<opstr, OpNode, RC, mem64>, Requires<[IsN64, HasStdEnc]> {
430    let DecoderNamespace = "Mips64";
431    let isCodeGenOnly = 1;
432  }
433}
434
435multiclass StoreM<string opstr, RegisterClass RC,
436                  SDPatternOperator OpNode = null_frag> {
437  def NAME : Store<opstr, OpNode, RC, mem>, Requires<[NotN64, HasStdEnc]>;
438  def _P8  : Store<opstr, OpNode, RC, mem64>, Requires<[IsN64, HasStdEnc]> {
439    let DecoderNamespace = "Mips64";
440    let isCodeGenOnly = 1;
441  }
442}
443
444// Load/Store Left/Right
445let canFoldAsLoad = 1 in
446class LoadLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
447                    Operand MemOpnd> :
448  InstSE<(outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
449         !strconcat(opstr, "\t$rt, $addr"),
450         [(set RC:$rt, (OpNode addr:$addr, RC:$src))], NoItinerary, FrmI> {
451  let DecoderMethod = "DecodeMem";
452  string Constraints = "$src = $rt";
453}
454
455class StoreLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
456                     Operand MemOpnd>:
457  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
458         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
459  let DecoderMethod = "DecodeMem";
460}
461
462multiclass LoadLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
463  def NAME : LoadLeftRight<opstr, OpNode, RC, mem>,
464             Requires<[NotN64, HasStdEnc]>;
465  def _P8  : LoadLeftRight<opstr, OpNode, RC, mem64>,
466             Requires<[IsN64, HasStdEnc]> {
467    let DecoderNamespace = "Mips64";
468    let isCodeGenOnly = 1;
469  }
470}
471
472multiclass StoreLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
473  def NAME : StoreLeftRight<opstr, OpNode, RC, mem>,
474             Requires<[NotN64, HasStdEnc]>;
475  def _P8  : StoreLeftRight<opstr, OpNode, RC, mem64>,
476             Requires<[IsN64, HasStdEnc]> {
477    let DecoderNamespace = "Mips64";
478    let isCodeGenOnly = 1;
479  }
480}
481
482// Conditional Branch
483class CBranch<string opstr, PatFrag cond_op, RegisterClass RC> :
484  InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset),
485         !strconcat(opstr, "\t$rs, $rt, $offset"),
486         [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch,
487         FrmI> {
488  let isBranch = 1;
489  let isTerminator = 1;
490  let hasDelaySlot = 1;
491  let Defs = [AT];
492}
493
494class CBranchZero<string opstr, PatFrag cond_op, RegisterClass RC> :
495  InstSE<(outs), (ins RC:$rs, brtarget:$offset),
496         !strconcat(opstr, "\t$rs, $offset"),
497         [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
498  let isBranch = 1;
499  let isTerminator = 1;
500  let hasDelaySlot = 1;
501  let Defs = [AT];
502}
503
504// SetCC
505class SetCC_R<string opstr, PatFrag cond_op, RegisterClass RC> :
506  InstSE<(outs CPURegsOpnd:$rd), (ins RC:$rs, RC:$rt),
507         !strconcat(opstr, "\t$rd, $rs, $rt"),
508         [(set CPURegsOpnd:$rd, (cond_op RC:$rs, RC:$rt))], IIAlu, FrmR>;
509
510class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
511              RegisterClass RC>:
512  InstSE<(outs CPURegsOpnd:$rt), (ins RC:$rs, Od:$imm16),
513         !strconcat(opstr, "\t$rt, $rs, $imm16"),
514         [(set CPURegsOpnd:$rt, (cond_op RC:$rs, imm_type:$imm16))],
515         IIAlu, FrmI>;
516
517// Jump
518class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
519             SDPatternOperator targetoperator> :
520  InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
521         [(operator targetoperator:$target)], IIBranch, FrmJ> {
522  let isTerminator=1;
523  let isBarrier=1;
524  let hasDelaySlot = 1;
525  let DecoderMethod = "DecodeJumpTarget";
526  let Defs = [AT];
527}
528
529// Unconditional branch
530class UncondBranch<string opstr> :
531  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
532         [(br bb:$offset)], IIBranch, FrmI> {
533  let isBranch = 1;
534  let isTerminator = 1;
535  let isBarrier = 1;
536  let hasDelaySlot = 1;
537  let Predicates = [RelocPIC, HasStdEnc];
538  let Defs = [AT];
539}
540
541// Base class for indirect branch and return instruction classes.
