MipsInstrInfo.td revision 8e719fac46c3c79dedfde86bf439819444223537
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
37
38def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
39                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
40def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
42                                   SDTCisSameAs<0, 4>]>;
43
44def SDTMipsLoadLR  : SDTypeProfile<1, 2,
45                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
46                                    SDTCisSameAs<0, 2>]>;
47
48// Call
49def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
50                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
51                          SDNPVariadic]>;
52
53// Tail call
54def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
55                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
56
57// Hi and Lo nodes are used to handle global addresses. Used on
58// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
59// static model. (nothing to do with Mips Registers Hi and Lo)
60def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
61def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
62def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
63
64// TlsGd node is used to handle General Dynamic TLS
65def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
66
67// TprelHi and TprelLo nodes are used to handle Local Exec TLS
68def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
69def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
70
71// Thread pointer
72def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
73
74// Return
75def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
76
77// These are target-independent nodes, but have target-specific formats.
78def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
79                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
80def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
81                           [SDNPHasChain, SDNPSideEffect,
82                            SDNPOptInGlue, SDNPOutGlue]>;
83
84// MAdd*/MSub* nodes
85def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
86                           [SDNPOptInGlue, SDNPOutGlue]>;
87def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
92                           [SDNPOptInGlue, SDNPOutGlue]>;
93
94// DivRem(u) nodes
95def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
96                           [SDNPOutGlue]>;
97def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
98                           [SDNPOutGlue]>;
99
100// Target constant nodes that are not part of any isel patterns and remain
101// unchanged can cause instructions with illegal operands to be emitted.
102// Wrapper node patterns give the instruction selector a chance to replace
103// target constant nodes that would otherwise remain unchanged with ADDiu
104// nodes. Without these wrapper node patterns, the following conditional move
105// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
106// compiled:
107//  movn  %got(d)($gp), %got(c)($gp), $4
108// This instruction is illegal since movn can take only register operands.
109
110def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
111
112def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
113
114def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
115def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
116
117def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
118                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
119def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
120                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
121def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
122                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
123def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
124                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
125def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
126                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
127def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
128                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
129def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
130                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
131def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
132                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
133
134//===----------------------------------------------------------------------===//
135// Mips Instruction Predicate Definitions.
136//===----------------------------------------------------------------------===//
137def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
138                      AssemblerPredicate<"FeatureSEInReg">;
139def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
140                      AssemblerPredicate<"FeatureBitCount">;
141def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
142                      AssemblerPredicate<"FeatureSwap">;
143def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
144                      AssemblerPredicate<"FeatureCondMov">;
145def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
146                      AssemblerPredicate<"FeatureFPIdx">;
147def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
148                      AssemblerPredicate<"FeatureMips32">;
149def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
150                      AssemblerPredicate<"FeatureMips32r2">;
151def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
152                      AssemblerPredicate<"FeatureMips64">;
153def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
154                      AssemblerPredicate<"!FeatureMips64">;
155def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
156                      AssemblerPredicate<"FeatureMips64r2">;
157def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
158                      AssemblerPredicate<"FeatureN64">;
159def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
160                      AssemblerPredicate<"!FeatureN64">;
161def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
162                      AssemblerPredicate<"FeatureMips16">;
163def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
164                      AssemblerPredicate<"FeatureMips32">;
165def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
166                      AssemblerPredicate<"FeatureMips32">;
167def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
168                      AssemblerPredicate<"FeatureMips32">;
169def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
170                      AssemblerPredicate<"!FeatureMips16">;
171
172class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
173  let Predicates = [HasStdEnc];
174}
175
176class IsCommutable {
177  bit isCommutable = 1;
178}
179
180class IsBranch {
181  bit isBranch = 1;
182}
183
184class IsReturn {
185  bit isReturn = 1;
186}
187
188class IsCall {
189  bit isCall = 1;
190}
191
192class IsTailCall {
193  bit isCall = 1;
194  bit isTerminator = 1;
195  bit isReturn = 1;
196  bit isBarrier = 1;
197  bit hasExtraSrcRegAllocReq = 1;
198  bit isCodeGenOnly = 1;
199}
200
201class IsAsCheapAsAMove {
202  bit isAsCheapAsAMove = 1;
203}
204
205class NeverHasSideEffects {
206  bit neverHasSideEffects = 1;
207}
208
209//===----------------------------------------------------------------------===//
210// Instruction format superclass
211//===----------------------------------------------------------------------===//
212
213include "MipsInstrFormats.td"
214
215//===----------------------------------------------------------------------===//
216// Mips Operand, Complex Patterns and Transformations Definitions.
