MipsInstrInfo.td revision ab48c503e231c9a3c9ccccbb57c0a3a7a4302a75
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
37
38def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
39                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
40def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
42                                   SDTCisSameAs<0, 4>]>;
43
44def SDTMipsLoadLR  : SDTypeProfile<1, 2,
45                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
46                                    SDTCisSameAs<0, 2>]>;
47
48// Call
49def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
50                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
51                          SDNPVariadic]>;
52
53// Tail call
54def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
55                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
56
57// Hi and Lo nodes are used to handle global addresses. Used on
58// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
59// static model. (nothing to do with Mips Registers Hi and Lo)
60def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
61def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
62def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
63
64// TlsGd node is used to handle General Dynamic TLS
65def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
66
67// TprelHi and TprelLo nodes are used to handle Local Exec TLS
68def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
69def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
70
71// Thread pointer
72def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
73
74// Return
75def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
76
77// These are target-independent nodes, but have target-specific formats.
78def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
79                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
80def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
81                           [SDNPHasChain, SDNPSideEffect,
82                            SDNPOptInGlue, SDNPOutGlue]>;
83
84// MAdd*/MSub* nodes
85def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
86                           [SDNPOptInGlue, SDNPOutGlue]>;
87def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
92                           [SDNPOptInGlue, SDNPOutGlue]>;
93
94// DivRem(u) nodes
95def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
96                           [SDNPOutGlue]>;
97def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
98                           [SDNPOutGlue]>;
99
100// Target constant nodes that are not part of any isel patterns and remain
101// unchanged can cause instructions with illegal operands to be emitted.
102// Wrapper node patterns give the instruction selector a chance to replace
103// target constant nodes that would otherwise remain unchanged with ADDiu
104// nodes. Without these wrapper node patterns, the following conditional move
105// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
106// compiled:
107//  movn  %got(d)($gp), %got(c)($gp), $4
108// This instruction is illegal since movn can take only register operands.
109
110def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
111
112def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
113
114def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
115def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
116
117def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
118                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
119def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
120                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
121def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
122                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
123def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
124                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
125def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
126                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
127def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
128                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
129def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
130                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
131def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
132                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
133
134//===----------------------------------------------------------------------===//
135// Mips Instruction Predicate Definitions.
136//===----------------------------------------------------------------------===//
137def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
138                      AssemblerPredicate<"FeatureSEInReg">;
139def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
140                      AssemblerPredicate<"FeatureBitCount">;
141def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
142                      AssemblerPredicate<"FeatureSwap">;
143def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
144                      AssemblerPredicate<"FeatureCondMov">;
145def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
146                      AssemblerPredicate<"FeatureFPIdx">;
147def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
148                      AssemblerPredicate<"FeatureMips32">;
149def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
150                      AssemblerPredicate<"FeatureMips32r2">;
151def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
152                      AssemblerPredicate<"FeatureMips64">;
153def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
154                      AssemblerPredicate<"!FeatureMips64">;
155def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
156                      AssemblerPredicate<"FeatureMips64r2">;
157def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
158                      AssemblerPredicate<"FeatureN64">;
159def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
160                      AssemblerPredicate<"!FeatureN64">;
161def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
162                      AssemblerPredicate<"FeatureMips16">;
163def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
164                      AssemblerPredicate<"FeatureMips32">;
165def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
166                      AssemblerPredicate<"FeatureMips32">;
167def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
168                      AssemblerPredicate<"FeatureMips32">;
169def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
170                      AssemblerPredicate<"!FeatureMips16">;
171
172class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
173  let Predicates = [HasStdEnc];
174}
175
176class IsCommutable {
177  bit isCommutable = 1;
178}
179
180class IsBranch {
181  bit isBranch = 1;
182}
183
184class IsReturn {
185  bit isReturn = 1;
186}
187
188class IsCall {
189  bit isCall = 1;
190}
191
192class IsTailCall {
193  bit isCall = 1;
194  bit isTerminator = 1;
195  bit isReturn = 1;
196  bit isBarrier = 1;
197  bit hasExtraSrcRegAllocReq = 1;
198  bit isCodeGenOnly = 1;
199}
200
201class IsAsCheapAsAMove {
202  bit isAsCheapAsAMove = 1;
203}
204
205class NeverHasSideEffects {
206  bit neverHasSideEffects = 1;
207}
208
209//===----------------------------------------------------------------------===//
210// Instruction format superclass
211//===----------------------------------------------------------------------===//
212
213include "MipsInstrFormats.td"
214
215//===----------------------------------------------------------------------===//
216// Mips Operand, Complex Patterns and Transformations Definitions.