542let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
543class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
544  InstSE<(outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch, FrmR>;
545
546// Indirect branch
547class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
548  let isBranch = 1;
549  let isIndirectBranch = 1;
550}
551
552// Return instruction
553class RetBase<RegisterClass RC>: JumpFR<RC> {
554  let isReturn = 1;
555  let isCodeGenOnly = 1;
556  let hasCtrlDep = 1;
557  let hasExtraSrcRegAllocReq = 1;
558}
559
560// Jump and Link (Call)
561let isCall=1, hasDelaySlot=1, Defs = [RA] in {
562  class JumpLink<string opstr> :
563    InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"),
564           [(MipsJmpLink imm:$target)], IIBranch, FrmJ> {
565    let DecoderMethod = "DecodeJumpTarget";
566  }
567
568  class JumpLinkReg<string opstr, RegisterClass RC>:
569    InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"),
570           [(MipsJmpLink RC:$rs)], IIBranch, FrmR>;
571
572  class BGEZAL_FT<string opstr, RegisterOperand RO> :
573    InstSE<(outs), (ins RO:$rs, brtarget:$offset),
574           !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI>;
575
576}
577
578class BAL_FT :
579  InstSE<(outs), (ins brtarget:$offset), "bal\t$offset", [], IIBranch, FrmI> {
580  let isBranch = 1;
581  let isTerminator = 1;
582  let isBarrier = 1;
583  let hasDelaySlot = 1;
584  let Defs = [RA];
585}
586
587// Sync
588let hasSideEffects = 1 in
589class SYNC_FT :
590  InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
591         NoItinerary, FrmOther>;
592
593// Mul, Div
594class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
595           list<Register> DefRegs> :
596  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
597         itin, FrmR> {
598  let isCommutable = 1;
599  let Defs = DefRegs;
600  let neverHasSideEffects = 1;
601}
602
603class Div<SDNode op, string opstr, InstrItinClass itin, RegisterOperand RO,
604          list<Register> DefRegs> :
605  InstSE<(outs), (ins RO:$rs, RO:$rt),
606         !strconcat(opstr, "\t$$zero, $rs, $rt"), [(op RO:$rs, RO:$rt)], itin,
607         FrmR> {
608  let Defs = DefRegs;
609}
610
611// Move from Hi/Lo
612class MoveFromLOHI<string opstr, RegisterClass RC, list<Register> UseRegs>:
613  InstSE<(outs RC:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> {
614  let Uses = UseRegs;
615  let neverHasSideEffects = 1;
616}
617
618class MoveToLOHI<string opstr, RegisterClass RC, list<Register> DefRegs>:
619  InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> {
620  let Defs = DefRegs;
621  let neverHasSideEffects = 1;
622}
623
624class EffectiveAddress<string opstr, RegisterClass RC, Operand Mem> :
625  InstSE<(outs RC:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
626         [(set RC:$rt, addr:$addr)], NoItinerary, FrmI> {
627  let isCodeGenOnly = 1;
628  let DecoderMethod = "DecodeMem";
629}
630
631// Count Leading Ones/Zeros in Word
632class CountLeading0<string opstr, RegisterOperand RO>:
633  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
634         [(set RO:$rd, (ctlz RO:$rs))], IIAlu, FrmR>,
635  Requires<[HasBitCount, HasStdEnc]>;
636
637class CountLeading1<string opstr, RegisterOperand RO>:
638  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
639         [(set RO:$rd, (ctlz (not RO:$rs)))], IIAlu, FrmR>,
640  Requires<[HasBitCount, HasStdEnc]>;
641
642
643// Sign Extend in Register.