217//===----------------------------------------------------------------------===//
218
219// Instruction operand types
220def jmptarget   : Operand<OtherVT> {
221  let EncoderMethod = "getJumpTargetOpValue";
222}
223def brtarget    : Operand<OtherVT> {
224  let EncoderMethod = "getBranchTargetOpValue";
225  let OperandType = "OPERAND_PCREL";
226  let DecoderMethod = "DecodeBranchTarget";
227}
228def calltarget  : Operand<iPTR> {
229  let EncoderMethod = "getJumpTargetOpValue";
230}
231def calltarget64: Operand<i64>;
232def simm16      : Operand<i32> {
233  let DecoderMethod= "DecodeSimm16";
234}
235def simm16_64   : Operand<i64>;
236def shamt       : Operand<i32>;
237
238// Unsigned Operand
239def uimm16      : Operand<i32> {
240  let PrintMethod = "printUnsignedImm";
241}
242
243def MipsMemAsmOperand : AsmOperandClass {
244  let Name = "Mem";
245  let ParserMethod = "parseMemOperand";
246}
247
248// Address operand
249def mem : Operand<i32> {
250  let PrintMethod = "printMemOperand";
251  let MIOperandInfo = (ops CPURegs, simm16);
252  let EncoderMethod = "getMemEncoding";
253  let ParserMatchClass = MipsMemAsmOperand;
254}
255
256def mem64 : Operand<i64> {
257  let PrintMethod = "printMemOperand";
258  let MIOperandInfo = (ops CPU64Regs, simm16_64);
259  let EncoderMethod = "getMemEncoding";
260  let ParserMatchClass = MipsMemAsmOperand;
261}
262
263def mem_ea : Operand<i32> {
264  let PrintMethod = "printMemOperandEA";
265  let MIOperandInfo = (ops CPURegs, simm16);
266  let EncoderMethod = "getMemEncoding";
267}
268
269def mem_ea_64 : Operand<i64> {
270  let PrintMethod = "printMemOperandEA";
271  let MIOperandInfo = (ops CPU64Regs, simm16_64);
272  let EncoderMethod = "getMemEncoding";
273}
274
275// size operand of ext instruction
276def size_ext : Operand<i32> {
277  let EncoderMethod = "getSizeExtEncoding";
278  let DecoderMethod = "DecodeExtSize";
279}
280
281// size operand of ins instruction
282def size_ins : Operand<i32> {
283  let EncoderMethod = "getSizeInsEncoding";
284  let DecoderMethod = "DecodeInsSize";
285}
286
287// Transformation Function - get the lower 16 bits.
288def LO16 : SDNodeXForm<imm, [{
289  return getImm(N, N->getZExtValue() & 0xFFFF);
290}]>;
291
292// Transformation Function - get the higher 16 bits.
293def HI16 : SDNodeXForm<imm, [{
294  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
295}]>;
296
297// Node immediate fits as 16-bit sign extended on target immediate.
298// e.g. addi, andi
299def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
300
301// Node immediate fits as 15-bit sign extended on target immediate.
302// e.g. addi, andi
303def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
304
305// Node immediate fits as 16-bit zero extended on target immediate.
306// The LO16 param means that only the lower 16 bits of the node
307// immediate are caught.
308// e.g. addiu, sltiu
309def immZExt16  : PatLeaf<(imm), [{
310  if (N->getValueType(0) == MVT::i32)
311    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
312  else
313    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
314}], LO16>;
315
316// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
317def immLow16Zero : PatLeaf<(imm), [{
318  int64_t Val = N->getSExtValue();
319  return isInt<32>(Val) && !(Val & 0xffff);
320}]>;
321
322// shamt field must fit in 5 bits.
323def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
324
325// Mips Address Mode! SDNode frameindex could possibily be a match
326// since load and store instructions from stack used it.
327def addr :
328  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
329
330//===----------------------------------------------------------------------===//
331// Instructions specific format
332//===----------------------------------------------------------------------===//
333
334// Arithmetic and logical instructions with 3 register operands.
335class ArithLogicR<string opstr, RegisterClass RC, bit isComm = 0,
336                  InstrItinClass Itin = NoItinerary,
337                  SDPatternOperator OpNode = null_frag>:
338  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
339         !strconcat(opstr, "\t$rd, $rs, $rt"),
340         [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], Itin, FrmR> {
341  let isCommutable = isComm;
342  let isReMaterializable = 1;
343}
344
345// Arithmetic and logical instructions with 2 register operands.
