MipsInstrInfo.td revision 8838da6587e60a248b07d4db0e874429ad4e9747
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_ExtractLOHI : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVT<1, untyped>,
27                                           SDTCisVT<2, i32>]>;
28def SDT_InsertLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
29                                          SDTCisVT<1, i32>,
30                                          SDTCisSameAs<1, 2>]>;
31def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>,
32                                    SDTCisSameAs<1, 2>]>;
33def SDT_MipsMAddMSub : SDTypeProfile<1, 3,
34                                     [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
35                                      SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
36def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
37
38def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
39
40def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
41
42def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
43                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
44def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
45                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
46                                   SDTCisSameAs<0, 4>]>;
47
48def SDTMipsLoadLR  : SDTypeProfile<1, 2,
49                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
50                                    SDTCisSameAs<0, 2>]>;
51
52// Call
53def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
54                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
55                          SDNPVariadic]>;
56
57// Tail call
58def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
59                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
60
61// Hi and Lo nodes are used to handle global addresses. Used on
62// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
63// static model. (nothing to do with Mips Registers Hi and Lo)
64def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
65def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
66def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
67
68// TlsGd node is used to handle General Dynamic TLS
69def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
70
71// TprelHi and TprelLo nodes are used to handle Local Exec TLS
72def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
73def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
74
75// Thread pointer
76def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
77
78// Return
79def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
80                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
81
82// These are target-independent nodes, but have target-specific formats.
83def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
84                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
85def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
86                           [SDNPHasChain, SDNPSideEffect,
87                            SDNPOptInGlue, SDNPOutGlue]>;
88
89// Node used to extract integer from LO/HI register.
90def ExtractLOHI : SDNode<"MipsISD::ExtractLOHI", SDT_ExtractLOHI>;
91
92// Node used to insert 32-bit integers to LOHI register pair.
93def InsertLOHI : SDNode<"MipsISD::InsertLOHI", SDT_InsertLOHI>;
94
95// Mult nodes.
96def MipsMult  : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>;
97def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>;
98
99// MAdd*/MSub* nodes
100def MipsMAdd  : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>;
101def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>;
102def MipsMSub  : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>;
103def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>;
104
105// DivRem(u) nodes
106def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>;
107def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>;
108def MipsDivRem16  : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16,
109                           [SDNPOutGlue]>;
110def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16,
111                           [SDNPOutGlue]>;
112
113// Target constant nodes that are not part of any isel patterns and remain
114// unchanged can cause instructions with illegal operands to be emitted.
115// Wrapper node patterns give the instruction selector a chance to replace
116// target constant nodes that would otherwise remain unchanged with ADDiu
117// nodes. Without these wrapper node patterns, the following conditional move
118// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
119// compiled:
120//  movn  %got(d)($gp), %got(c)($gp), $4
121// This instruction is illegal since movn can take only register operands.
122
123def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
124
125def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
126
127def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
128def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
129
130def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
131                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
132def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
133                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
134def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
135                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
136def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
137                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
138def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
139                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
140def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
141                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
142def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
143                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
144def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
145                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
146
147//===----------------------------------------------------------------------===//
148// Mips Instruction Predicate Definitions.
149//===----------------------------------------------------------------------===//
150def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
151                      AssemblerPredicate<"FeatureSEInReg">;
152def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
153                      AssemblerPredicate<"FeatureBitCount">;
154def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
155                      AssemblerPredicate<"FeatureSwap">;
156def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
157                      AssemblerPredicate<"FeatureCondMov">;
158def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
159                      AssemblerPredicate<"FeatureFPIdx">;
160def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
161                      AssemblerPredicate<"FeatureMips32">;
162def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
163                      AssemblerPredicate<"FeatureMips32r2">;
164def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
165                      AssemblerPredicate<"FeatureMips64">;
166def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
167                      AssemblerPredicate<"!FeatureMips64">;
168def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
169                      AssemblerPredicate<"FeatureMips64r2">;
170def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
171                      AssemblerPredicate<"FeatureN64">;
172def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
173                      AssemblerPredicate<"!FeatureN64">;
174def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
175                      AssemblerPredicate<"FeatureMips16">;
176def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
177                      AssemblerPredicate<"FeatureMips32">;
178def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
179                      AssemblerPredicate<"FeatureMips32">;
180def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
181                      AssemblerPredicate<"FeatureMips32">;
182def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
183                      AssemblerPredicate<"!FeatureMips16">;
184def NotDSP :          Predicate<"!Subtarget.hasDSP()">;
185
186class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
187  let Predicates = [HasStdEnc];
188}
189
190class IsCommutable {
191  bit isCommutable = 1;
192}
193
194class IsBranch {
195  bit isBranch = 1;
196}
197
198class IsReturn {
199  bit isReturn = 1;
200}
201
202class IsCall {
203  bit isCall = 1;
204}
205
206class IsTailCall {
207  bit isCall = 1;
208  bit isTerminator = 1;
209  bit isReturn = 1;
210  bit isBarrier = 1;
211  bit hasExtraSrcRegAllocReq = 1;
212  bit isCodeGenOnly = 1;
213}
214
215class IsAsCheapAsAMove {
216  bit isAsCheapAsAMove = 1;
217}
218
219class NeverHasSideEffects {
220  bit neverHasSideEffects = 1;
221}
222
223//===----------------------------------------------------------------------===//
224// Instruction format superclass
225//===----------------------------------------------------------------------===//
226
227include "MipsInstrFormats.td"
228
229//===----------------------------------------------------------------------===//
230// Mips Operand, Complex Patterns and Transformations Definitions.
