MipsInstrInfo.td revision 7de001b97e1087b393efc90f7b10ffedd4f66fed
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
37
38def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
39                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
40def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
42                                   SDTCisSameAs<0, 4>]>;
43
44def SDTMipsLoadLR  : SDTypeProfile<1, 2,
45                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
46                                    SDTCisSameAs<0, 2>]>;
47
48// Call
49def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
50                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
51                          SDNPVariadic]>;
52
53// Tail call
54def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
55                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
56
57// Hi and Lo nodes are used to handle global addresses. Used on
58// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
59// static model. (nothing to do with Mips Registers Hi and Lo)
60def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
61def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
62def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
63
64// TlsGd node is used to handle General Dynamic TLS
65def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
66
67// TprelHi and TprelLo nodes are used to handle Local Exec TLS
68def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
69def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
70
71// Thread pointer
72def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
73
74// Return
75def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
76
77// These are target-independent nodes, but have target-specific formats.
78def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
79                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
80def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
81                           [SDNPHasChain, SDNPSideEffect,
82                            SDNPOptInGlue, SDNPOutGlue]>;
83
84// MAdd*/MSub* nodes
85def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
86                           [SDNPOptInGlue, SDNPOutGlue]>;
87def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
92                           [SDNPOptInGlue, SDNPOutGlue]>;
93
94// DivRem(u) nodes
95def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
96                           [SDNPOutGlue]>;
97def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
98                           [SDNPOutGlue]>;
99
100// Target constant nodes that are not part of any isel patterns and remain
101// unchanged can cause instructions with illegal operands to be emitted.
102// Wrapper node patterns give the instruction selector a chance to replace
103// target constant nodes that would otherwise remain unchanged with ADDiu
104// nodes. Without these wrapper node patterns, the following conditional move
105// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
106// compiled:
107//  movn  %got(d)($gp), %got(c)($gp), $4
108// This instruction is illegal since movn can take only register operands.
109
110def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
111
112def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
113
114def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
115def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
116
117def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
118                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
119def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
120                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
121def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
122                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
123def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
124                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
125def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
126                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
127def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
128                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
129def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
130                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
131def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
132                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
133
134//===----------------------------------------------------------------------===//
135// Mips Instruction Predicate Definitions.
136//===----------------------------------------------------------------------===//
137def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
138                      AssemblerPredicate<"FeatureSEInReg">;
139def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
140                      AssemblerPredicate<"FeatureBitCount">;
141def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
142                      AssemblerPredicate<"FeatureSwap">;
143def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
144                      AssemblerPredicate<"FeatureCondMov">;
145def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
146                      AssemblerPredicate<"FeatureFPIdx">;
147def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
148                      AssemblerPredicate<"FeatureMips32">;
149def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
150                      AssemblerPredicate<"FeatureMips32r2">;
151def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
152                      AssemblerPredicate<"FeatureMips64">;
153def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
154                      AssemblerPredicate<"!FeatureMips64">;
155def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
156                      AssemblerPredicate<"FeatureMips64r2">;
157def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
158                      AssemblerPredicate<"FeatureN64">;
159def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
160                      AssemblerPredicate<"!FeatureN64">;
161def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
162                      AssemblerPredicate<"FeatureMips16">;
163def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
164                      AssemblerPredicate<"FeatureMips32">;
165def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
166                      AssemblerPredicate<"FeatureMips32">;
167def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
168                      AssemblerPredicate<"FeatureMips32">;
169def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
170                      AssemblerPredicate<"!FeatureMips16">;
171
172class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
173  let Predicates = [HasStdEnc];
174}
175
176class IsCommutable {
177  bit isCommutable = 1;
178}
179
180class IsBranch {
181  bit isBranch = 1;
182}
183
184class IsReturn {
185  bit isReturn = 1;
186}
187
188class IsCall {
189  bit isCall = 1;
190}
191
192class IsTailCall {
193  bit isCall = 1;
194  bit isTerminator = 1;
195  bit isReturn = 1;
196  bit isBarrier = 1;
197  bit hasExtraSrcRegAllocReq = 1;
198  bit isCodeGenOnly = 1;
199}
200
201class IsAsCheapAsAMove {
202  bit isAsCheapAsAMove = 1;
203}
204
205class NeverHasSideEffects {
206  bit neverHasSideEffects = 1;
207}
208
209//===----------------------------------------------------------------------===//
210// Instruction format superclass
211//===----------------------------------------------------------------------===//
212
213include "MipsInstrFormats.td"
214
215//===----------------------------------------------------------------------===//
216// Mips Operand, Complex Patterns and Transformations Definitions.
