MipsInstrInfo.td revision a6d6ef6dac9407840aadf1e657ba58989946173e
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsRet          : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
20def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
21def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
22                                                SDTCisSameAs<1, 2>,
23                                                SDTCisSameAs<3, 4>,
24                                                SDTCisInt<4>]>;
25def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
26def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
27def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
28                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
29                                          SDTCisSameAs<1, 2>,
30                                          SDTCisSameAs<2, 3>]>;
31def SDT_MipsDivRem       : SDTypeProfile<0, 2,
32                                         [SDTCisInt<0>,
33                                          SDTCisSameAs<0, 1>]>;
34
35def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
36
37def SDT_MipsDynAlloc    : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>,
38                                               SDTCisSameAs<0, 1>]>;
39def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
40
41def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
42                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
43def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
44                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
45                                   SDTCisSameAs<0, 4>]>;
46
47def SDTMipsLoadLR  : SDTypeProfile<1, 2,
48                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
49                                    SDTCisSameAs<0, 2>]>;
50
51// Call
52def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
53                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
54                          SDNPVariadic]>;
55
56// Hi and Lo nodes are used to handle global addresses. Used on
57// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
58// static model. (nothing to do with Mips Registers Hi and Lo)
59def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
60def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
61def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
62
63// TlsGd node is used to handle General Dynamic TLS
64def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
65
66// TprelHi and TprelLo nodes are used to handle Local Exec TLS
67def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
68def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
69
70// Thread pointer
71def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
72
73// Return
74def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain,
75                     SDNPOptInGlue]>;
76
77// These are target-independent nodes, but have target-specific formats.
78def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
79                           [SDNPHasChain, SDNPOutGlue]>;
80def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
81                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
82
83// MAdd*/MSub* nodes
84def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
85                           [SDNPOptInGlue, SDNPOutGlue]>;
86def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
87                           [SDNPOptInGlue, SDNPOutGlue]>;
88def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
89                           [SDNPOptInGlue, SDNPOutGlue]>;
90def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
91                           [SDNPOptInGlue, SDNPOutGlue]>;
92
93// DivRem(u) nodes
94def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
95                           [SDNPOutGlue]>;
96def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
97                           [SDNPOutGlue]>;
98
99// Target constant nodes that are not part of any isel patterns and remain
100// unchanged can cause instructions with illegal operands to be emitted.
101// Wrapper node patterns give the instruction selector a chance to replace
102// target constant nodes that would otherwise remain unchanged with ADDiu
103// nodes. Without these wrapper node patterns, the following conditional move
104// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
105// compiled:
106//  movn  %got(d)($gp), %got(c)($gp), $4
107// This instruction is illegal since movn can take only register operands.
108
109def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
110
111// Pointer to dynamically allocated stack area.
112def MipsDynAlloc  : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
113                           [SDNPHasChain, SDNPInGlue]>;
114
115def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain]>;
116
117def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
118def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
119
120def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
121                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
122def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
123                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
124def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
125                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
126def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
127                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
128def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
129                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
130def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
131                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
132def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
133                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
134def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
135                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
136
137//===----------------------------------------------------------------------===//
138// Mips Instruction Predicate Definitions.
139//===----------------------------------------------------------------------===//
140def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
141                      AssemblerPredicate<"FeatureSEInReg">;
142def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
143                      AssemblerPredicate<"FeatureBitCount">;
144def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
145                      AssemblerPredicate<"FeatureSwap">;
146def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
147                      AssemblerPredicate<"FeatureCondMov">;
148def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
149                      AssemblerPredicate<"FeatureMips32">;
150def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
151                      AssemblerPredicate<"FeatureMips32r2">;
152def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
153                      AssemblerPredicate<"FeatureMips64">;
154def HasMips32r2Or64 : Predicate<"Subtarget.hasMips32r2Or64()">,
155                      AssemblerPredicate<"FeatureMips32r2,FeatureMips64">;
156def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
157                      AssemblerPredicate<"!FeatureMips64">;
158def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
159                      AssemblerPredicate<"FeatureMips64r2">;
160def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
161                      AssemblerPredicate<"FeatureN64">;
162def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
163                      AssemblerPredicate<"!FeatureN64">;
164def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
165                      AssemblerPredicate<"FeatureMips16">;
166def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
167                      AssemblerPredicate<"FeatureMips32">;
168def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
169                      AssemblerPredicate<"FeatureMips32">;
170def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
171                      AssemblerPredicate<"FeatureMips32">;
172def HasStandardEncoding : Predicate<"Subtarget.hasStandardEncoding()">,
173                          AssemblerPredicate<"!FeatureMips16">;
174
175class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
176  let Predicates = [HasStandardEncoding];
177}
178
179//===----------------------------------------------------------------------===//
180// Instruction format superclass
181//===----------------------------------------------------------------------===//
182
183include "MipsInstrFormats.td"
184
185//===----------------------------------------------------------------------===//
186// Mips Operand, Complex Patterns and Transformations Definitions.