231//===----------------------------------------------------------------------===//
232
233// Instruction operand types
234def jmptarget   : Operand<OtherVT> {
235  let EncoderMethod = "getJumpTargetOpValue";
236}
237def brtarget    : Operand<OtherVT> {
238  let EncoderMethod = "getBranchTargetOpValue";
239  let OperandType = "OPERAND_PCREL";
240  let DecoderMethod = "DecodeBranchTarget";
241}
242def calltarget  : Operand<iPTR> {
243  let EncoderMethod = "getJumpTargetOpValue";
244}
245def calltarget64: Operand<i64>;
246def simm16      : Operand<i32> {
247  let DecoderMethod= "DecodeSimm16";
248}
249
250def simm20      : Operand<i32> {
251}
252
253def uimm20      : Operand<i32> {
254}
255
256def uimm10      : Operand<i32> {
257}
258
259def simm16_64   : Operand<i64>;
260def shamt       : Operand<i32>;
261
262// Unsigned Operand
263def uimm16      : Operand<i32> {
264  let PrintMethod = "printUnsignedImm";
265}
266
267def MipsMemAsmOperand : AsmOperandClass {
268  let Name = "Mem";
269  let ParserMethod = "parseMemOperand";
270}
271
272// Address operand
273def mem : Operand<i32> {
274  let PrintMethod = "printMemOperand";
275  let MIOperandInfo = (ops CPURegs, simm16);
276  let EncoderMethod = "getMemEncoding";
277  let ParserMatchClass = MipsMemAsmOperand;
278  let OperandType = "OPERAND_MEMORY";
279}
280
281def mem64 : Operand<i64> {
282  let PrintMethod = "printMemOperand";
283  let MIOperandInfo = (ops CPU64Regs, simm16_64);
284  let EncoderMethod = "getMemEncoding";
285  let ParserMatchClass = MipsMemAsmOperand;
286  let OperandType = "OPERAND_MEMORY";
287}
288
289def mem_ea : Operand<i32> {
290  let PrintMethod = "printMemOperandEA";
291  let MIOperandInfo = (ops CPURegs, simm16);
292  let EncoderMethod = "getMemEncoding";
293  let OperandType = "OPERAND_MEMORY";
294}
295
296def mem_ea_64 : Operand<i64> {
297  let PrintMethod = "printMemOperandEA";
298  let MIOperandInfo = (ops CPU64Regs, simm16_64);
299  let EncoderMethod = "getMemEncoding";
300  let OperandType = "OPERAND_MEMORY";
301}
302
303// size operand of ext instruction
304def size_ext : Operand<i32> {
305  let EncoderMethod = "getSizeExtEncoding";
306  let DecoderMethod = "DecodeExtSize";
307}
308
309// size operand of ins instruction
310def size_ins : Operand<i32> {
311  let EncoderMethod = "getSizeInsEncoding";
312  let DecoderMethod = "DecodeInsSize";
313}
314
315// Transformation Function - get the lower 16 bits.
316def LO16 : SDNodeXForm<imm, [{
317  return getImm(N, N->getZExtValue() & 0xFFFF);
318}]>;
319
320// Transformation Function - get the higher 16 bits.
321def HI16 : SDNodeXForm<imm, [{
322  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
323}]>;
324
325// Plus 1.
326def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>;
327
328// Node immediate fits as 16-bit sign extended on target immediate.
329// e.g. addi, andi
330def immSExt8  : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
331
332// Node immediate fits as 16-bit sign extended on target immediate.
333// e.g. addi, andi
334def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
335
336// Node immediate fits as 15-bit sign extended on target immediate.
337// e.g. addi, andi
338def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
339
340// Node immediate fits as 16-bit zero extended on target immediate.
341// The LO16 param means that only the lower 16 bits of the node
342// immediate are caught.
343// e.g. addiu, sltiu
344def immZExt16  : PatLeaf<(imm), [{
345  if (N->getValueType(0) == MVT::i32)
346    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
347  else
348    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
349}], LO16>;
350
351// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
352def immLow16Zero : PatLeaf<(imm), [{
353  int64_t Val = N->getSExtValue();
354  return isInt<32>(Val) && !(Val & 0xffff);
355}]>;
356
357// shamt field must fit in 5 bits.
358def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
359
360// True if (N + 1) fits in 16-bit field.
361def immSExt16Plus1 : PatLeaf<(imm), [{
362  return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1);
363}]>;
364
365// Mips Address Mode! SDNode frameindex could possibily be a match
366// since load and store instructions from stack used it.
367def addr :
368  ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>;
369
370def addrRegImm :
371  ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>;
372
373def addrDefault :
374  ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>;
375
376//===----------------------------------------------------------------------===//
377// Instructions specific format
378//===----------------------------------------------------------------------===//
379
380// Arithmetic and logical instructions with 3 register operands.
381class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
382                  InstrItinClass Itin = NoItinerary,
383                  SDPatternOperator OpNode = null_frag>:
384  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
385         !strconcat(opstr, "\t$rd, $rs, $rt"),
386         [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> {
387  let isCommutable = isComm;
388  let isReMaterializable = 1;
389}
390
391// Arithmetic and logical instructions with 2 register operands.
392class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
393                  SDPatternOperator imm_type = null_frag,
394                  SDPatternOperator OpNode = null_frag> :
395  InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
396         !strconcat(opstr, "\t$rt, $rs, $imm16"),
397         [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))],
398         IIAlu, FrmI, opstr> {
399  let isReMaterializable = 1;
400  let TwoOperandAliasConstraint = "$rs = $rt";
401}
402
403// Arithmetic Multiply ADD/SUB
404class MArithR<string opstr, bit isComm = 0> :
405  InstSE<(outs), (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt),
406         !strconcat(opstr, "\t$rs, $rt"), [], IIImult, FrmR> {
407  let Defs = [HI, LO];
408  let Uses = [HI, LO];
409  let isCommutable = isComm;
410}
411
412//  Logical
413class LogicNOR<string opstr, RegisterOperand RC>:
414  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
415         !strconcat(opstr, "\t$rd, $rs, $rt"),
416         [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu, FrmR, opstr> {
417  let isCommutable = 1;
418}
419
420// Shifts
421class shift_rotate_imm<string opstr, Operand ImmOpnd,
422                       RegisterOperand RC, SDPatternOperator OpNode = null_frag,
423                       SDPatternOperator PF = null_frag> :
424  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