346class ArithLogicI<string opstr, Operand Od, RegisterClass RC,
347                  SDPatternOperator imm_type = null_frag,
348                  SDPatternOperator OpNode = null_frag> :
349  InstSE<(outs RC:$rt), (ins RC:$rs, Od:$imm16),
350         !strconcat(opstr, "\t$rt, $rs, $imm16"),
351         [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu, FrmI> {
352  let isReMaterializable = 1;
353}
354
355// Arithmetic Multiply ADD/SUB
356let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
357class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
358  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
359     !strconcat(instr_asm, "\t$rs, $rt"),
360     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
361  let rd = 0;
362  let shamt = 0;
363  let isCommutable = isComm;
364}
365
366//  Logical
367class LogicNOR<string opstr, RegisterClass RC>:
368  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
369         !strconcat(opstr, "\t$rd, $rs, $rt"),
370         [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu, FrmR> {
371  let isCommutable = 1;
372}
373
374// Shifts
375class shift_rotate_imm<string opstr, PatFrag PF, Operand ImmOpnd,
376                       RegisterClass RC, SDPatternOperator OpNode> :
377  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
378         !strconcat(opstr, "\t$rd, $rt, $shamt"),
379         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR>;
380
381// 32-bit shift instructions.
382class shift_rotate_imm32<string opstr, SDPatternOperator OpNode = null_frag> :
383  shift_rotate_imm<opstr, immZExt5, shamt, CPURegs, OpNode>;
384
385class shift_rotate_reg<string opstr, SDNode OpNode, RegisterClass RC>:
386  InstSE<(outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
387         !strconcat(opstr, "\t$rd, $rt, $rs"),
388         [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu, FrmR>;
389
390// Load Upper Imediate
391class LoadUpper<string opstr, RegisterClass RC, Operand Imm>:
392  InstSE<(outs RC:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
393         [], IIAlu, FrmI>, IsAsCheapAsAMove {
394  let neverHasSideEffects = 1;
395  let isReMaterializable = 1;
396}
397
398class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
399          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
400  bits<21> addr;
401  let Inst{25-21} = addr{20-16};
402  let Inst{15-0}  = addr{15-0};
403  let DecoderMethod = "DecodeMem";
404}
405
406// Memory Load/Store
407let canFoldAsLoad = 1 in
408class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
409            Operand MemOpnd, bit Pseudo>:
410  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
411     !strconcat(instr_asm, "\t$rt, $addr"),
412     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
413  let isPseudo = Pseudo;
414}
415
416class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
417             Operand MemOpnd, bit Pseudo>:
418  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
419     !strconcat(instr_asm, "\t$rt, $addr"),
420     [(OpNode RC:$rt, addr:$addr)], IIStore> {
421  let isPseudo = Pseudo;
422}
423
424// 32-bit load.
425multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
426                   bit Pseudo = 0> {
427  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
428               Requires<[NotN64, HasStdEnc]>;
429  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
430               Requires<[IsN64, HasStdEnc]> {
431    let DecoderNamespace = "Mips64";
432    let isCodeGenOnly = 1;
433  }
434}
435
436// 64-bit load.
437multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
438                   bit Pseudo = 0> {
439  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
440               Requires<[NotN64, HasStdEnc]>;
441  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
442               Requires<[IsN64, HasStdEnc]> {
443    let DecoderNamespace = "Mips64";
444    let isCodeGenOnly = 1;
445  }
446}
447
448// 32-bit store.
449multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
450                    bit Pseudo = 0> {
451  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
452               Requires<[NotN64, HasStdEnc]>;
453  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
454               Requires<[IsN64, HasStdEnc]> {
455    let DecoderNamespace = "Mips64";
456    let isCodeGenOnly = 1;
457  }
458}
459
460// 64-bit store.
461multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
462                    bit Pseudo = 0> {
463  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
464               Requires<[NotN64, HasStdEnc]>;
465  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
466               Requires<[IsN64, HasStdEnc]> {
467    let DecoderNamespace = "Mips64";
468    let isCodeGenOnly = 1;
469  }
470}
471
472// Load/Store Left/Right
473let canFoldAsLoad = 1 in
474class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
475                    RegisterClass RC, Operand MemOpnd> :
476  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
477       !strconcat(instr_asm, "\t$rt, $addr"),
478       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
479  string Constraints = "$src = $rt";
480}
481
482class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
483                     RegisterClass RC, Operand MemOpnd>:
484  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
485       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
486       IIStore>;
487
488// 32-bit load left/right.
489multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
490  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
491               Requires<[NotN64, HasStdEnc]>;
492  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
493               Requires<[IsN64, HasStdEnc]> {
494    let DecoderNamespace = "Mips64";
495    let isCodeGenOnly = 1;
496  }
497}
498
499// 64-bit load left/right.
500multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
501  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
502               Requires<[NotN64, HasStdEnc]>;
503  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
504               Requires<[IsN64, HasStdEnc]> {
505    let DecoderNamespace = "Mips64";
506    let isCodeGenOnly = 1;
507  }
508}
509
510// 32-bit store left/right.
511multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
512  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
513               Requires<[NotN64, HasStdEnc]>;
514  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
515               Requires<[IsN64, HasStdEnc]> {
516    let DecoderNamespace = "Mips64";
517    let isCodeGenOnly = 1;
518  }
519}
520
521// 64-bit store left/right.
522multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
523  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
524               Requires<[NotN64, HasStdEnc]>;
525  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
526               Requires<[IsN64, HasStdEnc]> {
527    let DecoderNamespace = "Mips64";
528    let isCodeGenOnly = 1;
529  }
530}
531
532// Conditional Branch
533class CBranch<string opstr, PatFrag cond_op, RegisterClass RC> :
534  InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset),
535         !strconcat(opstr, "\t$rs, $rt, $offset"),
536         [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch,
537         FrmI> {
538  let isBranch = 1;
539  let isTerminator = 1;
540  let hasDelaySlot = 1;
541  let Defs = [AT];
542}
543
544class CBranchZero<string opstr, PatFrag cond_op, RegisterClass RC> :
545  InstSE<(outs), (ins RC:$rs, brtarget:$offset),
546         !strconcat(opstr, "\t$rs, $offset"),
547         [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
548  let isBranch = 1;
549  let isTerminator = 1;
550  let hasDelaySlot = 1;
551  let Defs = [AT];
552}
553
554// SetCC
555class SetCC_R<string opstr, PatFrag cond_op, RegisterClass RC> :
556  InstSE<(outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
557         !strconcat(opstr, "\t$rd, $rs, $rt"),
558         [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))], IIAlu, FrmR>;
559
560class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
561              RegisterClass RC>:
562  InstSE<(outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
563         !strconcat(opstr, "\t$rt, $rs, $imm16"),
564         [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))], IIAlu, FrmI>;
565
566// Jump
567class JumpFJ<bits<6> op, DAGOperand opnd, string instr_asm,
568             SDPatternOperator operator, SDPatternOperator targetoperator>:
569  FJ<op, (outs), (ins opnd:$target), !strconcat(instr_asm, "\t$target"),
570     [(operator targetoperator:$target)], IIBranch> {
571  let isTerminator=1;
572  let isBarrier=1;
573  let hasDelaySlot = 1;
574  let DecoderMethod = "DecodeJumpTarget";
575  let Defs = [AT];
576}
577
578// Unconditional branch
579class UncondBranch<string opstr> :
580  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
581         [(br bb:$offset)], IIBranch, FrmI> {
582  let isBranch = 1;
583  let isTerminator = 1;
584  let isBarrier = 1;
585  let hasDelaySlot = 1;
586  let Predicates = [RelocPIC, HasStdEnc];
587  let Defs = [AT];
588}
589
590// Base class for indirect branch and return instruction classes.
591let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
592class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
593  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch> {
594  let rt = 0;
595  let rd = 0;
596  let shamt = 0;
597}
598
599// Indirect branch
600class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
601  let isBranch = 1;
602  let isIndirectBranch = 1;
603}
604
605// Return instruction
606class RetBase<RegisterClass RC>: JumpFR<RC> {
607  let isReturn = 1;
608  let isCodeGenOnly = 1;
609  let hasCtrlDep = 1;
610  let hasExtraSrcRegAllocReq = 1;
611}
612
613// Jump and Link (Call)
614let isCall=1, hasDelaySlot=1, Defs = [RA] in {
615  class JumpLink<bits<6> op, string instr_asm>:
616    FJ<op, (outs), (ins calltarget:$target),
617       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
618       IIBranch> {
619       let DecoderMethod = "DecodeJumpTarget";
620       }
621
622  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
623                    RegisterClass RC>:
624    FR<op, func, (outs), (ins RC:$rs),
625       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
626    let rt = 0;
627    let rd = 31;
628    let shamt = 0;
629  }
630
631  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
632    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
633       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
634    let rt = _rt;
635  }
636}
637
638// Mul, Div
639class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
640           RegisterClass RC, list<Register> DefRegs>:
641  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
642     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
643  let rd = 0;
644  let shamt = 0;
645  let isCommutable = 1;
646  let Defs = DefRegs;
647  let neverHasSideEffects = 1;
648}
649
650class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
651  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
652
653class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
654          RegisterClass RC, list<Register> DefRegs>:
655  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
656     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
657     [(op RC:$rs, RC:$rt)], itin> {
658  let rd = 0;
659  let shamt = 0;
660  let Defs = DefRegs;
661}
662
663class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
664  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
665
666// Move from Hi/Lo
667class MoveFromLOHI<string opstr, RegisterClass RC, list<Register> UseRegs>:
668  InstSE<(outs RC:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> {
669  let Uses = UseRegs;
670  let neverHasSideEffects = 1;
671}
672
673class MoveToLOHI<string opstr, RegisterClass RC, list<Register> DefRegs>:
674  InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> {
675  let Defs = DefRegs;
676  let neverHasSideEffects = 1;
677}
678
679class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
680  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
681     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
682 let isCodeGenOnly = 1;
683}
684
685// Count Leading Ones/Zeros in Word
686class CountLeading0<string opstr, RegisterClass RC>:
687  InstSE<(outs RC:$rd), (ins RC:$rs), !strconcat(opstr, "\t$rd, $rs"),
688         [(set RC:$rd, (ctlz RC:$rs))], IIAlu, FrmR>,
689  Requires<[HasBitCount, HasStdEnc]>;
690
691class CountLeading1<string opstr, RegisterClass RC>:
692  InstSE<(outs RC:$rd), (ins RC:$rs), !strconcat(opstr, "\t$rd, $rs"),
693         [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu, FrmR>,
694  Requires<[HasBitCount, HasStdEnc]>;
695
696
697// Sign Extend in Register.