187//===----------------------------------------------------------------------===//
188
189// Instruction operand types
190def jmptarget   : Operand<OtherVT> {
191  let EncoderMethod = "getJumpTargetOpValue";
192}
193def brtarget    : Operand<OtherVT> {
194  let EncoderMethod = "getBranchTargetOpValue";
195  let OperandType = "OPERAND_PCREL";
196  let DecoderMethod = "DecodeBranchTarget";
197}
198def calltarget  : Operand<iPTR> {
199  let EncoderMethod = "getJumpTargetOpValue";
200}
201def calltarget64: Operand<i64>;
202def simm16      : Operand<i32> {
203  let DecoderMethod= "DecodeSimm16";
204}
205def simm16_64   : Operand<i64>;
206def shamt       : Operand<i32>;
207
208// Unsigned Operand
209def uimm16      : Operand<i32> {
210  let PrintMethod = "printUnsignedImm";
211}
212
213// Address operand
214def mem : Operand<i32> {
215  let PrintMethod = "printMemOperand";
216  let MIOperandInfo = (ops CPURegs, simm16);
217  let EncoderMethod = "getMemEncoding";
218}
219
220def mem64 : Operand<i64> {
221  let PrintMethod = "printMemOperand";
222  let MIOperandInfo = (ops CPU64Regs, simm16_64);
223  let EncoderMethod = "getMemEncoding";
224}
225
226def mem_ea : Operand<i32> {
227  let PrintMethod = "printMemOperandEA";
228  let MIOperandInfo = (ops CPURegs, simm16);
229  let EncoderMethod = "getMemEncoding";
230}
231
232def mem_ea_64 : Operand<i64> {
233  let PrintMethod = "printMemOperandEA";
234  let MIOperandInfo = (ops CPU64Regs, simm16_64);
235  let EncoderMethod = "getMemEncoding";
236}
237
238// size operand of ext instruction
239def size_ext : Operand<i32> {
240  let EncoderMethod = "getSizeExtEncoding";
241  let DecoderMethod = "DecodeExtSize";
242}
243
244// size operand of ins instruction
245def size_ins : Operand<i32> {
246  let EncoderMethod = "getSizeInsEncoding";
247  let DecoderMethod = "DecodeInsSize";
248}
249
250// Transformation Function - get the lower 16 bits.
251def LO16 : SDNodeXForm<imm, [{
252  return getImm(N, N->getZExtValue() & 0xFFFF);
253}]>;
254
255// Transformation Function - get the higher 16 bits.
256def HI16 : SDNodeXForm<imm, [{
257  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
258}]>;
259
260// Node immediate fits as 16-bit sign extended on target immediate.
261// e.g. addi, andi
262def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
263
264// Node immediate fits as 16-bit zero extended on target immediate.
265// The LO16 param means that only the lower 16 bits of the node
266// immediate are caught.
267// e.g. addiu, sltiu
268def immZExt16  : PatLeaf<(imm), [{
269  if (N->getValueType(0) == MVT::i32)
270    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
271  else
272    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
273}], LO16>;
274
275// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
276def immLow16Zero : PatLeaf<(imm), [{
277  int64_t Val = N->getSExtValue();
278  return isInt<32>(Val) && !(Val & 0xffff);
279}]>;
280
281// shamt field must fit in 5 bits.
282def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
283
284// Mips Address Mode! SDNode frameindex could possibily be a match
285// since load and store instructions from stack used it.
286def addr :
287  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
288
289//===----------------------------------------------------------------------===//
290// Pattern fragment for load/store
291//===----------------------------------------------------------------------===//
292class UnalignedLoad<PatFrag Node> :
293  PatFrag<(ops node:$ptr), (Node node:$ptr), [{
294  LoadSDNode *LD = cast<LoadSDNode>(N);
295  return LD->getMemoryVT().getSizeInBits()/8 > LD->getAlignment();
296}]>;
297
298class AlignedLoad<PatFrag Node> :
299  PatFrag<(ops node:$ptr), (Node node:$ptr), [{
300  LoadSDNode *LD = cast<LoadSDNode>(N);
301  return LD->getMemoryVT().getSizeInBits()/8 <= LD->getAlignment();
302}]>;
303
304class UnalignedStore<PatFrag Node> :
305  PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr), [{
306  StoreSDNode *SD = cast<StoreSDNode>(N);
307  return SD->getMemoryVT().getSizeInBits()/8 > SD->getAlignment();
308}]>;
309
310class AlignedStore<PatFrag Node> :
311  PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr), [{
312  StoreSDNode *SD = cast<StoreSDNode>(N);
313  return SD->getMemoryVT().getSizeInBits()/8 <= SD->getAlignment();
314}]>;
315
316// Load/Store PatFrags.