217//===----------------------------------------------------------------------===//
218
219// Instruction operand types
220def jmptarget   : Operand<OtherVT> {
221  let EncoderMethod = "getJumpTargetOpValue";
222}
223def brtarget    : Operand<OtherVT> {
224  let EncoderMethod = "getBranchTargetOpValue";
225  let OperandType = "OPERAND_PCREL";
226  let DecoderMethod = "DecodeBranchTarget";
227}
228def calltarget  : Operand<iPTR> {
229  let EncoderMethod = "getJumpTargetOpValue";
230}
231def calltarget64: Operand<i64>;
232def simm16      : Operand<i32> {
233  let DecoderMethod= "DecodeSimm16";
234}
235def simm16_64   : Operand<i64>;
236def shamt       : Operand<i32>;
237
238// Unsigned Operand
239def uimm16      : Operand<i32> {
240  let PrintMethod = "printUnsignedImm";
241}
242
243def MipsMemAsmOperand : AsmOperandClass {
244  let Name = "Mem";
245  let ParserMethod = "parseMemOperand";
246}
247
248// Address operand
249def mem : Operand<i32> {
250  let PrintMethod = "printMemOperand";
251  let MIOperandInfo = (ops CPURegs, simm16);
252  let EncoderMethod = "getMemEncoding";
253  let ParserMatchClass = MipsMemAsmOperand;
254}
255
256def mem64 : Operand<i64> {
257  let PrintMethod = "printMemOperand";
258  let MIOperandInfo = (ops CPU64Regs, simm16_64);
259  let EncoderMethod = "getMemEncoding";
260  let ParserMatchClass = MipsMemAsmOperand;
261}
262
263def mem_ea : Operand<i32> {
264  let PrintMethod = "printMemOperandEA";
265  let MIOperandInfo = (ops CPURegs, simm16);
266  let EncoderMethod = "getMemEncoding";
267}
268
269def mem_ea_64 : Operand<i64> {
270  let PrintMethod = "printMemOperandEA";
271  let MIOperandInfo = (ops CPU64Regs, simm16_64);
272  let EncoderMethod = "getMemEncoding";
273}
274
275// size operand of ext instruction
276def size_ext : Operand<i32> {
277  let EncoderMethod = "getSizeExtEncoding";
278  let DecoderMethod = "DecodeExtSize";
279}
280
281// size operand of ins instruction
282def size_ins : Operand<i32> {
283  let EncoderMethod = "getSizeInsEncoding";
284  let DecoderMethod = "DecodeInsSize";
285}
286
287// Transformation Function - get the lower 16 bits.
288def LO16 : SDNodeXForm<imm, [{
289  return getImm(N, N->getZExtValue() & 0xFFFF);
290}]>;
291
292// Transformation Function - get the higher 16 bits.
293def HI16 : SDNodeXForm<imm, [{
294  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
295}]>;
296
297// Node immediate fits as 16-bit sign extended on target immediate.
298// e.g. addi, andi
299def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
300
301// Node immediate fits as 15-bit sign extended on target immediate.
302// e.g. addi, andi
303def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
304
305// Node immediate fits as 16-bit zero extended on target immediate.
306// The LO16 param means that only the lower 16 bits of the node
307// immediate are caught.
308// e.g. addiu, sltiu
309def immZExt16  : PatLeaf<(imm), [{
310  if (N->getValueType(0) == MVT::i32)
311    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
312  else
313    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
314}], LO16>;
315
316// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
317def immLow16Zero : PatLeaf<(imm), [{
318  int64_t Val = N->getSExtValue();
319  return isInt<32>(Val) && !(Val & 0xffff);
320}]>;
321
322// shamt field must fit in 5 bits.
323def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
324
325// Mips Address Mode! SDNode frameindex could possibily be a match
326// since load and store instructions from stack used it.
327def addr :
328  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
329
330//===----------------------------------------------------------------------===//
331// Instructions specific format
332//===----------------------------------------------------------------------===//
333
334// Arithmetic and logical instructions with 3 register operands.
335class ArithLogicR<string opstr, RegisterClass RC, bit isComm = 0,
336                  InstrItinClass Itin = NoItinerary,
337                  SDPatternOperator OpNode = null_frag>:
338  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
339         !strconcat(opstr, "\t$rd, $rs, $rt"),
340         [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], Itin, FrmR> {
341  let isCommutable = isComm;
342  let isReMaterializable = 1;
343}
344
345// Arithmetic and logical instructions with 2 register operands.