698class SignExtInReg<string opstr, ValueType vt, RegisterClass RC> :
699  InstSE<(outs RC:$rd), (ins RC:$rt), !strconcat(opstr, "\t$rd, $rt"),
700         [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary, FrmR> {
701  let Predicates = [HasSEInReg, HasStdEnc];
702}
703
704// Subword Swap
705class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
706  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
707     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
708  let rs = 0;
709  let shamt = sa;
710  let Predicates = [HasSwap, HasStdEnc];
711  let neverHasSideEffects = 1;
712}
713
714// Read Hardware
715class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
716  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
717       "rdhwr\t$rt, $rd", [], IIAlu> {
718  let rs = 0;
719  let shamt = 0;
720}
721
722// Ext and Ins
723class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
724  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
725     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
726     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
727  bits<5> pos;
728  bits<5> sz;
729  let rd = sz;
730  let shamt = pos;
731  let Predicates = [HasMips32r2, HasStdEnc];
732}
733
734class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
735  FR<0x1f, _funct, (outs RC:$rt),
736     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
737     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
738     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
739     NoItinerary> {
740  bits<5> pos;
741  bits<5> sz;
742  let rd = sz;
743  let shamt = pos;
744  let Predicates = [HasMips32r2, HasStdEnc];
745  let Constraints = "$src = $rt";
746}
747
748// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
749class Atomic2Ops<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
750  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
751           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
752
753multiclass Atomic2Ops32<PatFrag Op> {
754  def #NAME# : Atomic2Ops<Op, CPURegs, CPURegs>, Requires<[NotN64, HasStdEnc]>;
755  def _P8    : Atomic2Ops<Op, CPURegs, CPU64Regs>,
756               Requires<[IsN64, HasStdEnc]> {
757    let DecoderNamespace = "Mips64";
758  }
759}
760
761// Atomic Compare & Swap.
762class AtomicCmpSwap<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
763  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
764           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
765
766multiclass AtomicCmpSwap32<PatFrag Op>  {
767  def #NAME# : AtomicCmpSwap<Op, CPURegs, CPURegs>,
768               Requires<[NotN64, HasStdEnc]>;
769  def _P8    : AtomicCmpSwap<Op, CPURegs, CPU64Regs>,
770                             Requires<[IsN64, HasStdEnc]> {
771    let DecoderNamespace = "Mips64";
772  }
773}
774
775class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
776  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
777       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
778  let mayLoad = 1;
779}
780
781class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
782  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
783       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
784  let mayStore = 1;
785  let Constraints = "$rt = $dst";
786}
787
788//===----------------------------------------------------------------------===//
789// Pseudo instructions
790//===----------------------------------------------------------------------===//
791
792// Return RA.