317def sextloadi16_a   : AlignedLoad<sextloadi16>;
318def zextloadi16_a   : AlignedLoad<zextloadi16>;
319def extloadi16_a    : AlignedLoad<extloadi16>;
320def load_a          : AlignedLoad<load>;
321def sextloadi32_a   : AlignedLoad<sextloadi32>;
322def zextloadi32_a   : AlignedLoad<zextloadi32>;
323def extloadi32_a    : AlignedLoad<extloadi32>;
324def truncstorei16_a : AlignedStore<truncstorei16>;
325def store_a         : AlignedStore<store>;
326def truncstorei32_a : AlignedStore<truncstorei32>;
327def sextloadi16_u   : UnalignedLoad<sextloadi16>;
328def zextloadi16_u   : UnalignedLoad<zextloadi16>;
329def extloadi16_u    : UnalignedLoad<extloadi16>;
330def load_u          : UnalignedLoad<load>;
331def sextloadi32_u   : UnalignedLoad<sextloadi32>;
332def zextloadi32_u   : UnalignedLoad<zextloadi32>;
333def extloadi32_u    : UnalignedLoad<extloadi32>;
334def truncstorei16_u : UnalignedStore<truncstorei16>;
335def store_u         : UnalignedStore<store>;
336def truncstorei32_u : UnalignedStore<truncstorei32>;
337
338//===----------------------------------------------------------------------===//
339// Instructions specific format
340//===----------------------------------------------------------------------===//
341
342// Arithmetic and logical instructions with 3 register operands.
343class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
344                  InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
345  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
346     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
347     [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> {
348  let shamt = 0;
349  let isCommutable = isComm;
350  let isReMaterializable = 1;
351}
352
353class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
354                    InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
355  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
356     !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> {
357  let shamt = 0;
358  let isCommutable = isComm;
359}
360
361// Arithmetic and logical instructions with 2 register operands.
362class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode,
363                  Operand Od, PatLeaf imm_type, RegisterClass RC> :
364  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
365     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
366     [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu> {
367  let isReMaterializable = 1;
368}
369
370class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
371                     Operand Od, PatLeaf imm_type, RegisterClass RC> :
372  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
373     !strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>;
374
375// Arithmetic Multiply ADD/SUB
376let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
377class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
378  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
379     !strconcat(instr_asm, "\t$rs, $rt"),
380     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
381  let rd = 0;
382  let shamt = 0;
383  let isCommutable = isComm;
384}
385
386//  Logical
387class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
388  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
389     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
390     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
391  let shamt = 0;
392  let isCommutable = 1;
393}
394
395// Shifts
396class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm,
397                       SDNode OpNode, PatFrag PF, Operand ImmOpnd,
398                       RegisterClass RC>:
399  FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
400     !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
401     [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> {
402  let rs = isRotate;
403}
404
405// 32-bit shift instructions.
406class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm,
407                         SDNode OpNode>:
408  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>;
409
410class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
411                       SDNode OpNode, RegisterClass RC>:
412  FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
413     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
414     [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> {
415  let shamt = isRotate;
416}
417
418// Load Upper Imediate
419class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
420  FI<op, (outs RC:$rt), (ins Imm:$imm16),
421     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> {
422  let rs = 0;
423  let neverHasSideEffects = 1;
424  let isReMaterializable = 1;
425}
426
427class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
428          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
429  bits<21> addr;
430  let Inst{25-21} = addr{20-16};
431  let Inst{15-0}  = addr{15-0};
432  let DecoderMethod = "DecodeMem";
433}
434
435// Memory Load/Store
436let canFoldAsLoad = 1 in
437class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
438            Operand MemOpnd, bit Pseudo>:
439  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
440     !strconcat(instr_asm, "\t$rt, $addr"),
441     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
442  let isPseudo = Pseudo;
443}
444
445class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
446             Operand MemOpnd, bit Pseudo>:
447  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
448     !strconcat(instr_asm, "\t$rt, $addr"),
449     [(OpNode RC:$rt, addr:$addr)], IIStore> {
450  let isPseudo = Pseudo;
451}
452
453// 32-bit load.
454multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
455                   bit Pseudo = 0> {
456  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
457               Requires<[NotN64, HasStandardEncoding]>;
458  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
459               Requires<[IsN64, HasStandardEncoding]> {
460    let DecoderNamespace = "Mips64";
461    let isCodeGenOnly = 1;
462  }
463}
464
465// 64-bit load.
466multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
467                   bit Pseudo = 0> {
468  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
469               Requires<[NotN64, HasStandardEncoding]>;
470  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
471               Requires<[IsN64, HasStandardEncoding]> {
472    let DecoderNamespace = "Mips64";
473    let isCodeGenOnly = 1;
474  }
475}
476
477// 32-bit store.
478multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
479                    bit Pseudo = 0> {
480  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
481               Requires<[NotN64, HasStandardEncoding]>;
482  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
483               Requires<[IsN64, HasStandardEncoding]> {
484    let DecoderNamespace = "Mips64";
485    let isCodeGenOnly = 1;
486  }
487}
488
489// 64-bit store.
490multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
491                    bit Pseudo = 0> {
492  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
493               Requires<[NotN64, HasStandardEncoding]>;
494  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
495               Requires<[IsN64, HasStandardEncoding]> {
496    let DecoderNamespace = "Mips64";
497    let isCodeGenOnly = 1;
498  }
499}
500
501// Load/Store Left/Right
502let canFoldAsLoad = 1 in
503class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
504                    RegisterClass RC, Operand MemOpnd> :
505  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
506       !strconcat(instr_asm, "\t$rt, $addr"),
507       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
508  string Constraints = "$src = $rt";
509}
510
511class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
512                     RegisterClass RC, Operand MemOpnd>:
513  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
514       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
515       IIStore>;
516
517// 32-bit load left/right.
518multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
519  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
520               Requires<[NotN64, HasStandardEncoding]>;
521  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
522               Requires<[IsN64, HasStandardEncoding]> {
523    let DecoderNamespace = "Mips64";
524    let isCodeGenOnly = 1;
525  }
526}
527
528// 64-bit load left/right.
529multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
530  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
531               Requires<[NotN64, HasStandardEncoding]>;
532  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
533               Requires<[IsN64, HasStandardEncoding]> {
534    let DecoderNamespace = "Mips64";
535    let isCodeGenOnly = 1;
536  }
537}
538
539// 32-bit store left/right.
540multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
541  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
542               Requires<[NotN64, HasStandardEncoding]>;
543  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
544               Requires<[IsN64, HasStandardEncoding]> {
545    let DecoderNamespace = "Mips64";
546    let isCodeGenOnly = 1;
547  }
548}
549
550// 64-bit store left/right.
551multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
552  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
553               Requires<[NotN64, HasStandardEncoding]>;
554  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
555               Requires<[IsN64, HasStandardEncoding]> {
556    let DecoderNamespace = "Mips64";
557    let isCodeGenOnly = 1;
558  }
559}
560
561// Conditional Branch
562class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
563  BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
564             !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
565             [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
566  let isBranch = 1;
567  let isTerminator = 1;
568  let hasDelaySlot = 1;
569  let Defs = [AT];
570}
571
572class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
573                  RegisterClass RC>:
574  BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
575             !strconcat(instr_asm, "\t$rs, $imm16"),
576             [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
577  let rt = _rt;
578  let isBranch = 1;
579  let isTerminator = 1;
580  let hasDelaySlot = 1;
581  let Defs = [AT];
582}
583
584// SetCC
585class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
586              RegisterClass RC>:
587  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
588     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
589     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
590     IIAlu> {
591  let shamt = 0;
592}
593
594class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
595              PatLeaf imm_type, RegisterClass RC>:
596  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
597     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
598     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
599     IIAlu>;
600
601// Jump
602class JumpFJ<bits<6> op, string instr_asm>:
603  FJ<op, (outs), (ins jmptarget:$target),
604     !strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch> {
605  let isBranch=1;
606  let isTerminator=1;
607  let isBarrier=1;
608  let hasDelaySlot = 1;
609  let Predicates = [RelocStatic, HasStandardEncoding];
610  let DecoderMethod = "DecodeJumpTarget";
611  let Defs = [AT];
612}
613
614// Unconditional branch
615class UncondBranch<bits<6> op, string instr_asm>:
616  BranchBase<op, (outs), (ins brtarget:$imm16),
617             !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
618  let rs = 0;
619  let rt = 0;
620  let isBranch = 1;
621  let isTerminator = 1;
622  let isBarrier = 1;
623  let hasDelaySlot = 1;
624  let Predicates = [RelocPIC, HasStandardEncoding];
625  let Defs = [AT];
626}
627