217//===----------------------------------------------------------------------===//
218
219// Instruction operand types
220def jmptarget   : Operand<OtherVT> {
221  let EncoderMethod = "getJumpTargetOpValue";
222}
223def brtarget    : Operand<OtherVT> {
224  let EncoderMethod = "getBranchTargetOpValue";
225  let OperandType = "OPERAND_PCREL";
226  let DecoderMethod = "DecodeBranchTarget";
227}
228def calltarget  : Operand<iPTR> {
229  let EncoderMethod = "getJumpTargetOpValue";
230}
231def calltarget64: Operand<i64>;
232def simm16      : Operand<i32> {
233  let DecoderMethod= "DecodeSimm16";
234}
235def simm16_64   : Operand<i64>;
236def shamt       : Operand<i32>;
237
238// Unsigned Operand
239def uimm16      : Operand<i32> {
240  let PrintMethod = "printUnsignedImm";
241}
242
243def MipsMemAsmOperand : AsmOperandClass {
244  let Name = "Mem";
245  let ParserMethod = "parseMemOperand";
246}
247
248// Address operand
249def mem : Operand<i32> {
250  let PrintMethod = "printMemOperand";
251  let MIOperandInfo = (ops CPURegs, simm16);
252  let EncoderMethod = "getMemEncoding";
253  let ParserMatchClass = MipsMemAsmOperand;
254}
255
256def mem64 : Operand<i64> {
257  let PrintMethod = "printMemOperand";
258  let MIOperandInfo = (ops CPU64Regs, simm16_64);
259  let EncoderMethod = "getMemEncoding";
260  let ParserMatchClass = MipsMemAsmOperand;
261}
262
263def mem_ea : Operand<i32> {
264  let PrintMethod = "printMemOperandEA";
265  let MIOperandInfo = (ops CPURegs, simm16);
266  let EncoderMethod = "getMemEncoding";
267}
268
269def mem_ea_64 : Operand<i64> {
270  let PrintMethod = "printMemOperandEA";
271  let MIOperandInfo = (ops CPU64Regs, simm16_64);
272  let EncoderMethod = "getMemEncoding";
273}
274
275// size operand of ext instruction
276def size_ext : Operand<i32> {
277  let EncoderMethod = "getSizeExtEncoding";
278  let DecoderMethod = "DecodeExtSize";
279}
280
281// size operand of ins instruction
282def size_ins : Operand<i32> {
283  let EncoderMethod = "getSizeInsEncoding";
284  let DecoderMethod = "DecodeInsSize";
285}
286
287// Transformation Function - get the lower 16 bits.
288def LO16 : SDNodeXForm<imm, [{
289  return getImm(N, N->getZExtValue() & 0xFFFF);
290}]>;
291
292// Transformation Function - get the higher 16 bits.
293def HI16 : SDNodeXForm<imm, [{
294  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
295}]>;
296
297// Node immediate fits as 16-bit sign extended on target immediate.
298// e.g. addi, andi
299def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
300
301// Node immediate fits as 16-bit zero extended on target immediate.
302// The LO16 param means that only the lower 16 bits of the node
303// immediate are caught.
304// e.g. addiu, sltiu
305def immZExt16  : PatLeaf<(imm), [{
306  if (N->getValueType(0) == MVT::i32)
307    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
308  else
309    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
310}], LO16>;
311
312// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
313def immLow16Zero : PatLeaf<(imm), [{
314  int64_t Val = N->getSExtValue();
315  return isInt<32>(Val) && !(Val & 0xffff);
316}]>;
317
318// shamt field must fit in 5 bits.
319def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
320
321// Mips Address Mode! SDNode frameindex could possibily be a match
322// since load and store instructions from stack used it.