425         !strconcat(opstr, "\t$rd, $rt, $shamt"),
426         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR, opstr>;
427
428class shift_rotate_reg<string opstr, RegisterOperand RC,
429                       SDPatternOperator OpNode = null_frag>:
430  InstSE<(outs RC:$rd), (ins RC:$rt, CPURegsOpnd:$rs),
431         !strconcat(opstr, "\t$rd, $rt, $rs"),
432         [(set RC:$rd, (OpNode RC:$rt, CPURegsOpnd:$rs))], IIAlu, FrmR, opstr>;
433
434// Load Upper Imediate
435class LoadUpper<string opstr, RegisterClass RC, Operand Imm>:
436  InstSE<(outs RC:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
437         [], IIAlu, FrmI>, IsAsCheapAsAMove {
438  let neverHasSideEffects = 1;
439  let isReMaterializable = 1;
440}
441
442class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
443          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
444  bits<21> addr;
445  let Inst{25-21} = addr{20-16};
446  let Inst{15-0}  = addr{15-0};
447  let DecoderMethod = "DecodeMem";
448}
449
450// Memory Load/Store
451class Load<string opstr, SDPatternOperator OpNode, RegisterClass RC,
452           InstrItinClass Itin, Operand MemOpnd, ComplexPattern Addr,
453           string ofsuffix> :
454  InstSE<(outs RC:$rt), (ins MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
455         [(set RC:$rt, (OpNode Addr:$addr))], NoItinerary, FrmI,
456         !strconcat(opstr, ofsuffix)> {
457  let DecoderMethod = "DecodeMem";
458  let canFoldAsLoad = 1;
459  let mayLoad = 1;
460}
461
462class Store<string opstr, SDPatternOperator OpNode, RegisterClass RC,
463            InstrItinClass Itin, Operand MemOpnd, ComplexPattern Addr,
464            string ofsuffix> :
465  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
466         [(OpNode RC:$rt, Addr:$addr)], NoItinerary, FrmI,
467         !strconcat(opstr, ofsuffix)> {
468  let DecoderMethod = "DecodeMem";
469  let mayStore = 1;
470}
471
472multiclass LoadM<string opstr, RegisterClass RC,
473                 SDPatternOperator OpNode = null_frag,
474                 InstrItinClass Itin = NoItinerary,
475                 ComplexPattern Addr = addr> {
476  def NAME : Load<opstr, OpNode, RC, Itin, mem, Addr, "">,
477             Requires<[NotN64, HasStdEnc]>;
478  def _P8  : Load<opstr, OpNode, RC, Itin, mem64, Addr, "_p8">,
479             Requires<[IsN64, HasStdEnc]> {
480    let DecoderNamespace = "Mips64";
481    let isCodeGenOnly = 1;
482  }
483}
484
485multiclass StoreM<string opstr, RegisterClass RC,
486                  SDPatternOperator OpNode = null_frag,
487                  InstrItinClass Itin = NoItinerary,
488                  ComplexPattern Addr = addr> {
489  def NAME : Store<opstr, OpNode, RC, Itin, mem, Addr, "">,
490             Requires<[NotN64, HasStdEnc]>;
491  def _P8  : Store<opstr, OpNode, RC, Itin, mem64, Addr, "_p8">,
492             Requires<[IsN64, HasStdEnc]> {
493    let DecoderNamespace = "Mips64";
494    let isCodeGenOnly = 1;
495  }
496}
497
498// Load/Store Left/Right
499let canFoldAsLoad = 1 in
500class LoadLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
501                    Operand MemOpnd> :
502  InstSE<(outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
503         !strconcat(opstr, "\t$rt, $addr"),
504         [(set RC:$rt, (OpNode addr:$addr, RC:$src))], NoItinerary, FrmI> {
505  let DecoderMethod = "DecodeMem";
506  string Constraints = "$src = $rt";
507}
508
509class StoreLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
510                     Operand MemOpnd>:
511  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
512         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
513  let DecoderMethod = "DecodeMem";
514}
515
516multiclass LoadLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
517  def NAME : LoadLeftRight<opstr, OpNode, RC, mem>,
518             Requires<[NotN64, HasStdEnc]>;
519  def _P8  : LoadLeftRight<opstr, OpNode, RC, mem64>,
520             Requires<[IsN64, HasStdEnc]> {
521    let DecoderNamespace = "Mips64";
522    let isCodeGenOnly = 1;
523  }
524}
525
526multiclass StoreLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
527  def NAME : StoreLeftRight<opstr, OpNode, RC, mem>,
528             Requires<[NotN64, HasStdEnc]>;
529  def _P8  : StoreLeftRight<opstr, OpNode, RC, mem64>,
530             Requires<[IsN64, HasStdEnc]> {
531    let DecoderNamespace = "Mips64";
532    let isCodeGenOnly = 1;
533  }
534}
535
536// Conditional Branch
537class CBranch<string opstr, PatFrag cond_op, RegisterOperand RC> :
538  InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset),
539         !strconcat(opstr, "\t$rs, $rt, $offset"),
540         [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch,
541         FrmI> {
542  let isBranch = 1;
543  let isTerminator = 1;
544  let hasDelaySlot = 1;
545  let Defs = [AT];
546}
547
548class CBranchZero<string opstr, PatFrag cond_op, RegisterOperand RC> :
549  InstSE<(outs), (ins RC:$rs, brtarget:$offset),
550         !strconcat(opstr, "\t$rs, $offset"),
551         [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
552  let isBranch = 1;
553  let isTerminator = 1;
554  let hasDelaySlot = 1;
555  let Defs = [AT];
556}
557
558// SetCC
559class SetCC_R<string opstr, PatFrag cond_op, RegisterClass RC> :
560  InstSE<(outs CPURegsOpnd:$rd), (ins RC:$rs, RC:$rt),
561         !strconcat(opstr, "\t$rd, $rs, $rt"),
562         [(set CPURegsOpnd:$rd, (cond_op RC:$rs, RC:$rt))],
563         IIslt, FrmR, opstr>;
564
565class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
566              RegisterClass RC>:
567  InstSE<(outs CPURegsOpnd:$rt), (ins RC:$rs, Od:$imm16),
568         !strconcat(opstr, "\t$rt, $rs, $imm16"),
569         [(set CPURegsOpnd:$rt, (cond_op RC:$rs, imm_type:$imm16))],
570         IIslt, FrmI, opstr>;
571
572// Jump
573class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
574             SDPatternOperator targetoperator> :
575  InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
576         [(operator targetoperator:$target)], IIBranch, FrmJ> {
577  let isTerminator=1;
578  let isBarrier=1;
579  let hasDelaySlot = 1;
580  let DecoderMethod = "DecodeJumpTarget";
581  let Defs = [AT];
582}
583
584// Unconditional branch
585class UncondBranch<string opstr> :
586  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
587         [(br bb:$offset)], IIBranch, FrmI> {
588  let isBranch = 1;
589  let isTerminator = 1;
590  let isBarrier = 1;
591  let hasDelaySlot = 1;
592  let Predicates = [RelocPIC, HasStdEnc];
593  let Defs = [AT];
594}
595
596// Base class for indirect branch and return instruction classes.