628let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1,
629    isIndirectBranch = 1 in
630class JumpFR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
631  FR<op, func, (outs), (ins RC:$rs),
632     !strconcat(instr_asm, "\t$rs"), [(brind RC:$rs)], IIBranch> {
633  let rt = 0;
634  let rd = 0;
635  let shamt = 0;
636}
637
638// Jump and Link (Call)
639let isCall=1, hasDelaySlot=1 in {
640  class JumpLink<bits<6> op, string instr_asm>:
641    FJ<op, (outs), (ins calltarget:$target, variable_ops),
642       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
643       IIBranch> {
644       let DecoderMethod = "DecodeJumpTarget";
645       }
646
647  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
648                    RegisterClass RC>:
649    FR<op, func, (outs), (ins RC:$rs, variable_ops),
650       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
651    let rt = 0;
652    let rd = 31;
653    let shamt = 0;
654  }
655
656  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
657    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16, variable_ops),
658       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
659    let rt = _rt;
660  }
661}
662
663// Mul, Div
664class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
665           RegisterClass RC, list<Register> DefRegs>:
666  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
667     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
668  let rd = 0;
669  let shamt = 0;
670  let isCommutable = 1;
671  let Defs = DefRegs;
672  let neverHasSideEffects = 1;
673}
674
675class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
676  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
677
678class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
679          RegisterClass RC, list<Register> DefRegs>:
680  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
681     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
682     [(op RC:$rs, RC:$rt)], itin> {
683  let rd = 0;
684  let shamt = 0;
685  let Defs = DefRegs;
686}
687
688class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
689  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
690
691// Move from Hi/Lo
692class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
693                   list<Register> UseRegs>:
694  FR<0x00, func, (outs RC:$rd), (ins),
695     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
696  let rs = 0;
697  let rt = 0;
698  let shamt = 0;
699  let Uses = UseRegs;
700  let neverHasSideEffects = 1;
701}
702
703class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
704                 list<Register> DefRegs>:
705  FR<0x00, func, (outs), (ins RC:$rs),
706     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
707  let rt = 0;
708  let rd = 0;
709  let shamt = 0;
710  let Defs = DefRegs;
711  let neverHasSideEffects = 1;
712}
713
714class EffectiveAddress<string instr_asm, RegisterClass RC, Operand Mem> :
715  FMem<0x09, (outs RC:$rt), (ins Mem:$addr),
716     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu>;
717
718// Count Leading Ones/Zeros in Word
719class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
720  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
721     !strconcat(instr_asm, "\t$rd, $rs"),
722     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
723     Requires<[HasBitCount, HasStandardEncoding]> {
724  let shamt = 0;
725  let rt = rd;
726}
727
728class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
729  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
730     !strconcat(instr_asm, "\t$rd, $rs"),
731     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
732     Requires<[HasBitCount, HasStandardEncoding]> {
733  let shamt = 0;
734  let rt = rd;
735}
736
737// Sign Extend in Register.
738class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
739                   RegisterClass RC>:
740  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
741     !strconcat(instr_asm, "\t$rd, $rt"),
742     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
743  let rs = 0;
744  let shamt = sa;
745  let Predicates = [HasSEInReg, HasStandardEncoding];
746}
747
748// Subword Swap
749class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
750  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
751     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
752  let rs = 0;
753  let shamt = sa;
754  let Predicates = [HasSwap, HasStandardEncoding];
755  let neverHasSideEffects = 1;
756}
757
758// Read Hardware
759class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
760  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
761       "rdhwr\t$rt, $rd", [], IIAlu> {
762  let rs = 0;
763  let shamt = 0;
764}
765
766// Ext and Ins
767class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
768  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
769     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
770     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
771  bits<5> pos;
772  bits<5> sz;
773  let rd = sz;
774  let shamt = pos;
775  let Predicates = [HasMips32r2, HasStandardEncoding];
776}
777
778class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
779  FR<0x1f, _funct, (outs RC:$rt),
780     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
781     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
782     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
783     NoItinerary> {
784  bits<5> pos;
785  bits<5> sz;
786  let rd = sz;
787  let shamt = pos;
788  let Predicates = [HasMips32r2, HasStandardEncoding];
789  let Constraints = "$src = $rt";
790}
791
792// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
793class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
794                 RegisterClass PRC> :
795  MipsPseudo<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
796             !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
797             [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
798
799multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
800  def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>,
801                          Requires<[NotN64, HasStandardEncoding]>;
802  def _P8    : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>,
803                          Requires<[IsN64, HasStandardEncoding]> {
804    let DecoderNamespace = "Mips64";
805  }
806}
807
808// Atomic Compare & Swap.