644class SignExtInReg<string opstr, ValueType vt, RegisterClass RC> :
645  InstSE<(outs RC:$rd), (ins RC:$rt), !strconcat(opstr, "\t$rd, $rt"),
646         [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary, FrmR> {
647  let Predicates = [HasSEInReg, HasStdEnc];
648}
649
650// Subword Swap
651class SubwordSwap<string opstr, RegisterOperand RO>:
652  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
653         NoItinerary, FrmR> {
654  let Predicates = [HasSwap, HasStdEnc];
655  let neverHasSideEffects = 1;
656}
657
658// Read Hardware
659class ReadHardware<RegisterClass CPURegClass, RegisterOperand RO> :
660  InstSE<(outs CPURegClass:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
661         IIAlu, FrmR>;
662
663// Ext and Ins
664class ExtBase<string opstr, RegisterOperand RO>:
665  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ext:$size),
666         !strconcat(opstr, " $rt, $rs, $pos, $size"),
667         [(set RO:$rt, (MipsExt RO:$rs, imm:$pos, imm:$size))], NoItinerary,
668         FrmR> {
669  let Predicates = [HasMips32r2, HasStdEnc];
670}
671
672class InsBase<string opstr, RegisterOperand RO>:
673  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ins:$size, RO:$src),
674         !strconcat(opstr, " $rt, $rs, $pos, $size"),
675         [(set RO:$rt, (MipsIns RO:$rs, imm:$pos, imm:$size, RO:$src))],
676         NoItinerary, FrmR> {
677  let Predicates = [HasMips32r2, HasStdEnc];
678  let Constraints = "$src = $rt";
679}
680
681// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
682class Atomic2Ops<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
683  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
684           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
685
686multiclass Atomic2Ops32<PatFrag Op> {
687  def NAME : Atomic2Ops<Op, CPURegs, CPURegs>, Requires<[NotN64, HasStdEnc]>;
688  def _P8  : Atomic2Ops<Op, CPURegs, CPU64Regs>,
689             Requires<[IsN64, HasStdEnc]> {
690    let DecoderNamespace = "Mips64";
691  }
692}
693
694// Atomic Compare & Swap.
695class AtomicCmpSwap<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
696  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
697           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
698
699multiclass AtomicCmpSwap32<PatFrag Op>  {
700  def NAME : AtomicCmpSwap<Op, CPURegs, CPURegs>,
701             Requires<[NotN64, HasStdEnc]>;
702  def _P8  : AtomicCmpSwap<Op, CPURegs, CPU64Regs>,
703             Requires<[IsN64, HasStdEnc]> {
704    let DecoderNamespace = "Mips64";
705  }
706}
707
708class LLBase<string opstr, RegisterOperand RO, Operand Mem> :
709  InstSE<(outs RO:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
710         [], NoItinerary, FrmI> {
711  let DecoderMethod = "DecodeMem";
712  let mayLoad = 1;
713}
714
715class SCBase<string opstr, RegisterOperand RO, Operand Mem> :
716  InstSE<(outs RO:$dst), (ins RO:$rt, Mem:$addr),
717         !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
718  let DecoderMethod = "DecodeMem";
719  let mayStore = 1;
720  let Constraints = "$rt = $dst";
721}
722
723class MFC3OP<dag outs, dag ins, string asmstr> :
724  InstSE<outs, ins, asmstr, [], NoItinerary, FrmFR>;
725
726//===----------------------------------------------------------------------===//
727// Pseudo instructions
728//===----------------------------------------------------------------------===//
729
730// Return RA.
731let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
732def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
733
734let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
735def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
736                                  [(callseq_start timm:$amt)]>;
737def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
738                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
739}
740
741let usesCustomInserter = 1 in {
742  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8>;
743  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16>;
744  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32>;
745  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8>;