346class ArithLogicI<string opstr, Operand Od, RegisterClass RC,
347                  SDPatternOperator imm_type = null_frag,
348                  SDPatternOperator OpNode = null_frag> :
349  InstSE<(outs RC:$rt), (ins RC:$rs, Od:$imm16),
350         !strconcat(opstr, "\t$rt, $rs, $imm16"),
351         [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu, FrmI> {
352  let isReMaterializable = 1;
353}
354
355// Arithmetic Multiply ADD/SUB
356let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
357class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
358  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
359     !strconcat(instr_asm, "\t$rs, $rt"),
360     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
361  let rd = 0;
362  let shamt = 0;
363  let isCommutable = isComm;
364}
365
366//  Logical
367class LogicNOR<string opstr, RegisterClass RC>:
368  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
369         !strconcat(opstr, "\t$rd, $rs, $rt"),
370         [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu, FrmR> {
371  let isCommutable = 1;
372}
373
374// Shifts
375class shift_rotate_imm<string opstr, PatFrag PF, Operand ImmOpnd,
376                       RegisterClass RC, SDPatternOperator OpNode> :
377  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
378         !strconcat(opstr, "\t$rd, $rt, $shamt"),
379         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR>;
380
381// 32-bit shift instructions.
382class shift_rotate_imm32<string opstr, SDPatternOperator OpNode = null_frag> :
383  shift_rotate_imm<opstr, immZExt5, shamt, CPURegs, OpNode>;
384
385class shift_rotate_reg<string opstr, SDNode OpNode, RegisterClass RC>:
386  InstSE<(outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
387         !strconcat(opstr, "\t$rd, $rt, $rs"),
388         [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu, FrmR>;
389
390// Load Upper Imediate
391class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
392  FI<op, (outs RC:$rt), (ins Imm:$imm16),
393     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu>, IsAsCheapAsAMove {
394  let rs = 0;
395  let neverHasSideEffects = 1;
396  let isReMaterializable = 1;
397}
398
399class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
400          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
401  bits<21> addr;
402  let Inst{25-21} = addr{20-16};
403  let Inst{15-0}  = addr{15-0};
404  let DecoderMethod = "DecodeMem";
405}
406
407// Memory Load/Store
408let canFoldAsLoad = 1 in
409class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
410            Operand MemOpnd, bit Pseudo>:
411  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
412     !strconcat(instr_asm, "\t$rt, $addr"),
413     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
414  let isPseudo = Pseudo;
415}
416
417class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
418             Operand MemOpnd, bit Pseudo>:
419  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
420     !strconcat(instr_asm, "\t$rt, $addr"),
421     [(OpNode RC:$rt, addr:$addr)], IIStore> {
422  let isPseudo = Pseudo;
423}
424
425// 32-bit load.
426multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
427                   bit Pseudo = 0> {
428  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
429               Requires<[NotN64, HasStdEnc]>;
430  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
431               Requires<[IsN64, HasStdEnc]> {
432    let DecoderNamespace = "Mips64";
433    let isCodeGenOnly = 1;
434  }
435}
436
437// 64-bit load.
438multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
439                   bit Pseudo = 0> {
440  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
441               Requires<[NotN64, HasStdEnc]>;
442  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
443               Requires<[IsN64, HasStdEnc]> {
444    let DecoderNamespace = "Mips64";
445    let isCodeGenOnly = 1;
446  }
447}
448
449// 32-bit store.
450multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
451                    bit Pseudo = 0> {
452  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
453               Requires<[NotN64, HasStdEnc]>;
454  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
455               Requires<[IsN64, HasStdEnc]> {
456    let DecoderNamespace = "Mips64";
457    let isCodeGenOnly = 1;
458  }
459}
460
461// 64-bit store.
462multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
463                    bit Pseudo = 0> {
464  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
465               Requires<[NotN64, HasStdEnc]>;
466  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
467               Requires<[IsN64, HasStdEnc]> {
468    let DecoderNamespace = "Mips64";
469    let isCodeGenOnly = 1;
470  }
471}
472
473// Load/Store Left/Right
474let canFoldAsLoad = 1 in
475class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
476                    RegisterClass RC, Operand MemOpnd> :
477  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
478       !strconcat(instr_asm, "\t$rt, $addr"),
479       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
480  string Constraints = "$src = $rt";
481}
482
483class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
484                     RegisterClass RC, Operand MemOpnd>:
485  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
486       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
487       IIStore>;
488
489// 32-bit load left/right.
490multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
491  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
492               Requires<[NotN64, HasStdEnc]>;
493  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
494               Requires<[IsN64, HasStdEnc]> {
495    let DecoderNamespace = "Mips64";
496    let isCodeGenOnly = 1;
497  }
498}
499
500// 64-bit load left/right.
501multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
502  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
503               Requires<[NotN64, HasStdEnc]>;
504  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
505               Requires<[IsN64, HasStdEnc]> {
506    let DecoderNamespace = "Mips64";
507    let isCodeGenOnly = 1;
508  }
509}
510
511// 32-bit store left/right.
512multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
513  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
514               Requires<[NotN64, HasStdEnc]>;
515  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
516               Requires<[IsN64, HasStdEnc]> {
517    let DecoderNamespace = "Mips64";
518    let isCodeGenOnly = 1;
519  }
520}
521
522// 64-bit store left/right.
523multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
524  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
525               Requires<[NotN64, HasStdEnc]>;
526  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
527               Requires<[IsN64, HasStdEnc]> {
528    let DecoderNamespace = "Mips64";
529    let isCodeGenOnly = 1;
530  }
531}
532
533// Conditional Branch
534class CBranch<string opstr, PatFrag cond_op, RegisterClass RC> :
535  InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset),
536         !strconcat(opstr, "\t$rs, $rt, $offset"),
537         [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch,
538         FrmI> {
539  let isBranch = 1;
540  let isTerminator = 1;
541  let hasDelaySlot = 1;
542  let Defs = [AT];
543}
544
545class CBranchZero<string opstr, PatFrag cond_op, RegisterClass RC> :
546  InstSE<(outs), (ins RC:$rs, brtarget:$offset),
547         !strconcat(opstr, "\t$rs, $offset"),
548         [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
549  let isBranch = 1;
550  let isTerminator = 1;
551  let hasDelaySlot = 1;
552  let Defs = [AT];
553}
554
555// SetCC
556class SetCC_R<string opstr, PatFrag cond_op, RegisterClass RC> :
557  InstSE<(outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
558         !strconcat(opstr, "\t$rd, $rs, $rt"),
559         [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))], IIAlu, FrmR>;
560
561class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
562              RegisterClass RC>:
563  InstSE<(outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
564         !strconcat(opstr, "\t$rt, $rs, $imm16"),
565         [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))], IIAlu, FrmI>;
566
567// Jump
568class JumpFJ<bits<6> op, DAGOperand opnd, string instr_asm,
569             SDPatternOperator operator, SDPatternOperator targetoperator>:
570  FJ<op, (outs), (ins opnd:$target), !strconcat(instr_asm, "\t$target"),
571     [(operator targetoperator:$target)], IIBranch> {
572  let isTerminator=1;
573  let isBarrier=1;
574  let hasDelaySlot = 1;
575  let DecoderMethod = "DecodeJumpTarget";
576  let Defs = [AT];
577}
578
579// Unconditional branch
580class UncondBranch<string opstr> :
581  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
582         [(br bb:$offset)], IIBranch, FrmI> {
583  let isBranch = 1;
584  let isTerminator = 1;
585  let isBarrier = 1;
586  let hasDelaySlot = 1;
587  let Predicates = [RelocPIC, HasStdEnc];
588  let Defs = [AT];
589}
590
591// Base class for indirect branch and return instruction classes.
592let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
593class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
594  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch> {
595  let rt = 0;
596  let rd = 0;
597  let shamt = 0;
598}
599
600// Indirect branch
601class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
602  let isBranch = 1;
603  let isIndirectBranch = 1;
604}
605
606// Return instruction
607class RetBase<RegisterClass RC>: JumpFR<RC> {
608  let isReturn = 1;
609  let isCodeGenOnly = 1;
610  let hasCtrlDep = 1;
611  let hasExtraSrcRegAllocReq = 1;
612}
613
614// Jump and Link (Call)
615let isCall=1, hasDelaySlot=1, Defs = [RA] in {
616  class JumpLink<bits<6> op, string instr_asm>:
617    FJ<op, (outs), (ins calltarget:$target),
618       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
619       IIBranch> {
620       let DecoderMethod = "DecodeJumpTarget";
621       }
622
623  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
624                    RegisterClass RC>:
625    FR<op, func, (outs), (ins RC:$rs),
626       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
627    let rt = 0;
628    let rd = 31;
629    let shamt = 0;
630  }
631
632  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
633    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
634       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
635    let rt = _rt;
636  }
637}
638
639// Mul, Div
640class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
641           RegisterClass RC, list<Register> DefRegs>:
642  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
643     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
644  let rd = 0;
645  let shamt = 0;
646  let isCommutable = 1;
647  let Defs = DefRegs;
648  let neverHasSideEffects = 1;
649}
650
651class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
652  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
653
654class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
655          RegisterClass RC, list<Register> DefRegs>:
656  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
657     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
658     [(op RC:$rs, RC:$rt)], itin> {
659  let rd = 0;
660  let shamt = 0;
661  let Defs = DefRegs;
662}
663
664class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
665  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
666
667// Move from Hi/Lo
668class MoveFromLOHI<string opstr, RegisterClass RC, list<Register> UseRegs>:
669  InstSE<(outs RC:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> {
670  let Uses = UseRegs;
671  let neverHasSideEffects = 1;
672}
673
674class MoveToLOHI<string opstr, RegisterClass RC, list<Register> DefRegs>:
675  InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> {
676  let Defs = DefRegs;
677  let neverHasSideEffects = 1;
678}
679
680class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
681  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
682     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
683 let isCodeGenOnly = 1;
684}
685
686// Count Leading Ones/Zeros in Word
687class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
688  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
689     !strconcat(instr_asm, "\t$rd, $rs"),
690     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
691     Requires<[HasBitCount, HasStdEnc]> {
692  let shamt = 0;
693  let rt = rd;
694}
695
696class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
697  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
698     !strconcat(instr_asm, "\t$rd, $rs"),
699     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
700     Requires<[HasBitCount, HasStdEnc]> {
701  let shamt = 0;
702  let rt = rd;
703}
704
705// Sign Extend in Register.