597let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
598class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
599  InstSE<(outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch, FrmR>;
600
601// Indirect branch
602class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
603  let isBranch = 1;
604  let isIndirectBranch = 1;
605}
606
607// Return instruction
608class RetBase<RegisterClass RC>: JumpFR<RC> {
609  let isReturn = 1;
610  let isCodeGenOnly = 1;
611  let hasCtrlDep = 1;
612  let hasExtraSrcRegAllocReq = 1;
613}
614
615// Jump and Link (Call)
616let isCall=1, hasDelaySlot=1, Defs = [RA] in {
617  class JumpLink<string opstr> :
618    InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"),
619           [(MipsJmpLink imm:$target)], IIBranch, FrmJ> {
620    let DecoderMethod = "DecodeJumpTarget";
621  }
622
623  class JumpLinkRegPseudo<RegisterClass RC, Instruction JALRInst,
624                          Register RetReg>:
625    PseudoSE<(outs), (ins RC:$rs), [(MipsJmpLink RC:$rs)], IIBranch>,
626    PseudoInstExpansion<(JALRInst RetReg, RC:$rs)>;
627
628  class JumpLinkReg<string opstr, RegisterClass RC>:
629    InstSE<(outs RC:$rd), (ins RC:$rs), !strconcat(opstr, "\t$rd, $rs"),
630           [], IIBranch, FrmR>;
631
632  class BGEZAL_FT<string opstr, RegisterOperand RO> :
633    InstSE<(outs), (ins RO:$rs, brtarget:$offset),
634           !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI>;
635
636}
637
638class BAL_BR_Pseudo<Instruction RealInst> :
639  PseudoSE<(outs), (ins brtarget:$offset), [], IIBranch>,
640  PseudoInstExpansion<(RealInst ZERO, brtarget:$offset)> {
641  let isBranch = 1;
642  let isTerminator = 1;
643  let isBarrier = 1;
644  let hasDelaySlot = 1;
645  let Defs = [RA];
646}
647
648// Syscall
649class SYS_FT<string opstr> :
650  InstSE<(outs), (ins uimm20:$code_),
651         !strconcat(opstr, "\t$code_"), [], NoItinerary, FrmI>;
652// Break
653class BRK_FT<string opstr> :
654  InstSE<(outs), (ins uimm10:$code_1, uimm10:$code_2),
655         !strconcat(opstr, "\t$code_1, $code_2"), [], NoItinerary, FrmOther>;
656
657// (D)Eret
658class ER_FT<string opstr> :
659  InstSE<(outs), (ins),
660         opstr, [], NoItinerary, FrmOther>;
661
662// Sync
663let hasSideEffects = 1 in
664class SYNC_FT :
665  InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
666         NoItinerary, FrmOther>;
667
668let hasSideEffects = 1 in
669class TEQ_FT<string opstr, RegisterOperand RO> :
670  InstSE<(outs), (ins RO:$rs, RO:$rt, uimm16:$code_),
671         !strconcat(opstr, "\t$rs, $rt, $code_"), [], NoItinerary, FrmI>;
672
673// Mul, Div
674class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
675           list<Register> DefRegs> :
676  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
677         itin, FrmR, opstr> {
678  let isCommutable = 1;
679  let Defs = DefRegs;
680  let neverHasSideEffects = 1;
681}
682
683// Pseudo multiply/divide instruction with explicit accumulator register
684// operands.
685class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1,
686                    SDPatternOperator OpNode, InstrItinClass Itin,
687                    bit IsComm = 1, bit HasSideEffects = 0,
688                    bit UsesCustomInserter = 0> :
689  PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt),
690           [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>,
691  PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> {
692  let isCommutable = IsComm;
693  let hasSideEffects = HasSideEffects;
694  let usesCustomInserter = UsesCustomInserter;
695}
696
697// Pseudo multiply add/sub instruction with explicit accumulator register
698// operands.
699class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode>
700  : PseudoSE<(outs ACRegs:$ac),
701             (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin),
702             [(set ACRegs:$ac,
703              (OpNode CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin))],
704             IIImult>,
705    PseudoInstExpansion<(RealInst CPURegsOpnd:$rs, CPURegsOpnd:$rt)> {
706  string Constraints = "$acin = $ac";
707}
708
709class Div<string opstr, InstrItinClass itin, RegisterOperand RO,
710          list<Register> DefRegs> :
711  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"),
712         [], itin, FrmR> {
713  let Defs = DefRegs;
714}
715
716// Move from Hi/Lo
717class MoveFromLOHI<string opstr, RegisterClass RC, list<Register> UseRegs>:
718  InstSE<(outs RC:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> {
719  let Uses = UseRegs;
720  let neverHasSideEffects = 1;
721}
722
723class MoveToLOHI<string opstr, RegisterClass RC, list<Register> DefRegs>:
724  InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> {
725  let Defs = DefRegs;
726  let neverHasSideEffects = 1;
727}
728
729class EffectiveAddress<string opstr, RegisterClass RC, Operand Mem> :
730  InstSE<(outs RC:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
731         [(set RC:$rt, addr:$addr)], NoItinerary, FrmI> {
732  let isCodeGenOnly = 1;
733  let DecoderMethod = "DecodeMem";
734}
735
736// Count Leading Ones/Zeros in Word
737class CountLeading0<string opstr, RegisterOperand RO>:
738  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
739         [(set RO:$rd, (ctlz RO:$rs))], IIAlu, FrmR>,
740  Requires<[HasBitCount, HasStdEnc]>;
741
742class CountLeading1<string opstr, RegisterOperand RO>:
743  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
744         [(set RO:$rd, (ctlz (not RO:$rs)))], IIAlu, FrmR>,
745  Requires<[HasBitCount, HasStdEnc]>;
746
747
748// Sign Extend in Register.
749class SignExtInReg<string opstr, ValueType vt, RegisterClass RC> :
750  InstSE<(outs RC:$rd), (ins RC:$rt), !strconcat(opstr, "\t$rd, $rt"),
751         [(set RC:$rd, (sext_inreg RC:$rt, vt))], IIseb, FrmR> {
752  let Predicates = [HasSEInReg, HasStdEnc];
753}
754
755// Subword Swap
756class SubwordSwap<string opstr, RegisterOperand RO>:
757  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
758         NoItinerary, FrmR> {
759  let Predicates = [HasSwap, HasStdEnc];
760  let neverHasSideEffects = 1;
761}
762
763// Read Hardware
764class ReadHardware<RegisterClass CPURegClass, RegisterOperand RO> :
765  InstSE<(outs CPURegClass:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
766         IIAlu, FrmR>;
767
768// Ext and Ins
769class ExtBase<string opstr, RegisterOperand RO>:
770  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ext:$size),
771         !strconcat(opstr, " $rt, $rs, $pos, $size"),
772         [(set RO:$rt, (MipsExt RO:$rs, imm:$pos, imm:$size))], NoItinerary,
773         FrmR> {
774  let Predicates = [HasMips32r2, HasStdEnc];
775}
776
777class InsBase<string opstr, RegisterOperand RO>:
778  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ins:$size, RO:$src),
779         !strconcat(opstr, " $rt, $rs, $pos, $size"),
780         [(set RO:$rt, (MipsIns RO:$rs, imm:$pos, imm:$size, RO:$src))],
781         NoItinerary, FrmR> {
782  let Predicates = [HasMips32r2, HasStdEnc];
783  let Constraints = "$src = $rt";
784}
785
786// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
787class Atomic2Ops<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
788  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
789           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
790
791multiclass Atomic2Ops32<PatFrag Op> {
792  def NAME : Atomic2Ops<Op, CPURegs, CPURegs>, Requires<[NotN64, HasStdEnc]>;
793  def _P8  : Atomic2Ops<Op, CPURegs, CPU64Regs>,
794             Requires<[IsN64, HasStdEnc]> {
795    let DecoderNamespace = "Mips64";
796  }
797}
798
799// Atomic Compare & Swap.