746  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16>;
747  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32>;
748  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8>;
749  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16>;
750  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32>;
751  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8>;
752  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16>;
753  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32>;
754  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8>;
755  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16>;
756  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32>;
757  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8>;
758  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16>;
759  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32>;
760
761  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8>;
762  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16>;
763  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32>;
764
765  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8>;
766  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16>;
767  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32>;
768}
769
770//===----------------------------------------------------------------------===//
771// Instruction definition
772//===----------------------------------------------------------------------===//
773//===----------------------------------------------------------------------===//
774// MipsI Instructions
775//===----------------------------------------------------------------------===//
776
777/// Arithmetic Instructions (ALU Immediate)
778def ADDiu : ArithLogicI<"addiu", simm16, CPURegsOpnd, immSExt16, add>,
779            ADDI_FM<0x9>, IsAsCheapAsAMove;
780def ADDi  : ArithLogicI<"addi", simm16, CPURegsOpnd>, ADDI_FM<0x8>;
781def SLTi  : SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>, SLTI_FM<0xa>;
782def SLTiu : SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>, SLTI_FM<0xb>;
783def ANDi  : ArithLogicI<"andi", uimm16, CPURegsOpnd, immZExt16, and>,
784            ADDI_FM<0xc>;
785def ORi   : ArithLogicI<"ori", uimm16, CPURegsOpnd, immZExt16, or>,
786            ADDI_FM<0xd>;
787def XORi  : ArithLogicI<"xori", uimm16, CPURegsOpnd, immZExt16, xor>,
788            ADDI_FM<0xe>;
789def LUi   : LoadUpper<"lui", CPURegs, uimm16>, LUI_FM;
790
791/// Arithmetic Instructions (3-Operand, R-Type)
792def ADDu : ArithLogicR<"addu", CPURegsOpnd, 1, IIAlu, add>, ADD_FM<0, 0x21>;
793def SUBu : ArithLogicR<"subu", CPURegsOpnd, 0, IIAlu, sub>, ADD_FM<0, 0x23>;
794def MUL  : ArithLogicR<"mul", CPURegsOpnd, 1, IIImul, mul>, ADD_FM<0x1c, 2>;
795def ADD  : ArithLogicR<"add", CPURegsOpnd>, ADD_FM<0, 0x20>;
796def SUB  : ArithLogicR<"sub", CPURegsOpnd>, ADD_FM<0, 0x22>;
797def SLT  : SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>;
798def SLTu : SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>;
799def AND  : ArithLogicR<"and", CPURegsOpnd, 1, IIAlu, and>, ADD_FM<0, 0x24>;
800def OR   : ArithLogicR<"or", CPURegsOpnd, 1, IIAlu, or>, ADD_FM<0, 0x25>;
801def XOR  : ArithLogicR<"xor", CPURegsOpnd, 1, IIAlu, xor>, ADD_FM<0, 0x26>;
802def NOR  : LogicNOR<"nor", CPURegsOpnd>, ADD_FM<0, 0x27>;
803
804/// Shift Instructions
805def SLL  : shift_rotate_imm<"sll", shamt, CPURegsOpnd, shl, immZExt5>,
806           SRA_FM<0, 0>;
807def SRL  : shift_rotate_imm<"srl", shamt, CPURegsOpnd, srl, immZExt5>,
808           SRA_FM<2, 0>;
809def SRA  : shift_rotate_imm<"sra", shamt, CPURegsOpnd, sra, immZExt5>,
810           SRA_FM<3, 0>;
811def SLLV : shift_rotate_reg<"sllv", CPURegsOpnd, shl>, SRLV_FM<4, 0>;
812def SRLV : shift_rotate_reg<"srlv", CPURegsOpnd, srl>, SRLV_FM<6, 0>;
813def SRAV : shift_rotate_reg<"srav", CPURegsOpnd, sra>, SRLV_FM<7, 0>;
814
815// Rotate Instructions
816let Predicates = [HasMips32r2, HasStdEnc] in {
817  def ROTR  : shift_rotate_imm<"rotr", shamt, CPURegsOpnd, rotr, immZExt5>,
818              SRA_FM<2, 1>;
819  def ROTRV : shift_rotate_reg<"rotrv", CPURegsOpnd, rotr>, SRLV_FM<6, 1>;
820}
821
822/// Load and Store Instructions
823///  aligned