706class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
707                   RegisterClass RC>:
708  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
709     !strconcat(instr_asm, "\t$rd, $rt"),
710     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
711  let rs = 0;
712  let shamt = sa;
713  let Predicates = [HasSEInReg, HasStdEnc];
714}
715
716// Subword Swap
717class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
718  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
719     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
720  let rs = 0;
721  let shamt = sa;
722  let Predicates = [HasSwap, HasStdEnc];
723  let neverHasSideEffects = 1;
724}
725
726// Read Hardware
727class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
728  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
729       "rdhwr\t$rt, $rd", [], IIAlu> {
730  let rs = 0;
731  let shamt = 0;
732}
733
734// Ext and Ins
735class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
736  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
737     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
738     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
739  bits<5> pos;
740  bits<5> sz;
741  let rd = sz;
742  let shamt = pos;
743  let Predicates = [HasMips32r2, HasStdEnc];
744}
745
746class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
747  FR<0x1f, _funct, (outs RC:$rt),
748     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
749     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
750     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
751     NoItinerary> {
752  bits<5> pos;
753  bits<5> sz;
754  let rd = sz;
755  let shamt = pos;
756  let Predicates = [HasMips32r2, HasStdEnc];
757  let Constraints = "$src = $rt";
758}
759
760// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
761class Atomic2Ops<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
762  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
763           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
764
765multiclass Atomic2Ops32<PatFrag Op> {
766  def #NAME# : Atomic2Ops<Op, CPURegs, CPURegs>, Requires<[NotN64, HasStdEnc]>;
767  def _P8    : Atomic2Ops<Op, CPURegs, CPU64Regs>,
768               Requires<[IsN64, HasStdEnc]> {
769    let DecoderNamespace = "Mips64";
770  }
771}
772
773// Atomic Compare & Swap.
774class AtomicCmpSwap<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
775  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
776           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
777
778multiclass AtomicCmpSwap32<PatFrag Op>  {
779  def #NAME# : AtomicCmpSwap<Op, CPURegs, CPURegs>,
780               Requires<[NotN64, HasStdEnc]>;
781  def _P8    : AtomicCmpSwap<Op, CPURegs, CPU64Regs>,
782                             Requires<[IsN64, HasStdEnc]> {
783    let DecoderNamespace = "Mips64";
784  }
785}
786
787class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
788  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
789       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
790  let mayLoad = 1;
791}
792
793class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
794  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
795       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
796  let mayStore = 1;
797  let Constraints = "$rt = $dst";
798}
799
800//===----------------------------------------------------------------------===//
801// Pseudo instructions
802//===----------------------------------------------------------------------===//
803
804// Return RA.