800class AtomicCmpSwap<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
801  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
802           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
803
804multiclass AtomicCmpSwap32<PatFrag Op>  {
805  def NAME : AtomicCmpSwap<Op, CPURegs, CPURegs>,
806             Requires<[NotN64, HasStdEnc]>;
807  def _P8  : AtomicCmpSwap<Op, CPURegs, CPU64Regs>,
808             Requires<[IsN64, HasStdEnc]> {
809    let DecoderNamespace = "Mips64";
810  }
811}
812
813class LLBase<string opstr, RegisterOperand RO, Operand Mem> :
814  InstSE<(outs RO:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
815         [], NoItinerary, FrmI> {
816  let DecoderMethod = "DecodeMem";
817  let mayLoad = 1;
818}
819
820class SCBase<string opstr, RegisterOperand RO, Operand Mem> :
821  InstSE<(outs RO:$dst), (ins RO:$rt, Mem:$addr),
822         !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
823  let DecoderMethod = "DecodeMem";
824  let mayStore = 1;
825  let Constraints = "$rt = $dst";
826}
827
828class MFC3OP<dag outs, dag ins, string asmstr> :
829  InstSE<outs, ins, asmstr, [], NoItinerary, FrmFR>;
830
831let isBarrier = 1, isTerminator = 1, isCodeGenOnly = 1 in
832def TRAP : InstSE<(outs), (ins), "break", [(trap)], NoItinerary, FrmOther> {
833   let Inst = 0x0000000d;
834}
835
836//===----------------------------------------------------------------------===//
837// Pseudo instructions
838//===----------------------------------------------------------------------===//
839
840// Return RA.
841let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
842def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
843
844let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
845def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
846                                  [(callseq_start timm:$amt)]>;
847def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
848                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
849}
850
851let usesCustomInserter = 1 in {
852  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8>;
853  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16>;
854  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32>;
855  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8>;
856  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16>;
857  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32>;
858  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8>;
859  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16>;
860  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32>;
861  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8>;
862  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16>;
863  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32>;
864  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8>;
865  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16>;
866  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32>;
867  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8>;
868  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16>;
869  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32>;
870
871  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8>;
872  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16>;
873  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32>;
874
875  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8>;
876  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16>;
877  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32>;
878}
879
880/// Pseudo instructions for loading and storing accumulator registers.
881let isPseudo = 1 in {
882  defm LOAD_AC64  : LoadM<"load_ac64", ACRegs>;
883  defm STORE_AC64 : StoreM<"store_ac64", ACRegs>;
884}
885
886//===----------------------------------------------------------------------===//
887// Instruction definition
888//===----------------------------------------------------------------------===//
889//===----------------------------------------------------------------------===//
890// MipsI Instructions
891//===----------------------------------------------------------------------===//
892
893/// Arithmetic Instructions (ALU Immediate)
894def ADDiu : MMRel, ArithLogicI<"addiu", simm16, CPURegsOpnd, immSExt16, add>,
895            ADDI_FM<0x9>, IsAsCheapAsAMove;
896def ADDi  : MMRel, ArithLogicI<"addi", simm16, CPURegsOpnd>, ADDI_FM<0x8>;
897def SLTi  : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>,
898            SLTI_FM<0xa>;
899def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>,
900            SLTI_FM<0xb>;
901def ANDi  : MMRel, ArithLogicI<"andi", uimm16, CPURegsOpnd, immZExt16, and>,
902            ADDI_FM<0xc>;
903def ORi   : MMRel, ArithLogicI<"ori", uimm16, CPURegsOpnd, immZExt16, or>,
904            ADDI_FM<0xd>;
905def XORi  : MMRel, ArithLogicI<"xori", uimm16, CPURegsOpnd, immZExt16, xor>,
906            ADDI_FM<0xe>;
907def LUi   : MMRel, LoadUpper<"lui", CPURegs, uimm16>, LUI_FM;
908
909/// Arithmetic Instructions (3-Operand, R-Type)
910def ADDu  : MMRel, ArithLogicR<"addu", CPURegsOpnd, 1, IIAlu, add>,
911            ADD_FM<0, 0x21>;
912def SUBu  : MMRel, ArithLogicR<"subu", CPURegsOpnd, 0, IIAlu, sub>,
913            ADD_FM<0, 0x23>;
914def MUL   : MMRel, ArithLogicR<"mul", CPURegsOpnd, 1, IIImul, mul>,
915            ADD_FM<0x1c, 2>;
916def ADD   : MMRel, ArithLogicR<"add", CPURegsOpnd>, ADD_FM<0, 0x20>;
917def SUB   : MMRel, ArithLogicR<"sub", CPURegsOpnd>, ADD_FM<0, 0x22>;