323def addr :
324  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
325
326//===----------------------------------------------------------------------===//
327// Instructions specific format
328//===----------------------------------------------------------------------===//
329
330/// Move Control Registers From/To CPU Registers
331def MFC0_3OP  : MFC3OP<0x10, 0, (outs CPURegs:$rt),
332                       (ins CPURegs:$rd, uimm16:$sel),"mfc0\t$rt, $rd, $sel">;
333def : InstAlias<"mfc0 $rt, $rd", (MFC0_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
334
335def MTC0_3OP  : MFC3OP<0x10, 4, (outs CPURegs:$rd, uimm16:$sel),
336                       (ins CPURegs:$rt),"mtc0\t$rt, $rd, $sel">;
337def : InstAlias<"mtc0 $rt, $rd", (MTC0_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
338
339def MFC2_3OP  : MFC3OP<0x12, 0, (outs CPURegs:$rt),
340                       (ins CPURegs:$rd, uimm16:$sel),"mfc2\t$rt, $rd, $sel">;
341def : InstAlias<"mfc2 $rt, $rd", (MFC2_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
342
343def MTC2_3OP  : MFC3OP<0x12, 4, (outs CPURegs:$rd, uimm16:$sel),
344                       (ins CPURegs:$rt),"mtc2\t$rt, $rd, $sel">;
345def : InstAlias<"mtc2 $rt, $rd", (MTC2_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
346
347// Arithmetic and logical instructions with 3 register operands.
348class ArithLogicR<string opstr, InstrItinClass Itin, RegisterClass RC,
349                  bit isComm = 0, SDPatternOperator OpNode = null_frag>:
350  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
351         !strconcat(opstr, "\t$rd, $rs, $rt"),
352         [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], Itin, FrmR> {
353  let isCommutable = isComm;
354  let isReMaterializable = 1;
355}
356
357// Arithmetic and logical instructions with 2 register operands.
358class ArithLogicI<string opstr, Operand Od, PatLeaf imm_type,
359                  RegisterClass RC, SDPatternOperator OpNode = null_frag> :
360  InstSE<(outs RC:$rt), (ins RC:$rs, Od:$imm16),
361         !strconcat(opstr, "\t$rt, $rs, $imm16"),
362         [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu, FrmI> {
363  let isReMaterializable = 1;
364}
365
366// Arithmetic Multiply ADD/SUB
367let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
368class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
369  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
370     !strconcat(instr_asm, "\t$rs, $rt"),
371     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
372  let rd = 0;
373  let shamt = 0;
374  let isCommutable = isComm;
375}
376
377//  Logical
378class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
379  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
380     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
381     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
382  let shamt = 0;
383  let isCommutable = 1;
384}
385
386// Shifts
387class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm,
388                       SDNode OpNode, PatFrag PF, Operand ImmOpnd,
389                       RegisterClass RC>:
390  FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
391     !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
392     [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> {
393  let rs = isRotate;
394}
395
396// 32-bit shift instructions.
397class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm,
398                         SDNode OpNode>:
399  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>;
400
401class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
402                       SDNode OpNode, RegisterClass RC>:
403  FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
404     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
405     [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> {
406  let shamt = isRotate;
407}
408
409// Load Upper Imediate
410class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
411  FI<op, (outs RC:$rt), (ins Imm:$imm16),
412     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu>, IsAsCheapAsAMove {
413  let rs = 0;
414  let neverHasSideEffects = 1;
415  let isReMaterializable = 1;
416}
417
418class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
419          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
420  bits<21> addr;
421  let Inst{25-21} = addr{20-16};
422  let Inst{15-0}  = addr{15-0};
423  let DecoderMethod = "DecodeMem";
424}
425
426// Memory Load/Store
427let canFoldAsLoad = 1 in
428class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
429            Operand MemOpnd, bit Pseudo>:
430  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
431     !strconcat(instr_asm, "\t$rt, $addr"),
432     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
433  let isPseudo = Pseudo;
434}
435
436class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
437             Operand MemOpnd, bit Pseudo>:
438  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
439     !strconcat(instr_asm, "\t$rt, $addr"),
440     [(OpNode RC:$rt, addr:$addr)], IIStore> {
441  let isPseudo = Pseudo;
442}
443
444// 32-bit load.
445multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
446                   bit Pseudo = 0> {
447  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
448               Requires<[NotN64, HasStdEnc]>;
449  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
450               Requires<[IsN64, HasStdEnc]> {
451    let DecoderNamespace = "Mips64";
452    let isCodeGenOnly = 1;
453  }
454}
455
456// 64-bit load.
457multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
458                   bit Pseudo = 0> {
459  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
460               Requires<[NotN64, HasStdEnc]>;
461  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
462               Requires<[IsN64, HasStdEnc]> {
463    let DecoderNamespace = "Mips64";
464    let isCodeGenOnly = 1;
465  }
466}
467
468// 32-bit store.
469multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
470                    bit Pseudo = 0> {
471  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
472               Requires<[NotN64, HasStdEnc]>;
473  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
474               Requires<[IsN64, HasStdEnc]> {
475    let DecoderNamespace = "Mips64";
476    let isCodeGenOnly = 1;
477  }
478}
479
480// 64-bit store.
481multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
482                    bit Pseudo = 0> {
483  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
484               Requires<[NotN64, HasStdEnc]>;
485  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
486               Requires<[IsN64, HasStdEnc]> {
487    let DecoderNamespace = "Mips64";
488    let isCodeGenOnly = 1;
489  }
490}
491
492// Load/Store Left/Right
493let canFoldAsLoad = 1 in
494class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
495                    RegisterClass RC, Operand MemOpnd> :
496  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
497       !strconcat(instr_asm, "\t$rt, $addr"),
498       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
499  string Constraints = "$src = $rt";
500}
501
502class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
503                     RegisterClass RC, Operand MemOpnd>:
504  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
505       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
506       IIStore>;
507
508// 32-bit load left/right.
509multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
510  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
511               Requires<[NotN64, HasStdEnc]>;
512  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
513               Requires<[IsN64, HasStdEnc]> {
514    let DecoderNamespace = "Mips64";
515    let isCodeGenOnly = 1;
516  }
517}
518
519// 64-bit load left/right.
520multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
521  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
522               Requires<[NotN64, HasStdEnc]>;
523  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
524               Requires<[IsN64, HasStdEnc]> {
525    let DecoderNamespace = "Mips64";
526    let isCodeGenOnly = 1;
527  }
528}
529
530// 32-bit store left/right.
531multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
532  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
533               Requires<[NotN64, HasStdEnc]>;
534  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
535               Requires<[IsN64, HasStdEnc]> {
536    let DecoderNamespace = "Mips64";
537    let isCodeGenOnly = 1;
538  }
539}
540
541// 64-bit store left/right.
542multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
543  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
544               Requires<[NotN64, HasStdEnc]>;
545  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
546               Requires<[IsN64, HasStdEnc]> {
547    let DecoderNamespace = "Mips64";
548    let isCodeGenOnly = 1;
549  }
550}
551
552// Conditional Branch
553class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
554  BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
555             !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
556             [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
557  let isBranch = 1;
558  let isTerminator = 1;
559  let hasDelaySlot = 1;
560  let Defs = [AT];
561}
562
563class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
564                  RegisterClass RC>:
565  BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
566             !strconcat(instr_asm, "\t$rs, $imm16"),
567             [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
568  let rt = _rt;
569  let isBranch = 1;
570  let isTerminator = 1;
571  let hasDelaySlot = 1;
572  let Defs = [AT];
573}
574
575// SetCC
576class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
577              RegisterClass RC>:
578  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
579     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
580     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
581     IIAlu> {
582  let shamt = 0;
583}
584
585class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
586              PatLeaf imm_type, RegisterClass RC>:
587  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
588     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
589     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
590     IIAlu>;
591
592// Jump
593class JumpFJ<bits<6> op, DAGOperand opnd, string instr_asm,
594             SDPatternOperator operator, SDPatternOperator targetoperator>:
595  FJ<op, (outs), (ins opnd:$target), !strconcat(instr_asm, "\t$target"),
596     [(operator targetoperator:$target)], IIBranch> {
597  let isTerminator=1;
598  let isBarrier=1;
599  let hasDelaySlot = 1;
600  let DecoderMethod = "DecodeJumpTarget";
601  let Defs = [AT];
602}
603
604// Unconditional branch
605class UncondBranch<bits<6> op, string instr_asm>:
606  BranchBase<op, (outs), (ins brtarget:$imm16),
607             !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
608  let rs = 0;
609  let rt = 0;
610  let isBranch = 1;
611  let isTerminator = 1;
612  let isBarrier = 1;
613  let hasDelaySlot = 1;
614  let Predicates = [RelocPIC, HasStdEnc];
615  let Defs = [AT];
616}
617
618// Base class for indirect branch and return instruction classes.