805let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
806def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
807
808let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
809def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
810                                  [(callseq_start timm:$amt)]>;
811def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
812                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
813}
814
815let usesCustomInserter = 1 in {
816  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8>;
817  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16>;
818  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32>;
819  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8>;
820  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16>;
821  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32>;
822  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8>;
823  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16>;
824  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32>;
825  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8>;
826  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16>;
827  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32>;
828  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8>;
829  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16>;
830  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32>;
831  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8>;
832  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16>;
833  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32>;
834
835  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8>;
836  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16>;
837  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32>;
838
839  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8>;
840  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16>;
841  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32>;
842}
843
844//===----------------------------------------------------------------------===//
845// Instruction definition
846//===----------------------------------------------------------------------===//
847//===----------------------------------------------------------------------===//
848// MipsI Instructions
849//===----------------------------------------------------------------------===//
850
851/// Arithmetic Instructions (ALU Immediate)
852def ADDiu : ArithLogicI<"addiu", simm16, CPURegs, immSExt16, add>,
853            ADDI_FM<0x9>, IsAsCheapAsAMove;
854def ADDi  : ArithLogicI<"addi", simm16, CPURegs>, ADDI_FM<0x8>;
855def SLTi  : SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>, SLTI_FM<0xa>;
856def SLTiu : SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>, SLTI_FM<0xb>;
857def ANDi  : ArithLogicI<"andi", uimm16, CPURegs, immZExt16, and>, ADDI_FM<0xc>;
858def ORi   : ArithLogicI<"ori", uimm16, CPURegs, immZExt16, or>, ADDI_FM<0xd>;
859def XORi  : ArithLogicI<"xori", uimm16, CPURegs, immZExt16, xor>, ADDI_FM<0xe>;
860def LUi   : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
861
862/// Arithmetic Instructions (3-Operand, R-Type)
863def ADDu : ArithLogicR<"addu", CPURegs, 1, IIAlu, add>, ADD_FM<0, 0x21>;
864def SUBu : ArithLogicR<"subu", CPURegs, 0, IIAlu, sub>, ADD_FM<0, 0x23>;
865def MUL  : ArithLogicR<"mul", CPURegs, 1, IIImul, mul>, ADD_FM<0x1c, 2>;
866def ADD  : ArithLogicR<"add", CPURegs>, ADD_FM<0, 0x20>;
867def SUB  : ArithLogicR<"sub", CPURegs>, ADD_FM<0, 0x22>;
868def SLT  : SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>;
869def SLTu : SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>;
870def AND  : ArithLogicR<"and", CPURegs, 1, IIAlu, and>, ADD_FM<0, 0x24>;
871def OR   : ArithLogicR<"or", CPURegs, 1, IIAlu, or>, ADD_FM<0, 0x25>;
872def XOR  : ArithLogicR<"xor", CPURegs, 1, IIAlu, xor>, ADD_FM<0, 0x26>;
873def NOR  : LogicNOR<"nor", CPURegs>, ADD_FM<0, 0x27>;
874
875/// Shift Instructions
876def SLL  : shift_rotate_imm32<"sll", shl>, SRA_FM<0, 0>;
877def SRL  : shift_rotate_imm32<"srl", srl>, SRA_FM<2, 0>;
878def SRA  : shift_rotate_imm32<"sra", sra>, SRA_FM<3, 0>;
879def SLLV : shift_rotate_reg<"sllv", shl, CPURegs>, SRLV_FM<4, 0>;
880def SRLV : shift_rotate_reg<"srlv", srl, CPURegs>, SRLV_FM<6, 0>;
881def SRAV : shift_rotate_reg<"srav", sra, CPURegs>, SRLV_FM<7, 0>;
882
883// Rotate Instructions
884let Predicates = [HasMips32r2, HasStdEnc] in {
885  def ROTR  : shift_rotate_imm32<"rotr", rotr>, SRA_FM<2, 1>;
886  def ROTRV : shift_rotate_reg<"rotrv", rotr, CPURegs>, SRLV_FM<6, 1>;
887}
888
889/// Load and Store Instructions
890///  aligned
891defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
892defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
893defm LH      : LoadM32<0x21, "lh",  sextloadi16>;
894defm LHu     : LoadM32<0x25, "lhu", zextloadi16>;
895defm LW      : LoadM32<0x23, "lw",  load>;
896defm SB      : StoreM32<0x28, "sb", truncstorei8>;
897defm SH      : StoreM32<0x29, "sh", truncstorei16>;
898defm SW      : StoreM32<0x2b, "sw", store>;
899
900/// load/store left/right
901defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
902defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
903defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
904defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
905
906let hasSideEffects = 1 in
907def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
908                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
909{
910  bits<5> stype;
911  let Opcode = 0;
912  let Inst{25-11} = 0;
913  let Inst{10-6} = stype;
914  let Inst{5-0} = 15;
915}
916
917/// Load-linked, Store-conditional
918def LL    : LLBase<0x30, "ll", CPURegs, mem>,
919            Requires<[NotN64, HasStdEnc]>;
920def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
921            Requires<[IsN64, HasStdEnc]> {
922  let DecoderNamespace = "Mips64";
923}
924
925def SC    : SCBase<0x38, "sc", CPURegs, mem>,
926            Requires<[NotN64, HasStdEnc]>;
927def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
928            Requires<[IsN64, HasStdEnc]> {
929  let DecoderNamespace = "Mips64";
930}
931
932/// Jump and Branch Instructions
933def J       : JumpFJ<0x02, jmptarget, "j", br, bb>,
934              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
935def JR      : IndirectBranch<CPURegs>;
936def B       : UncondBranch<"b">, B_FM;
937def BEQ     : CBranch<"beq", seteq, CPURegs>, BEQ_FM<4>;
938def BNE     : CBranch<"bne", setne, CPURegs>, BEQ_FM<5>;
939def BGEZ    : CBranchZero<"bgez", setge, CPURegs>, BGEZ_FM<1, 1>;
940def BGTZ    : CBranchZero<"bgtz", setgt, CPURegs>, BGEZ_FM<7, 0>;
941def BLEZ    : CBranchZero<"blez", setle, CPURegs>, BGEZ_FM<6, 0>;
942def BLTZ    : CBranchZero<"bltz", setlt, CPURegs>, BGEZ_FM<1, 0>;
943
944let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
945    hasDelaySlot = 1, Defs = [RA] in
946def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
947
948def JAL  : JumpLink<0x03, "jal">;
949def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
950def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
951def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
952def TAILCALL : JumpFJ<0x02, calltarget, "j", MipsTailCall, imm>, IsTailCall;
953def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, IsTailCall;
954
955def RET : RetBase<CPURegs>;
956
957/// Multiply and Divide Instructions.