809class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
810                    RegisterClass PRC> :
811  MipsPseudo<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
812             !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
813             [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
814
815multiclass AtomicCmpSwap32<PatFrag Op, string Width>  {
816  def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>,
817                             Requires<[NotN64, HasStandardEncoding]>;
818  def _P8    : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>,
819                             Requires<[IsN64, HasStandardEncoding]> {
820    let DecoderNamespace = "Mips64";
821  }
822}
823
824class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
825  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
826       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
827  let mayLoad = 1;
828}
829
830class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
831  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
832       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
833  let mayStore = 1;
834  let Constraints = "$rt = $dst";
835}
836
837//===----------------------------------------------------------------------===//
838// Pseudo instructions
839//===----------------------------------------------------------------------===//
840
841// As stack alignment is always done with addiu, we need a 16-bit immediate
842let Defs = [SP], Uses = [SP] in {
843def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins uimm16:$amt),
844                                  "!ADJCALLSTACKDOWN $amt",
845                                  [(callseq_start timm:$amt)]>;
846def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins uimm16:$amt1, uimm16:$amt2),
847                                  "!ADJCALLSTACKUP $amt1",
848                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
849}
850
851// When handling PIC code the assembler needs .cpload and .cprestore
852// directives. If the real instructions corresponding these directives
853// are used, we have the same behavior, but get also a bunch of warnings
854// from the assembler.
855let neverHasSideEffects = 1 in
856def CPRESTORE : MipsPseudo<(outs), (ins i32imm:$loc, CPURegs:$gp),
857                           ".cprestore\t$loc", []>;
858
859let usesCustomInserter = 1 in {
860  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
861  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
862  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
863  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
864  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
865  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
866  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
867  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
868  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
869  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
870  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
871  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
872  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
873  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
874  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
875  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
876  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
877  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
878
879  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8, "swap_8">;
880  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16, "swap_16">;
881  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32, "swap_32">;
882
883  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
884  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
885  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
886}
887
888//===----------------------------------------------------------------------===//
889// Instruction definition
890//===----------------------------------------------------------------------===//
891
892//===----------------------------------------------------------------------===//
893// MipsI Instructions
894//===----------------------------------------------------------------------===//
895
896/// Arithmetic Instructions (ALU Immediate)
897def ADDiu   : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>;
898def ADDi    : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>;
899def SLTi    : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
900def SLTiu   : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
901def ANDi    : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>;
902def ORi     : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>;
903def XORi    : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>;
904def LUi     : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
905
906/// Arithmetic Instructions (3-Operand, R-Type)
907def ADDu    : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>;
908def SUBu    : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>;
909def ADD     : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>;
910def SUB     : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>;
911def SLT     : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
912def SLTu    : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
913def AND     : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>;
914def OR      : ArithLogicR<0x00, 0x25, "or",  or, IIAlu, CPURegs, 1>;
915def XOR     : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>;
916def NOR     : LogicNOR<0x00, 0x27, "nor", CPURegs>;
917
918/// Shift Instructions
919def SLL     : shift_rotate_imm32<0x00, 0x00, "sll", shl>;