918def SLT   : MMRel, SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>;
919def SLTu  : MMRel, SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>;
920def AND   : MMRel, ArithLogicR<"and", CPURegsOpnd, 1, IIAlu, and>,
921            ADD_FM<0, 0x24>;
922def OR    : MMRel, ArithLogicR<"or", CPURegsOpnd, 1, IIAlu, or>,
923            ADD_FM<0, 0x25>;
924def XOR   : MMRel, ArithLogicR<"xor", CPURegsOpnd, 1, IIAlu, xor>,
925            ADD_FM<0, 0x26>;
926def NOR   : MMRel, LogicNOR<"nor", CPURegsOpnd>, ADD_FM<0, 0x27>;
927
928/// Shift Instructions
929def SLL  : MMRel, shift_rotate_imm<"sll", shamt, CPURegsOpnd, shl, immZExt5>,
930           SRA_FM<0, 0>;
931def SRL  : MMRel, shift_rotate_imm<"srl", shamt, CPURegsOpnd, srl, immZExt5>,
932           SRA_FM<2, 0>;
933def SRA  : MMRel, shift_rotate_imm<"sra", shamt, CPURegsOpnd, sra, immZExt5>,
934           SRA_FM<3, 0>;
935def SLLV : MMRel, shift_rotate_reg<"sllv", CPURegsOpnd, shl>, SRLV_FM<4, 0>;
936def SRLV : MMRel, shift_rotate_reg<"srlv", CPURegsOpnd, srl>, SRLV_FM<6, 0>;
937def SRAV : MMRel, shift_rotate_reg<"srav", CPURegsOpnd, sra>, SRLV_FM<7, 0>;
938
939// Rotate Instructions
940let Predicates = [HasMips32r2, HasStdEnc] in {
941  def ROTR  : MMRel, shift_rotate_imm<"rotr", shamt, CPURegsOpnd, rotr,
942                                      immZExt5>,
943              SRA_FM<2, 1>;
944  def ROTRV : MMRel, shift_rotate_reg<"rotrv", CPURegsOpnd, rotr>,
945              SRLV_FM<6, 1>;
946}
947
948/// Load and Store Instructions
949///  aligned
950defm LB  : LoadM<"lb", CPURegs, sextloadi8, IILoad>, MMRel, LW_FM<0x20>;
951defm LBu : LoadM<"lbu", CPURegs, zextloadi8, IILoad, addrDefault>, MMRel,
952           LW_FM<0x24>;
953defm LH  : LoadM<"lh", CPURegs, sextloadi16, IILoad, addrDefault>, MMRel,
954           LW_FM<0x21>;
955defm LHu : LoadM<"lhu", CPURegs, zextloadi16, IILoad>, MMRel, LW_FM<0x25>;
956defm LW  : LoadM<"lw", CPURegs, load, IILoad, addrDefault>, MMRel, LW_FM<0x23>;
957defm SB  : StoreM<"sb", CPURegs, truncstorei8, IIStore>, MMRel, LW_FM<0x28>;
958defm SH  : StoreM<"sh", CPURegs, truncstorei16, IIStore>, MMRel, LW_FM<0x29>;
959defm SW  : StoreM<"sw", CPURegs, store, IIStore>, MMRel, LW_FM<0x2b>;
960
961/// load/store left/right
962defm LWL : LoadLeftRightM<"lwl", MipsLWL, CPURegs>, LW_FM<0x22>;
963defm LWR : LoadLeftRightM<"lwr", MipsLWR, CPURegs>, LW_FM<0x26>;
964defm SWL : StoreLeftRightM<"swl", MipsSWL, CPURegs>, LW_FM<0x2a>;
965defm SWR : StoreLeftRightM<"swr", MipsSWR, CPURegs>, LW_FM<0x2e>;
966
967def SYNC : SYNC_FT, SYNC_FM;
968def TEQ : TEQ_FT<"teq", CPURegsOpnd>, TEQ_FM<0x34>;
969
970def BREAK : BRK_FT<"break">, BRK_FM<0xd>;
971def SYSCALL : SYS_FT<"syscall">, SYS_FM<0xc>;
972
973def ERET : ER_FT<"eret">, ER_FM<0x18>;
974def DERET : ER_FT<"deret">, ER_FM<0x1f>;
975
976/// Load-linked, Store-conditional
977let Predicates = [NotN64, HasStdEnc] in {
978  def LL : LLBase<"ll", CPURegsOpnd, mem>, LW_FM<0x30>;
979  def SC : SCBase<"sc", CPURegsOpnd, mem>, LW_FM<0x38>;
980}
981
982let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
983  def LL_P8 : LLBase<"ll", CPURegsOpnd, mem64>, LW_FM<0x30>;
984  def SC_P8 : SCBase<"sc", CPURegsOpnd, mem64>, LW_FM<0x38>;
985}
986
987/// Jump and Branch Instructions
988def J       : JumpFJ<jmptarget, "j", br, bb>, FJ<2>,
989              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
990def JR      : IndirectBranch<CPURegs>, MTLO_FM<8>;
991def B       : UncondBranch<"b">, B_FM;
992def BEQ     : CBranch<"beq", seteq, CPURegsOpnd>, BEQ_FM<4>;
993def BNE     : CBranch<"bne", setne, CPURegsOpnd>, BEQ_FM<5>;
994def BGEZ    : CBranchZero<"bgez", setge, CPURegsOpnd>, BGEZ_FM<1, 1>;
995def BGTZ    : CBranchZero<"bgtz", setgt, CPURegsOpnd>, BGEZ_FM<7, 0>;
996def BLEZ    : CBranchZero<"blez", setle, CPURegsOpnd>, BGEZ_FM<6, 0>;
997def BLTZ    : CBranchZero<"bltz", setlt, CPURegsOpnd>, BGEZ_FM<1, 0>;
998
999def JAL  : JumpLink<"jal">, FJ<3>;
1000def JALR : JumpLinkReg<"jalr", CPURegs>, JALR_FM;
1001def JALRPseudo : JumpLinkRegPseudo<CPURegs, JALR, RA>;
1002def BGEZAL : BGEZAL_FT<"bgezal", CPURegsOpnd>, BGEZAL_FM<0x11>;
1003def BLTZAL : BGEZAL_FT<"bltzal", CPURegsOpnd>, BGEZAL_FM<0x10>;
1004def BAL_BR : BAL_BR_Pseudo<BGEZAL>;
1005def TAILCALL : JumpFJ<calltarget, "j", MipsTailCall, imm>, FJ<2>, IsTailCall;
1006def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, MTLO_FM<8>, IsTailCall;
1007
1008def RET : RetBase<CPURegs>, MTLO_FM<8>;
1009
1010// Exception handling related node and instructions.
1011// The conversion sequence is:
1012// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
1013// MIPSeh_return -> (stack change + indirect branch)
1014//
1015// MIPSeh_return takes the place of regular return instruction
1016// but takes two arguments (V1, V0) which are used for storing
1017// the offset and return address respectively.
1018def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
1019
1020def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
1021                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
1022
1023let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
1024  def MIPSeh_return32 : MipsPseudo<(outs), (ins CPURegs:$spoff, CPURegs:$dst),
1025                                [(MIPSehret CPURegs:$spoff, CPURegs:$dst)]>;
1026  def MIPSeh_return64 : MipsPseudo<(outs), (ins CPU64Regs:$spoff,
1027                                                CPU64Regs:$dst),
1028                                [(MIPSehret CPU64Regs:$spoff, CPU64Regs:$dst)]>;
1029}
1030
1031/// Multiply and Divide Instructions.