619let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
620class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
621  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch> {
622  let rt = 0;
623  let rd = 0;
624  let shamt = 0;
625}
626
627// Indirect branch
628class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
629  let isBranch = 1;
630  let isIndirectBranch = 1;
631}
632
633// Return instruction
634class RetBase<RegisterClass RC>: JumpFR<RC> {
635  let isReturn = 1;
636  let isCodeGenOnly = 1;
637  let hasCtrlDep = 1;
638  let hasExtraSrcRegAllocReq = 1;
639}
640
641// Jump and Link (Call)
642let isCall=1, hasDelaySlot=1, Defs = [RA] in {
643  class JumpLink<bits<6> op, string instr_asm>:
644    FJ<op, (outs), (ins calltarget:$target),
645       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
646       IIBranch> {
647       let DecoderMethod = "DecodeJumpTarget";
648       }
649
650  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
651                    RegisterClass RC>:
652    FR<op, func, (outs), (ins RC:$rs),
653       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
654    let rt = 0;
655    let rd = 31;
656    let shamt = 0;
657  }
658
659  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
660    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
661       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
662    let rt = _rt;
663  }
664}
665
666// Mul, Div
667class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
668           RegisterClass RC, list<Register> DefRegs>:
669  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
670     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
671  let rd = 0;
672  let shamt = 0;
673  let isCommutable = 1;
674  let Defs = DefRegs;
675  let neverHasSideEffects = 1;
676}
677
678class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
679  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
680
681class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
682          RegisterClass RC, list<Register> DefRegs>:
683  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
684     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
685     [(op RC:$rs, RC:$rt)], itin> {
686  let rd = 0;
687  let shamt = 0;
688  let Defs = DefRegs;
689}
690
691class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
692  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
693
694// Move from Hi/Lo
695class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
696                   list<Register> UseRegs>:
697  FR<0x00, func, (outs RC:$rd), (ins),
698     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
699  let rs = 0;
700  let rt = 0;
701  let shamt = 0;
702  let Uses = UseRegs;
703  let neverHasSideEffects = 1;
704}
705
706class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
707                 list<Register> DefRegs>:
708  FR<0x00, func, (outs), (ins RC:$rs),
709     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
710  let rt = 0;
711  let rd = 0;
712  let shamt = 0;
713  let Defs = DefRegs;
714  let neverHasSideEffects = 1;
715}
716
717class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
718  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
719     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
720 let isCodeGenOnly = 1;
721}
722
723// Count Leading Ones/Zeros in Word
724class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
725  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
726     !strconcat(instr_asm, "\t$rd, $rs"),
727     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
728     Requires<[HasBitCount, HasStdEnc]> {
729  let shamt = 0;
730  let rt = rd;
731}
732
733class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
734  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
735     !strconcat(instr_asm, "\t$rd, $rs"),
736     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
737     Requires<[HasBitCount, HasStdEnc]> {
738  let shamt = 0;
739  let rt = rd;
740}
741
742// Sign Extend in Register.
743class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
744                   RegisterClass RC>:
745  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
746     !strconcat(instr_asm, "\t$rd, $rt"),
747     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
748  let rs = 0;
749  let shamt = sa;
750  let Predicates = [HasSEInReg, HasStdEnc];
751}
752
753// Subword Swap
754class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
755  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
756     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
757  let rs = 0;
758  let shamt = sa;
759  let Predicates = [HasSwap, HasStdEnc];
760  let neverHasSideEffects = 1;
761}
762
763// Read Hardware
764class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
765  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
766       "rdhwr\t$rt, $rd", [], IIAlu> {
767  let rs = 0;
768  let shamt = 0;
769}
770
771// Ext and Ins
772class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
773  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
774     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
775     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
776  bits<5> pos;
777  bits<5> sz;
778  let rd = sz;
779  let shamt = pos;
780  let Predicates = [HasMips32r2, HasStdEnc];
781}
782
783class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
784  FR<0x1f, _funct, (outs RC:$rt),
785     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
786     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
787     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
788     NoItinerary> {
789  bits<5> pos;
790  bits<5> sz;
791  let rd = sz;
792  let shamt = pos;
793  let Predicates = [HasMips32r2, HasStdEnc];
794  let Constraints = "$src = $rt";
795}
796
797// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
798class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
799                 RegisterClass PRC> :
800  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
801           !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
802           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
803
804multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
805  def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>,
806                          Requires<[NotN64, HasStdEnc]>;
807  def _P8    : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>,
808                          Requires<[IsN64, HasStdEnc]> {
809    let DecoderNamespace = "Mips64";
810  }
811}
812
813// Atomic Compare & Swap.
814class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
815                    RegisterClass PRC> :
816  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
817           !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
818           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
819
820multiclass AtomicCmpSwap32<PatFrag Op, string Width>  {
821  def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>,
822                             Requires<[NotN64, HasStdEnc]>;
823  def _P8    : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>,
824                             Requires<[IsN64, HasStdEnc]> {
825    let DecoderNamespace = "Mips64";
826  }
827}
828
829class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
830  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
831       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
832  let mayLoad = 1;
833}
834
835class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
836  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
837       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
838  let mayStore = 1;
839  let Constraints = "$rt = $dst";
840}
841
842//===----------------------------------------------------------------------===//
843// Pseudo instructions
844//===----------------------------------------------------------------------===//
845
846// Return RA.