920def SRL     : shift_rotate_imm32<0x02, 0x00, "srl", srl>;
921def SRA     : shift_rotate_imm32<0x03, 0x00, "sra", sra>;
922def SLLV    : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
923def SRLV    : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
924def SRAV    : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
925
926// Rotate Instructions
927let Predicates = [HasMips32r2, HasStandardEncoding] in {
928    def ROTR    : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>;
929    def ROTRV   : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
930}
931
932/// Load and Store Instructions
933///  aligned
934defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
935defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
936defm LH      : LoadM32<0x21, "lh",  sextloadi16_a>;
937defm LHu     : LoadM32<0x25, "lhu", zextloadi16_a>;
938defm LW      : LoadM32<0x23, "lw",  load_a>;
939defm SB      : StoreM32<0x28, "sb", truncstorei8>;
940defm SH      : StoreM32<0x29, "sh", truncstorei16_a>;
941defm SW      : StoreM32<0x2b, "sw", store_a>;
942
943///  unaligned
944defm ULH     : LoadM32<0x21, "ulh",  sextloadi16_u, 1>;
945defm ULHu    : LoadM32<0x25, "ulhu", zextloadi16_u, 1>;
946defm ULW     : LoadM32<0x23, "ulw",  load_u, 1>;
947defm USH     : StoreM32<0x29, "ush", truncstorei16_u, 1>;
948defm USW     : StoreM32<0x2b, "usw", store_u, 1>;
949
950/// load/store left/right
951defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
952defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
953defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
954defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
955
956let hasSideEffects = 1 in
957def SYNC : MipsInst<(outs), (ins i32imm:$stype), "sync $stype",
958                    [(MipsSync imm:$stype)], NoItinerary, FrmOther>
959{
960  bits<5> stype;
961  let Opcode = 0;
962  let Inst{25-11} = 0;
963  let Inst{10-6} = stype;
964  let Inst{5-0} = 15;
965}
966
967/// Load-linked, Store-conditional
968def LL    : LLBase<0x30, "ll", CPURegs, mem>,
969            Requires<[NotN64, HasStandardEncoding]>;
970def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
971            Requires<[IsN64, HasStandardEncoding]> {
972  let DecoderNamespace = "Mips64";
973}
974
975def SC    : SCBase<0x38, "sc", CPURegs, mem>,
976            Requires<[NotN64, HasStandardEncoding]>;
977def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
978            Requires<[IsN64, HasStandardEncoding]> {
979  let DecoderNamespace = "Mips64";
980}
981
982/// Jump and Branch Instructions
983def J       : JumpFJ<0x02, "j">;
984def JR      : JumpFR<0x00, 0x08, "jr", CPURegs>;
985def B       : UncondBranch<0x04, "b">;
986def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
987def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
988def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
989def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
990def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
991def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
992
993def JAL  : JumpLink<0x03, "jal">;
994def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
995def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
996def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
997
998let isReturn=1, isTerminator=1, hasDelaySlot=1, isCodeGenOnly=1,
999    isBarrier=1, hasCtrlDep=1, rd=0, rt=0, shamt=0 in
1000  def RET : FR <0x00, 0x08, (outs), (ins CPURegs:$target),
1001                "jr\t$target", [(MipsRet CPURegs:$target)], IIBranch>;
1002
1003/// Multiply and Divide Instructions.
1004def MULT    : Mult32<0x18, "mult", IIImul>;
1005def MULTu   : Mult32<0x19, "multu", IIImul>;
1006def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
1007def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
1008
1009def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
1010def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
1011def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
1012def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
1013
1014/// Sign Ext In Register Instructions.
1015def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
1016def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
1017
1018/// Count Leading
1019def CLZ : CountLeading0<0x20, "clz", CPURegs>;
1020def CLO : CountLeading1<0x21, "clo", CPURegs>;
1021
1022/// Word Swap Bytes Within Halfwords
1023def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
1024
1025/// No operation
1026let addr=0 in
1027  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1028
1029// FrameIndexes are legalized when they are operands from load/store
1030// instructions. The same not happens for stack address copies, so an
1031// add op with mem ComplexPattern is used and the stack address copy
1032// can be matched. It's similar to Sparc LEA_ADDRi
1033def LEA_ADDiu : EffectiveAddress<"addiu\t$rt, $addr", CPURegs, mem_ea> {
1034  let isCodeGenOnly = 1;
1035}
1036
1037// DynAlloc node points to dynamically allocated stack space.
1038// $sp is added to the list of implicitly used registers to prevent dead code
1039// elimination from removing instructions that modify $sp.
1040let Uses = [SP] in
1041def DynAlloc : EffectiveAddress<"addiu\t$rt, $addr", CPURegs, mem_ea> {
1042  let isCodeGenOnly = 1;
1043}
1044
1045// MADD*/MSUB*
1046def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1047def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1048def MSUB  : MArithR<4, "msub", MipsMSub>;
1049def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1050
1051// MUL is a assembly macro in the current used ISAs. In recent ISA's
1052// it is a real instruction.