793let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
794def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
795
796let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
797def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
798                                  [(callseq_start timm:$amt)]>;
799def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
800                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
801}
802
803let usesCustomInserter = 1 in {
804  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8>;
805  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16>;
806  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32>;
807  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8>;
808  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16>;
809  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32>;
810  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8>;
811  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16>;
812  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32>;
813  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8>;
814  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16>;
815  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32>;
816  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8>;
817  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16>;
818  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32>;
819  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8>;
820  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16>;
821  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32>;
822
823  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8>;
824  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16>;
825  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32>;
826
827  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8>;
828  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16>;
829  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32>;
830}
831
832//===----------------------------------------------------------------------===//
833// Instruction definition
834//===----------------------------------------------------------------------===//
835//===----------------------------------------------------------------------===//
836// MipsI Instructions
837//===----------------------------------------------------------------------===//
838
839/// Arithmetic Instructions (ALU Immediate)
840def ADDiu : ArithLogicI<"addiu", simm16, CPURegs, immSExt16, add>,
841            ADDI_FM<0x9>, IsAsCheapAsAMove;
842def ADDi  : ArithLogicI<"addi", simm16, CPURegs>, ADDI_FM<0x8>;
843def SLTi  : SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>, SLTI_FM<0xa>;
844def SLTiu : SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>, SLTI_FM<0xb>;
845def ANDi  : ArithLogicI<"andi", uimm16, CPURegs, immZExt16, and>, ADDI_FM<0xc>;
846def ORi   : ArithLogicI<"ori", uimm16, CPURegs, immZExt16, or>, ADDI_FM<0xd>;
847def XORi  : ArithLogicI<"xori", uimm16, CPURegs, immZExt16, xor>, ADDI_FM<0xe>;
848def LUi   : LoadUpper<"lui", CPURegs, uimm16>, LUI_FM;
849
850/// Arithmetic Instructions (3-Operand, R-Type)
851def ADDu : ArithLogicR<"addu", CPURegs, 1, IIAlu, add>, ADD_FM<0, 0x21>;
852def SUBu : ArithLogicR<"subu", CPURegs, 0, IIAlu, sub>, ADD_FM<0, 0x23>;
853def MUL  : ArithLogicR<"mul", CPURegs, 1, IIImul, mul>, ADD_FM<0x1c, 2>;
854def ADD  : ArithLogicR<"add", CPURegs>, ADD_FM<0, 0x20>;
855def SUB  : ArithLogicR<"sub", CPURegs>, ADD_FM<0, 0x22>;
856def SLT  : SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>;
857def SLTu : SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>;
858def AND  : ArithLogicR<"and", CPURegs, 1, IIAlu, and>, ADD_FM<0, 0x24>;
859def OR   : ArithLogicR<"or", CPURegs, 1, IIAlu, or>, ADD_FM<0, 0x25>;
860def XOR  : ArithLogicR<"xor", CPURegs, 1, IIAlu, xor>, ADD_FM<0, 0x26>;
861def NOR  : LogicNOR<"nor", CPURegs>, ADD_FM<0, 0x27>;
862
863/// Shift Instructions
864def SLL  : shift_rotate_imm32<"sll", shl>, SRA_FM<0, 0>;
865def SRL  : shift_rotate_imm32<"srl", srl>, SRA_FM<2, 0>;
866def SRA  : shift_rotate_imm32<"sra", sra>, SRA_FM<3, 0>;
867def SLLV : shift_rotate_reg<"sllv", shl, CPURegs>, SRLV_FM<4, 0>;
868def SRLV : shift_rotate_reg<"srlv", srl, CPURegs>, SRLV_FM<6, 0>;
869def SRAV : shift_rotate_reg<"srav", sra, CPURegs>, SRLV_FM<7, 0>;
870
871// Rotate Instructions
872let Predicates = [HasMips32r2, HasStdEnc] in {
873  def ROTR  : shift_rotate_imm32<"rotr", rotr>, SRA_FM<2, 1>;
874  def ROTRV : shift_rotate_reg<"rotrv", rotr, CPURegs>, SRLV_FM<6, 1>;
875}
876
877/// Load and Store Instructions
878///  aligned
879defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
880defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
881defm LH      : LoadM32<0x21, "lh",  sextloadi16>;
882defm LHu     : LoadM32<0x25, "lhu", zextloadi16>;
883defm LW      : LoadM32<0x23, "lw",  load>;
884defm SB      : StoreM32<0x28, "sb", truncstorei8>;
885defm SH      : StoreM32<0x29, "sh", truncstorei16>;
886defm SW      : StoreM32<0x2b, "sw", store>;
887
888/// load/store left/right
889defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
890defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
891defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
892defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
893
894let hasSideEffects = 1 in
895def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
896                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
897{
898  bits<5> stype;
899  let Opcode = 0;
900  let Inst{25-11} = 0;
901  let Inst{10-6} = stype;
902  let Inst{5-0} = 15;
903}
904
905/// Load-linked, Store-conditional
906def LL    : LLBase<0x30, "ll", CPURegs, mem>,
907            Requires<[NotN64, HasStdEnc]>;
908def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
909            Requires<[IsN64, HasStdEnc]> {
910  let DecoderNamespace = "Mips64";
911}
912
913def SC    : SCBase<0x38, "sc", CPURegs, mem>,
914            Requires<[NotN64, HasStdEnc]>;
915def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
916            Requires<[IsN64, HasStdEnc]> {
917  let DecoderNamespace = "Mips64";
918}
919
920/// Jump and Branch Instructions
921def J       : JumpFJ<0x02, jmptarget, "j", br, bb>,
922              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
923def JR      : IndirectBranch<CPURegs>;
924def B       : UncondBranch<"b">, B_FM;
925def BEQ     : CBranch<"beq", seteq, CPURegs>, BEQ_FM<4>;
926def BNE     : CBranch<"bne", setne, CPURegs>, BEQ_FM<5>;
927def BGEZ    : CBranchZero<"bgez", setge, CPURegs>, BGEZ_FM<1, 1>;
928def BGTZ    : CBranchZero<"bgtz", setgt, CPURegs>, BGEZ_FM<7, 0>;
929def BLEZ    : CBranchZero<"blez", setle, CPURegs>, BGEZ_FM<6, 0>;
930def BLTZ    : CBranchZero<"bltz", setlt, CPURegs>, BGEZ_FM<1, 0>;
931
932let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
933    hasDelaySlot = 1, Defs = [RA] in
934def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
935
936def JAL  : JumpLink<0x03, "jal">;
937def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
938def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
939def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
940def TAILCALL : JumpFJ<0x02, calltarget, "j", MipsTailCall, imm>, IsTailCall;
941def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, IsTailCall;
942
943def RET : RetBase<CPURegs>;
944
945/// Multiply and Divide Instructions.