847let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
848def RetRA : PseudoSE<(outs), (ins), "", [(MipsRet)]>;
849
850let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
851def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
852                                  "!ADJCALLSTACKDOWN $amt",
853                                  [(callseq_start timm:$amt)]>;
854def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
855                                  "!ADJCALLSTACKUP $amt1",
856                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
857}
858
859// When handling PIC code the assembler needs .cpload and .cprestore
860// directives. If the real instructions corresponding these directives
861// are used, we have the same behavior, but get also a bunch of warnings
862// from the assembler.
863let neverHasSideEffects = 1 in
864def CPRESTORE : PseudoSE<(outs), (ins i32imm:$loc, CPURegs:$gp),
865                         ".cprestore\t$loc", []>;
866
867let usesCustomInserter = 1 in {
868  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
869  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
870  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
871  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
872  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
873  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
874  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
875  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
876  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
877  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
878  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
879  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
880  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
881  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
882  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
883  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
884  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
885  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
886
887  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8, "swap_8">;
888  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16, "swap_16">;
889  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32, "swap_32">;
890
891  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
892  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
893  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
894}
895
896//===----------------------------------------------------------------------===//
897// Instruction definition
898//===----------------------------------------------------------------------===//
899
900class LoadImm32< string instr_asm, Operand Od, RegisterClass RC> :
901  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
902                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
903def LoadImm32Reg : LoadImm32<"li", shamt,CPURegs>;
904
905class LoadAddress<string instr_asm, Operand MemOpnd, RegisterClass RC> :
906  MipsAsmPseudoInst<(outs RC:$rt), (ins MemOpnd:$addr),
907                     !strconcat(instr_asm, "\t$rt, $addr")> ;
908def LoadAddr32Reg : LoadAddress<"la", mem, CPURegs>;
909
910class LoadAddressImm<string instr_asm, Operand Od, RegisterClass RC> :
911  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
912                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
913def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegs>;
914
915//===----------------------------------------------------------------------===//
916// MipsI Instructions
917//===----------------------------------------------------------------------===//
918
919/// Arithmetic Instructions (ALU Immediate)
920def ADDiu : ArithLogicI<"addiu", simm16, immSExt16, CPURegs, add>,
921            ADDI_FM<0x9>, IsAsCheapAsAMove;
922def ADDi  : ArithLogicI<"addi", simm16, immSExt16, CPURegs>, ADDI_FM<0x8>;
923def SLTi  : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
924def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
925def ANDi  : ArithLogicI<"andi", uimm16, immZExt16, CPURegs, and>, ADDI_FM<0xc>;
926def ORi   : ArithLogicI<"ori", uimm16, immZExt16, CPURegs, or>, ADDI_FM<0xd>;
927def XORi  : ArithLogicI<"xori", uimm16, immZExt16, CPURegs, xor>, ADDI_FM<0xe>;
928def LUi   : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
929
930/// Arithmetic Instructions (3-Operand, R-Type)
931def ADDu : ArithLogicR<"addu", IIAlu, CPURegs, 1, add>, ADD_FM<0, 0x21>;
932def SUBu : ArithLogicR<"subu", IIAlu, CPURegs, 0, sub>, ADD_FM<0, 0x23>;
933def ADD  : ArithLogicR<"add", IIAlu, CPURegs, 1>, ADD_FM<0, 0x20>;
934def SUB  : ArithLogicR<"sub", IIAlu, CPURegs, 0>, ADD_FM<0, 0x22>;
935def SLT  : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
936def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
937def AND  : ArithLogicR<"and", IIAlu, CPURegs, 1, and>, ADD_FM<0, 0x24>;
938def OR   : ArithLogicR<"or", IIAlu, CPURegs, 1, or>, ADD_FM<0, 0x25>;
939def XOR  : ArithLogicR<"xor", IIAlu, CPURegs, 1, xor>, ADD_FM<0, 0x26>;
940def NOR  : LogicNOR<0x00, 0x27, "nor", CPURegs>;
941
942/// Shift Instructions