1032def MULT  : MMRel, Mult<"mult", IIImult, CPURegsOpnd, [HI, LO]>,
1033            MULT_FM<0, 0x18>;
1034def MULTu : MMRel, Mult<"multu", IIImult, CPURegsOpnd, [HI, LO]>,
1035            MULT_FM<0, 0x19>;
1036def PseudoMULT  : MultDivPseudo<MULT, ACRegs, CPURegsOpnd, MipsMult, IIImult>;
1037def PseudoMULTu : MultDivPseudo<MULTu, ACRegs, CPURegsOpnd, MipsMultu, IIImult>;
1038def SDIV  : Div<"div", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1a>;
1039def UDIV  : Div<"divu", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1b>;
1040def PseudoSDIV : MultDivPseudo<SDIV, ACRegs, CPURegsOpnd, MipsDivRem, IIIdiv,
1041                               0, 1, 1>;
1042def PseudoUDIV : MultDivPseudo<UDIV, ACRegs, CPURegsOpnd, MipsDivRemU, IIIdiv,
1043                               0, 1, 1>;
1044
1045def MTHI : MoveToLOHI<"mthi", CPURegs, [HI]>, MTLO_FM<0x11>;
1046def MTLO : MoveToLOHI<"mtlo", CPURegs, [LO]>, MTLO_FM<0x13>;
1047def MFHI : MoveFromLOHI<"mfhi", CPURegs, [HI]>, MFLO_FM<0x10>;
1048def MFLO : MoveFromLOHI<"mflo", CPURegs, [LO]>, MFLO_FM<0x12>;
1049
1050/// Sign Ext In Register Instructions.
1051def SEB : SignExtInReg<"seb", i8, CPURegs>, SEB_FM<0x10, 0x20>;
1052def SEH : SignExtInReg<"seh", i16, CPURegs>, SEB_FM<0x18, 0x20>;
1053
1054/// Count Leading
1055def CLZ : CountLeading0<"clz", CPURegsOpnd>, CLO_FM<0x20>;
1056def CLO : CountLeading1<"clo", CPURegsOpnd>, CLO_FM<0x21>;
1057
1058/// Word Swap Bytes Within Halfwords
1059def WSBH : SubwordSwap<"wsbh", CPURegsOpnd>, SEB_FM<2, 0x20>;
1060
1061/// No operation.
1062def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
1063
1064// FrameIndexes are legalized when they are operands from load/store
1065// instructions. The same not happens for stack address copies, so an
1066// add op with mem ComplexPattern is used and the stack address copy
1067// can be matched. It's similar to Sparc LEA_ADDRi
1068def LEA_ADDiu : EffectiveAddress<"addiu", CPURegs, mem_ea>, LW_FM<9>;
1069
1070// MADD*/MSUB*
1071def MADD  : MArithR<"madd", 1>, MULT_FM<0x1c, 0>;
1072def MADDU : MArithR<"maddu", 1>, MULT_FM<0x1c, 1>;
1073def MSUB  : MArithR<"msub">, MULT_FM<0x1c, 4>;
1074def MSUBU : MArithR<"msubu">, MULT_FM<0x1c, 5>;
1075def PseudoMADD  : MAddSubPseudo<MADD, MipsMAdd>;
1076def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu>;
1077def PseudoMSUB  : MAddSubPseudo<MSUB, MipsMSub>;
1078def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu>;
1079
1080def RDHWR : ReadHardware<CPURegs, HWRegsOpnd>, RDHWR_FM;
1081
1082def EXT : ExtBase<"ext", CPURegsOpnd>, EXT_FM<0>;
1083def INS : InsBase<"ins", CPURegsOpnd>, EXT_FM<4>;
1084
1085/// Move Control Registers From/To CPU Registers
1086def MFC0_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
1087                      (ins CPURegsOpnd:$rd, uimm16:$sel),
1088                      "mfc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 0>;
1089
1090def MTC0_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
1091                      (ins CPURegsOpnd:$rt),
1092                      "mtc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 4>;
1093
1094def MFC2_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
1095                      (ins CPURegsOpnd:$rd, uimm16:$sel),
1096                      "mfc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 0>;
1097
1098def MTC2_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
1099                      (ins CPURegsOpnd:$rt),
1100                      "mtc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 4>;
1101
1102//===----------------------------------------------------------------------===//
1103// Instruction aliases
1104//===----------------------------------------------------------------------===//
1105def : InstAlias<"move $dst, $src",
1106                (ADDu CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
1107      Requires<[NotMips64]>;
1108def : InstAlias<"bal $offset", (BGEZAL ZERO, brtarget:$offset), 1>;
1109def : InstAlias<"addu $rs, $rt, $imm",
1110                (ADDiu CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1111def : InstAlias<"add $rs, $rt, $imm",
1112                (ADDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1113def : InstAlias<"and $rs, $rt, $imm",
1114                (ANDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1115def : InstAlias<"j $rs", (JR CPURegs:$rs), 0>,
1116      Requires<[NotMips64]>;
1117def : InstAlias<"jalr $rs", (JALR RA, CPURegs:$rs)>, Requires<[NotMips64]>;
1118def : InstAlias<"jal $rs", (JALR RA, CPURegs:$rs), 0>, Requires<[NotMips64]>;
1119def : InstAlias<"jal $rd,$rs", (JALR CPURegs:$rd, CPURegs:$rs), 0>,
1120                 Requires<[NotMips64]>;
1121def : InstAlias<"not $rt, $rs",
1122                (NOR CPURegsOpnd:$rt, CPURegsOpnd:$rs, ZERO), 1>;
1123def : InstAlias<"neg $rt, $rs",
1124                (SUB CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
1125def : InstAlias<"negu $rt, $rs",
1126                (SUBu CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
1127def : InstAlias<"slt $rs, $rt, $imm",
1128                (SLTi CPURegsOpnd:$rs, CPURegs:$rt, simm16:$imm), 0>;
1129def : InstAlias<"xor $rs, $rt, $imm",
1130                (XORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, uimm16:$imm), 1>,
1131      Requires<[NotMips64]>;
1132def : InstAlias<"or $rs, $rt, $imm",
1133                (ORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, uimm16:$imm), 1>,
1134                 Requires<[NotMips64]>;
1135def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
1136def : InstAlias<"mfc0 $rt, $rd",
1137                (MFC0_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
1138def : InstAlias<"mtc0 $rt, $rd",
1139                (MTC0_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
1140def : InstAlias<"mfc2 $rt, $rd",
1141                (MFC2_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
1142def : InstAlias<"mtc2 $rt, $rd",
1143                (MTC2_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
1144def : InstAlias<"bnez $rs,$offset",
1145                 (BNE CPURegsOpnd:$rs, ZERO, brtarget:$offset), 1>,
1146                 Requires<[NotMips64]>;
1147def : InstAlias<"beqz $rs,$offset",
1148                 (BEQ CPURegsOpnd:$rs, ZERO, brtarget:$offset), 1>,
1149                 Requires<[NotMips64]>;
1150def : InstAlias<"syscall", (SYSCALL 0), 1>;
1151
1152def : InstAlias<"break $imm", (BREAK uimm10:$imm, 0), 1>;
1153def : InstAlias<"break", (BREAK 0, 0), 1>;
1154//===----------------------------------------------------------------------===//
1155// Assembler Pseudo Instructions
1156//===----------------------------------------------------------------------===//
1157
1158class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
1159  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1160                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1161def LoadImm32Reg : LoadImm32<"li", shamt,CPURegsOpnd>;
1162
1163class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
1164  MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
1165                     !strconcat(instr_asm, "\t$rt, $addr")> ;
1166def LoadAddr32Reg : LoadAddress<"la", mem, CPURegsOpnd>;
1167
1168class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
1169  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1170                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1171def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegsOpnd>;
1172
1173
1174
1175//===----------------------------------------------------------------------===//
1176//  Arbitrary patterns that map to one or more instructions
1177//===----------------------------------------------------------------------===//
1178
1179// Load/store pattern templates.