946def MULT    : Mult32<0x18, "mult", IIImul>;
947def MULTu   : Mult32<0x19, "multu", IIImul>;
948def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
949def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
950
951def MTHI : MoveToLOHI<"mthi", CPURegs, [HI]>, MTLO_FM<0x11>;
952def MTLO : MoveToLOHI<"mtlo", CPURegs, [LO]>, MTLO_FM<0x13>;
953def MFHI : MoveFromLOHI<"mfhi", CPURegs, [HI]>, MFLO_FM<0x10>;
954def MFLO : MoveFromLOHI<"mflo", CPURegs, [LO]>, MFLO_FM<0x12>;
955
956/// Sign Ext In Register Instructions.
957def SEB : SignExtInReg<"seb", i8, CPURegs>, SEB_FM<0x10>;
958def SEH : SignExtInReg<"seh", i16, CPURegs>, SEB_FM<0x18>;
959
960/// Count Leading
961def CLZ : CountLeading0<"clz", CPURegs>, CLO_FM<0x20>;
962def CLO : CountLeading1<"clo", CPURegs>, CLO_FM<0x21>;
963
964/// Word Swap Bytes Within Halfwords
965def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
966
967/// No operation
968let addr=0 in
969  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
970
971// FrameIndexes are legalized when they are operands from load/store
972// instructions. The same not happens for stack address copies, so an
973// add op with mem ComplexPattern is used and the stack address copy
974// can be matched. It's similar to Sparc LEA_ADDRi
975def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
976
977// MADD*/MSUB*
978def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
979def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
980def MSUB  : MArithR<4, "msub", MipsMSub>;
981def MSUBU : MArithR<5, "msubu", MipsMSubu>;
982
983def RDHWR : ReadHardware<CPURegs, HWRegs>;
984
985def EXT : ExtBase<0, "ext", CPURegs>;
986def INS : InsBase<4, "ins", CPURegs>;
987
988/// Move Control Registers From/To CPU Registers
989def MFC0_3OP  : MFC3OP<0x10, 0, (outs CPURegs:$rt),
990                       (ins CPURegs:$rd, uimm16:$sel),"mfc0\t$rt, $rd, $sel">;
991def : InstAlias<"mfc0 $rt, $rd", (MFC0_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
992
993def MTC0_3OP  : MFC3OP<0x10, 4, (outs CPURegs:$rd, uimm16:$sel),
994                       (ins CPURegs:$rt),"mtc0\t$rt, $rd, $sel">;
995def : InstAlias<"mtc0 $rt, $rd", (MTC0_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
996
997def MFC2_3OP  : MFC3OP<0x12, 0, (outs CPURegs:$rt),
998                       (ins CPURegs:$rd, uimm16:$sel),"mfc2\t$rt, $rd, $sel">;
999def : InstAlias<"mfc2 $rt, $rd", (MFC2_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
1000
1001def MTC2_3OP  : MFC3OP<0x12, 4, (outs CPURegs:$rd, uimm16:$sel),
1002                       (ins CPURegs:$rt),"mtc2\t$rt, $rd, $sel">;
1003def : InstAlias<"mtc2 $rt, $rd", (MTC2_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
1004
1005//===----------------------------------------------------------------------===//
1006// Instruction aliases
1007//===----------------------------------------------------------------------===//
1008def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
1009def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
1010def : InstAlias<"addu $rs,$rt,$imm",
1011                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1012def : InstAlias<"add $rs,$rt,$imm",
1013                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1014def : InstAlias<"and $rs,$rt,$imm",
1015                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1016def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
1017def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
1018def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
1019def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
1020def : InstAlias<"slt $rs,$rt,$imm",
1021                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1022def : InstAlias<"xor $rs,$rt,$imm",
1023                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1024
1025//===----------------------------------------------------------------------===//
1026// Assembler Pseudo Instructions
1027//===----------------------------------------------------------------------===//
1028
1029class LoadImm32< string instr_asm, Operand Od, RegisterClass RC> :
1030  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
1031                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1032def LoadImm32Reg : LoadImm32<"li", shamt,CPURegs>;
1033
1034class LoadAddress<string instr_asm, Operand MemOpnd, RegisterClass RC> :
1035  MipsAsmPseudoInst<(outs RC:$rt), (ins MemOpnd:$addr),
1036                     !strconcat(instr_asm, "\t$rt, $addr")> ;
1037def LoadAddr32Reg : LoadAddress<"la", mem, CPURegs>;
1038
1039class LoadAddressImm<string instr_asm, Operand Od, RegisterClass RC> :
1040  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
1041                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1042def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegs>;
1043
1044
1045
1046//===----------------------------------------------------------------------===//
1047//  Arbitrary patterns that map to one or more instructions
1048//===----------------------------------------------------------------------===//
1049
1050// Small immediates
1051def : MipsPat<(i32 immSExt16:$in),
1052              (ADDiu ZERO, imm:$in)>;
1053def : MipsPat<(i32 immZExt16:$in),
1054              (ORi ZERO, imm:$in)>;
1055def : MipsPat<(i32 immLow16Zero:$in),
1056              (LUi (HI16 imm:$in))>;
1057
1058// Arbitrary immediates
1059def : MipsPat<(i32 imm:$imm),
1060          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1061
1062// Carry MipsPatterns
1063def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1064              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1065def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1066              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1067def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1068              (ADDiu CPURegs:$src, imm:$imm)>;
1069
1070// Call
1071def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1072              (JAL tglobaladdr:$dst)>;
1073def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1074              (JAL texternalsym:$dst)>;
1075//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1076//              (JALR CPURegs:$dst)>;
1077
1078// Tail call
1079def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1080              (TAILCALL tglobaladdr:$dst)>;
1081def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1082              (TAILCALL texternalsym:$dst)>;
1083// hi/lo relocs
1084def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1085def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1086def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1087def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1088def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1089def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1090