943def SLL     : shift_rotate_imm32<0x00, 0x00, "sll", shl>;
944def SRL     : shift_rotate_imm32<0x02, 0x00, "srl", srl>;
945def SRA     : shift_rotate_imm32<0x03, 0x00, "sra", sra>;
946def SLLV    : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
947def SRLV    : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
948def SRAV    : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
949
950// Rotate Instructions
951let Predicates = [HasMips32r2, HasStdEnc] in {
952    def ROTR    : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>;
953    def ROTRV   : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
954}
955
956/// Load and Store Instructions
957///  aligned
958defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
959defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
960defm LH      : LoadM32<0x21, "lh",  sextloadi16>;
961defm LHu     : LoadM32<0x25, "lhu", zextloadi16>;
962defm LW      : LoadM32<0x23, "lw",  load>;
963defm SB      : StoreM32<0x28, "sb", truncstorei8>;
964defm SH      : StoreM32<0x29, "sh", truncstorei16>;
965defm SW      : StoreM32<0x2b, "sw", store>;
966
967/// load/store left/right
968defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
969defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
970defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
971defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
972
973let hasSideEffects = 1 in
974def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
975                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
976{
977  bits<5> stype;
978  let Opcode = 0;
979  let Inst{25-11} = 0;
980  let Inst{10-6} = stype;
981  let Inst{5-0} = 15;
982}
983
984/// Load-linked, Store-conditional
985def LL    : LLBase<0x30, "ll", CPURegs, mem>,
986            Requires<[NotN64, HasStdEnc]>;
987def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
988            Requires<[IsN64, HasStdEnc]> {
989  let DecoderNamespace = "Mips64";
990}
991
992def SC    : SCBase<0x38, "sc", CPURegs, mem>,
993            Requires<[NotN64, HasStdEnc]>;
994def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
995            Requires<[IsN64, HasStdEnc]> {
996  let DecoderNamespace = "Mips64";
997}
998
999/// Jump and Branch Instructions
1000def J       : JumpFJ<0x02, jmptarget, "j", br, bb>,
1001              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
1002def JR      : IndirectBranch<CPURegs>;
1003def B       : UncondBranch<0x04, "b">;
1004def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
1005def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
1006def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
1007def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
1008def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
1009def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
1010
1011let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
1012    hasDelaySlot = 1, Defs = [RA] in
1013def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
1014
1015def JAL  : JumpLink<0x03, "jal">;
1016def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
1017def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
1018def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
1019def TAILCALL : JumpFJ<0x02, calltarget, "j", MipsTailCall, imm>, IsTailCall;
1020def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, IsTailCall;
1021
1022def RET : RetBase<CPURegs>;
1023
1024/// Multiply and Divide Instructions.
1025def MULT    : Mult32<0x18, "mult", IIImul>;
1026def MULTu   : Mult32<0x19, "multu", IIImul>;
1027def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
1028def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
1029
1030def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
1031def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
1032def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
1033def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
1034
1035/// Sign Ext In Register Instructions.
1036def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
1037def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
1038
1039/// Count Leading
1040def CLZ : CountLeading0<0x20, "clz", CPURegs>;
1041def CLO : CountLeading1<0x21, "clo", CPURegs>;
1042
1043/// Word Swap Bytes Within Halfwords
1044def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
1045
1046/// No operation
1047let addr=0 in
1048  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1049
1050// FrameIndexes are legalized when they are operands from load/store
1051// instructions. The same not happens for stack address copies, so an
1052// add op with mem ComplexPattern is used and the stack address copy
1053// can be matched. It's similar to Sparc LEA_ADDRi
1054def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1055
1056// MADD*/MSUB*
1057def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1058def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1059def MSUB  : MArithR<4, "msub", MipsMSub>;
1060def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1061
1062// MUL is a assembly macro in the current used ISAs. In recent ISA's
1063// it is a real instruction.