824defm LB  : LoadM<"lb", CPURegs, sextloadi8>, LW_FM<0x20>;
825defm LBu : LoadM<"lbu", CPURegs, zextloadi8>, LW_FM<0x24>;
826defm LH  : LoadM<"lh", CPURegs, sextloadi16>, LW_FM<0x21>;
827defm LHu : LoadM<"lhu", CPURegs, zextloadi16>, LW_FM<0x25>;
828defm LW  : LoadM<"lw", CPURegs, load>, LW_FM<0x23>;
829defm SB  : StoreM<"sb", CPURegs, truncstorei8>, LW_FM<0x28>;
830defm SH  : StoreM<"sh", CPURegs, truncstorei16>, LW_FM<0x29>;
831defm SW  : StoreM<"sw", CPURegs, store>, LW_FM<0x2b>;
832
833/// load/store left/right
834defm LWL : LoadLeftRightM<"lwl", MipsLWL, CPURegs>, LW_FM<0x22>;
835defm LWR : LoadLeftRightM<"lwr", MipsLWR, CPURegs>, LW_FM<0x26>;
836defm SWL : StoreLeftRightM<"swl", MipsSWL, CPURegs>, LW_FM<0x2a>;
837defm SWR : StoreLeftRightM<"swr", MipsSWR, CPURegs>, LW_FM<0x2e>;
838
839def SYNC : SYNC_FT, SYNC_FM;
840
841/// Load-linked, Store-conditional
842let Predicates = [NotN64, HasStdEnc] in {
843  def LL : LLBase<"ll", CPURegsOpnd, mem>, LW_FM<0x30>;
844  def SC : SCBase<"sc", CPURegsOpnd, mem>, LW_FM<0x38>;
845}
846
847let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
848  def LL_P8 : LLBase<"ll", CPURegsOpnd, mem64>, LW_FM<0x30>;
849  def SC_P8 : SCBase<"sc", CPURegsOpnd, mem64>, LW_FM<0x38>;
850}
851
852/// Jump and Branch Instructions
853def J       : JumpFJ<jmptarget, "j", br, bb>, FJ<2>,
854              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
855def JR      : IndirectBranch<CPURegs>, MTLO_FM<8>;
856def B       : UncondBranch<"b">, B_FM;
857def BEQ     : CBranch<"beq", seteq, CPURegs>, BEQ_FM<4>;
858def BNE     : CBranch<"bne", setne, CPURegs>, BEQ_FM<5>;
859def BGEZ    : CBranchZero<"bgez", setge, CPURegs>, BGEZ_FM<1, 1>;
860def BGTZ    : CBranchZero<"bgtz", setgt, CPURegs>, BGEZ_FM<7, 0>;
861def BLEZ    : CBranchZero<"blez", setle, CPURegs>, BGEZ_FM<6, 0>;
862def BLTZ    : CBranchZero<"bltz", setlt, CPURegs>, BGEZ_FM<1, 0>;
863
864def BAL_BR: BAL_FT, BAL_FM;
865
866def JAL  : JumpLink<"jal">, FJ<3>;
867def JALR : JumpLinkReg<"jalr", CPURegs>, JALR_FM;
868def BGEZAL : BGEZAL_FT<"bgezal", CPURegsOpnd>, BGEZAL_FM<0x11>;
869def BLTZAL : BGEZAL_FT<"bltzal", CPURegsOpnd>, BGEZAL_FM<0x10>;
870def TAILCALL : JumpFJ<calltarget, "j", MipsTailCall, imm>, FJ<2>, IsTailCall;
871def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, MTLO_FM<8>, IsTailCall;
872
873def RET : RetBase<CPURegs>, MTLO_FM<8>;
874
875// Exception handling related node and instructions.
876// The conversion sequence is:
877// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
878// MIPSeh_return -> (stack change + indirect branch)
879//
880// MIPSeh_return takes the place of regular return instruction
881// but takes two arguments (V1, V0) which are used for storing
882// the offset and return address respectively.
883def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
884
885def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
886                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
887
888let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
889  def MIPSeh_return32 : MipsPseudo<(outs), (ins CPURegs:$spoff, CPURegs:$dst),
890                                [(MIPSehret CPURegs:$spoff, CPURegs:$dst)]>;
891  def MIPSeh_return64 : MipsPseudo<(outs), (ins CPU64Regs:$spoff,
892                                                CPU64Regs:$dst),
893                                [(MIPSehret CPU64Regs:$spoff, CPU64Regs:$dst)]>;
894}
895
896/// Multiply and Divide Instructions.
897def MULT  : Mult<"mult", IIImul, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x18>;
898def MULTu : Mult<"multu", IIImul, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x19>;
899def SDIV  : Div<MipsDivRem, "div", IIIdiv, CPURegsOpnd, [HI, LO]>,
900            MULT_FM<0, 0x1a>;
901def UDIV  : Div<MipsDivRemU, "divu", IIIdiv, CPURegsOpnd, [HI, LO]>,
902            MULT_FM<0, 0x1b>;
903
904def MTHI : MoveToLOHI<"mthi", CPURegs, [HI]>, MTLO_FM<0x11>;
905def MTLO : MoveToLOHI<"mtlo", CPURegs, [LO]>, MTLO_FM<0x13>;
906def MFHI : MoveFromLOHI<"mfhi", CPURegs, [HI]>, MFLO_FM<0x10>;
907def MFLO : MoveFromLOHI<"mflo", CPURegs, [LO]>, MFLO_FM<0x12>;
908
909/// Sign Ext In Register Instructions.