1091def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1092def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1093def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1094def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1095def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1096def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1097
1098def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1099              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1100def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1101              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1102def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1103              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1104def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1105              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1106def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1107              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1108
1109// gp_rel relocs
1110def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1111              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1112def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1113              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1114
1115// wrapper_pic
1116class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1117      MipsPat<(MipsWrapper RC:$gp, node:$in),
1118              (ADDiuOp RC:$gp, node:$in)>;
1119
1120def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1121def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1122def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1123def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1124def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1125def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1126
1127// Mips does not have "not", so we expand our way
1128def : MipsPat<(not CPURegs:$in),
1129              (NOR CPURegs:$in, ZERO)>;
1130
1131// extended loads
1132let Predicates = [NotN64, HasStdEnc] in {
1133  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1134  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1135  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1136}
1137let Predicates = [IsN64, HasStdEnc] in {
1138  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1139  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1140  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1141}
1142
1143// peepholes
1144let Predicates = [NotN64, HasStdEnc] in {
1145  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1146}
1147let Predicates = [IsN64, HasStdEnc] in {
1148  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1149}
1150
1151// brcond patterns
1152multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1153                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1154                      Instruction SLTiuOp, Register ZEROReg> {
1155def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1156              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1157def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1158              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1159
1160def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1161              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1162def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1163              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1164def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1165              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1166def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1167              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1168
1169def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1170              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1171def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1172              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1173
1174def : MipsPat<(brcond RC:$cond, bb:$dst),
1175              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1176}
1177
1178defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1179
1180// setcc patterns
1181multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1182                     Instruction SLTuOp, Register ZEROReg> {
1183  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1184                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1185  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1186                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1187}
1188
1189multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1190  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1191                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1192  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1193                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1194}
1195
1196multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1197  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1198                (SLTOp RC:$rhs, RC:$lhs)>;
1199  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1200                (SLTuOp RC:$rhs, RC:$lhs)>;
1201}
1202
1203multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1204  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1205                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1206  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1207                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1208}
1209
1210multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1211                        Instruction SLTiuOp> {
1212  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1213                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1214  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1215                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1216}
1217
1218defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1219defm : SetlePats<CPURegs, SLT, SLTu>;
1220defm : SetgtPats<CPURegs, SLT, SLTu>;
1221defm : SetgePats<CPURegs, SLT, SLTu>;
1222defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1223
1224// bswap pattern
1225def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1226
1227//===----------------------------------------------------------------------===//
1228// Floating Point Support
1229//===----------------------------------------------------------------------===//
1230
1231include "MipsInstrFPU.td"
1232include "Mips64InstrInfo.td"
1233include "MipsCondMov.td"
1234
1235//
1236// Mips16
1237
1238include "Mips16InstrFormats.td"
1239include "Mips16InstrInfo.td"
1240
1241// DSP
1242include "MipsDSPInstrFormats.td"
1243include "MipsDSPInstrInfo.td"
1244
1245