1053def MUL   : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>,
1054            Requires<[HasMips32, HasStandardEncoding]>;
1055
1056def RDHWR : ReadHardware<CPURegs, HWRegs>;
1057
1058def EXT : ExtBase<0, "ext", CPURegs>;
1059def INS : InsBase<4, "ins", CPURegs>;
1060
1061//===----------------------------------------------------------------------===//
1062//  Arbitrary patterns that map to one or more instructions
1063//===----------------------------------------------------------------------===//
1064
1065// Small immediates
1066def : MipsPat<(i32 immSExt16:$in),
1067              (ADDiu ZERO, imm:$in)>;
1068def : MipsPat<(i32 immZExt16:$in),
1069              (ORi ZERO, imm:$in)>;
1070def : MipsPat<(i32 immLow16Zero:$in),
1071              (LUi (HI16 imm:$in))>;
1072
1073// Arbitrary immediates
1074def : MipsPat<(i32 imm:$imm),
1075          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1076
1077// Carry MipsPatterns
1078def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1079              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1080def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1081              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1082def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1083              (ADDiu CPURegs:$src, imm:$imm)>;
1084
1085// Call
1086def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1087              (JAL tglobaladdr:$dst)>;
1088def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1089              (JAL texternalsym:$dst)>;
1090//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1091//              (JALR CPURegs:$dst)>;
1092
1093// hi/lo relocs
1094def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1095def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1096def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1097def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1098def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1099
1100def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1101def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1102def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1103def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1104def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1105
1106def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1107              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1108def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1109              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1110def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1111              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1112def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1113              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1114def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1115              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1116
1117// gp_rel relocs
1118def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1119              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1120def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1121              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1122
1123// wrapper_pic
1124class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1125      MipsPat<(MipsWrapper RC:$gp, node:$in),
1126              (ADDiuOp RC:$gp, node:$in)>;
1127
1128def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1129def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1130def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1131def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1132def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1133def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1134
1135// Mips does not have "not", so we expand our way
1136def : MipsPat<(not CPURegs:$in),
1137              (NOR CPURegs:$in, ZERO)>;
1138
1139// extended loads
1140let Predicates = [NotN64, HasStandardEncoding] in {
1141  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1142  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1143  def : MipsPat<(i32 (extloadi16_a addr:$src)), (LHu addr:$src)>;
1144  def : MipsPat<(i32 (extloadi16_u addr:$src)), (ULHu addr:$src)>;
1145}
1146let Predicates = [IsN64, HasStandardEncoding] in {
1147  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1148  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1149  def : MipsPat<(i32 (extloadi16_a addr:$src)), (LHu_P8 addr:$src)>;
1150  def : MipsPat<(i32 (extloadi16_u addr:$src)), (ULHu_P8 addr:$src)>;
1151}
1152
1153// peepholes
1154let Predicates = [NotN64, HasStandardEncoding] in {
1155  def : MipsPat<(store_a (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1156  def : MipsPat<(store_u (i32 0), addr:$dst), (USW ZERO, addr:$dst)>;
1157}
1158let Predicates = [IsN64, HasStandardEncoding] in {
1159  def : MipsPat<(store_a (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1160  def : MipsPat<(store_u (i32 0), addr:$dst), (USW_P8 ZERO, addr:$dst)>;
1161}
1162
1163// brcond patterns
1164multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1165                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1166                      Instruction SLTiuOp, Register ZEROReg> {
1167def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1168              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1169def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1170              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1171
1172def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1173              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1174def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1175              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1176def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1177              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1178def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1179              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1180
1181def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1182              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1183def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1184              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1185
1186def : MipsPat<(brcond RC:$cond, bb:$dst),
1187              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1188}
1189
1190defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1191
1192// setcc patterns
1193multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1194                     Instruction SLTuOp, Register ZEROReg> {
1195  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1196                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1197  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1198                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1199}
1200
1201multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1202  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1203                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1204  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1205                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1206}
1207
1208multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1209  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1210                (SLTOp RC:$rhs, RC:$lhs)>;
1211  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1212                (SLTuOp RC:$rhs, RC:$lhs)>;
1213}
1214
1215multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1216  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1217                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1218  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1219                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1220}
1221
1222multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1223                        Instruction SLTiuOp> {
1224  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1225                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1226  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1227                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1228}
1229
1230defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1231defm : SetlePats<CPURegs, SLT, SLTu>;
1232defm : SetgtPats<CPURegs, SLT, SLTu>;
1233defm : SetgePats<CPURegs, SLT, SLTu>;
1234defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1235
1236// select MipsDynAlloc
1237def : MipsPat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
1238
1239// bswap pattern
1240def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1241
1242//===----------------------------------------------------------------------===//
1243// Floating Point Support
1244//===----------------------------------------------------------------------===//
1245
1246include "MipsInstrFPU.td"
1247include "Mips64InstrInfo.td"
1248include "MipsCondMov.td"
1249
1250//
1251// Mips16
1252
1253include "Mips16InstrFormats.td"
1254include "Mips16InstrInfo.td"
1255