910def SEB : SignExtInReg<"seb", i8, CPURegs>, SEB_FM<0x10, 0x20>;
911def SEH : SignExtInReg<"seh", i16, CPURegs>, SEB_FM<0x18, 0x20>;
912
913/// Count Leading
914def CLZ : CountLeading0<"clz", CPURegsOpnd>, CLO_FM<0x20>;
915def CLO : CountLeading1<"clo", CPURegsOpnd>, CLO_FM<0x21>;
916
917/// Word Swap Bytes Within Halfwords
918def WSBH : SubwordSwap<"wsbh", CPURegsOpnd>, SEB_FM<2, 0x20>;
919
920/// No operation.
921def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
922
923// FrameIndexes are legalized when they are operands from load/store
924// instructions. The same not happens for stack address copies, so an
925// add op with mem ComplexPattern is used and the stack address copy
926// can be matched. It's similar to Sparc LEA_ADDRi
927def LEA_ADDiu : EffectiveAddress<"addiu", CPURegs, mem_ea>, LW_FM<9>;
928
929// MADD*/MSUB*
930def MADD  : MArithR<"madd", MipsMAdd, 1>, MULT_FM<0x1c, 0>;
931def MADDU : MArithR<"maddu", MipsMAddu, 1>, MULT_FM<0x1c, 1>;
932def MSUB  : MArithR<"msub", MipsMSub>, MULT_FM<0x1c, 4>;
933def MSUBU : MArithR<"msubu", MipsMSubu>, MULT_FM<0x1c, 5>;
934
935def RDHWR : ReadHardware<CPURegs, HWRegsOpnd>, RDHWR_FM;
936
937def EXT : ExtBase<"ext", CPURegsOpnd>, EXT_FM<0>;
938def INS : InsBase<"ins", CPURegsOpnd>, EXT_FM<4>;
939
940/// Move Control Registers From/To CPU Registers
941def MFC0_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
942                      (ins CPURegsOpnd:$rd, uimm16:$sel),
943                      "mfc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 0>;
944
945def MTC0_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
946                      (ins CPURegsOpnd:$rt),
947                      "mtc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 4>;
948
949def MFC2_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
950                      (ins CPURegsOpnd:$rd, uimm16:$sel),
951                      "mfc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 0>;
952
953def MTC2_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
954                      (ins CPURegsOpnd:$rt),
955                      "mtc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 4>;
956
957//===----------------------------------------------------------------------===//
958// Instruction aliases
959//===----------------------------------------------------------------------===//
960def : InstAlias<"move $dst, $src",
961                (ADDu CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
962      Requires<[NotMips64]>;
963def : InstAlias<"move $dst, $src",
964                (OR CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 0>,
965      Requires<[NotMips64]>;
966def : InstAlias<"bal $offset", (BGEZAL RA, brtarget:$offset), 1>;
967def : InstAlias<"addu $rs, $rt, $imm",
968                (ADDiu CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
969def : InstAlias<"add $rs, $rt, $imm",
970                (ADDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
971def : InstAlias<"and $rs, $rt, $imm",
972                (ANDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
973def : InstAlias<"j $rs", (JR CPURegs:$rs), 0>,
974      Requires<[NotMips64]>;
975def : InstAlias<"not $rt, $rs",
976                (NOR CPURegsOpnd:$rt, CPURegsOpnd:$rs, ZERO), 1>;
977def : InstAlias<"neg $rt, $rs",
978                (SUB CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
979def : InstAlias<"negu $rt, $rs",
980                (SUBu CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
981def : InstAlias<"slt $rs, $rt, $imm",
982                (SLTi CPURegsOpnd:$rs, CPURegs:$rt, simm16:$imm), 0>;
983def : InstAlias<"xor $rs, $rt, $imm",
984                (XORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>,
985      Requires<[NotMips64]>;
986def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
987def : InstAlias<"mfc0 $rt, $rd",
988                (MFC0_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
989def : InstAlias<"mtc0 $rt, $rd",
990                (MTC0_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
991def : InstAlias<"mfc2 $rt, $rd",
992                (MFC2_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
993def : InstAlias<"mtc2 $rt, $rd",
994                (MTC2_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
995
996//===----------------------------------------------------------------------===//
997// Assembler Pseudo Instructions
998//===----------------------------------------------------------------------===//
999
1000class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
1001  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1002                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1003def LoadImm32Reg : LoadImm32<"li", shamt,CPURegsOpnd>;
1004
1005class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
1006  MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
1007                     !strconcat(instr_asm, "\t$rt, $addr")> ;
1008def LoadAddr32Reg : LoadAddress<"la", mem, CPURegsOpnd>;
1009
1010class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
1011  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1012                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1013def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegsOpnd>;
1014
1015
1016
1017//===----------------------------------------------------------------------===//
1018//  Arbitrary patterns that map to one or more instructions
1019//===----------------------------------------------------------------------===//
1020
1021// Small immediates
1022def : MipsPat<(i32 immSExt16:$in),
1023              (ADDiu ZERO, imm:$in)>;
1024def : MipsPat<(i32 immZExt16:$in),
1025              (ORi ZERO, imm:$in)>;
1026def : MipsPat<(i32 immLow16Zero:$in),
1027              (LUi (HI16 imm:$in))>;
1028
1029// Arbitrary immediates
1030def : MipsPat<(i32 imm:$imm),
1031          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1032
1033// Carry MipsPatterns
1034def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1035              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1036def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1037              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1038def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1039              (ADDiu CPURegs:$src, imm:$imm)>;
1040
1041// Call
1042def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1043              (JAL tglobaladdr:$dst)>;
1044def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1045              (JAL texternalsym:$dst)>;
1046//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1047//              (JALR CPURegs:$dst)>;
1048
1049// Tail call
1050def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1051              (TAILCALL tglobaladdr:$dst)>;
1052def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1053              (TAILCALL texternalsym:$dst)>;
1054// hi/lo relocs