958def MULT    : Mult32<0x18, "mult", IIImul>;
959def MULTu   : Mult32<0x19, "multu", IIImul>;
960def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
961def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
962
963def MTHI : MoveToLOHI<"mthi", CPURegs, [HI]>, MTLO_FM<0x11>;
964def MTLO : MoveToLOHI<"mtlo", CPURegs, [LO]>, MTLO_FM<0x13>;
965def MFHI : MoveFromLOHI<"mfhi", CPURegs, [HI]>, MFLO_FM<0x10>;
966def MFLO : MoveFromLOHI<"mflo", CPURegs, [LO]>, MFLO_FM<0x12>;
967
968/// Sign Ext In Register Instructions.
969def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
970def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
971
972/// Count Leading
973def CLZ : CountLeading0<0x20, "clz", CPURegs>;
974def CLO : CountLeading1<0x21, "clo", CPURegs>;
975
976/// Word Swap Bytes Within Halfwords
977def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
978
979/// No operation
980let addr=0 in
981  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
982
983// FrameIndexes are legalized when they are operands from load/store
984// instructions. The same not happens for stack address copies, so an
985// add op with mem ComplexPattern is used and the stack address copy
986// can be matched. It's similar to Sparc LEA_ADDRi
987def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
988
989// MADD*/MSUB*
990def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
991def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
992def MSUB  : MArithR<4, "msub", MipsMSub>;
993def MSUBU : MArithR<5, "msubu", MipsMSubu>;
994
995def RDHWR : ReadHardware<CPURegs, HWRegs>;
996
997def EXT : ExtBase<0, "ext", CPURegs>;
998def INS : InsBase<4, "ins", CPURegs>;
999
1000/// Move Control Registers From/To CPU Registers
1001def MFC0_3OP  : MFC3OP<0x10, 0, (outs CPURegs:$rt),
1002                       (ins CPURegs:$rd, uimm16:$sel),"mfc0\t$rt, $rd, $sel">;
1003def : InstAlias<"mfc0 $rt, $rd", (MFC0_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
1004
1005def MTC0_3OP  : MFC3OP<0x10, 4, (outs CPURegs:$rd, uimm16:$sel),
1006                       (ins CPURegs:$rt),"mtc0\t$rt, $rd, $sel">;
1007def : InstAlias<"mtc0 $rt, $rd", (MTC0_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
1008
1009def MFC2_3OP  : MFC3OP<0x12, 0, (outs CPURegs:$rt),
1010                       (ins CPURegs:$rd, uimm16:$sel),"mfc2\t$rt, $rd, $sel">;
1011def : InstAlias<"mfc2 $rt, $rd", (MFC2_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
1012
1013def MTC2_3OP  : MFC3OP<0x12, 4, (outs CPURegs:$rd, uimm16:$sel),
1014                       (ins CPURegs:$rt),"mtc2\t$rt, $rd, $sel">;
1015def : InstAlias<"mtc2 $rt, $rd", (MTC2_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
1016
1017//===----------------------------------------------------------------------===//
1018// Instruction aliases
1019//===----------------------------------------------------------------------===//
1020def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
1021def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
1022def : InstAlias<"addu $rs,$rt,$imm",
1023                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1024def : InstAlias<"add $rs,$rt,$imm",
1025                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1026def : InstAlias<"and $rs,$rt,$imm",
1027                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1028def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
1029def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
1030def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
1031def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
1032def : InstAlias<"slt $rs,$rt,$imm",
1033                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1034def : InstAlias<"xor $rs,$rt,$imm",
1035                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1036
1037//===----------------------------------------------------------------------===//
1038// Assembler Pseudo Instructions
1039//===----------------------------------------------------------------------===//
1040
1041class LoadImm32< string instr_asm, Operand Od, RegisterClass RC> :
1042  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
1043                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1044def LoadImm32Reg : LoadImm32<"li", shamt,CPURegs>;
1045
1046class LoadAddress<string instr_asm, Operand MemOpnd, RegisterClass RC> :
1047  MipsAsmPseudoInst<(outs RC:$rt), (ins MemOpnd:$addr),
1048                     !strconcat(instr_asm, "\t$rt, $addr")> ;
1049def LoadAddr32Reg : LoadAddress<"la", mem, CPURegs>;
1050
1051class LoadAddressImm<string instr_asm, Operand Od, RegisterClass RC> :
1052  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
1053                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1054def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegs>;
1055
1056
1057
1058//===----------------------------------------------------------------------===//
1059//  Arbitrary patterns that map to one or more instructions
1060//===----------------------------------------------------------------------===//
1061
1062// Small immediates
1063def : MipsPat<(i32 immSExt16:$in),
1064              (ADDiu ZERO, imm:$in)>;
1065def : MipsPat<(i32 immZExt16:$in),
1066              (ORi ZERO, imm:$in)>;
1067def : MipsPat<(i32 immLow16Zero:$in),
1068              (LUi (HI16 imm:$in))>;
1069
1070// Arbitrary immediates
1071def : MipsPat<(i32 imm:$imm),
1072          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1073
1074// Carry MipsPatterns
1075def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1076              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1077def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1078              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1079def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1080              (ADDiu CPURegs:$src, imm:$imm)>;
1081
1082// Call
1083def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1084              (JAL tglobaladdr:$dst)>;
1085def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1086              (JAL texternalsym:$dst)>;
1087//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1088//              (JALR CPURegs:$dst)>;
1089
1090// Tail call
1091def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1092              (TAILCALL tglobaladdr:$dst)>;
1093def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1094              (TAILCALL texternalsym:$dst)>;
1095// hi/lo relocs
1096def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1097def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1098def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1099def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1100def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1101def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1102