1064def MUL   : ArithLogicR<"mul", IIImul, CPURegs, 1, mul>, ADD_FM<0x1c, 0x02>;
1065
1066def RDHWR : ReadHardware<CPURegs, HWRegs>;
1067
1068def EXT : ExtBase<0, "ext", CPURegs>;
1069def INS : InsBase<4, "ins", CPURegs>;
1070
1071//===----------------------------------------------------------------------===//
1072// Instruction aliases
1073//===----------------------------------------------------------------------===//
1074def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
1075def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
1076def : InstAlias<"addu $rs,$rt,$imm",
1077                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1078def : InstAlias<"add $rs,$rt,$imm",
1079                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1080def : InstAlias<"and $rs,$rt,$imm",
1081                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1082def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
1083def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
1084def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
1085def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
1086def : InstAlias<"slt $rs,$rt,$imm",
1087                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1088def : InstAlias<"xor $rs,$rt,$imm",
1089                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1090
1091//===----------------------------------------------------------------------===//
1092//  Arbitrary patterns that map to one or more instructions
1093//===----------------------------------------------------------------------===//
1094
1095// Small immediates
1096def : MipsPat<(i32 immSExt16:$in),
1097              (ADDiu ZERO, imm:$in)>;
1098def : MipsPat<(i32 immZExt16:$in),
1099              (ORi ZERO, imm:$in)>;
1100def : MipsPat<(i32 immLow16Zero:$in),
1101              (LUi (HI16 imm:$in))>;
1102
1103// Arbitrary immediates
1104def : MipsPat<(i32 imm:$imm),
1105          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1106
1107// Carry MipsPatterns
1108def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1109              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1110def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1111              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1112def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1113              (ADDiu CPURegs:$src, imm:$imm)>;
1114
1115// Call
1116def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1117              (JAL tglobaladdr:$dst)>;
1118def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1119              (JAL texternalsym:$dst)>;
1120//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1121//              (JALR CPURegs:$dst)>;
1122
1123// Tail call
1124def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1125              (TAILCALL tglobaladdr:$dst)>;
1126def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1127              (TAILCALL texternalsym:$dst)>;
1128// hi/lo relocs
1129def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1130def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1131def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1132def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1133def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1134def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1135
1136def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1137def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1138def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1139def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1140def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1141def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1142
1143def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1144              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1145def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1146              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1147def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1148              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1149def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1150              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1151def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1152              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1153
1154// gp_rel relocs
1155def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1156              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1157def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1158              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1159
1160// wrapper_pic
1161class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1162      MipsPat<(MipsWrapper RC:$gp, node:$in),
1163              (ADDiuOp RC:$gp, node:$in)>;
1164
1165def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1166def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1167def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1168def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1169def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1170def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1171
1172// Mips does not have "not", so we expand our way
1173def : MipsPat<(not CPURegs:$in),
1174              (NOR CPURegs:$in, ZERO)>;
1175
1176// extended loads
1177let Predicates = [NotN64, HasStdEnc] in {
1178  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1179  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1180  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1181}
1182let Predicates = [IsN64, HasStdEnc] in {
1183  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1184  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1185  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1186}
1187
1188// peepholes
1189let Predicates = [NotN64, HasStdEnc] in {
1190  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1191}
1192let Predicates = [IsN64, HasStdEnc] in {
1193  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1194}
1195
1196// brcond patterns
1197multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1198                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1199                      Instruction SLTiuOp, Register ZEROReg> {
1200def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1201              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1202def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1203              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1204
1205def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1206              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1207def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1208              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1209def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1210              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1211def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1212              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1213
1214def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1215              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1216def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1217              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1218
1219def : MipsPat<(brcond RC:$cond, bb:$dst),
1220              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1221}
1222
1223defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1224
1225// setcc patterns
1226multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1227                     Instruction SLTuOp, Register ZEROReg> {
1228  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1229                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1230  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1231                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1232}
1233
1234multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1235  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1236                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1237  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1238                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1239}
1240
1241multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1242  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1243                (SLTOp RC:$rhs, RC:$lhs)>;
1244  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1245                (SLTuOp RC:$rhs, RC:$lhs)>;
1246}
1247
1248multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1249  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1250                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1251  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1252                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1253}
1254
1255multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1256                        Instruction SLTiuOp> {
1257  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1258                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1259  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1260                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1261}
1262
1263defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1264defm : SetlePats<CPURegs, SLT, SLTu>;
1265defm : SetgtPats<CPURegs, SLT, SLTu>;
1266defm : SetgePats<CPURegs, SLT, SLTu>;
1267defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1268
1269// bswap pattern
1270def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1271
1272//===----------------------------------------------------------------------===//
1273// Floating Point Support
1274//===----------------------------------------------------------------------===//
1275
1276include "MipsInstrFPU.td"
1277include "Mips64InstrInfo.td"
1278include "MipsCondMov.td"
1279
1280//
1281// Mips16
1282
1283include "Mips16InstrFormats.td"
1284include "Mips16InstrInfo.td"
1285
1286// DSP
1287include "MipsDSPInstrFormats.td"
1288include "MipsDSPInstrInfo.td"
1289
1290