1180class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> :
1181  MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>;
1182
1183class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
1184  MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;
1185
1186// Small immediates
1187def : MipsPat<(i32 immSExt16:$in),
1188              (ADDiu ZERO, imm:$in)>;
1189def : MipsPat<(i32 immZExt16:$in),
1190              (ORi ZERO, imm:$in)>;
1191def : MipsPat<(i32 immLow16Zero:$in),
1192              (LUi (HI16 imm:$in))>;
1193
1194// Arbitrary immediates
1195def : MipsPat<(i32 imm:$imm),
1196          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1197
1198// Carry MipsPatterns
1199def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1200              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1201let Predicates = [HasStdEnc, NotDSP] in {
1202  def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1203                (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1204  def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1205                (ADDiu CPURegs:$src, imm:$imm)>;
1206}
1207
1208// Call
1209def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1210              (JAL tglobaladdr:$dst)>;
1211def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1212              (JAL texternalsym:$dst)>;
1213//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1214//              (JALR CPURegs:$dst)>;
1215
1216// Tail call
1217def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1218              (TAILCALL tglobaladdr:$dst)>;
1219def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1220              (TAILCALL texternalsym:$dst)>;
1221// hi/lo relocs
1222def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1223def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1224def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1225def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1226def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1227def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1228
1229def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1230def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1231def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1232def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1233def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1234def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1235
1236def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1237              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1238def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1239              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1240def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1241              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1242def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1243              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1244def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1245              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1246
1247// gp_rel relocs
1248def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1249              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1250def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1251              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1252
1253// wrapper_pic
1254class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1255      MipsPat<(MipsWrapper RC:$gp, node:$in),
1256              (ADDiuOp RC:$gp, node:$in)>;
1257
1258def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1259def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1260def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1261def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1262def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1263def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1264
1265// Mips does not have "not", so we expand our way
1266def : MipsPat<(not CPURegs:$in),
1267              (NOR CPURegsOpnd:$in, ZERO)>;
1268
1269// extended loads
1270let Predicates = [NotN64, HasStdEnc] in {
1271  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1272  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1273  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1274}
1275let Predicates = [IsN64, HasStdEnc] in {
1276  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1277  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1278  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1279}
1280
1281// peepholes
1282let Predicates = [NotN64, HasStdEnc] in {
1283  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1284}
1285let Predicates = [IsN64, HasStdEnc] in {
1286  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1287}
1288
1289// brcond patterns
1290multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1291                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1292                      Instruction SLTiuOp, Register ZEROReg> {
1293def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1294              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1295def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1296              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1297
1298def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1299              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1300def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1301              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1302def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1303              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1304def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1305              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1306def : MipsPat<(brcond (i32 (setgt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
1307              (BEQ (SLTiOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
1308def : MipsPat<(brcond (i32 (setugt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
1309              (BEQ (SLTiuOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
1310
1311def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1312              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1313def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1314              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1315
1316def : MipsPat<(brcond RC:$cond, bb:$dst),
1317              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1318}
1319
1320defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1321
1322def : MipsPat<(brcond (i32 (setlt i32:$lhs, 1)), bb:$dst),
1323              (BLEZ i32:$lhs, bb:$dst)>;
1324def : MipsPat<(brcond (i32 (setgt i32:$lhs, -1)), bb:$dst),
1325              (BGEZ i32:$lhs, bb:$dst)>;
1326
1327// setcc patterns
1328multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1329                     Instruction SLTuOp, Register ZEROReg> {
1330  def : MipsPat<(seteq RC:$lhs, 0),
1331                (SLTiuOp RC:$lhs, 1)>;
1332  def : MipsPat<(setne RC:$lhs, 0),
1333                (SLTuOp ZEROReg, RC:$lhs)>;
1334  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1335                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1336  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1337                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1338}
1339
1340multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1341  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1342                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1343  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1344                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1345}
1346
1347multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1348  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1349                (SLTOp RC:$rhs, RC:$lhs)>;
1350  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1351                (SLTuOp RC:$rhs, RC:$lhs)>;
1352}
1353
1354multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1355  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1356                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1357  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1358                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1359}
1360
1361multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1362                        Instruction SLTiuOp> {
1363  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1364                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1365  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1366                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1367}
1368
1369defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1370defm : SetlePats<CPURegs, SLT, SLTu>;
1371defm : SetgtPats<CPURegs, SLT, SLTu>;
1372defm : SetgePats<CPURegs, SLT, SLTu>;
1373defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1374
1375// bswap pattern
1376def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1377
1378// mflo/hi patterns.
1379def : MipsPat<(i32 (ExtractLOHI ACRegs:$ac, imm:$lohi_idx)),
1380              (EXTRACT_SUBREG ACRegs:$ac, imm:$lohi_idx)>;
1381
1382// Load halfword/word patterns.
1383let AddedComplexity = 40 in {
1384  let Predicates = [NotN64, HasStdEnc] in {
1385    def : LoadRegImmPat<LBu, i32, zextloadi8>;
1386    def : LoadRegImmPat<LH, i32, sextloadi16>;
1387    def : LoadRegImmPat<LW, i32, load>;
1388  }
1389  let Predicates = [IsN64, HasStdEnc] in {
1390    def : LoadRegImmPat<LBu_P8, i32, zextloadi8>;
1391    def : LoadRegImmPat<LH_P8, i32, sextloadi16>;
1392    def : LoadRegImmPat<LW_P8, i32, load>;
1393  }
1394}
1395
1396//===----------------------------------------------------------------------===//
1397// Floating Point Support
1398//===----------------------------------------------------------------------===//
1399
1400include "MipsInstrFPU.td"
1401include "Mips64InstrInfo.td"
1402include "MipsCondMov.td"
1403
1404//
1405// Mips16
1406
1407include "Mips16InstrFormats.td"
1408include "Mips16InstrInfo.td"
1409
1410// DSP
1411include "MipsDSPInstrFormats.td"
1412include "MipsDSPInstrInfo.td"
1413
1414// Micromips
1415include "MicroMipsInstrFormats.td"
1416include "MicroMipsInstrInfo.td"
1417