1103def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1104def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1105def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1106def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1107def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1108def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1109
1110def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1111              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1112def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1113              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1114def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1115              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1116def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1117              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1118def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1119              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1120
1121// gp_rel relocs
1122def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1123              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1124def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1125              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1126
1127// wrapper_pic
1128class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1129      MipsPat<(MipsWrapper RC:$gp, node:$in),
1130              (ADDiuOp RC:$gp, node:$in)>;
1131
1132def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1133def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1134def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1135def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1136def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1137def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1138
1139// Mips does not have "not", so we expand our way
1140def : MipsPat<(not CPURegs:$in),
1141              (NOR CPURegs:$in, ZERO)>;
1142
1143// extended loads
1144let Predicates = [NotN64, HasStdEnc] in {
1145  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1146  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1147  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1148}
1149let Predicates = [IsN64, HasStdEnc] in {
1150  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1151  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1152  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1153}
1154
1155// peepholes
1156let Predicates = [NotN64, HasStdEnc] in {
1157  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1158}
1159let Predicates = [IsN64, HasStdEnc] in {
1160  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1161}
1162
1163// brcond patterns
1164multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1165                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1166                      Instruction SLTiuOp, Register ZEROReg> {
1167def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1168              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1169def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1170              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1171
1172def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1173              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1174def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1175              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1176def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1177              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1178def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1179              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1180
1181def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1182              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1183def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1184              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1185
1186def : MipsPat<(brcond RC:$cond, bb:$dst),
1187              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1188}
1189
1190defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1191
1192// setcc patterns
1193multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1194                     Instruction SLTuOp, Register ZEROReg> {
1195  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1196                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1197  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1198                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1199}
1200
1201multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1202  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1203                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1204  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1205                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1206}
1207
1208multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1209  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1210                (SLTOp RC:$rhs, RC:$lhs)>;
1211  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1212                (SLTuOp RC:$rhs, RC:$lhs)>;
1213}
1214
1215multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1216  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1217                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1218  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1219                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1220}
1221
1222multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1223                        Instruction SLTiuOp> {
1224  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1225                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1226  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1227                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1228}
1229
1230defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1231defm : SetlePats<CPURegs, SLT, SLTu>;
1232defm : SetgtPats<CPURegs, SLT, SLTu>;
1233defm : SetgePats<CPURegs, SLT, SLTu>;
1234defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1235
1236// bswap pattern
1237def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1238
1239//===----------------------------------------------------------------------===//
1240// Floating Point Support
1241//===----------------------------------------------------------------------===//
1242
1243include "MipsInstrFPU.td"
1244include "Mips64InstrInfo.td"
1245include "MipsCondMov.td"
1246
1247//
1248// Mips16
1249
1250include "Mips16InstrFormats.td"
1251include "Mips16InstrInfo.td"
1252
1253// DSP
1254include "MipsDSPInstrFormats.td"
1255include "MipsDSPInstrInfo.td"
1256
1257