1055def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1056def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1057def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1058def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1059def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1060def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1061
1062def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1063def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1064def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1065def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1066def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1067def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1068
1069def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1070              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1071def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1072              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1073def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1074              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1075def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1076              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1077def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1078              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1079
1080// gp_rel relocs
1081def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1082              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1083def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1084              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1085
1086// wrapper_pic
1087class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1088      MipsPat<(MipsWrapper RC:$gp, node:$in),
1089              (ADDiuOp RC:$gp, node:$in)>;
1090
1091def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1092def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1093def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1094def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1095def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1096def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1097
1098// Mips does not have "not", so we expand our way
1099def : MipsPat<(not CPURegs:$in),
1100              (NOR CPURegsOpnd:$in, ZERO)>;
1101
1102// extended loads
1103let Predicates = [NotN64, HasStdEnc] in {
1104  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1105  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1106  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1107}
1108let Predicates = [IsN64, HasStdEnc] in {
1109  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1110  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1111  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1112}
1113
1114// peepholes
1115let Predicates = [NotN64, HasStdEnc] in {
1116  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1117}
1118let Predicates = [IsN64, HasStdEnc] in {
1119  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1120}
1121
1122// brcond patterns
1123multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1124                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1125                      Instruction SLTiuOp, Register ZEROReg> {
1126def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1127              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1128def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1129              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1130
1131def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1132              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1133def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1134              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1135def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1136              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1137def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1138              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1139
1140def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1141              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1142def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1143              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1144
1145def : MipsPat<(brcond RC:$cond, bb:$dst),
1146              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1147}
1148
1149defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1150
1151// setcc patterns
1152multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1153                     Instruction SLTuOp, Register ZEROReg> {
1154  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1155                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1156  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1157                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1158}
1159
1160multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1161  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1162                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1163  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1164                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1165}
1166
1167multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1168  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1169                (SLTOp RC:$rhs, RC:$lhs)>;
1170  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1171                (SLTuOp RC:$rhs, RC:$lhs)>;
1172}
1173
1174multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1175  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1176                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1177  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1178                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1179}
1180
1181multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1182                        Instruction SLTiuOp> {
1183  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1184                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1185  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1186                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1187}
1188
1189defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1190defm : SetlePats<CPURegs, SLT, SLTu>;
1191defm : SetgtPats<CPURegs, SLT, SLTu>;
1192defm : SetgePats<CPURegs, SLT, SLTu>;
1193defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1194
1195// bswap pattern
1196def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1197
1198//===----------------------------------------------------------------------===//
1199// Floating Point Support
1200//===----------------------------------------------------------------------===//
1201
1202include "MipsInstrFPU.td"
1203include "Mips64InstrInfo.td"
1204include "MipsCondMov.td"
1205
1206//
1207// Mips16
1208
1209include "Mips16InstrFormats.td"
1210include "Mips16InstrInfo.td"
1211
1212// DSP
1213include "MipsDSPInstrFormats.td"
1214include "MipsDSPInstrInfo.td"
1215
1216